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Convergence Analysis of the Gaussian Regularized
Shannon Sampling Formula

Rongrong Lin and Haizhang Zhang

Abstract—We consider the reconstruction of a bandlimited
function from its finite localized sample data. Truncating the
classical Shannon sampling series results in an unsatisfactory
convergence rate due to the slow decayness of the sinc function.
To overcome this drawback, a simple and highly effective method,
called the Gaussian regularization of the Shannon series, was
proposed in engineering and has received remarkable attention.
It works by multiplying the sinc function in the Shannon
series with a regularization Gaussian function. L. Qian (Proc.
Amer. Math. Soc., 2003) established the convergence rate of
O(

√

n exp(−π−δ
2

n)) for this method, where δ < π is the
bandwidth and n is the number of sample data. C. Micchelli
et al. (J. Complexity, 2009) proposed a different regularization
method and obtained the corresponding convergence rate of
O( 1√

n
exp(−π−δ

2
n)). This latter rate is by far the best among

all regularization methods for the Shannon series. However, their
regularized function involves the solving of a linear system and
is implicit and more complicated. The main objective of this
note is to show that the Gaussian regularized Shannon series
can also achieve the same best convergence rate as that by C.
Micchelli et al. We also show that the Gaussian regularization
method can improve the convergence rate for the useful average
sampling. Numerical experiments are presented to justify the
obtained results.

Index Terms—Bandlimited functions, Gaussian regularization,
oversampling, Shannon’s sampling theorem, average sampling.

I. I NTRODUCTION

T HE main purpose of this paper is to show that the
Gaussian regularized Shannon sampling formula to re-

construct a bandlimited function can achieve by far the best
convergence rate among all regularization methods for the
Shannon sampling series in the literature. As a result, we
improve L. Qian’s error estimate [1] for this highly successful
method in engineering.

We first introduce thePaley-Wiener space Bδ(R
d) with the

bandwidthδ := (δ1, δ2, . . . , δd) ∈ (0,+∞)d defined as

Bδ(R
d) := {f ∈ L2(Rd) ∩ C(Rd) : supp f̂ ⊆ [−δ, δ]},

where [−δ, δ] :=
∏d

k=1[−δk, δk]. In this paper, the Fourier
transform off ∈ L1(Rd) takes the form

f̂(ξ) :=
1

(
√
2π)d

∫

Rd

f(t)e−it·ξdt, ξ ∈ R
d,
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wheret · ξ denotes the standard inner product oft and ξ in
Rd. The classicalShannon sampling theorem [2], [3] states
that eachf ∈ Bπ(R) can be completely reconstructed from
its infinite sampling data{f(j) : j ∈ Z}. Specifically, it holds

f(t) =
∑

j∈Z

f(j) sinc (t− j), t ∈ R, f ∈ Bπ(R), (1)

where sinc (x) = sin(πx)/(πx). Many generalizations of
Shannon’s sampling theorem have been established (see, for
example, [4]–[12] and the references therein).

In practice, we can only sum over finite sample data “near”
t in (1) to approximatef(t). Truncating the series (1) results
in a convergence rate of the orderO( 1√

n
) due to the slow de-

cayness of the sinc function, [13]–[16]. Besides, this truncated
series was proved to be the optimal reconstruction method
in the worst case scenario inBπ(R). Dramatic improvement
of the convergence rate can be achieved whenf ∈ Bδ(R),
δ < π. In this case,{f(j) : j ∈ Z} turns out to be a set of
oversampling data, where oversampling means to sample at a
rate strictly larger than the Nyquist rateδπ < 1.

Three explicit methods [1], [14], [17] have been proposed
in order to reconstruct a univariate bandlimited function
f ∈ Bδ(R) (δ < π) from its finite oversampling data
{f(j) : −n + 1 ≤ j ≤ n} with an exponentially decaying
approximation error. They work by multiplying the sinc func-
tion with a rapidly-decaying regularization function. Jagerman
[14] used a power of the sinc functions as the regularizer and
obtained the convergence rate of

O
( 1
n
exp(−π − δ

e
n)
)
.

Micchelli et al. [17] chose a spline function as the regularizer
and attained the convergence rate

O
( 1√

n
exp(−π − δ

2
n)
)
, (2)

which is by far the best convergence rate among all regulariza-
tion methods for the Shannon sampling series in reconstructing
a bandlimited function. However, the spline regularization
function in [17] is implicit and involves the solving of a
linear system. A third method using a Gaussian function as
the regularizer was first proposed by Wei [18]. Precisely,
the Gaussian regularized Shannon sampling series in [18] is
defined as

(Sn,rf)(t) :=

n∑

j=−n+1

f(j) sinc (t−j)e−
(t−j)2

2r2 , t ∈ (0, 1), f ∈ Bδ(R).

(3)
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A convergence analysis of the method was presented by Qian
[1], [8]. Taking a small computational mistake in (2.33) in [1]
into consideration and optimizing about the variancer of the
Gaussian function as done in [17], Qian actually established
the following convergence rate for (3)

O
(√

n exp(−π − δ

2
n)
)
. (4)

Due to its simplicity and high accuracy (4), the Gaus-
sian regularized Shannon sampling series (3) has been
widely applied to scientific and engineering computations.In
fact, more than a hundred such papers have appeared (see
http://www.math.msu.edu/∼wei/pub-sec.html for the list, and
[18]–[23] for comments and discussion). We note that although
the exponential term in (4) is as good as that in (2) for the
spline function regularization [17], the first term

√
n is much

worse than 1√
n

in (2). The first purpose of this paper is to
show that the convergence rate of the Gaussian regularized
Shannon sampling series can be improved to (2). Thus, this
method enjoys both simplicity and the best convergence rate
by far. This will be done in Section II, where we also improve
the convergence rates of the Gaussian regularized Shannon
sampling series for derivatives and multivariate bandlimited
functions. In Section III, we show that the Gaussian regular-
ization method can also improve the convergence rate for the
useful average sampling. In the last section, we demonstrate
our results via several numerical experiments.

II. I MPROVED CONVERGENCERATES FOR THEGAUSSIAN

REGULARIZATION

In this section, we improve the convergence rate analysis
for the Gaussian regularized Shannon sampling series. Specif-
ically, we shall show that it can achieve by far the best rate
(2) for univariate bandlimited functions and its derivatives, and
for multivariate bandlimited functions. We separate the three
cases into different subsections.

A. Univariate Bandlimited Functions

Let f ∈ Bδ(R) with δ ∈ (0, π) throughout this subsection.
We shall use the Gaussian regularized Shannon sampling series
(3) to reconstruct the values off at t ∈ (0, 1) from the finite
localized oversampling data{f(j) : −n + 1 ≤ j ≤ n}.
We shall need a few technical facts in order to improve the
convergence rate established in [1]. They were also frequently
used in the estimates in [1], [8].

Firstly, it is well-known that sinc (· − j), j ∈ Z form an
orthonormal basis forBπ(R). As f ∈ Bδ(R) ⊆ Bπ(R), we
have by the Parseval identity

‖f‖2L2(R) =
∑

j∈Z

|f(j)|2, f ∈ Bδ(R). (5)

The second result needed is the following upper bound esti-
mate of Mills’ ratio [24] of standard normal law:

∫ +∞

x

e−t2dt <
e−x2

2x
, x > 0. (6)

We shall also need a variant of its discrete version:

∑

j /∈(−n,n]

e−
(t−j)2

r2 <
r2

n− 1
e−

(n−1)2

r2 , r > 0, n ≥ 2, t ∈ (0, 1).

(7)
The next two are a useful computation of the Fourier transform

(
sinc (t− j)e−

(t−j)2

2r2

)
(̂ξ) =

e−ijξ

2π

∫ ξ+π

ξ−π

re−
r2η2

2 dη, ξ ∈ R

(8)
and an associated estimate

∣∣∣1− 1√
π

∫ (ξ+π)r√
2

(ξ−π)r√
2

e−τ2

dτ
∣∣∣ ≤

√
2

π

e−
(π−δ)2r2

2

(π − δ)r
for all ξ ∈ [−δ, δ].

(9)
The last one is the upper bound estimate

|Hk(x)| ≤ (2x)k, |x| ≥ k

2
(10)

for the k-th order Hermite polynomial defined as

Hk(x) := k!

⌊ k
2 ⌋∑

i=0

(−1)i
(2x)k−2i

i!(k − 2i)!
, x ∈ R.

We are in a position to present an improved convergence
rate analysis for the Gaussian regularized Shannon sampling
series. We follow the methods in [1] and emphasize that the
improvement is achieved by applying the Cauchy-Schwartz
inequality to obtain a better estimate for (2.5) in [1].

Theorem 1: Let δ ∈ (0, π) , n ≥ 2, and chooser :=
√

n−1
π−δ .

The Gaussian regularized Shannon sampling series (3) satisfies

sup
f∈Bδ(R), ‖f‖L2(R)≤1

‖f − Sn,rf‖L∞((0,1))

≤
(√

2δ +
1√
n

)
e−

(π−δ)(n−1)
2

π
√
(π − δ)(n− 1)

.
(11)

Proof: Let f ∈ Bδ(R) with ‖f‖L2(R) ≤ 1. Set (f −
Sn,rf)(t) := E1(t) + E2(t), t ∈ (0, 1), where

E1(t) := f(t)−
∑

j∈Z

f(j) sinc (t− j)e−
(t−j)2

2r2 ,

E2(t) :=
∑

j /∈(−n,n]

f(j) sinc (t− j)e−
(t−j)2

2r2 .

BoundE1(t) by its Fourier transform as follows

|E1(t)| ≤
1√
2π

‖Ê1‖L1(R), t ∈ (0, 1).

Computing and boundinĝE1 by (8), (9) and similar arguments
as those in [1], we have

|E1(t)| ≤
√
2δe−

(π−δ)2r2

2

π(π − δ)r
, t ∈ (0, 1). (12)

Observe that

| sinc (t− j)| ≤ 1

πn
, t ∈ (0, 1), j /∈ (−n, n].

http://www.math.msu.edu/~wei/pub-sec.html


3

Thus,

|E2(t)| ≤
∑

j /∈(−n,n]

|f(j)|
∣∣∣∣
sinπ(t− j)

π(t− j)

∣∣∣∣ e
− (t−j)2

2r2

≤ 1

πn

∑

j /∈(−n,n]

|f(j)|e−
(t−j)2

2r2 , t ∈ (0, 1).

Apply the Cauchy-Schwartz inequality, we get by (5) and (7)

|E2(t)| ≤ 1

πn

( ∑

j /∈(−n,n]

|f(j)|2
) 1

2
( ∑

j /∈(−n,n]

e−
(t−j)2

r2

) 1
2

≤ re−
(n−1)2

2r2

πn
√
n− 1

, t ∈ (0, 1).

(13)
Combining (12) with (13) and optimally choosingr =

√
n−1
π−δ

completes the proof.
We remark that the estimate (11) is of the same order as

the best convergence rate (2) by far in the literature. A second
remark is on the degenerated case whenδ = π. In this case,
the estimate in [1] or the above (11) is apparently meaningless.
To make up for the drawback, a more delicate upper bound
estimate is needed forE1. Specifically, we have

|E1(t)| ≤ 1√
2π

(∫

[−π,π]\[−π+n− 3
4 ,π−n− 3

4 ]

|Ê1(ξ)|dξ
)

+
1√
2π

∫ π−n− 3
4

−π+n− 3
4

|Ê1(ξ)|dξ

≤ 1√
π

1

n
3
8

+

√
2

π

n
3
4

r
.

Taking r = n
9
8 above and using (13), we obtain the conver-

gence rate3n− 3
8 for f ∈ Bπ(R).

B. Derivatives of Univariate Bandlimited Functions

By the Paley-Wiener theorem, each function inBδ(R) is
infinitely differentiable. In this subsection, we are concerned
with the reconstruction of the derivatives off ∈ Bδ(R) by
the Gaussian regularized Shannon sampling series (3). The
convergence rate obtained in [1], [8] is also of the order (4).
We shall improve the estimate.

Theorem 2: Let s ∈ N, n ≥ max{3, s2

2(π−δ)}, and r :=√
n−2
π−δ . It holds

sup
f∈Bδ(R),‖f‖L2(R)≤1

‖f (s) − (Sn,rf)
(s)‖L∞((0,1))

≤
(√

2δs+
1
2

√
2s+ 1

+
24(s+ 2)!√

n

)
e−

(π−δ)(n−2)
2

π
√

(π − δ)(n− 2)
.

Proof: We may suppose thatf ∈ Bδ(R) with ‖f‖L2(R) ≤
1. Set f (s)(t) − (Sn,rf)

(s)(t) := E1(t) + E2(t), t ∈ (0, 1),
where

E1(t) := f (s)(t)− 1√
2π

∑

j∈Z

f(j)
(
sinc (t− j)e−

(t−j)2

2r2

)(s)
,

E2(t) :=
1√
2π

∑

j /∈(−n,n]

f(j)
(
sinc (t− j)e−

(t−j)2

2r2

)(s)
.

It has been estimated in [1] that

‖E1‖L∞((0,1)) ≤
√

2

2s+ 1

δs+
1
2 e−

(π−δ)2r2

2

π(π − δ)r
. (14)

For eacht ∈ (0, 1), we calculate

E2(t) =
1√
2π

∑

j /∈(−n,n]

f(j)

·
[

s∑

k=0

s!

k!(s− k)!

( sin(πt− jπ)

π(t− j)

)(s−k)(
e−

(t−j)2

2r2

)(k)
]

=
1√
2π

∑

j /∈(−n,n]

f(j)

[
s∑

k=0

s!

k!

·
(

s−k∑

l=0

πs−k−l−1 sin
(
π(t− j + (s−k−l)

2 )
)

l!(s− k − l)!
· (−1)ll!

(t− j)l+1

)

·
(−1)kHk(

t−j√
2r
)

(
√
2r)k

]
e−

(t−j)2

2r2 .

Noticing the simple fact

1

|t− j|l+1
≤ 1

n
for j /∈ (−n, n], t ∈ (0, 1), l ∈ Z+, (15)

we obtain by (10)

|E2(t)| ≤ s!

π
√
2π

∑

j /∈(−n,n]

|f(j)|

·
[

s∑

k=0

1

k!

( s−k∑

l=0

πs−k−l

(s− k − l)!

1

|t− j|l+1

) |t− j|k
r2k

]
e−

(t−j)2

2r2

≤ s!

nπ
√
2π

∑

|j|≥n

|f(j + 1)|

·
[

s∑

k=0

|j|k
k!r2k

·
( s−k∑

l=0

πs−k−l

(s− k − l)!

)]
e−

j2

2r2 .

Sinceex > xj

j! for all x > 0 andj ∈ Z+, we have

|E2(t)| ≤ s!

nπ
√
2π

∑

|j|≥n

|f(j + 1)|
( s∑

k=0

e
|j|
r2 (s− k + 1)eπ

)
e−

j2

2r2

≤ eπ(s+ 2)!

n(2π)
3
2

∑

|j|≥n

|f(j + 1)|e
−j2+2|j|

2r2 .

Note thatn ≥ 1 + s2

2(π−δ) and r =
√

n−2
π−δ implies n ≥ sr√

2
.

We thus get by (5), (7) and the Cauchy-Schwartz inequality

‖E2(t)‖L∞((0,1)) ≤ eπ(s+ 2)!e
1

2r2

n(2π)
3
2

(
2
∑

j≥n−1

e−
j2

r2

) 1
2

≤ eπ(s+ 2)!e
1

2r2

(2π)
3
2

re−
(n−2)2

2r2

n
√
n− 2

.

(16)
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Substitutingr =
√

n−2
π−δ into (14) and (16), we have

‖E2‖L∞((0,1)) + ‖E2‖L∞((0,1))

=
( √

2

π
√
2s+ 1

δs+
1
2

√
(π − δ)(n− 2)

+
eπ(s+ 2)!e

π−δ
2(n−2)

(2π)
3
2

√
π − δn

)

·e−
(π−δ)(n−2)

2

<
(√2δs+

1
2

√
2s+ 1

+
24(s+ 2)!√

n

) e−
(π−δ)(n−2)

2

π
√

(π − δ)(n− 2)
.

In the last inequality, we user =
√

n−2
π−δ ≥ 1√

π
and e

3π
2

2
√
2π

≤
24. The proof is complete.

C. Multivariate Bandlimited Functions

In this subsection, we show that the best convergence rate
(2) can also be achieved in the reconstruction of a multivariate
bandlimited function by the Gaussian regularized Shannon
sampling series. Techniques to be used for this case is quite
different from those in the univariate case and also much
differs from those in [8].

Let δ := (δ1, δ2, . . . , δd) ∈ (0, π)d and Jn := {j ∈ Zd :
j ∈ (−n, n]d} in this subsection. The Gaussian regularized
Shannon sampling series [8] to reconstruct a multivariate
function f ∈ Bδ(R

d) from its finite sample dataf(Jn) is
defined as

(Sn,rf)(t) :=
∑

j∈Jn

f(j) sinc (t− j)e−
‖t−j‖2

2r2 , t ∈ (0, 1)d,

(17)
where

sinc (x) :=

d∏

k=1

sin(πxk)

πxk
, x ∈ R

d

and‖x‖ denotes the standard Euclidean norm ofx in Rd.
Two lemmas are needed to present an improved convergence

analysis for (17).
Lemma 3: Let r > 0 andn ≥ 2. It holds for all t ∈ (0, 1)d

∑

j /∈Jn

(
sinc 2(t− j)e−

‖t−j‖2
r2

)
≤ d

π2

r2e−
(n−1)2

r2

n2(n− 1)
.

Proof: Observe that

{j ∈ Z
d : j /∈ Jn} ⊆

d⋃

k=1

{j ∈ Z
d : jk /∈ (−n, n]}. (18)

By (18), we have for eacht ∈ (0, 1)d

∑

j /∈Jn

(
sinc 2(t− j)e−

‖t−j‖2
r2

)

≤
d∑

k=1

( ∑

jk /∈(−n,n]

sinc 2(tk − jk)e
− (tk−jk)2

r2

)

·
∏

l 6=k

(∑

jl∈Z

sinc 2(tl − jl)e
− (tl−jl)

2

r2

)
.

Note that
∑

m∈Z
sinc 2(x−m) = 1, x ∈ R. Thus, we have

∑

j /∈Jn

d∏

k=1

sinc 2(tk − jk)e
− (tk−jk)2

r2

≤
d∑

k=1

( ∑

jk /∈(−n,n]

sinc 2(tk − jk)e
− (tk−jk)2

r2

)
.

Applying (7) to the last inequality gives the desired result.
Introduce the important constant

∆ := max{δk : k = 1, 2, . . . , d}.

Lemma 4: Let δ ∈ (0, π)d. It holds for ξ ∈ ∏d
k=1[−δk, δk]

1−
d∏

k=1

1√
π

∫ (ξk+π)r√
2

(ξk−π)r√
2

e−τ2

dτ ≤
√

2

π

de−
(π−∆)2r2

2

(π −∆)r
.

Proof: By (6), we have forξ ∈ ∏d
k=1[−δk, δk]

1√
π

∫ (ξk+π)r√
2

(ξk−π)r√
2

e−τ2

dτ

= 1− 1√
π

∫ +∞

(π−ξk)r√
2

e−τ2

dτ − 1√
π

∫ +∞

(π+ξk)r√
2

e−τ2

dτ

≥ 1− 1√
π



 e−
(π−ξk)2r2

2

√
2(π − ξk)r

+
e−

(π+ξk)2r2

2

√
2(π + ξk)r



 .

We then apply the elementary fact that for constantsτk > 0,
1 ≤ k ≤ d with

∑d
k=1 τk < 1, it holds

1−
d∏

k=1

(1− τk) ≤
d∑

k=1

τk.

As a consequence,

1−
d∏

k=1

1√
π

∫ (ξk+π)r√
2

(ξk−π)r√
2

e−τ2

dτ

≤ 1√
π

d∑

k=1


 e−

(π−ξk)2r2

2

√
2(π − ξk)r

+
e−

(π+ξk)2r2

2

√
2(π + ξk)r




≤
√

2

π

d∑

k=1

e−
(π−ξk)2r2

2

(π − ξk)r
.

The proof is completed by noting that1xe
− r2x2

2 is decreasing
on (0,+∞).

With the above preparation, we have the following main
theorem.

Theorem 5: Let δ ∈ (0, π)d, n ≥ 2, andr :=
√

n−1
π−∆ . The

multivariate Gaussian regularized Shannon sampling series
(17) satisfies

sup
f∈Bδ(Rd), ‖f‖

L2(Rd)
≤1

‖f − Sn,rf‖L∞((0,1)d)

≤
(
d(2∆)

d
2 +

√
d

n

)
e−

(π−∆)(n−1)
2

π
√
(π −∆)(n− 1)

.
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Proof: Let f ∈ Bδ(R
d) with ‖f‖L2(Rd) ≤ 1. Setf(t) −

(Sn,rf)(t) := E1(t) + E2(t), t ∈ (0, 1)d, where

E1(t) := f(t)−
∑

j∈Zd

f(j) sinc (t− j)e−
‖t−j‖2

2r2 ,

E2(t) :=
∑

j /∈Jn

f(j) sinc (t− j)e−
‖t−j‖2

2r2 .

By Lemma 4 and similar arguments as those in [1] for the
univariate case, we have

|Ê1(ξ)| = |f̂(ξ)|
∣∣∣∣∣1−

d∏

k=1

1√
π

∫ (ξk+π)r√
2

(ξk−π)r√
2

e−τ2

dτ

∣∣∣∣∣

≤ |f̂(ξ)|
√

2

π

de−
(π−∆)2r2

2

(π −∆)r
, ξ ∈ [−δ, δ].

BoundingE1 by its Fourier transform and then applying the
Cauchy-Schwartz inequality, we get

‖E1‖L∞((0,1)d) ≤ 1√
2π

∫

[−δ,δ]

|Ê(ξ)|dξ

≤ d

π

e−
(π−∆)2r2

2

(π −∆)r

∫

[−δ,δ]

|f̂(ξ)|dξ

≤ d(2∆)
d
2

π

e−
(π−∆)2r2

2

(π −∆)r
.

(19)

Recall that

‖f‖2L2(Rd) =
∑

j∈Zd

|f(j)|2, f ∈ Bδ(R
d).

By this, Lemma 3, and the Cauchy-Schwartz inequality, we
obtain

‖E2‖L∞((0,1)d) ≤
( ∑

j /∈Jn

|f(j)|2
) 1

2

·
( ∑

j /∈Jn

sinc 2(t− j)e−
‖t−j‖2

r2

) 1
2

≤
√
d

π

re−
(n−1)2

2r2

n
√
n− 1

.

(20)

The proof is completed by takingr =
√

n−1
π−∆ in (19) and

(20).

III. G AUSSIAN REGULARIZATION FOR AVERAGE

SAMPLING

In this section, we will apply the method of Gaussian
regularization to the useful average sampling. A main purpose
is again to improve the convergence rate. We first introduce
some basic facts about the average sampling.

Sampling a functionf at j ∈ Z can be viewed as applying
the Delta distribution to the functionf(j+ ·). The Delta distri-
bution is used theoretically but hard to implement physically.
Hence, a practical way is to approximate the Delta distribution
by an averaging function with small support around the origin.
For this sake, we consider the following average sampling
strategy:

f̃(j) :=

∫ σ/2

−σ/2

f(j + ·)dν(x), j ∈ Z, f ∈ Bδ(R),

where 0 < σ < π
δ and ν is a symmetric positive Borel

probability measure on[−σ/2, σ/2]. It was observed in [25]
that

cos
(σδ

2

)
‖f‖2L2(R) ≤

∑

j∈Z

|f̃(j)|2 ≤ ‖f‖2L2(R). (21)

Thus,{f̃(j) : j ∈ Z} is in fact induced by a frame inBδ(R).
By the standard frame theory, we are able to completely
reconstructf from the infinite sample data{f̃(j) : j ∈ Z}
through a dual frame. For studies along this direction, see,for
example, [4], [5], [9], [10], [26], [27].

Motivated by the Shannon sampling theorem, we desire a
dual frame that is generated by the shifts of a single function.
In other words, we prefer a complete reconstruction formula
of the following form

f =
1√
2π

∑

j∈Z

f̃(j)φ(· − j), f ∈ Bδ(R), (22)

whereφ is to be chosen. It has been proved in [25] that if
φ ∈ C(R) ∩ L2(R) with supp φ̂ ⊆ Iδ := [−2π + δ, 2π − δ]
then (22) holds if and only if

φ̂(ξ)W (ξ) = 1 for almost everyξ ∈ [−δ, δ], (23)

where

W (ξ) :=

∫ σ/2

−σ/2

eitξdν(t), ξ ∈ [−δ, δ]. (24)

Under the above assumptions onν, W (ξ) is an even function
on [−δ, δ] and satisfies

0 < γ := cos
(σδ

2

)
≤ W (ξ) ≤ 1, |W ′(ξ)| ≤ σ

2
,

|W ′′(ξ)| ≤ σ2

4
, ξ ∈ [−δ, δ].

(25)

In practice, we only have the finite sample dataf̃(j), −n <
j ≤ n. A natural reconstruction method is by

1√
2π

n∑

j=−n+1

f̃(j)φ(· − j). (26)

The main purpose of this section is to illustrate by an ex-
plicit example that compared to the above direct truncation,
regularization by a Gaussian function as follows

(Sn,rf)(t) :=
1√
2π

∑

j∈(−n,n]

f̃(j)φ(t−j)e−
(t−j)2

2r2 , t ∈ (0, 1), f ∈ Bδ(R)

(27)
may lead to a better convergence rate.

The functionφ satisfying (23) in our example is specified
as

φ̂(ξ) :=






1
W (ξ) , ξ ∈ [−δ, δ],
[
|ξ|−(2π−δ)

2π−2δ

]2
P (ξ), δ ≤ |ξ| ≤ 2π − δ,

0, elsewhere,

(28)

where

P (ξ) :=

[( 1

(π − δ)W (δ)
− W ′(δ)

W 2(δ)

)
|ξ|+ π − 2δ

(π − δ)W (δ)
+

δW ′(δ)

W 2(δ)

]
.
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Then supp φ̂ ⊆ [−2π + δ, 2π − δ], φ̂ ∈ C1(R) and φ̂′ is
absolutely continuous onR. By (25), we have

‖φ̂‖L∞(Iδ) ≤
3π − δ

(π − δ)γ
+

πσ

γ2
,

‖φ̂′′‖L∞(Iδ) ≤
σ2

γ3
+

8

(π − δ)3γ
+

4σ

(π − δ)2γ2
,

‖φ̂′′‖L1(Iδ) ≤
2δσ2

γ3
+

32

(π − δ)2γ
+

16σ

(π − δ)γ2
.

(29)

Finally, we shall use an elementary fact from the Fourier
analysis [28] that

|φ(t− j)| ≤ 1√
2π

‖φ̂′′‖L1(Iδ)

|t− j|2 , j ≥ 2, t ∈ (0, 1). (30)

The main result of this section is as follows.
Theorem 6: Let δ ∈ (0, π), n ≥ 2, γ = cos(σδ2 ), r = n

5
6

and φ̂ be given as (28). Then the convergence rate of (27) is

sup
f∈Bδ(R), ‖f‖L2(R)≤1

‖f − Sn,rf‖L∞((0,1)) ≤ cn− 5
3 ,

where

c =
(
√
δ + 2δ)σ2

γ3
+

(
4σ

√
δ

(π − δ)2
+

16σ

π − δ
+ πσ

√
δ

)
1

γ2

+

(
8
√
δ

(π − δ)2
+

32

π − δ
+ 10

√
δ

)
1

(π − δ)γ
.

Proof: Let f ∈ Bδ(R) with ‖f‖L2(R) ≤ 1. Set f(t) −
Sn,rf(t) := F1(t) + F2(t), t ∈ (0, 1), where

F1(t) := f(t)− 1√
2π

∑

j∈Z

f̃(j)φ(t − j)e−
(t−j)2

2r2 ,

F2(t) :=
1√
2π

∑

j /∈(−n,n]

f̃(j)φ(t − j)e−
(t−j)2

2r2 .

Estimate of F1. By (22), we have f̂(ξ) =
( 1√

2π

∑
j∈Z

f̃(j)φ̂(ξ)e−ijξ)χ[−δ,δ](ξ), ξ ∈ R. Then, for
ξ ∈ R,

F̂1(ξ) = f̂(ξ) − 1√
2π

∑

j∈Z

f̃(j)
1√
2π

·
∫

R

re−ij(ξ−η)φ̂(ξ − η)e−(ijη+ r2η2

2 )dη

= f̂(ξ) − 1√
2π

∑

j∈Z

f̃(j)e−ijξφ̂(ξ)
1

φ̂(ξ)

·
∫

R

φ̂(ξ − η)
1√
2π

re−
r2η2

2 dη

=
f̂(ξ)χ[−δ,δ](ξ)

φ̂(ξ)

[
φ̂(ξ)− 1√

2π

∫

R

φ̂(ξ − η)re−
r2η2

2 dη
]
.

If |ξ| > δ then F̂1(ξ) = 0. If |ξ| ≤ δ then by (7), (25) and

(28), we have

|F̂1(ξ)|

≤ |f̂(ξ)|√
2π|φ̂(ξ)|

[∣∣∣
∫

|η|<ε

(
φ̂(ξ)− φ̂(ξ − η)

)
re−

r2η2

2 dη
∣∣∣

+
∣∣∣
∫

|η|≥ε

(
φ̂(ξ)− φ̂(ξ − η)

)
re−

r2η2

2 dη
∣∣∣
]

≤ |f̂(ξ)|√
2π

[∣∣∣
∫

|η|<ε

(
φ̂′(ξ)η +

φ̂′′(ξ − θη)

2
η2
)
re−

r2η2

2 dη
∣∣∣

+

∫

|η|≥ε

∣∣∣φ̂(ξ)− φ̂(ξ − η)
∣∣∣re−

r2η2

2 dη

]

≤ |f̂(ξ)|√
2π

[
‖φ̂′′‖L∞(Iδ)

2
·
∫

|η|<ε

η2re−
r2η2

2 dη

+2‖φ̂‖L∞(Iδ) ·
∫

|η|≥ε

re−
r2η2

2 dη

]

≤ |f̂(ξ)|√
2π

[
‖φ̂′′‖L∞(Iδ)

2r2
·
∫

|x|<rε

x2e−
x2

2 dx

+4
√
2‖φ̂‖L∞(Iδ) ·

∫ +∞

rε√
2

e−x2

dx

]
,

where0 < θ < 1 and ε := r. Combining the last inequality
above with

∫
R
x2e−

x2

2 dx =
√
2π and (6) yields

|F̂1(ξ)| ≤ |f̂(ξ)|√
2π

(√
2π‖φ̂′′‖L∞(Iδ)

2r2
+

4e−
r4

2 ‖φ̂‖L∞(Iδ)

r2

)

≤ |f̂(ξ)|
r2

(
‖φ̂′′‖L∞(Iδ)

2
+

4‖φ̂‖L∞(Iδ)√
2π

)
.

BoundingF1 by theL1-norm of its Fourier transform, we get
by the above equation

|F1(t)| ≤
√
δ

r2

(
‖φ̂′′‖L∞(Iδ)

2
√
π

+
4‖φ̂‖L∞(Iδ)√

2π

)

≤

(
‖φ̂′′‖L∞(Iδ) + ‖φ̂‖L∞(Iδ)

)√
δ

r2
, t ∈ (0, 1).

(31)
Estimate of F2. By (30) and by the Cauchy-Schwartz

inequality, for eacht ∈ (0, 1),

|F2(t)| ≤
∑

j /∈(−n,n]

|f̃(j)||φ(t − j)|e−
(t−j)2

2r2

≤ ‖φ̂′′‖L1(Iδ)√
2πn2

∑

j /∈(−n,n]

|f̃(j)|e−
(t−j)2

2r2

≤ ‖φ̂′′‖L1(Iδ)√
2πn2

( ∑

j /∈(−n,n]

|f̃(j)|2
) 1

2
( ∑

j /∈(−n,n]

e−
(t−j)2

r2

) 1
2

.

It follows from (7) and (21) that

|F2(t)| ≤
r‖φ̂′′‖L1(Iδ)√
2πn2

√
n− 1

e−
(n−1)2

2r2 ≤ r‖φ̂′′‖L1(Iδ)

n
5
2

. (32)

Taking r = n
5
6 in (31) and (32), we obtain

∥∥∥f − Sn,rf
∥∥∥
L∞((0,1))

≤
(√

δ‖φ̂′′‖L∞(Iδ) +
√
δ‖φ̂‖L∞(Iδ) + ‖φ̂′′‖L1(Iδ)

) 1

n
5
3

,
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which, by (29), completes the proof.
We see that ifφ̂ ∈ C1(R) and φ̂′ is absolutely continuous

on R then the convergence rate of the direcr truncation (26)
is O(n− 3

2 ). Therefore, the Gaussian regularized version (27)
indeed results in a better convergence rate.

IV. N UMERICAL EXPERIMENTS

We present in this section numerical experiments to illus-
trate the effectiveness of the Gaussian regularized sampling
formula and to demonstrate the validness of our convergence
analysis for the formula.

A. Univariate Bandlimited Functions

Let δ < π. The bandlimited function under investigation
has the form

fδ(t) =
1√

π(5δ + 4 sin δ)

(2 sin δt
t

+
sin δ(t− 1)

t− 1

)
, t ∈ R.

(33)
We point out thatfδ ∈ Bδ(R) and ‖fδ‖L2(R) = 1. We shall
reconstruct the values off on (0, 1) from {f(j) : −n+ 1 ≤
j ≤ n} by the the truncated Gaussian regularized Shannon
sampling series

(Snfδ)(t) =
n∑

j=−n+1

fδ(j) sinc (t−j)e−
(t−j)2(π−δ)

2(n−1) , t ∈ (0, 1).

The error of reconstruction is measured by

E(fδ − Snfδ) := max
1≤j≤99

∣∣∣(fδ − Snfδ)
( j

100

)∣∣∣

This error is to be compared with the theoretical estimate in
Theorem 1:

Eδ,n :=
(√

2δ +
1√
n

) e−
(π−δ)(n−1)

2

π
√
(π − δ)(n− 1)

, n ≥ 2.

We also compute the reconstruction error resulting from di-
rectly truncating the Shannon series

E(fδ − Tnfδ) := max
1≤j≤99

∣∣∣(fδ − Tnfδ)
( j

100

)∣∣∣.

for comparison, where

(Tnfδ)(t) :=

n∑

j=−n+1

fδ(j)
sin(π(t− j))

π(t− j)
, t ∈ (0, 1).

The above three errors forn = 2, 4, . . . , 30 andδ = π
3 ,

π
2 ,

2π
3

are listed in TABLEs I, II, and III, respectively. We also
plot logEδ,n and logE(fδ − Snfδ) in Fig. 1. We see that
the Gaussian regularized Shannon sampling formula converges
extremely fast and our theoretical estimate for the convergence
rate in Theorem 1 is pretty sharp.

E(fδ − Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0331 0.1663 0.0509
n=4 0.0098 0.0107 0.0017
n=6 2.2761e-04 9.7124e-04 1.0932e-04
n=8 0.0024 9.8103e-05 8.5248e-06
n=10 0.0016 1.0433e-05 7.2866e-07
n=12 3.0405e-05 1.1440e-06 6.8632e-08
n=14 7.9461e-04 1.2799e-07 6.6728e-09
n=16 6.2247e-04 1.4525e-08 6.5985e-10
n=18 9.1326e-06 1.6661e-09 6.8773e-11
n=20 3.9146e-04 1.9267e-10 7.2196e-12
n=22 3.2878e-04 2.2428e-11 7.5895e-13
n=24 3.8717e-06 2.6246e-12 8.3156e-14
n=26 2.3225e-04 3.0851e-13 9.2149e-15
n=28 2.0277e-04 3.6399e-14 1.4433e-15
n=30 1.9869e-06 4.3080e-15 4.4409e-16

TABLE I: Reconstruction erros forδ = π
3 .

E(fδ − Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0051 0.2871 0.0521
n=4 9.6902e-04 0.0316 0.0030
n=6 3.2453e-04 0.0049 3.1393e-04
n=8 1.4422e-04 8.3589e-04 4.2582e-05
n=10 7.5827e-05 1.5055e-04 6.1037e-06
n=12 4.4556e-05 2.7936e-05 9.8330e-07
n=14 2.8327e-05 5.2865e-06 1.5771e-07
n=16 1.9097e-05 1.0144e-06 2.7379e-08
n=18 1.3472e-05 1.9668e-07 4.6564e-09
n=20 9.8525e-06 3.8441e-08 8.4284e-10
n=22 7.4200e-06 7.5615e-09 1.4863e-10
n=24 5.7257e-06 1.4951e-09 2.7629e-11
n=26 4.5098e-06 2.9691e-10 4.9942e-12
n=28 3.6149e-06 5.9176e-11 9.4547e-13
n=30 2.9418e-06 1.1831e-11 1.7397e-13

TABLE II: Reconstruction errors forδ = π
2 .

E(fδ − Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0275 0.5074 0.0490
n=4 0.0064 0.0951 0.0049
n=6 4.6943e-04 0.0249 9.2523e-04
n=8 0.0020 0.0072 1.9165e-04
n=10 0.0012 0.0022 5.0903e-05
n=12 6.8750e-05 6.9045e-04 1.3828e-05
n=14 6.5098e-04 2.2083e-04 3.5771e-06
n=16 4.6868e-04 7.1605e-05 1.0844e-06
n=18 2.1160e-05 2.3456e-05 3.2408e-07
n=20 3.1800e-04 7.7448e-06 9.1110e-08
n=22 2.5108e-04 2.5733e-06 2.9088e-08
n=24 9.0566e-06 8.5940e-07 9.0859e-09
n=26 1.8765e-04 2.8824e-07 2.6710e-09
n=28 1.5607e-04 9.7020e-08 8.7632e-10
n=30 4.6691e-06 3.2757e-08 2.8080e-10

TABLE III: Reconstruction errors forδ = 2π
3 .
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−40

−20

0
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−40

−20
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−40

−20
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n
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log(E(f
δ
−S

n
f
δ
))

log(E
δ,n

)

Fig. 1: Comparison oflogEδ,n andlogE(fδ −Snfδ) for δ =
π
3 (Top), δ = π

2 (Middle), andδ = 2π
3 (Bottom). Heren =

2, 3, 4, . . . , 30.
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B. Derivative of Univariate Bandlimited Functions

We now turn to verify the reconstruction error for the first
derivative of a univariate bandlimited function. We usefδ in
the above subsection for simulation. Let

E′
δ,n :=

(√2δ

3
δ +

144√
n

) e−
(π−δ)(n−2)

2

π
√
(π − δ)(n− 2)

be the theoretical upper bound established for the derivative in
Theorem 2. This upper bound together with the errors of the
two reconstruction methods are listed in TABLEs IV, V, and
VI. In particular,logE′

δ,n andlogE(f ′
δ− (Snfδ)

′) are plotted
in Fig. 2.

E(f ′
δ
− (Tnfδ)

′) E′
δ,n

E(f ′
δ
− (Snfδ)

′)

n=3 0.0064 6.4845 0.0238
n=5 0.0192 0.3582 0.0012
n=7 0.0103 0.0289 8.6147e-05
n=9 2.8936e-04 0.0027 7.2344e-06
n=11 0.0041 2.6206e-04 6.5240e-07
n=13 0.0030 2.6989e-05 6.1290e-08
n=15 6.3904e-05 2.8410e-06 6.1368e-09
n=17 0.0017 3.0639e-07 6.2431e-10
n=19 0.0014 3.3571e-08 6.4088e-11
n=21 2.3438e-05 3.7246e-09 6.8596e-12
n=23 9.3372e-04 4.1740e-10 7.3584e-13
n=25 8.0083e-04 4.7166e-11 7.8978e-14
n=27 1.1058e-05 5.3670e-12 9.9087e-15
n=29 5.8806e-04 6.1433e-13 3.9690e-15

TABLE IV: Reconstruction errors for the first derivative when
δ = π

3 .

E(f ′
δ
− (Tnfδ)

′) E′
δ,n

E(f ′
δ
− (Snfδ)

′)

n=3 0.0520 9.8133 0.0321
n=5 0.0192 0.9173 0.0028
n=7 0.0099 0.1254 3.5204e-04
n=9 0.0060 0.0195 4.8058e-05
n=11 0.0040 0.0032 7.6107e-06
n=13 0.0029 5.6310e-04 1.1889e-06
n=15 0.0022 1.0053e-04 2.0547e-07
n=17 0.0017 1.8324e-05 3.4305e-08
n=19 0.0014 3.3930e-06 6.2129e-09
n=21 0.0011 6.3613e-07 1.0797e-09
n=23 9.2764e-04 1.2046e-07 2.0128e-10
n=25 7.8531e-04 2.3001e-08 3.5939e-11
n=27 6.7338e-04 4.4222e-09 6.8315e-12
n=29 5.8378e-04 8.5523e-10 1.2441e-12

TABLE V: Reconstruction errors for the first derivative when
δ = π

2 .
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log( E(f
δ
− S

n
f
δ
))

log( E
δ,n

)

Fig. 2: Comparison oflogE′
δ,n and logE(f ′

δ − (Snfδ)
′) for

δ = π
3 (Top), δ = π

2 (Middle), δ = 2π
3 (Bottom).

E(f ′
δ
− (Tnfδ)

′) E′
δ,n

E(f ′
δ
− (Snfδ)

′)

n=3 0.0110 15.7754 0.0419
n=5 0.0159 2.4966 0.0071
n=7 0.0075 0.5774 0.0014
n=9 6.3518e-04 0.1519 3.2892e-04
n=11 0.0033 0.0427 9.3779e-05
n=13 0.0022 0.0125 2.4603e-05
n=15 1.4672e-04 0.0038 6.7163e-06
n=17 0.0014 0.0012 2.1156e-06
n=19 0.0011 3.6495e-04 6.0578e-07
n=21 5.4615e-05 1.1564e-04 1.7733e-07
n=23 7.5824e-04 3.7009e-05 5.8201e-08
n=25 6.1786e-04 1.1941e-05 1.7429e-08
n=27 2.5934e-05 3.8797e-06 5.3009e-09
n=29 4.7534e-04 1.2678e-06 1.7783e-09

TABLE VI: Reconstruction errors for the first derivative when
δ = 2π

3 .

C. Bivariate Bandlimited Functions

We consider reconstructing bivariate bandlimited functions
by the regularized Shannon sampling formula in this subsec-
tion. The function to be reconstructed is given by

fδ(t1, t2) = fδ1(t1)fδ2(t2), t1, t2 ∈ R,

where δ = (δ1, δ2) with δ1 ≤ δ2 < π, and fδ1 ,fδ2 are
defined by (33). Clearly,fδ ∈ Bδ(R

2) and ‖fδ‖L2(R2) = 1.
The Gaussian regularized and direct truncation of the Shannon
sampling formula are respectively given by

(Snfδ)(t1, t2) =

n∑

j2=−n+1

n∑

j1=−n+1

fδ(j1, j2) sinc (t1 − j1)

· sinc (t2 − j2)e
− ((t1−j1)2+(t2−j2)2)(π−δ2)

2(n−1)

and

(Tnfδ)(t) =

n∑

j2=−n+1

n∑

j1=−n+1

fδ(j1, j2) sinc (t1 − j1)

· sinc (t2 − j2).

Similarly, we shall compare the following two reconstruction
errors:

E(fδ − Snfδ) := max
1≤j1,j2≤49

∣∣∣(fδ − Snfδ)
( j1
50

,
j2
50

)∣∣∣,

E(fδ −Tnfδ) := max
1≤j1,j2≤49

∣∣∣(fδ −Tnfδ)
( j1
50

,
j2
50

)∣∣∣,

and the theoretical upper bound for the Gaussian regularized
method established in Theorem 5

Eδ,n :=
(
4δ2 +

√
2

n

) e−
(π−δ2)(n−1)

2

π
√
(π − δ2)(n− 1)

, n ≥ 2.

The results are shown in TABLEs VII–IX, and plotted in
Fig. 3. Again, we see that our estimate in Theorem 5 is valid
and sharp.
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E(fδ −Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0316 0.8434 0.0378
n=4 4.6243e-04 0.0971 0.0016
n=6 0.0041 0.0154 1.5469e-04
n=8 1.2792e-04 0.0027 2.1566e-05
n=10 0.0014 4.8514e-04 3.1876e-06
n=12 2.1342e-05 9.0694e-05 4.8749e-07
n=14 7.5353e-04 1.7264e-05 7.7783e-08
n=16 1.6774e-05 3.3288e-06 1.3819e-08
n=18 4.4541e-04 6.4803e-07 2.4148e-09
n=20 4.7213e-06 1.2710e-07 4.1835e-10
n=22 3.0412e-04 2.5075e-08 7.3353e-11
n=24 5.0184e-06 4.9711e-09 1.3924e-11
n=26 2.1432e-04 9.8948e-10 2.5773e-12
n=28 1.7325e-06 1.9762E-10 4.6990e-13
n=30 1.6324e-04 3.9585e-11 8.5987e-14

TABLE VII: Comparison of two reconstruction errors and the theoretical upper bound forδ = (π4 ,
π
2 ).

E(fδ −Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0369 0.4005 0.0558
n=4 0.0114 0.0269 0.0020
n=6 2.6001e-04 0.0025 1.2529e-04
n=8 0.0027 2.5544e-04 9.7707e-06
n=10 0.0018 2.7429e-05 8.3512e-07
n=12 3.4742e-05 3.0296e-06 7.8652e-08
n=14 9.1131e-04 3.4093e-07 7.6473e-09
n=16 7.1478e-04 3.8875e-08 7.5614e-10
n=18 1.0435e-05 4.4769e-09 7.8805e-11
n=20 4.4911e-04 5.1951e-10 8.2729e-12
n=22 3.7744e-04 6.0653e-11 8.6942e-13
n=24 4.4241e-06 7.1166e-12 9.4758e-14
n=26 2.6649e-04 8.3846e-13 1.0381e-14
n=28 2.3275e-04 9.9129e-14 1.3323e-15
n=30 2.2703e-06 1.1755e-14 5.5511e-16

TABLE VIII: Comparison of two reconstruction errors and thetheoretical upper bound forδ = (π3 ,
π
3 ).

E(fδ −Tnfδ) Eδ,n E(fδ − Snfδ)
n=2 0.0232 1.7279 0.0497
n=4 0.0052 0.3392 0.0040
n=6 3.0946e-04 0.0909 6.4739e-04
n=8 0.0014 0.0267 1.4029e-04
n=10 7.9255e-04 0.0082 3.5117e-05
n=12 8.1831e-05 0.0026 9.9855e-06
n=14 4.7669e-04 8.3560e-04 2.4699e-06
n=16 3.4229e-04 2.7222e-04 7.8074e-07
n=18 1.3993e-05 8.9525e-05 2.2438e-07
n=20 2.1941e-04 2.9658e-05 6.5528e-08
n=22 1.7337e-04 9.8829e-06 2.0155e-08
n=24 1.0669e-05 3.3090e-06 6.5146e-09
n=26 1.3496e-04 1.1123e-06 1.8527e-09
n=28 1.1215e-04 3.7516e-07 6.2749e-10
n=30 3.0888e-06 1.2690e-07 1.9506e-10

TABLE IX: Comparison of two reconstruction errors and the theoretical upper bound forδ = (π2 ,
2π
3 ).

D. Average Sampling

Finally, we briefly discuss about the average sampling.
Consider reconstructing the functionfδ defined by (33) from
its finite average sampling data

f̃δ(j) :=
2

3
fδ(j)+

fδ(j − 1
8 ) + fδ(j +

1
8 ) + fδ(j − 1

16 ) + fδ(j +
1
16 )

12
.

By our analysis in Section III, we shall use the following
truncated Gaussian regularized reconstruction formula

(Snfδ)(t) =
1√
2π

n∑

j=−n+1

f̃δ(j)φ(t − j)e
− (t−j)2

2n5/3 , t ∈ (0, 1),

where

φ(t) =

√
2

π

(∫ δ

0

cos(tξ)

W (ξ)
dξ +

∫ 2π−δ

δ

(2π − δ − ξ

2π − 2δ

)2

·
[( 1

(π − δ)W (δ)
− W ′(δ)

W 2(δ)

)
ξ +

π − 2δ

(π − δ)W (δ)

+
δW ′(δ)

W 2(δ)

]
cos(tξ)dξ

)
.

The reconstruction error is measured by

Eσ(fδ − Snfδ) := max
1≤j≤19

∣∣∣(fδ − Snfδ)
( j

20

)∣∣∣.
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Results are shown in TABLE X, which are superior than
following estimate in Theorem 6

Eσ,δ,n := cn− 5
3

and thereby demonstrating validness of the estimate.

Eσ,δ,n Eσ(fδ − Snfδ)
n=2 8.9724 0.0175
n=4 2.8261 0.0108
n=6 1.4378 0.0104
n=8 0.8902 0.0100
n=10 0.6137 0.0099
n=12 0.4529 0.0099
n=14 0.3503 0.0098
n=16 0.2804 0.0098

TABLE X: Comparison of reconstruction error and theoretical
upper bound whenν = 1

12δ−1/8+
1
12δ−1/16+

2
3δ0+

1
12δ1/16+

1
12δ1/8, δ = π

2 , andσ = 1
4 .

0 5 10 15 20 25 30
−40

−20

0

20

0 5 10 15 20 25 30
−40

−20

0

20

0 5 10 15 20 25 30
−40

−20

0

20

n

y

 

 

log(E(f’
δ
−(S

n
f
δ
)’))

log(E’
δ,n

)

Fig. 3: Comparison oflogEδ,n andlogE(fδ −Snfδ) for δ =
(π4 ,

π
2 ) (Top), δ = (π3 ,

π
3 ) (Middle), δ = (π2 ,

2π
3 ) (Bottom).

V. CONCLUSION

We present refined convergence analysis for the Gaussian
regularized Shannon sampling formula in reconstructing ban-
dlimited functions. The formula is simple, highly efficient, and
has received considerable attention in engineering applications.
We show in the paper that the formula can achieve by far the
best convergence rate among all regularization methods for
the Shannon sampling series. Extensive numerical experiments
show that our theoretical estimates of the convergence rates are
valid and sharp.
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