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Convergence Analysis of the Gaussian Regularized
Shannon Sampling Formula

Rongrong Lin and Haizhang Zhang

Abstract—We consider the reconstruction of a bandlimited wheret - £ denotes the standard inner producttadnd € in
function from its finite localized sample data. Truncating the R9. The classicalShannon sampling theorem [2], [3] states
classical Shannon sampling series results in an unsatistacy that eachf € B,(R) can be completely reconstructed from

convergence rate due to the slow decayness of the sinc furmeti ., . _ . . N . . .
To overcome this drawback, a simple and highly effective maod, tS infinite sampling datd f(j) : j € Z}. Specifically, it holds

called the Gaussian regularization of the Shannon series, ag

proposed in engineering and has received remarkable atteiun. f(t) = Z f(G)sinc(t —j), t e R, f e B(R), (1)
It works by multiplying the sinc function in the Shannon JEL

series with a regularization Gaussian function. L. Qian (Poc. . . L

Amer. Math. Soc., 2003) established the convergence rate ofWhere sinc(z) = sin(wz)/(rz). Many generalizations of

O(v/nexp(—=5%n)) for this method, where § < = is the Shannon’s sampling theorem have been established (see, for
bandwidth and n is the number of sample data. C. Micchelli example, [[4]-[12] and the references therein).
et al. (J. Complexity, 2009) proposed a different regularization In practice, we can only sum over finite sample data “near”

method and obtained the corresponding convergence rate Oft in (@) to approximatef(£). Truncating the serie§](L) results

O(== exp(—Z=3%n)). This latter rate is by far the best among |
Vn 2 . . 1 -
all regularization methods for the Shannon series. Howevetheir 1N @ convergence rate of the orde(—=) due to the slow de

. . J . .
regularized function involves the solving of a linear systm and ~cayness of the sinc function, [13]—[{6] Besides, this tated
is implicit and more complicated. The main objective of this series was proved to be the optimal reconstruction method
note is to show that the Gaussian regularized Shannon seriesijn the worst case scenario B, (R). Dramatic improvement

can also achieve the same best convergence rate as that by C .
Micchelli et al. We also show that the Gaussian regularization of the convergence rate can be achieved wifea Bs(R),

method can improve the convergence rate for the useful avege 0 < 7- IN t.his case{f(j) : j € Z} turns out to be a set of
sampling. Numerical experiments are presented to justify he oOversampling data, where oversampling means to sample at a

obtained results. rate strictly larger than the Nyquist ra§e< 1.
Index Terms—Bandlimited functions, Gaussian regularization, ~ 1hree explicit methods [1]/ [14]L[17] have been proposed
oversampling, Shannon’s sampling theorem, average samplj.  in order to reconstruct a univariate bandlimited function
f € Bs(R) (6 < =) from its finite oversampling data
|. INTRODUCTION {f(G) : =n+1 < j < n} with an exponentially decaying

HE main purpose of this paper is to show that thgppro?umatmn_error. The_y work by _mul_t|ply|ng t.he sinc func
. . . tion with a rapidly-decaying regularization function. éagan
Gaussian regularized Shannon sampling formula to é@‘b
L

construct a bandlimited function can achieve by far the b 2 _used a power of the sinc functions as the regularizer and
L tained the convergence rate of

convergence rate among all regularization methods for A8
Shannon sampling series in the literature. As a result, we 0(1 ( ) ))
improve L. Qian’s error estimat&l[1] for this highly sucdess n P ")
method in engineering.

We first introduce théPaley-Wiener space Bs(R%) with the
bandwidths := (61,92, ...,84) € (0, +00)?¢ defined as

e

Micchelli et al. [17] chose a spline function as the regularizer
and attained the convergence rate

. 1 )
Bs(RY) = {f € L2(R%) N C(RY) : supp f C [=3,4]}, O(ﬁexp(— ). )
d . .
where [—d,4] := IIL@:(} [0k, 0. In this paper, the Fourier hich is by far the best convergence rate among all regalariz
transform of f € L*(R?) takes the form tion methods for the Shannon sampling series in reconstguct
1 a bandlimited function. However, the spline regularizatio

£ =

—it€ d
Rd f(t)e dt, £ € RY, function in [17] is implicit and involves the solving of a

(V2r)d
linear system. A third method using a Gaussian function as
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A convergence analysis of the method was presented by QiR shall also need a variant of its discrete version:
[1], [8]. Taking a small computational mistake in (2.33)[H [

2 2 n_1)2
into consideration and optimizing about the varianoef the e_(P = <= 16_( a ,r>0,n>2te(0,1).
Gaussian function as done in[17], Qian actually estabtishej¢(—n,n] ne
the following convergence rate fdrl(3) (7)

The next two are a useful computation of the Fourier tramsfor

_=p? A r2n2
N | (sinc(t—pe S ) © = G- [ e Fan ¢er
Due to its simplicity and high accurac¥](4), the Gaus- 21 Jeon

sian regularized Shannon sampling serie$ (3) has been , ) (8)
widely applied to scientific and engineering computatidns. and an associated estimate

fact, more than a hundred such papers have appeared jsee 1 etor , e*¢
http://www.math.msu.eduwivei/pub-sec.html for the list, and |1—— e " dr’ < \/ji for all £ € [, ].
[18]-[23] for comments and discussion). We note that algfou VT S ™ (m—=d)r

the exponential term iMJ4) is as good as that[ih (2) for the ) ) ©)
spline function regularization [17], the first tergfn is much 1 he last one is the upper bound estimate

worse thanin in @). The first purpose of this paper is to L k

show that the convergence rate of the Gaussian regularized |Hy(2)] < (22)",  [x] = ) (10)
Shannon sampling series can be improvedo (2). Thus, this
method enjoys both simplicity and the best convergence ripk

O(\/ﬁexp(—ﬂ-;(sn)). 4)

the k-th order Hermite polynomial defined as

by far. This will be done in Section Il, where we also improve k] o
the convergence rates of the Gaussian regularized Shannon Hy(z) = kS (<1 (2x)k=2 bR
sampling series for derivatives and multivariate bandthi C il(k — 20) '

. . . =0
functions. In Section l1lI, we show that the Gaussian regular _ . .l _
ization method can also improve the convergence rate for theé/Ve are in a position to present an improved convergence

useful average sampling. In the last section, we demoestrédte analysis for the Gaussian regularized Shannon sagnplin
our results via several numerical experiments_ series. We follow the methods ih [1] and emphaSize that the

improvement is achieved by applying the Cauchy-Schwartz
inequality to obtain a better estimate for (2.5) lin [1].
Theorem 1: Letd € (0,7),n > 2, and choose := , /2=

The Gaussian regularized Shannon sampling séries (Sjiestis
In this section, we improve the convergence rate analysis

II. IMPROVED CONVERGENCERATES FOR THEGAUSSIAN
REGULARIZATION

for the Gaussian regularized Shannon sampling seriesifSpec sup If = Snrflle(o,1))

ically, we shall show that it can achieve by far the best rate JEBs @) WMzt 1)
(@) for univariate bandlimited functions and its derivasyand < (\/2—5 4 L) P E—

for multivariate bandlimited functions. We separate thes¢h - Vvn) m/(m —68)(n— 1)'

cases into different subsections.
Proof: Let f € Bs(R) with ||f[|z2®) < 1. Set(f —
Sn.rf)(t) := E1(t) + E2(t), t € (0,1), where
A. Univariate Bandlimited Functions

Let f € Bs(R) with § € (0, ) throughout this subsection. Ei(t):= f(t) = > f(j)sinc (t — e T
We shall use the Gaussian regularized Shannon samplirgg seri JEL ,
@) to reconstruct the values gfatt € (0,1) from the finite Ext):= Y f(j)sinc(t - je= 57
localized oversampling datdf(j) : —n+1 < j < n}. jg(—nm]

We shall need a few technical facts in order to improve the _ _
convergence rate established|ih [1]. They were also fretyuerBound £y (¢) by its Fourier transform as follows
used in the estimates inl[1],1[8].

1
Firstly, it is well-known thatsinc (- — j), j € Z form an |E1(t)] < FHEIHLl(R)a te(0,1).
orthonormal basis foB3:(R). As f € Bs(R) C B.(R), we T
have by the Parseval identity Computing and bounding; by @), (9) and similar arguments
. as those in[[1], we have
1 172m) = Z IFG)I?, f € Bs(R). (5) L,
JEZ \/2_5wa
<= .
The second result needed is the following upper bound esti- [En)] < m(r—&)r te(0,1) (12)

mate of Mills’ ratio [24] of standard normal law:
: Observe that

2

“+o0 —x
42 € . . 1 .
/z e dt < oy L2 0. (6) |sinc (t — j)| < p te(0,1), j ¢ (—n,n].



http://www.math.msu.edu/~wei/pub-sec.html

Thus, It has been estimated inl[1] that

o sinw(t —g) | _e—i? )
B0 < Y fG) =) |° ard . B \/T(S”ée_(ﬂ 8)2r2 y
J¢(=n,n] e 1Bl £ (0,1)) < s+l ar_or (14)

<L Y G te 1),

J¢(=n,n] For eacht € (0,1), we calculate

Apply the Cauchy-Schwartz inequality, we get by (5) 7

1 a1 Eo () fG
BOl <—( X ror) (X e HF) 7 ZM]

i¢(—nn] 3¢ (=n,n] ! sin(mt — jm)\ =R ¢ g2\ (k)
Tef(nzirp [Z kl(s — k)! ( 7(t — j) ) (e ' )
< ————,te(0,1). k=0 R
myvn — 1 1 . s!
Combining [12) with[[IB) and optimally choosing= -1 j¢(—n.n] k=0

completes the proof. ] s—k ps=k=l=lgin (w(t —j+ W)) (—1)1!

We remark that the estimate {11) is of the same order as ) Z (s —k—10)! ) (t — j)+1
the best convergence rafé (2) by far in the literature. Aséco l:10 kg, (1=
remark is on the degenerated case when =. In this case, ) (-1) k(ﬁ) le:Qz
the estimate in[1] or the aboVe{11) is apparently meangsgle (V2r)k '
To make up for the drawback, a more delicate upper bound
estimate is needed fdr;. Specifically, we have Noticing the simple fact

B0 <——( / AGITS R

2m 7r7r]\ —m+n 471' n 4] Wgﬁfor.]%(_nan]a te(ovl)a ZEZJM (15)
TN 4
\/271' /,r+n z [ (©)lde we obtain by [(ID)
= —W_; wT s!
né B0 < —— 37 1))
Taking r = n§ above and using{13), we obtain the conver- -, j¢(;’i=:] o .
gence rate8n s for f € B.(R). . i(z T 1 ) |t —j G
k! (s—k =Dt —jH1/) r2k
_k:'O =0

B. Derivatives of Univariate Bandlimited Functions < '2 Z lf(7+ 1)

By the Paley-Wiener theorem, each functionBg(R) is mT T ljl>n i
infinitely differentiable. In this subsection, we are comesl L (S* okl Ll
with the reconstruction of the derivatives ¢f € Bs(R) by ' Pt Llr2k ; (s —k— 1)1) e =

the Gaussian regularized Shannon sampling sefies (3). The
convergence rate obtained in [1]] [8] is also of the ordér (4
We shall improve the estimate.

Theorem 2: Let s € N, n > max{3, e 5)} andr :=

\/Z=2. It holds B (t)]

incee” > Z: for all x >0 andj € Z, we have

mr 5 1 0Bk )

| |> k=0
sup £ = (S ) oo (0,1)) (s + 2 S
FEBSRYIIF | 12y <1 <2 rr Z 1FG+1)] .
- V265 t3 L 24(s +2)! R | l41>n
V2s+1 Vn my/(m—0)(n—2) N
Note thatn > 1+ 52— 5) andr = ,/2=2 impliesn > Nt

Proof: We may suppose thgt € Bs(R) with Hme R) We thus get by[{5),{7) and the Cauchy-Schwartz inequality
1. Set f&)(t) — (Sn,rf)(s)(t) = Ei1(t) + Eo(t), t (0 1)

where 1
(s +2)lex? _2\3
(s B2l < . 2 ) e
Ei(t) := f(”(t)——%Zf(j)(sinc(t—j)e‘ )", n(2m)? ( e )
1 ' -2\ (5) e (s +2)len? re ?
Eo(2) = Z f(])(smc(t—])e_ 2r2 ) - (2m)2 nvn—2



Substitutingr = , /2=2 into (14) and[(I6), we have

B2l Loo((0,1)) + B2l Lo ((0,1))

Note that) "

7 sinc?(z —

d
> 10 sine®te —g)e 2

T—30
_ ( V2 55+ 3 e (s t 2)le2(n-2) ) a7 k1
™25 +1\/(n=8)(n—-2) (2r)3V7 —on d ,
e(wé)(nz) SZ(Z S
(\f 25t 24(s+ 2y e U e
< + .
V25 +1 Vn 7/ (m —8)(n —2) .
Introduce the important
In the last inequality, we use = |/2=2 > —- 7= and ;o= < A := max {5y, :
24. The proof is complete. [ ]

C. Multivariate Bandlimited Functions

In this subsection, we show that the best convergence rate | —
(2) can also be achieved in the reconstruction of a multari

m) =1, z € R. Thus, we have

(fk*jk)z

(t
IHCQ(tk — jk)87 -

ﬂ'kﬂ)
2 .

Applying (@) to the last inequality gives the desired resuit

constant

k=1,2,...,d}.

Lemma 4: Let § € (0, 7). It holds for¢ e [T¢_, [—6k, k]

(€k+ﬂ')"‘

H \/— (5k Tr)'r'

bandlimited function by the Gaussian regularized Shannon
sampling series. Techniques to be used for this case is quite Proof: By (6), we have for§ € Hk 1[=0k, Ok]

different from those in the univariate case and also much

(m— A)2 2

SR
e T dr < _—
dr \/; (r— A)r

(Eptm)r

differs from those in[[B]. L Vi e dr

Let § := (01,62,...,04) € (0,m)? and J,, := {j € Z% : VT Gals
j € (=n,n)?} in this subsection. The Gaussian regularized B L
Shannon sampling series]|[8] to reconstruct a multivariate —1— T [ sw . dT— N (,,HW " dr
function f € Bs(RY) from its finite sample datgf(.J,,) is (ﬂ 22 e )2 B
defined as ST O > N 5

_ =512 a ﬁ V2(r = &)r - V2Am+ &)
(Snrf)(t Z f()sine (t — j)e” 22t € (0,1)4,
IS We then apply the elementary fact that for constants- 0,

here A7) ) <k <awith S, 7 < 1, it holds

d .
sinc (z) = H w, r e R?

and||z|| denotes the standard Euclidean normeah R,
Two lemmas are needed to present an improved convergence

analysis for[(IT7).

Lemma 3: Letr > 0 andn > 2. It holds for allt € (0, 1)¢

(n=1)2
2

t—5012 d 2,—

Z (SinCQ(t—j)e_“ T2H ) < ree
¢ Jn

Proof: Observe that

d

{jezt:j¢ gy J{iez i ¢ (-

k=1

n,n]}.

By (18), we have for eache (0,1)¢

5 (st e )

j&Jn
d 2 _ (g ip)?
(T s )
k=1 jrg(—n,n] )
(t—3p)
(3D sinett— e 5,
14k jieZ

w2 n2(n—1)"

d
1—H 1— 1) gz
k=1 k=1

As a consequence,

k=1 2
1 d <w7§§>%2 <w+§§>%2
<=2 |-
VT A\ V2r = G)r V2 + &)
5 d - <w—§§>%2
< =z
—Vr ; (m—&k)r

(18) The proof is completed by noting thék_T22m2

on (0, 4+00).

With the above preparation, we have the following main

theorem.
Theorem 5: Let § € (0,

(I7) satisfies

sup

m)4, n > 2, andr :=
multivariate Gaussian regularized Shannon sampling serie

”f - Sn,rf||L°°(

FEBs(RY), £ 2 a,<1

< <d(2A)% + \/%) - e(

is decreasing
[ |

n-t. The

(0,1)%)

(r=A)(n—1)
2

T—A)(n—-1)



Proof: Let f € Bs(R?) with || f[| 2y < 1. Setf(t) — where0 < o < % and v is a symmetric positive Borel

(S [)(t) = E1(t) + Ea(t), t € (0,1)%, where probability measure ofi-¢0/2, 0/2]. It was observed in [25]
2 hat
E1() = f(1) = > f(j)sime (¢ — e =, t
Z y cos ()17 oy < SOOI < W3y (2D)
E(t):= 3 f(j)sine(t - jle 7 . ez
J¢Jn Thus,{f(j) : j € Z} is in fact induced by a frame iBs(R).
By Lemmal% and similar arguments as those[in [1] for thBy the standard frame theory, we are able to completely
univariate case, we have reconstructf from the infinite sample datdf(j) : j € Z}

e through a dual frame. For studies along this direction, fwe,
1— H / o~ dr example, [[4], [[5], [[9], [10], [26], [27].
\/_ et Motivated by the Shannon sampling theorem, we desire a
R de <w (r=8)?r2 dual frame that is generated by the shifts of a single functio
<|f |\/> , £ €[-9,0] In other words, we prefer a complete reconstruction formula

of the following form
Bounding&; by its Fourier transform and then applying the

&) =

Cauchy-Schwartz inequality, we get -9, € Bs(R), 22
1 A %J%f i) fEB®),  (22)
&1l < — E&)|d
[Erllz=ons < V2 [75,§]2| ©lae where ¢ is to be chosen. It has been proved lin|[25] that if
de— 2 . ¢ € C(R) N L?(R) with supp ¢ C I5 := [-27 + §,27 — §]
ST A ) I7(©)ldg (19)  then [22) holds if and only if
d(2A)% e~ d(6)W(€) =1 for almost eveng € [-4,8],  (23)
T (m=A) where
Recall that o/2
, oy . W () = / edu(t), €€ [-6,6]. (24)
£ 72y = D IFGIP € Bs(RY). ~o/2
jezs Under the above assumptions eni¥ () is an even function
By this, Lemmad B, and the Cauchy-Schwartz inequality, wen [—4, §] and satisfies
obtain (0_5) o
o\ 0<yi=eos () WO L WO < 5,
1 eonn < (D0 |f(j>|2) 2 2" (25)
J¢Jn |W”( )| < _7 5 € [ 67 5]
. (t — A 2 .
( ; sine” ) (20) In practice, we only have the finite sample d#tg), —n <
’ (n=1)2 j < n. A natural reconstruction method is by
L Ydre =
T onyn—1 \/_ Z f — ). (26)
The proof is completed by taking = /2=¢ in (I9) and J=—ntl
(20). m The main purpose of this section is to illustrate by an ex-
plicit example that compared to the above direct truncation
[1l. GAUSSIAN REGULARIZATION FOR AVERAGE regularization by a Gaussian function as follows
SAMPLING (2
In this section, we will apply the method of GaussiafSn.rf)(t) = \/— Y felt=ge” =2t € (0,1). f € Bs5(R)
regularization to the useful average sampling. A main psepo j€(=n,n] 27)

is again to improve the convergence rate. We first mtroduce y lead to a bett N

some basic facts about the average sampling. €ad 1o a betier convergence rate. . o
Sampling a functiory at j € Z can be viewed as applying The functiong¢ satisfying [28) in our example is specified

the Delta distribution to the functiofi(j+-). The Delta distri- 2%

bution is used theoretically but hard to implement phy$jcal g), & e[-9,4],

Hence, a practical way is to approximate the Delta distidout —(27—3) 28

by an averaging function with small support around the arigi ( 2” S 2m-25 } PE), s<le<2m—-s (28

For this sake, we consider the following average sampling elsewhere

strategy:

Olﬁ

where

s [T . . 1 W' (5) m—26 SW'(6)
() -—/ fG+)dv(z), j € Z, f€BsR), P(¢) := [((W W) W2(5))|§| HCEDIIORRIE0)




Then supp ¢ C [-27 4 6,27 — 8], ¢ € CH(R) and ¢/ is
absolutely continuous oR. By (23), we have

10l ey < e 4+ 12
LOO(]L;) = (7_‘_2_ 6)’}/ ,727
1 g 8 40’
o) < — , 29
H¢ HL (Is) = ,_Yg + (7r— 5)37 (71._5)272 ( )
HQBHH < 2002 n 32 160
=" T m—opy T (m—on?

Finally, we shall use an elementary fact from the Fourier

analysis[[28] that

1

V2n

10”1l 22 (1)
It —jf?

6(t =) < j=2,te(0,1). (30)

)

The main result of this section is as follows.
Theorem 6: Let§ € (0,7), n > 2, v = cos(%), r = ns
and ¢ be given as[(28). Then the convergence ratd of (27)

sup If = SnrfllLeo(o,1)) < en™3,

feBs(R), ||fHL2(1R) <1

where

Vo + 28)0? 4o/5 1
_( 4;3) +<(W_5)2+7T +m\f>7—
86 32
+<(7T_ i 10\/—>( 5

Proof: Let f € Bs(R) with || f[|z2) < 1. Set f(t) —

(28), we have
1 (€ )I
) Ery
<\/%|¢ U/n<6 — (€ - 77))7’6 n
+ $(&) — p(& - -
A/WZ_E( © =46 =)re ]
£ e SE=O) o\ e
< Var | /|n|<€ (d) (©n + ) n)re dn’
o) - b —mre T d
/Insz 0= dle e
HGIRN A TRy 2, o2
< J2n _ > /n<677 re n
+2H¢HL°°EH5) '/nzare_ 2 dn
£ | 19" |l Lo s P
R too
MVl [ e da],
V2

where0 < 6 < 1 anzds := r. Combining the last inequality
above with [, 22~ "= dz = /27 and [8) yields

. O (VIR =g 16~ % | Bll e ty)

FiOl < — °
O (16" 1o AL
=T > T )

BoundingF, by the L'-norm of its Fourier transform, we get
by the above equation

)

Snirf(8) = F1(f) +F2(f). £ € (0, 1), where V3 (1= , Ull=a
@) = —5 NG NG
Fi(t) = £(t) = = 3 F)olt — e 5F : : i
2 = | (168 e + 191l = 10)) V3
1 = (t—i)? < 3 , t€(0,1).
Fo(t) := Nor: F()p(t —jle™ =22 " (31)
J¢(=mn,n] Estimate of Fo. By (30) and by the Cauchy-Schwartz
inequality, for eacht € (0, 1),
Esimate of F,. By (22), we have f(¢) = . -2
(% dez 7 )¢(§1)€7ij£))([,5_’5](§), ¢ € R. Then, for [F2(t)] < 'g(z: }|f(])||¢(t—3)|€ 2r2
56 J¢(—n.n
||¢NHL1(]15) PN (e
<——2 3 |f()le =
Fu6) = f(©) - %Zﬂy)i Vet
T 27 [|¢"[| 1 - z _u—p?
<= (Y FOP) (X
/ e v n)¢(§ e Vamn? Jj¢(=n,n] j¢(=n,n]
_ 1 i It follows from (7) and [2IL) that
= J(©) — = 2 F()e ()~ X )
S Falt)] < At tefpt 710 o
92’(5_77) \/2—T87%d77 2 - \/ﬂn2\/n_1 - TL% '
f(%)x[fa,s] (©) [;(5) / - ey }Takingr =né in (31) and [3R), we obtain
=0 re” 2 .
9() Vi ! ! Hf ~Surf ’Lw((o,n)

If [€] > 6 thenF, (&) = 0. If |¢| < & then by [T), [Zb) and

- ~ ~ 1
< (VB8 ) + Va1l + 19" 1010



which, by [29), completes the proof. ]

We see that ifp) € C'(R) and ¢’ is absolutely continuous
on R then the convergence rate of the direcr truncation (26)
is O(n*%). Therefore, the Gaussian regularized versfond (27)
indeed results in a better convergence rate.

IV. NUMERICAL EXPERIMENTS

We present in this section numerical experiments to illus-
trate the effectiveness of the Gaussian regularized sagpli
formula and to demonstrate the validness of our convergence
analysis for the formula.

A. Univariate Bandlimited Functions

Let 6 < w. The bandlimited function under investigation
has the form

1 2sindt  sind(t —1)
t) = ,teR.
fslt) 7T(56+4sin6)( f 1)
(33)
We point out thatfs; € Bs(R) and || f5]/z2®) = 1. We shall

reconstruct the values gf on (0,1) from {f(j) : —-n +1 <
j < n} by the the truncated Gaussian regularized Shannon
sampling series

_=)2(x=8)

(Snfs)(t Z fs(j)sinc (t—j)e” 2=D t € (0,1).
j=—n+1
The error of reconstruction is measured by
E(fs — Sufs) ==  max ‘(f - ”f‘s)(mo)‘

This error is to be compared with the theoretical estimate in
Theoren{:

_(m=8)(n—1)
€

CEDICEN

1
Esp = (\/25 —)
n + N
We also compute the reconstruction error resulting from di-
rectly truncating the Shannon series

E - T, =
(fs fs) = max

‘(f B "f‘s)(mo)’

for comparison, where

5 .
(T fs)(t Z £ (( )”) € (0,1).
Jj=—n+1 '7
The above three errors for=2,4,...,30 andé = 3, 7, %’T

are listed in TABLES[I,I, and:I]I respectively. We also
plot log F5,, andlog E(fs — S, f5) in Fig.[d. We see that
the Gaussian regularized Shannon sampling formula coeserg
extremely fast and our theoretical estimate for the coreseg
rate in Theorenll is pretty sharp.

Fg

E(fs — Tnfs) Esn E(fs — Snfs)

n=2 0.0331 0.1663 0.0509

n=4 0.0098 0.0107 0.0017
n=6 2.2761e-04 | 9.7124e-04| 1.0932e-04
n=8 0.0024 0.8103e-05| 8.5248e-06
n=10 0.0016 1.0433e-05| 7.2866e-07
n=12 3.0405e-05 | 1.1440e-06| 6.8632e-08
n=14 7.9461e-04 | 1.2799e-07| 6.6728e-09
n=16 6.2247e-04 | 1.4525e-08] 6.5985e-10
n=18 0.1326e-06 | 1.6661e-09| 6.8773e-11
n=20 3.9146e-04 | 1.9267e-10| 7.2196e-12
n=22 3.2878e-04 | 2.2428e-11| 7.5895e-13
n=24 3.8717e-06 | 2.6246e-12| 8.3156e-14
n=26 2.3225e-04 | 3.0851e-13| 9.2149e-15
n=28 2.0277e-04 | 3.6399e-14| 1.4433e-15
n=30 1.0869e-06 | 4.3080e-15| 4.4409e-16

TABLE |: Reconstruction erros fof = T
E(fs — Tnfs) Esn E(fs — Snfs)

n=2 0.0051 0.2871 0.0521

n=4 9.6902e-04 0.0316 0.0030
n=6 3.2453e-04 0.0049 3.1393e-04
n=8 1.4422e-04 | 8.3589e-04| 4.2582e-05
n=10 75827e-05 | 1.5055e-04| 6.1037e-06
n=12 4.4556e-05 | 2.7936e-05| 9.8330e-07
n=14 2.8327e-05 | 5.2865e-06| 1.5771e-07
n=16 1.0097e-05 | 1.0144e-06| 2.7379e-08
n=18 1.3472e-05 | 1.9668e-07| 4.6564e-09
n=20 0.8525e-06 | 3.8441e-08| 8.4284e-10
n=22 7.4200e-06 | 7.5615e-09| 1.4863e-10
n=24 5.7257e-06 | 1.4951e-09| 2.7629e-11
n=26 4.5098e-06 | 2.9691e-10| 4.9942e-12
n=28 3.6149e-06 | 5.9176e-11| 9.4547e-13
n=30 2.9418e-06 | 1.1831e-11| 1.7397e-13
TABLE II: Reconstruction errors fof = 7.
E(fs —Tnfs) Es.n E(fs — Snfs)

n=2 0.0275 0.5074 0.0490

n=4 0.0064 0.0951 0.0049
n=6 4.6943e-04 0.0249 9.2523e-04
n=8 0.0020 0.0072 1.9165e-04
n=10 0.0012 0.0022 5.0903e-05
n=12 6.8750e-05 | 6.9045e-04| 1.3828e-05
n=14 6.5098e-04 | 2.2083e-04| 3.5771e-06
n=16 4.6868e-04 | 7.1605e-05| 1.0844e-06
n=18 2.1160e-05 | 2.3456e-05| 3.2408e-07
n=20 3.1800e-04 | 7.7448e-06| 9.1110e-08
n=22 2.5108e-04 | 2.5733e-06| 2.9088e-08
n=24 9.0566e-06 | 8.5940e-07| 9.0859e-09
n=26 1.8765e-04 | 2.8824e-07| 2.6710e-09
n=28 1.5607e-04 | 9.7020e-08| 8.7632e-10
n=30 4.6691e-06 | 3.2757e-08| 2.8080e-10
TABLE III: Reconstruction errors fob = %’r

30

1: Comparison ofog Es ,, andlog E(fs — Sy, fs) for &
(Top) 6 = Z (Middle), andé = 2F (Bottom). Heren =




ivati ivar iy ; E(fs — (Tnfs)") E5 ., E(fs — (Snfs)")
B. Derivative of Un|var|ate Bandlimited Fl-Jnctlons . ~—3 5OTI0 e SO0
We now turn to verify the reconstruction error for the first n=5 0.0159 2.4966 0.0071
derivative of a univariate bandlimited function. We uggin ”f; - 2-501%7504 8-?21;‘ . gé%()21404
the above subsection for simulation. Let nn=_11 5 003??: 5.0457 9'37792:05
2 144 —(r=8)n-2) n=13 0.0022 0.0125 2.4603e-05
S = ( —§+ —) n=15 1.4672e-04 0.0038 6.7163e-06
’ 3 Vi o /(m = 6)(n —2) n=17 0.0014 0.0012 2.11566-06
. : L n=19 0.0011 3.6495e-04 6.0578e-07
be the theoretical upper bound established for the devvati n=oT 54615605 | 11564604 17733607
Theoren{R. This upper bound together with the errors of the =23 7.5824e-04 3.7009e-05 5.8201e-08
two reconstruction methods are listed in TABLES [V, V, and n=§5 2-13266-84 é-éggle-gg 1-;3(2)89-88
; / / / n=27 .5934e-05 .8797e- 5. e-
[%]F”;] plgrtlcular,log B3, andlog E(f; — (Snfs)") are plotted n=20 | 47534604 | 1.06766-06]  1.77836-00
in Fig.[2.
TABLE VI: Reconstruction errors for the first derivative whe
E(fs — (Tnfs)") £, E(fs — (Snfs)") §=12.
n=3 0.0064 6.4845 0.0238
n=5 0.0192 0.3582 0.0012
n=7 0.0103 0.0289 8.6147e-05
n=9 2.8936e-04 0.0027 7.2344e-06 C. Bivariate Bandlimited Functions
n=11 0.0041 2.6206e-04 6.5240e-07
n=13 0.0030 2.6989e-05]  6.1290e-08 We consider reconstructing bivariate bandlimited fursio
n=15 6.3904€-05 2.8410e-06 6.1368e-09 by th larized Sh ling f la in thi b
=17 00017 30639607 624316-10 y the regularize annon sampling formula in this subsec-
n=19 0.0014 3.3571e-08 6.4088e-11 tion. The function to be reconstructed is given by
n=21 2.3438e-05 3.7246e-09 6.8596e-12
n=23 9.3372e-04 4.1740e-10 7.3584e-13 _
n=25 8.0083e-04 | 4.7166e-11| _ 7.8978e-14 Fs(tite) = fo, (1) fo(f2), 11,12 € R,
n=27 1.1058e-05 5.3670e-12 9.9087e-15
n=29 5.8806€-04 6.1433e-13 3.9690e-15 where § = (61,82) with §; < &, < =, and fs,,fs, are

defined by [(3B). Clearlyfs € Bs(R?) and || fs/| r2(r2) = 1.

TABLE IV: Reconstruction errors for the first derivative whe ; : _ ¢
The Gaussian regularized and direct truncation of the Sivann

=12, A : )
3 sampling formula are respectively given by
B~ (Tnl)) | B B0 = Guds)) - - N :
n=3 0.0520 98133 0.0321 (Snfo)(tr,t2) = } > . > Foljrgz)sine (b = ju)
n=5 0.0192 0.9173 0.0028 32:—n+1.h:—n+1(( e 2y rta)
n=7 0.0099 0.1254 3.5204e-04 . L (=i —ig)(n=d;
. _ (n—1)
n=9 0.0060 0.0195 2.80586-05 sinc (2 — j2)e
n=11 0.0040 0.0032 7.6107e-06
n=13 0.0029 5.6310e-04 1.1889%-06 and
n=15 0.0022 1.0053e-04 2.0547e-07
n=17 0.0017 1.8324e-05 3.4305e-08 n n
n=19 0.0014 3.30306-06]  6.21296:00 (Tofs)(t) = > Y. fs(jr,j2)sinc(tr — j1)
n=21 0.0011 6.3613e-07 1.0797e-09 a1 e —nt1
n=23 0.2764e-04 1.2046e-07 2.0128e-10 Lsine (o — 7
- sinc (t2 — ja2).
n=25 7.8531e-04 2.3001e-08 3.593%e-11
n=27 6.7338e-04 4.4222e-09 6.8315e-12 . _ _
n=29 5.83786-04 8.55236-10 12441e-12 Similarly, we shall compare the following two reconstrocti
. i L errors:
TABLE V: Reconstruction errors for the first derivative when
o=3. Ji J2
2 E(fs — Suf5) = max ‘ - Sufo) (& —)‘
(fs —Snfs) | nax (fs —Snfs) =5° 50/ |
‘ ‘ ‘ 1 J2
B ey B 1 E - T = max ’ - T (— —)
R (s = Tufo) = _max |s = Tufo) 55 50) |
L T e, | and the theoretical upper bound for the Gaussian reguthrize
) CTrRREeegg method established in Theorérh 5
o evenien.. ‘ ‘ ‘ ] ) GRS UEY
izo’ | | **T**»‘T»*‘*T ***** E6,n:: (452+ _) 7”22
() 5 10 1ns 20 25 30 v n’ T (ﬂ' _ 62)(” _ 1)
H . H / / !/ . .
Fig. 2: Comparison ofog Ej , and2 log E(f5 — (Snfs)") for The results are shown in TABLHES V[I=IX, and plotted in
T i 1 — s . . . . . .
6 =3 (Top),é = 3 (Middle), 6 = == (Bottom). Fig.[3. Again, we see that our estimate in Theofém 5 is valid

and sharp.



E(f5s — TnJfs) Es.n E(f5 —Sufs)

n=2 0.0316 0.8434 0.0378

n=4 4.6243e-04 0.0971 0.0016

n=6 0.0041 0.0154 1.5469e-04
n=8 1.2792e-04 0.0027 2.1566e-05
n=10 0.0014 4.8514e-04 3.1876e-06
n=12 2.1342e-05 9.0694e-05 4.8749e-07
n=14 7.5353e-04 1.7264e-05 7.7783e-08
n=16 1.6774e-05 3.3288e-06 1.3819e-08
n=18 4.4541e-04 6.4803e-07 2.4148e-09
n=20 4.7213e-06 1.2710e-07 4.1835e-10
n=22 3.0412e-04 2.5075e-08 7.3353e-11
n=24 5.0184e-06 4.9711e-09 1.3924e-11

n=26 2.1432e-04 9.8948e-10 2.5773e-12
n=28 1.7325e-06 1.9762E-10 4.6990e-13
n=30 1.6324e-04 3.9585e-11 8.5987e-14

TABLE VII: Comparison of two reconstruction errors and tihedretical upper bound far = (7, 7).

E(f6 - T7Lf6) Esn E(f6 - S7Lf5)
n=2 0.0369 0.4005 0.0558
n=4 0.0114 0.0269 0.0020
n=6 2.6001e-04 0.0025 1.2529e-04
n=38 0.0027 2.5544e-04 9.7707e-06
n=10 0.0018 2.7429e-05 8.3512e-07
n=12 3.4742e-05 3.0296€e-06 7.8652e-08
n=14 9.1131e-04 3.4093e-07 7.6473e-09
n=16 7.1478e-04 3.8875e-08 7.5614e-10
n=18 1.0435e-05 4.4769e-09 7.8805e-11
n=20 4.4911e-04 5.1951e-10 8.2729%e-12
n=22 3.7744e-04 6.0653e-11 8.6942e-13
n=24 4.4241e-06 7.1166e-12 9.4758e-14

n=26 2.6649e-04 8.3846e-13 1.0381e-14
n=28 2.3275e-04 9.9129%e-14 1.3323e-15
n=30 2.2703e-06 1.1755e-14 5.5511e-16

TABLE VIII: Comparison of two reconstruction errors and ttieoretical upper bound for= (3, 5).

E(f6 - T7Lf6) Eé,n E(f6 — S7Lf5)
n=2 0.0232 1.7279 0.0497
n=4 0.0052 0.3392 0.0040
n=6 3.0946e-04 0.0909 6.4739%-04
n=38 0.0014 0.0267 1.4029e-04
n=10 7.9255e-04 0.0082 3.5117e-05
n=12 8.1831e-05 0.0026 9.9855e-06
n=14 4.7669e-04 8.3560e-04 2.4699e-06
n=16 3.4229e-04 2.7222e-04 7.8074e-07
n=18 1.3993e-05 8.9525e-05 2.2438e-07
n=20 2.1941e-04 2.9658e-05 6.5528e-08
n=22 1.7337e-04 9.8829e-06 2.0155e-08
n=24 1.0669e-05 3.3090e-06 6.5146e-09
n=26 1.3496e-04 1.1123e-06 1.8527e-09
n=28 1.1215e-04 3.7516e-07 6.2749e-10
n=30 3.0888e-06 1.2690e-07 1.9506e-10

TABLE IX: Comparison of two reconstruction errors and thedhetical upper bound faf = (7, %).

D. Average Sampling where

Fin_ally, we briefly_discuss ab(_)ut the_ average sampling. 5 5 cos(t€) 200 or 5 N2
Consider reconstructing the functigi defined by[(3B) from  ¢(t) =4/— / d¢ —|—/ (7)
T \Jo W() s 2 — 26

its finite average sampling data

1 W'(6) T —26
o2, G =)+ 0+ ) S0 = 15) + 0+ 15) ' [((77 —OW(©) W2(5))€+ (m — o)W (3)
f5(]) = 3f5(])+ 12 : 5W’(5)
By our analysis in Section lll, we shall use the following * W2(0) ] COS(t@d&) '

truncated Gaussian regularized reconstruction formula . .
The reconstruction error is measured by

t—j)2

(Snfé)(t):\/% Z fé(j)(b(t_j)ei;"T)Sv tE(O,l), Eo’(f6_Snf5) ‘= max ‘(fé—gnfé)(%)‘

j=—n+1 1<5<19
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