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A COMPARISON OF L-GROUPS FOR COVERS OF SPLIT
REDUCTIVE GROUPS

MARTIN H. WEISSMAN

ABsTRACT. In one article, the author has defined an L-group associated to a
cover of a quasisplit reductive group over a local or global field. In another
article, Wee Teck Gan and Fan Gao define (following an unpublished letter
of the author) an L-group associated to a cover of a pinned split reductive
group over a local or global field. In this short note, we give an isomorphism
between these L-groups. In this way, the results and conjectures discussed by
Gan and Gao are compatible with those of the author. Both support the same
Langlands-type conjectures for covering groups.
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SUMMARY OF TWO CONSTRUCTIONS

Let G be a split reductive group over a local or global field F'. Choose a Borel sub-
group B = TU containining a split maximal torus T in G. Let X = Hom(T, G,,)
be the character lattice, and Y = Hom(G,,, T) be the cocharacter lattice of T. Let
® C X be the set of roots and A the subset of simple roots. For each root o € ®,
let U, be the associated root subgroup. Let ®¥ and AV be the associated coroots
and simple coroots. The root datum of G D B D T is

U= (X,0,AY,0", AY).

Fix a pinning (épinglage) of G as well — a system of isomorphisms z,: G, — U,
for every root a.

The following notions of covering groups and their dual groups match those in
[Weild]. Let G = (G, n) be a degree n cover of G over F; in particular, #u, (F) =
n. Here G’ is a central extension of G by Ky in the sense of |, and write
(Q, D, f) for the three Brylinski-Deligne invariants of G’. Assume that if n is odd,
then Q: Y — Z takes only even values (this is [Weil5, Assumption 3.1]).

Let G¥ D BY D TV be the dual group of G, and let ZV be the center of GV.
The group GV is a pinned complex reductive group, associated to the root datum

(Yon, @, AV, Xg 0, ®,A).
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Here Yy, C Y is a sublattice containing nY . For each coroot o € ®V, there is an
associated positive integer ny dividing n and a “modified coroot” &@" = noa” € ®V.
The set ® consists of the modified coroots, and AV the modified simple coroots.
Define Y{", to be the sublattice of Yq » generated by the modified coroots. Then

TV = Hom(Yy,,,C*) and 2" = Hom(YQ,n/ Y5 n, C*).

Let F/F be a separable algebraic closure, and Galp = Gal(F/F) the absolute
Galois group. Fix an injective character €: u,(F) < C*. From this data, the
constructions of [Weil5] and [GG14] both yield an L-group of G via a Baer sum of
two extensions. In both papers, an extension

(First twist) ZV — E) — Galp

is described in essentially the same way When F' is local, this “first twist” FEj is
defined via a ZV-valued 2-cocycle on Galp. See [GG14, §5.2] and [Weild, §5.4] (in
the latter, £ is denoted (TQ)*E}\a/lF). Over global fields, the construction follows
from the local construction and Hilbert reciprocity.

Both papers include a “second twist”. Gan and Gao |GG14, §5.2] describe an
extension

(Second twist) ZV < FEy — Galp,

following an unpublished letter (June, 2012) from the author to Deligne. In [Weil5],
the second twist is the fundamental group of a gerbe, denoted 7¢(E.(G),5). In
this article § = Spec(F), and so we write 7¢*(E.(G), F') instead.

Both papers proceed by taking the Baer sum of these two extensions, F =
E| + Es, to form an extension 7V < E —» Galp. The extension E is denoted 1 Z
in [Weil5, §5.4]. Then, one pushes out the extension E via Z¥ < GV, to define the

L-group
(L-group) GV G - Galp.

The two constructions of the L-group, from |[GG14]| and |[Weil5] are the same,
except for insignificant linguistic differences, and a significant difference between
the “second twists”. In this short note, by giving an isomorphism,

7 (E(G), F) (described by the author) = E, (described by Gan and Gao)

we will demonstrate that the second twists, and thus the L-groups, of both papers
are isomorphic. Therefore, the work of Gan and Gao in [GG14] supports the broader
conjectures of [Weil5].

Remark 0.1. Among the “insignificant linguistic differences,” we note that Gan
and Gao use extensions of F* /F*™ (for local fields) or the Weil group Wy rather
than Galp. But pulling back via the reciprocity map of class field theory yields
extensions of Galp by ZV as above.

1. COMPUTATIONS IN THE GERBE

L.1. Convenient base points. Let E.(G) be the gerbe constructed in [Weil5, §3|.
Rather than using the language of étale sheaves over F', we work with F-points and
trace through the Galp-action. Let T' = Hom(Yg », /") and Ty = Hom (Y5, F'*).
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Let p: T — Ty be the surjective Galp-equivariant homomorphism dual to the
inclusion Y5, < Y n. Define

7 = Ker(p) = Hom (Yo n /Y&, FX).

The reader is warned not to confuseif, T, Z with TV, TY, ZV; the former are
nontrivial Galp-modules (Homs into F*) and the latter are trivial Galp-modules
(Homs into C* as a trivial Galp-module).

Write D = D(F) and D = D(F), where we recall D is the second Brylinski-
Deligne invariant of the cover G. We have a Galp-equivariant short exact sequence,
F*— D Y.

By Hilbert’s Theorem 90, the Galp-fixed points give a short exact sequence,
F*<— D Y.

Let Dg,, and Dscﬁn denote the preimages of Y5, and Y&, in D. These are

N

abelian groups, fitting into a commutative diagram with exact rows.

F* —— Dg — Y

Fool

F* —— Dgn—>» Yon

Let Spl(Dg.,) be the T-torsor of splittings of Dg.,, and similarly let Spl(Ds,,) be
the Tsc—torsor of splittings of Dchm_

Let Whit denote the Ti.-torsor of nondegenerate characters of U(F). An element
of Whit is a homomorphism (defined over F') from U to G, which is nontrivial on
every simple root subgroup U,. Galpr acts on Whit, and the fixed points Whit =
WG&“F are those homomorphisms from U to G, which are defined over F'. The
Tye-action on Whit is described in [Weils, §3.3].

The pinning {z, : @ € ®} of G gives an element ¢»p € Whit. Namely, let ¢ be
the unique nondegenerate character of U which satisfies

Y(xa(1)) =1 for all @ € A.

In [Weil5, §3.3], we define an surjective homomorphism p: Tye — Ty, and a
Galp-equivariant isomorphism of Ty.-torsors,

@: p1x Whit — Spl(D(5 ,,)-
The isomorphism @ sends ¥ to the unique splitting s, € Spl( Z)Cn) which satisfies

na(na—1)
2

S¢(6¢V) =74 - [ea]"a7 with 7, = (_I)Q(av).

We describe the element [e,] € D concisely here, based on [B-D, §11] and |[GG14,
§2.4]. Let F'(v)) be the field of Laurent series with coefficients in F. The extension
K; — G’ — G splits over any unipotent subgroup, and so the pinning homomor-
phisms z,: F((v)) = Uy (F((v)) lift to homomorphisms

Ta: F((0) = UL(F(v)).
Define, for any u € F((v))*,
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This yields an element

o = 7a(V)  Fia(~1) € T(F(v)).
Then t, lies over a¥(v) € T(F(v)). Its pushout via Kao(F(v)) 2, F* is the
element we call [e,] € D.

Remark 1.1. The element sy (&) = 74 - [ea]™ coincides with what Gan and Gao
call sgse (@) in |[GG14, §5.2]; the sign 7, arises from the formulae of |B-D, §11.1.4,
11.1.5].

Let jo: TSC — i« Whit be the unique isomorphism of Tsc—torsors which sends 1 to
¥ (or rather the image of ¢ via Whit — p,. Whit). Since ¢ € Whit is Gal p-invariant,
this isomorphism jo is also Galp-invariant.

Finally, let s € Spl(Dgn) be a splitting which restricts to sy on Y{,. Such
a splitting s exists, since the map Spl(Dg,n) — Spl(D{,,) is surjective (since the

map T — Ty is surjective). Note that s is not necessarily Galp-invariant (and
often cannot be).

Let h: T — Spl(Dg.n) be the function given by
h(z) = x" % s for all z € T.

The triple z = (T, h,jo) is an F-object (i.e., a geometric base point) of the gerbe

E.(G). Note that the construction of z depends on two choices: a pinning of G (to
obtain ¢ € Whit) and a splitting s of Dg ,, extending s,,. We call such a triple z a

convenient base point for the gerbe E.(G).

1.2. The fundamental group. For a convenient base point Z associated to s, we
consider the fundamental group
m"(E(G),2) = | | Hom(z,"z).
yEGalp
This fundamental group fits into a short exact sequence
ZV — 1(E(G), 2) - Galp,

where the fibre over v € Galp is Hom(z,7z). Thus to describe the fundamental
group, it suffices to describe each fibre (as a ZV-torsor), and the multiplication
maps among fibres.

The base point 7z is the triple (T, o h,7y o jo), where 7T is the T-torsor with
underlying set T' and twisted action

wky x=7""u)- .

To give an element f € Hom(Z,7Z) is the same as giving an element ¢ € ZV and

a map of T-torsors fo: T — 7T satisfying
(voh)o fo="hand (yojo)op«fo=jo-

Any such map of T-torsors is uniquely determined by the element 7 € T satisfying
fo(1) = 7. The two conditions above are equivalent to the two conditions
(1.1) ™ =n~"1s/sand T € Z.

Thus, to give an element f € Hom(z,7Z) is the same as giving a pair (7,¢) €
T x ZV, where T satisfies the two conditions above. Therefore, in what follows, we
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write (7,¢) € Hom(z,7Z) to indicate that 7 satisfies the two conditions above, and

to refer to the corresponding morphism in the gerbe E.(G) in concrete terms.
We use €: pi,, (F) = pun(C) to identify Zp,) with ZY.. Two pairs (7,¢) and (7/,¢’)

[n]

are identified in Hom(Zz,7Z) if and only if there exists £ € Z[n] such that
' =¢-Tand ¢ =€) C

The structure of Hom(z,7z) as a ZV-torsor is by scaling the second factor in

(1,¢) € T x ZV. To describe the fundamental group completely, it remains to
describe the multiplication maps among fibres. If v1,v2 € Galg, and

(11,¢1) € Hom(2,7 %) and (72,(2) € Hom(z, ?z),
then their composition in 7$*(E.(G), %) is given by
(T1:G) 0 (12, G2) = (73 (1) - 72, 1)
Observe that
(' (r)me)" =5t (v ts/s) - (v3 's/s) = (mv2) Tts /s

Therefore (v, ' (1) - 79, (1¢2) € Hom(z,11722) as required.

2. COMPARISON TO THE SECOND TWIST

2.1. The second twist. The construction of the second twist in |[GG14] does not
rely on gerbes at all, at the expense of some generality; it seems difficult to extend
the construction there to nonsplit groups. But for split groups, the construction of
[GG14] offers significant simplifications over [Weil5|. The starting point in |GG14|
is the same short exact sequence of abelian groups as in the previous section,

> DQ)n —» YQ)n.

And as before, we utilize the splitting sy : Y7, < D5 ,,. Taking the quotient by
sy(Y5',), we obtain a short exact sequence

Don__ You
sp(Y&) Yo

F* —
Apply Hom(e, C*) (and note C* is divisible) to obtain a short exact sequence,

sy (Y55,
Define a homomorphism Galp — Hom(F*,C*) by the Artin symbol,

o oo (P52

Pulling back the previous short exact sequence by this homomorphism yields a
short exact sequence

_ Do
va—>H0m< < ),(CX> — Hom(F™,C*).

ZY — By — Galp.
This F» is the second twist described in [GG14].
Remark 2.1. There is an insignificant difference here — at the last step, over a local

field F, Gan and Gao pull back to F*/F*"™ via the Hilbert symbol whereas we pull
further back to Galg via the Artin symbol.
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Write Es ., for the fibre of Ey over any v € Galp. Again, to understand the
extension Fjs, it suffices to understand these fibres (as Z V-torsors), and to under-
stand the multiplication maps among them. The steps above yield the following
(somewhat) concise description of Ej .

E, ., is the set of homomorphisms x: Dg, — C* such that

e Y is trivial on the image of Y5, via the splitting sy.

e For every u € F*, x(u) = e(y~ ! {/u/ {/u).
Multiplication among fibres is given by usual multiplication, x1,x2 — x1Xx2. The
ZV-torsor structure on the fibres is given as follows: if n € ZV, then

n* x](d) =n(y) - x(d) for all d € Dg ,, lying over y € Yg .

2.2. Comparison. Now we describe a map from 7¢*(E.(G), %) to E,, fibrewise

over Galp. From the splitting s (used to define z and restricting to sy on Y5°,),

every element of Dg , can be written uniquely as s(y) - u for some y € Yy, and

some u € F'*. Such an element s(y) - u is Galp-invariant if and only if

e y7ls
s

Suppose that v € Galg and (7,1) € Hom(z,"Z). Define x: Dg., — tn(C) by

X(s(y) ) =€ (v Vu/u-7(y)) -
This makes sense, because Galp-invariance of s(y) - u implies
-1 n -1 -1
v Yu s
. = . =1.
(L w) =220
To see that x € E» -, observe that

e X is a homomorphism (a straightforward computation).
o If y € Y, then x(s(y)) = 7(y) = 1 since 7 € Z.
o If u € F* then x(u) = e(y~ ! {/u/ ¥/u) by definition.

v(s(y))v(u) = s(y)u, or equivalently (y) =1, for al v € Galp.

Lemma 2.2. The map sending (1,1) to x, described above, extends uniquely to an
isomorphism of ZY -torsors from Hom(z,7z) to Es .
Proof. If this map extends to an isomorphism of ZV-torsors as claimed, the map

must send an element (7,¢) € Hom(Z,7Z) to the element ¢ * x € Es 5. To demon-

strate that the map extends to an isomorphism of ZV-torsors, it must only be
checked that

(§-7.1) and (7,€(E))
map to the same element of E ., for all £ € Z,,). For this, we observe that €-7,1)
maps to the character x’ given by

—1 n —1 n U
x'(s(y)-u):e(7 o~ 5<y>7<y>) =e<s<y>>-e(7 = T<y>) — (€(y))x(s(y) ).

Thus x' = €(§) * x and this demonstrates the lemma. O
From this lemma, we have a well-defined “comparison” isomorphism of ZV-
torsors,

u

C,: Hom(z,7z) — Es 4,
v e
Yu

(Comparison) Oy (7, Q) (s(y) ) = ¢ ( - r<y>> ().



A COMPARISON OF L-GROUPS FOR COVERS OF SPLIT REDUCTIVE GROUPS 7

Checking compatibility with multiplication yields the following.

Lemma 2.3. The isomorphisms C, are compatible with the multiplication maps,
yielding an isomorphism of extensions of Galp by ZV,

C=Cs: 1HE(G), Z) — Es.
Proof. Suppose that (7'1,(1) € Hom(z,7 2) and (72,(2) € Hom(z,"2%2). Their prod-
uct in 7$(E.(G), 2) is (75 L (71)72, C1¢2). We compute

(1 (72), C1G2) (5() - ) = € <M o (y))Tz(y)) G W)G)

Yy

i) 60
(2 Vu
Cv(l(ﬁ,Cl)( (y) - 2 Chy (12, G2) (s(y) - u)

' yu

In the middle step, we use the fact that ( T Tl (y)) is an element of ., (F),

and hence is Galp-invariant. This computation demonstrates compatibility of the
isomorphisms C, with multiplication maps, and hence the lemma is proven. (I

2.3. Independence of base point. Lastly, we demonstrate that the comparison
isomorphisms
Cs: m"(E(G),2) — Es

depend naturally on the choice of convenient base point. With the pinned split
group G fixed, choosing a convenient base point is the same as choosing a splitting
of Dg ,, which restricts to sy.

_ So consider two convenient base points z; and Zz2, arising from splittings s1, s of
Dgq,,, which restrict to sy on Y7, . Any isomorphism ¢ from z; to z in the gerbe
EE(C}) defines an isomorphism

v THEL(G), 21) — 7SHE(G), 7).

See [Weil5, Theorem 19.6] for details. In fact, the isomorphism of fundamental
groups above does not depend on the choice of isomorphism from Z; to Zo; thus one
may define a “Platonic” fundamental group

Wlét(Ee(é)a F)
without reference to an object of the gerbe.

Theorem 2.4. For any two convenient base points Z1,Zz2, and any isomorhpism
L 21 — Zo, we have Cz, 01 = C%,. Thus Ea is isomorphic to the fundamental group

71(Ec(G), F), as defined in [Weild, Theorem 19.7, Remark 19.8].
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Proof. Choose any isomorphism from z; = (T hi,jo) to zZo = (T, ha, jo) in the gerbe
E.(G). Here hy(1) = s; and hy(1) = so, and ]0( ) = $y. Such an isomorphism
Z, = % is given by an isomorphism ¢: T — T of T-torsors satisfying the two
conditions

ho ot = hy and jg o pst = Jo.

Such an ¢ is determined by the element b = «(1) € T'. The two conditions above are
equivalent to the two conditions

b" = s1/s9 and b € Z.

The isomorphism z; — Z» determined by such a b € T yields an isomorphism
Tu: 7z — 72y, for any v € Galp. The isomorphim 7¢ is given by the isomorphism
of T-torsors from 7T to 7T, which sends 1 to y(b).

This allows us to describe the isomorphism

L: Wft(Ee(é)vél) - W?t(Ee(é)=E2)

fibrewise over Galp. Namely, for any v € Galp, and any f € Hom(z1,7%;), we find
a unique element ¢(f) € Hom(Z2,7Z2) which makes the following diagram commute.

If f=(r,1), then «(f) = (rb/y71b,1). Indeed, when 7" = v~ 1s1/s1, we have
(T_b>n R A B TN T e S
y7'b si oy ton s1 s2ylsi sy
Thus ¢(f) € Hom(Z2,7Z2) as required. In this way,
v THE(G), 71) — 1N (E(G), 22),

is given concretely on each fibre over v € Galp by

(. C) = (TﬁQ

Note that the conditions ™ = s1/sy and b € Z uniquely determine b up to
multiplication by Z[n]. Since Z[n] is a trivial Galp-module, the isomorphism ¢ of
fundamental groups is independent of b. Finally, we compute, for any y € Yg »,u €
F> such that s1(y) - u € Dg n, and any (7,¢) € Hom(z1,7%1),

[Cz, 0 d(7,)(51(y) - u) = Cx, (10/7716,O)(s51(y) - u)
= sz(m(b)/b O(s2(y) - 0" (y)u
(AW ) M)
\"/b" y)u 7N

— (5 w) o

= Oz (1, () (s1(y) - ).
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As noted in the introduction, this demonstrates compatibility between two ap-
proaches to the L-group.

Corollary 2.5. The L-group defined in [Weill] is isomorphic to the L-group de-
fined in [GG14], for all pinned split reductive groups over local or global fields.
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