A COMPARISON OF L-GROUPS FOR COVERS OF SPLIT REDUCTIVE GROUPS

MARTIN H. WEISSMAN

ABSTRACT. In one article, the author has defined an L-group associated to a cover of a quasisplit reductive group over a local or global field. In another article, Wee Teck Gan and Fan Gao define (following an unpublished letter of the author) an L-group associated to a cover of a pinned split reductive group over a local or global field. In this short note, we give an isomorphism between these L-groups. In this way, the results and conjectures discussed by Gan and Gao are compatible with those of the author. Both support the same Langlands-type conjectures for covering groups.

CONTENTS

Summary of two constructions

Let G be a split reductive group over a local or global field F . Choose a Borel subgroup $\mathbf{B} = \mathbf{T} \mathbf{U}$ containining a split maximal torus **T** in **G**. Let $X = \text{Hom}(\mathbf{T}, \mathbf{G}_m)$ be the character lattice, and $Y = \text{Hom}(\mathbf{G}_m, \mathbf{T})$ be the cocharacter lattice of **T**. Let $\Phi \subset X$ be the set of roots and Δ the subset of simple roots. For each root $\alpha \in \Phi$, let U_{α} be the associated root subgroup. Let Φ^{\vee} and Δ^{\vee} be the associated coroots and simple coroots. The root datum of $G \supset B \supset T$ is

$$
\Psi = (X, \Phi, \Delta, Y, \Phi^{\vee}, \Delta^{\vee}).
$$

Fix a pinning (épinglage) of **G** as well – a system of isomorphisms x_{α} : $\mathbf{G}_a \rightarrow \mathbf{U}_{\alpha}$ for every root α .

The following notions of covering groups and their dual groups match those in [\[Wei15](#page-8-1)]. Let $\tilde{\mathbf{G}} = (\mathbf{G}', n)$ be a degree n cover of \mathbf{G} over F; in particular, $\# \mu_n(F) =$ n. Here G' is a central extension of G by K_2 in the sense of [\[B-D\]](#page-8-2), and write (Q, \mathcal{D}, f) for the three Brylinski-Deligne invariants of \mathbf{G}' . Assume that if n is odd, then $Q: Y \to \mathbb{Z}$ takes only even values (this is [\[Wei15](#page-8-1), Assumption 3.1]).

Let $\tilde{G}^{\vee} \supset \tilde{B}^{\vee} \supset \tilde{T}^{\vee}$ be the dual group of $\tilde{\mathbf{G}}$, and let \tilde{Z}^{\vee} be the center of \tilde{G}^{\vee} . The group \tilde{G}^{\vee} is a pinned complex reductive group, associated to the root datum

$$
(Y_{Q,n}, \tilde{\Phi}^{\vee}, \tilde{\Delta}^{\vee}, X_{Q,n}, \tilde{\Phi}, \tilde{\Delta}).
$$

Date: January 8, 2016.

²⁰¹⁰ Mathematics Subject Classification. 11F70; 22E50; 22E55.

Here $Y_{Q,n} \subset Y$ is a sublattice containing nY . For each coroot $\alpha^{\vee} \in \Phi^{\vee}$, there is an associated positive integer n_{α} dividing n and a "modified coroot" $\tilde{\alpha}^{\vee} = n_{\alpha} \alpha^{\vee} \in \tilde{\Phi}^{\vee}$. The set $\tilde{\Phi}^{\vee}$ consists of the modified coroots, and $\tilde{\Delta}^{\vee}$ the modified simple coroots. Define $Y_{Q,n}^{\rm sc}$ to be the sublattice of $Y_{Q,n}$ generated by the modified coroots. Then

$$
\tilde{T}^{\vee} = \text{Hom}(Y_{Q,n}, \mathbb{C}^{\times}) \text{ and } \tilde{Z}^{\vee} = \text{Hom}(Y_{Q,n}/Y_{Q,n}^{\text{sc}}, \mathbb{C}^{\times}).
$$

Let \bar{F}/F be a separable algebraic closure, and $Gal_F = Gal(\bar{F}/F)$ the absolute Galois group. Fix an injective character $\epsilon: \mu_n(F) \hookrightarrow \mathbb{C}^{\times}$. From this data, the constructions of [\[Wei15\]](#page-8-1) and [\[GG14](#page-8-3)] both yield an L-group of \tilde{G} via a Baer sum of two extensions. In both papers, an extension

(First twist)
$$
\tilde{Z}^{\vee} \hookrightarrow E_1 \twoheadrightarrow \text{Gal}_F
$$

is described in essentially the same way When F is local, this "first twist" E_1 is defined via a \tilde{Z}^{\vee} -valued 2-cocycle on Gal_F. See [\[GG14,](#page-8-3) §5.2] and [\[Wei15,](#page-8-1) §5.4] (in the latter, E_1 is denoted $(\tau_Q)_*\widetilde{\text{Gal}}_F$). Over global fields, the construction follows from the local construction and Hilbert reciprocity.

Both papers include a "second twist". Gan and Gao [\[GG14,](#page-8-3) §5.2] describe an extension

(Second twist)
$$
\tilde{Z}^{\vee} \hookrightarrow E_2 \twoheadrightarrow Gal_F,
$$

following an unpublished letter (June, 2012) from the author to Deligne. In [\[Wei15\]](#page-8-1), the second twist is the fundamental group of a gerbe, denoted $\pi_1^{\text{\'et}}(\mathsf{E}_{\epsilon}(\tilde{\mathbf{G}}),\bar{s})$. In this article $\bar{s} = \text{Spec}(\bar{F})$, and so we write $\pi_1^{\text{\'et}}(\mathbf{E}_{\epsilon}(\tilde{\mathbf{G}}), \bar{F})$ instead.

Both papers proceed by taking the Baer sum of these two extensions, $E =$ $E_1 + E_2$, to form an extension $\tilde{Z}^{\vee} \hookrightarrow E \twoheadrightarrow \text{Gal}_F$. The extension E is denoted $L\tilde{Z}$ in [\[Wei15](#page-8-1), §5.4]. Then, one pushes out the extension E via $\tilde{Z}^{\vee} \hookrightarrow \tilde{G}^{\vee}$, to define the L-group

$$
(\text{L-group}) \qquad \qquad \tilde{G}^{\vee} \hookrightarrow {}^{\mathsf{L}}\tilde{G} \twoheadrightarrow \text{Gal}_F.
$$

The two constructions of the L-group, from [\[GG14\]](#page-8-3) and [\[Wei15\]](#page-8-1) are the same, except for insignificant linguistic differences, and a significant difference between the "second twists". In this short note, by giving an isomorphism,

 $\pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{F})$ (described by the author) $\xrightarrow{\sim} E_2$ (described by Gan and Gao)

we will demonstrate that the second twists, and thus the L-groups, of both papers are isomorphic. Therefore, the work of Gan and Gao in [\[GG14](#page-8-3)] supports the broader conjectures of [\[Wei15](#page-8-1)].

Remark 0.1. Among the "insignificant linguistic differences," we note that Gan and Gao use extensions of $F^{\times}/F^{\times n}$ (for local fields) or the Weil group \mathcal{W}_F rather than Gal_F . But pulling back via the reciprocity map of class field theory yields extensions of Gal_F by Z^{\vee} as above.

1. Computations in the gerbe

1.1. Convenient base points. Let $\mathbf{E}_{\epsilon}(\mathbf{\bar{G}})$ be the gerbe constructed in [\[Wei15,](#page-8-1) §3]. Rather than using the language of étale sheaves over F , we work with \bar{F} -points and trace through the Gal_F-action. Let $\hat{T} = \text{Hom}(Y_{Q,n}, \bar{F}^{\times})$ and $\hat{T}_{sc} = \text{Hom}(Y_{Q,n}^{sc}, \bar{F}^{\times})$.

Let ^p: ^T^ˆ [→] ^T^ˆ sc be the surjective Gal^F -equivariant homomorphism dual to the inclusion $Y_{Q,n}^{\rm sc} \hookrightarrow Y_{Q,n}$. Define

$$
\hat{Z} = \text{Ker}(p) = \text{Hom}(Y_{Q,n}/Y_{Q,n}^{\text{sc}}, \bar{F}^{\times}).
$$

The reader is warned not to confuse $(\hat{T}, \hat{T}_{sc}, \hat{Z})$ with $(\tilde{T}^\vee, \tilde{T}_{sc}^\vee, \tilde{Z}^\vee)$; the former are nontrivial Gal_F-modules (Homs into \bar{F}^{\times}) and the latter are trivial Gal_F-modules (Homs into \mathbb{C}^{\times} as a trivial $Gal_F\text{-module}$).

Write $\bar{D} = \mathcal{D}(\bar{F})$ and $D = \mathcal{D}(F)$, where we recall $\mathcal D$ is the second Brylinski-Deligne invariant of the cover \tilde{G} . We have a Gal_F-equivariant short exact sequence,

$$
\bar{F}^{\times} \hookrightarrow \bar{D} \twoheadrightarrow Y.
$$

By Hilbert's Theorem 90, the Gal_F-fixed points give a short exact sequence,

$$
F^\times \hookrightarrow D \twoheadrightarrow Y.
$$

Let $\bar{D}_{Q,n}$ and $\bar{D}_{Q,n}^{\text{sc}}$ denote the preimages of $Y_{Q,n}$ and $Y_{Q,n}^{\text{sc}}$ in \bar{D} . These are abelian groups, fitting into a commutative diagram with exact rows.

$$
\begin{array}{ccc}\n\bar{F}^{\times} & \xrightarrow{\quad} & \bar{D}_{Q,n}^{\text{sc}} & \xrightarrow{\quad} & Y_{Q,n}^{\text{sc}} \\
\Big\downarrow = & & \Big\downarrow & & \Big\downarrow & & \\
\bar{F}^{\times} & \xrightarrow{\quad} & \bar{D}_{Q,n} & \xrightarrow{\quad} & Y_{Q,n}\n\end{array}
$$

Let $\text{Spl}(\bar{D}_{Q,n})$ be the \hat{T} -torsor of splittings of $\bar{D}_{Q,n}$, and similarly let $\text{Spl}(\bar{D}_{Q,n}^{sc})$ be the \hat{T}_{sc} -torsor of splittings of $\bar{D}_{Q,n}^{sc}$.

Let $\overline{\text{White}}$ denote the \hat{T}_{sc} -torsor of nondegenerate characters of $\textbf{U}(\bar{F}).$ An element of Whit is a homomorphism (defined over \bar{F}) from U to \mathbf{G}_a which is nontrivial on every simple root subgroup U_{α} . Gal_F acts on Whit, and the fixed points Whit = $\overline{\text{Whit}}^{\text{Gal}_F}$ are those homomorphisms from U to \mathbf{G}_a which are defined over F. The \hat{T}_{sc} -action on Whit is described in [\[Wei15,](#page-8-1) §3.3].

The pinning $\{x_\alpha : \alpha \in \Phi\}$ of G gives an element $\psi \in$ Whit. Namely, let ψ be the unique nondegenerate character of U which satisfies

$$
\psi(x_{\alpha}(1)) = 1 \text{ for all } \alpha \in \Delta.
$$

In [\[Wei15,](#page-8-1) §3.3], we define an surjective homomorphism $\mu: \hat{T}_{\rm sc} \to \hat{T}_{\rm sc}$, and a Gal_F -equivariant isomorphism of \hat{T}_{sc} -torsors,

$$
\bar{\omega} \colon \mu_* \overline{\text{Whit}} \to \text{Spl}(D_{Q,n}^{\text{sc}}).
$$

The isomorphism $\bar{\omega}$ sends ψ to the unique splitting $s_{\psi} \in Sp(D_{Q,n}^{\text{sc}})$ which satisfies

$$
s_{\psi}(\tilde{\alpha}^{\vee}) = r_{\alpha} \cdot [e_{\alpha}]^{n_{\alpha}}, \text{ with } r_{\alpha} = (-1)^{Q(\alpha^{\vee}) \cdot \frac{n_{\alpha}(n_{\alpha}-1)}{2}}.
$$

We describe the element $[e_{\alpha}] \in D$ concisely here, based on [\[B-D](#page-8-2), §11] and [\[GG14,](#page-8-3) §2.4]. Let $F((v))$ be the field of Laurent series with coefficients in F. The extension $K_2 \hookrightarrow G' \twoheadrightarrow G$ splits over any unipotent subgroup, and so the pinning homomorphisms $x_{\alpha} : F(v) \to U_{\alpha}(F(v))$ lift to homomorphisms

$$
\tilde{x}_{\alpha} \colon F(\!(v)\!)\to \mathbf{U}'_{\alpha}(F(\!(v)\!)).
$$

Define, for any $u \in F((v))^\times$,

$$
\tilde{n}_{\alpha}(u) = \tilde{x}_{\alpha}(u)\tilde{x}_{-\alpha}(-u^{-1})\tilde{x}_{\alpha}(u).
$$

This yields an element

$$
\tilde{t}_{\alpha} = \tilde{n}_{\alpha}(v) \cdot \tilde{n}_{\alpha}(-1) \in \mathbf{T}'(F(\!(v)\!)).
$$

Then t_{α} lies over $\alpha^{\vee}(v) \in \mathbf{T}(F(\!(v)\!)).$ Its pushout via $\mathbf{K}_2(F(\!(v)\!)) \stackrel{\partial}{\rightarrow} F^{\times}$ is the element we call $[e_{\alpha}] \in D$.

Remark 1.1. The element $s_{\psi}(\tilde{\alpha}^{\vee}) = r_{\alpha} \cdot [e_{\alpha}]^{n_{\alpha}}$ coincides with what Gan and Gao call $s_{Q^{\text{sc}}}(\tilde{\alpha}^{\vee})$ in [\[GG14](#page-8-3), §5.2]; the sign r_{α} arises from the formulae of [\[B-D,](#page-8-2) §11.1.4, 11.1.5].

Let $j_0: \hat{T}_{\rm sc} \to \mu_* \overline{\text{White}}$ be the unique isomorphism of $\hat{T}_{\rm sc}$ -torsors which sends 1 to ψ (or rather the image of ψ via Whit $\rightarrow \mu_*$ Whit). Since $\psi \in$ Whit is Gal_F-invariant, this isomorphism j_0 is also Gal_F-invariant.

Finally, let $s \in \text{Spl}(\bar{D}_{Q,n})$ be a splitting which restricts to s_{ψ} on $Y_{Q,n}^{\text{sc}}$. Such a splitting s exists, since the map $\text{Spl}(\bar{D}_{Q,n}) \to \text{Spl}(\bar{D}_{Q,n}^{sc})$ is surjective (since the map $\hat{T} \to \hat{T}_{\rm sc}$ is surjective). Note that s is not necessarily Gal_F -invariant (and often cannot be).

Let $h: \hat{T} \to \text{Spl}(\hat{D}_{Q,n})$ be the function given by

$$
h(x) = x^n * s \text{ for all } x \in \hat{T}.
$$

The triple $\bar{z} = (\hat{T}, h, j_0)$ is an \bar{F} -object (i.e., a geometric base point) of the gerbe $\mathsf{E}_{\epsilon}(\tilde{\mathbf{G}})$. Note that the construction of \bar{z} depends on two choices: a pinning of **G** (to obtain $\psi \in \text{Whit}$) and a splitting s of $D_{Q,n}$ extending s_{ψ} . We call such a triple \overline{z} a convenient base point for the gerbe $\mathsf{E}_{\epsilon}(\mathbf{G})$.

1.2. The fundamental group. For a convenient base point \bar{z} associated to s, we consider the fundamental group

$$
\pi_1^{\text{\'et}}(\textbf{E}_{\epsilon}(\mathbf{\tilde G}),\bar{z})=\bigsqcup_{\gamma \in \text{Gal}_{\it{F}}}\text{Hom}(\bar{z},\vec{^\gamma z}).
$$

This fundamental group fits into a short exact sequence

$$
\tilde Z^\vee \hookrightarrow \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar z)\twoheadrightarrow \text{Gal}_F,
$$

where the fibre over $\gamma \in \text{Gal}_F$ is $\text{Hom}(\bar{z}, \gamma \bar{z})$. Thus to describe the fundamental group, it suffices to describe each fibre (as a \tilde{Z}^{\vee} -torsor), and the multiplication maps among fibres.

The base point $\gamma \bar{z}$ is the triple $(\gamma \hat{T}, \gamma \circ h, \gamma \circ j_0)$, where $\gamma \hat{T}$ is the \hat{T} -torsor with underlying set \hat{T} and twisted action

$$
u *_{\gamma} x = \gamma^{-1}(u) \cdot x.
$$

To give an element $f \in \text{Hom}(\bar{z}, \bar{z})$ is the same as giving an element $\zeta \in \tilde{Z}^{\vee}$ and a map of \hat{T} -torsors $f_0: \hat{T} \to \hat{T}$ satisfying

$$
(\gamma \circ h) \circ f_0 = h
$$
 and $(\gamma \circ j_0) \circ p_* f_0 = j_0$.

Any such map of \hat{T} -torsors is uniquely determined by the element $\tau \in \hat{T}$ satisfying $f_0(1) = \tau$. The two conditions above are equivalent to the two conditions

(1.1)
$$
\tau^n = \gamma^{-1} s / s \text{ and } \tau \in \hat{Z}.
$$

Thus, to give an element $f \in \text{Hom}(\bar{z}, \bar{z})$ is the same as giving a pair $(\tau, \zeta) \in$ $\hat{T} \times \tilde{Z}^{\vee}$, where τ satisfies the two conditions above. Therefore, in what follows, we

write $(\tau, \zeta) \in \text{Hom}(\bar{z}, \bar{z})$ to indicate that τ satisfies the two conditions above, and to refer to the corresponding morphism in the gerbe $\mathsf{E}_{\epsilon}(\hat{\mathbf{G}})$ in concrete terms.

We use ϵ : $\mu_n(F) \xrightarrow{\sim} \mu_n(\mathbb{C})$ to identify $\hat{Z}_{[n]}$ with $\tilde{Z}_{[n]}^{\vee}$. Two pairs (τ, ζ) and (τ', ζ') are identified in $\text{Hom}(\bar{z}, \gamma \bar{z})$ if and only if there exists $\xi \in \hat{Z}_{[n]}$ such that

$$
\tau' = \xi \cdot \tau \text{ and } \zeta' = \epsilon(\xi)^{-1} \cdot \zeta.
$$

The structure of $\text{Hom}(\bar{z}, \bar{z})$ as a \tilde{Z}^{\vee} -torsor is by scaling the second factor in $(\tau, \zeta) \in \hat{T} \times \tilde{Z}^{\vee}$. To describe the fundamental group completely, it remains to describe the multiplication maps among fibres. If $\gamma_1, \gamma_2 \in \text{Gal}_F$, and

$$
(\tau_1,\zeta_1)\in \mathrm{Hom}(\bar z,\hbox{}^{\gamma_1}\bar z)\hbox{ and }(\tau_2,\zeta_2)\in \mathrm{Hom}(\bar z,\hbox{}^{\gamma_2}\bar z),
$$

then their composition in $\pi_1^{\text{\'et}}(\mathsf{E}_{\epsilon}(\tilde{\mathbf{G}}),\bar{z})$ is given by

$$
(\tau_1, \zeta_1) \circ (\tau_2, \zeta_2) = (\gamma_2^{-1}(\tau_1) \cdot \tau_2, \zeta_1 \zeta_2).
$$

Observe that

$$
(\gamma_2^{-1}(\tau_1)\tau_2)^n = \gamma_2^{-1} (\gamma_1^{-1}s/s) \cdot (\gamma_2^{-1}s/s) = (\gamma_1\gamma_2)^{-1}s/s.
$$

Therefore $(\gamma_2^{-1}(\tau_1) \cdot \tau_2, \zeta_1 \zeta_2) \in \text{Hom}(\bar{z}, \gamma_1 \gamma_2 \bar{z})$ as required.

2. Comparison to the second twist

2.1. The second twist. The construction of the second twist in [\[GG14\]](#page-8-3) does not rely on gerbes at all, at the expense of some generality; it seems difficult to extend the construction there to nonsplit groups. But for split groups, the construction of [\[GG14](#page-8-3)] offers significant simplifications over [\[Wei15\]](#page-8-1). The starting point in [\[GG14\]](#page-8-3) is the same short exact sequence of abelian groups as in the previous section,

$$
F^{\times} \hookrightarrow D_{Q,n} \twoheadrightarrow Y_{Q,n}.
$$

And as before, we utilize the splitting $s_{\psi} \colon Y_{Q,n}^{\text{sc}} \hookrightarrow D_{Q,n}^{\text{sc}}$. Taking the quotient by $s_{\psi}(Y_{Q,n}^{\rm sc})$, we obtain a short exact sequence

$$
F^{\times} \hookrightarrow \frac{D_{Q,n}}{s_{\psi}(Y_{Q,n}^{\text{sc}})} \twoheadrightarrow \frac{Y_{Q,n}}{Y_{Q,n}^{\text{sc}}}.
$$

Apply $\mathrm{Hom}(\bullet,\mathbb C^\times)$ (and note $\mathbb C^\times$ is divisible) to obtain a short exact sequence,

$$
\tilde{Z}^{\vee} \hookrightarrow \text{Hom}\left(\frac{D_{Q,n}}{s_{\psi}(Y_{Q,n}^{\text{sc}})}, \mathbb{C}^{\times}\right) \twoheadrightarrow \text{Hom}(F^{\times}, \mathbb{C}^{\times}).
$$

Define a homomorphism $Gal_F \to Hom(F^\times,\mathbb C^\times)$ by the Artin symbol,

$$
\gamma \mapsto \left(u \mapsto \epsilon\left(\frac{\gamma^{-1}(\sqrt[n]{u})}{\sqrt[n]{u}}\right)\right).
$$

Pulling back the previous short exact sequence by this homomorphism yields a short exact sequence

$$
\tilde{Z}^{\vee} \hookrightarrow E_2 \twoheadrightarrow \mathrm{Gal}_F.
$$

This E_2 is the second twist described in [\[GG14\]](#page-8-3).

Remark 2.1. There is an insignificant difference here – at the last step, over a local field F, Gan and Gao pull back to $F^{\times}/F^{\times n}$ via the Hilbert symbol whereas we pull further back to Gal_F via the Artin symbol.

6 MARTIN H. WEISSMAN

Write $E_{2,\gamma}$ for the fibre of E_2 over any $\gamma \in \text{Gal}_F$. Again, to understand the extension E_2 , it suffices to understand these fibres (as \tilde{Z}^{\vee} -torsors), and to understand the multiplication maps among them. The steps above yield the following (somewhat) concise description of $E_{2,\gamma}$.

 $E_{2,\gamma}$ is the set of homomorphisms $\chi\colon D_{Q,n}\to \mathbb{C}^{\times}$ such that

- χ is trivial on the image of $Y_{Q,n}^{\text{sc}}$ via the splitting s_{ψ} .
- For every $u \in F^{\times}$, $\chi(u) = \epsilon(\gamma^{-1} \sqrt[n]{u}/\sqrt[n]{u}).$

Multiplication among fibres is given by usual multiplication, $\chi_1, \chi_2 \mapsto \chi_1 \chi_2$. The \tilde{Z}^{\vee} -torsor structure on the fibres is given as follows: if $\eta \in \tilde{Z}^{\vee}$, then

$$
[\eta * \chi](d) = \eta(y) \cdot \chi(d)
$$
 for all $d \in D_{Q,n}$ lying over $y \in Y_{Q,n}$.

2.2. **Comparison.** Now we describe a map from $\pi_1^{\text{\'et}}(\mathbf{E}_{\epsilon}(\tilde{\mathbf{G}}),\bar{z})$ to E_2 , fibrewise over Gal_F. From the splitting s (used to define \bar{z} and restricting to s_{ψ} on $Y_{Q,n}^{\rm sc}$), every element of $\bar{D}_{Q,n}$ can be written uniquely as $s(y) \cdot u$ for some $y \in Y_{Q,n}$ and some $u \in \overline{F}^{\times}$. Such an element $s(y) \cdot u$ is $Gal_{\overline{F}}$ -invariant if and only if

$$
\gamma(s(y))\gamma(u) = s(y)u, \text{ or equivalently } \frac{\gamma^{-1}u}{u} \cdot \frac{\gamma^{-1}s}{s}(y) = 1, \text{ for all } \gamma \in \text{Gal}_F.
$$

Suppose that $\gamma \in \text{Gal}_F$ and $(\tau,1) \in \text{Hom}(\bar{z},\bar{\gamma}\bar{z})$. Define $\chi: D_{Q,n} \to \mu_n(\mathbb{C})$ by

$$
\chi(s(y) \cdot u) = \epsilon \left(\gamma^{-1} \sqrt[n]{u} / \sqrt[n]{u} \cdot \tau(y) \right)
$$

.

This makes sense, because Gal_F-invariance of $s(y) \cdot u$ implies

$$
\left(\frac{\gamma^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau(y)\right)^n = \frac{\gamma^{-1} u}{u} \cdot \frac{\gamma^{-1} s}{s}(y) = 1.
$$

To see that $\chi \in E_{2,\gamma}$, observe that

- χ is a homomorphism (a straightforward computation).
- If $y \in Y_{Q,n}^{\text{sc}}$ then $\chi(s(y)) = \tau(y) = 1$ since $\tau \in \hat{Z}$.
- If $u \in F^{\times}$ then $\chi(u) = \epsilon(\gamma^{-1} \sqrt[n]{u}/\sqrt[n]{u})$ by definition.

Lemma 2.2. The map sending $(\tau, 1)$ to χ , described above, extends uniquely to an isomorphism of \tilde{Z}^{\vee} -torsors from $\text{Hom}(\bar{z}, \tilde{z})$ to $E_{2,\gamma}$.

Proof. If this map extends to an isomorphism of \tilde{Z}^{\vee} -torsors as claimed, the map must send an element $(\tau, \zeta) \in \text{Hom}(\bar{z}, \bar{z})$ to the element $\zeta * \chi \in E_{2,\gamma}$. To demonstrate that the map extends to an isomorphism of \tilde{Z}^{\vee} -torsors, it must only be checked that

$$
(\xi \cdot \tau, 1)
$$
 and $(\tau, \epsilon(\xi))$

map to the same element of $E_{2,\gamma}$, for all $\xi \in \hat{Z}_{[n]}$. For this, we observe that $(\xi \cdot \tau, 1)$ maps to the character χ' given by

$$
\chi'(s(y)\cdot u) = \epsilon\left(\frac{\gamma^{-1} \sqrt[n]{u}}{\sqrt[n]{u}}\xi(y)\tau(y)\right) = \epsilon(\xi(y))\cdot \epsilon\left(\frac{\gamma^{-1} \sqrt[n]{u}}{\sqrt[n]{u}}\tau(y)\right) = \epsilon(\xi(y))\cdot \chi(s(y)\cdot u).
$$

Thus $\chi' = \epsilon(\xi) * \chi$ and this demonstrates the lemma.

From this lemma, we have a well-defined "comparison" isomorphism of \tilde{Z}^{\vee} torsors,

(Comparison)
\n
$$
C_{\gamma}: \text{ Hom}(\bar{z}, \gamma z) \to E_{2,\gamma},
$$
\n
$$
C_{\gamma}(\tau, \zeta)(s(y) \cdot u) = \epsilon \left(\frac{\gamma^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau(y) \right) \cdot \zeta(y).
$$

Checking compatibility with multiplication yields the following.

Lemma 2.3. The isomorphisms C_{γ} are compatible with the multiplication maps, yielding an isomorphism of extensions of Gal_F by \tilde{Z}^{\vee} ,

$$
C=C_{\bar{z}}\colon \pi_1^{\text{\'et}}(\mathsf{E}_{\epsilon}(\tilde{\mathbf{G}}),\bar{z})\to E_2.
$$

Proof. Suppose that $(\tau_1, \zeta_1) \in \text{Hom}(\bar{z}, \gamma_1 \bar{z})$ and $(\tau_2, \zeta_2) \in \text{Hom}(\bar{z}, \gamma_2 \bar{z})$. Their product in $\pi_1^{\text{\'et}}(\mathbf{E}_{\epsilon}(\tilde{\mathbf{G}}),\bar{z})$ is $(\gamma_2^{-1}(\tau_1)\tau_2,\zeta_1\zeta_2)$. We compute

$$
C_{\gamma_1\gamma_2}(\tau_1\gamma^{-1}(\tau_2),\zeta_1\zeta_2)(s(y)\cdot u) = \epsilon \left(\frac{(\gamma_1\gamma_2)^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \gamma_2^{-1}(\tau_1(y))\tau_2(y)\right) \cdot \zeta_1(y)\zeta_2(y)
$$

\n
$$
= \epsilon \left(\frac{\gamma_2^{-1} \gamma_1^{-1} \sqrt[n]{u}}{\gamma_2^{-1} \sqrt[n]{u}} \cdot \frac{\gamma_2^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \gamma_2^{-1}(\tau_1(y))\tau_2(y)\right)
$$

\n
$$
\cdot \zeta_1(y)\zeta_2(y)
$$

\n
$$
= \epsilon \left(\gamma_2^{-1} \left(\frac{\gamma_1^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau_1(y)\right) \cdot \frac{\gamma_2^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau_2(y)\right)
$$

\n
$$
\cdot \zeta_1(y)\zeta_2(y)
$$

\n
$$
= \epsilon \left(\frac{\gamma_1^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau_1(y)\right) \zeta_1(y)
$$

\n
$$
\cdot \epsilon \left(\frac{\gamma_2^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau_2(y)\right) \zeta_2(y)
$$

\n
$$
= C_{\gamma_1}(\tau_1, \zeta_1)(s(y) \cdot u) \cdot C_{\gamma_2}(\tau_2, \zeta_2)(s(y) \cdot u)
$$

In the middle step, we use the fact that $\left(\frac{\gamma_1^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau_1(y)\right)$ is an element of $\mu_n(F)$, and hence is Gal_F -invariant. This computation demonstrates compatibility of the isomorphisms C_{γ} with multiplication maps, and hence the lemma is proven.

2.3. Independence of base point. Lastly, we demonstrate that the comparison isomorphisms

$$
C_{\bar{z}}\colon \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z})\to E_2
$$

depend naturally on the choice of convenient base point. With the pinned split group G fixed, choosing a convenient base point is the same as choosing a splitting of $\bar{D}_{Q,n}$ which restricts to s_{ψ} .

So consider two convenient base points \bar{z}_1 and \bar{z}_2 , arising from splittings s_1, s_2 of $\bar{D}_{Q,n}$ which restrict to s_{ψ} on $Y_{Q,n}^{\rm sc}$. Any isomorphism ι from \bar{z}_1 to \bar{z}_2 in the gerbe $\mathsf{E}_{\epsilon}(\mathbf{G})$ defines an isomorphism

$$
\iota\colon \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_1)\to \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_2).
$$

See [\[Wei15,](#page-8-1) Theorem 19.6] for details. In fact, the isomorphism of fundamental groups above does not depend on the choice of isomorphism from \bar{z}_1 to \bar{z}_2 ; thus one may define a "Platonic" fundamental group

$$
\pi_1^{\text{\'et}}(\mathbf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{F})
$$

without reference to an object of the gerbe.

Theorem 2.4. For any two convenient base points \bar{z}_1, \bar{z}_2 , and any isomorhpism $\iota\colon \bar{z}_1\to \bar{z}_2$, we have $C_{\bar{z}_2}\circ \iota=C_{\bar{z}_1}$. Thus E_2 is isomorphic to the fundamental group $\pi_1(\mathsf{E}_{\epsilon}(\tilde{\mathbf{G}}), \bar{F})$, as defined in [\[Wei15](#page-8-1), Theorem 19.7, Remark 19.8].

8 MARTIN H. WEISSMAN

Proof. Choose any isomorphism from $\bar{z}_1 = (\hat{T}, h_1, j_0)$ to $\bar{z}_2 = (\hat{T}, h_2, j_0)$ in the gerbe $\mathbf{E}_{\epsilon}(\tilde{\mathbf{G}})$. Here $h_1(1) = s_1$ and $h_2(1) = s_2$, and $j_0(1) = s_{\psi}$. Such an isomorphism $\bar{z}_1 \stackrel{\sim}{\longrightarrow} \bar{z}_2$ is given by an isomorphism $\iota: \hat{T} \to \hat{T}$ of \hat{T} -torsors satisfying the two conditions

$$
h_2 \circ \iota = h_1 \text{ and } j_0 \circ p_* \iota = j_0.
$$

Such an ι is determined by the element $b = \iota(1) \in \hat{T}$. The two conditions above are equivalent to the two conditions

$$
b^n = s_1/s_2 \text{ and } b \in \hat{Z}.
$$

The isomorphism $\bar{z}_1 \stackrel{\sim}{\to} \bar{z}_2$ determined by such a $b \in \hat{T}$ yields an isomorphism $\gamma_i: \gamma_{\bar{z}_1} \to \gamma_{\bar{z}_2}$, for any $\gamma \in \text{Gal}_F$. The isomorphism γ_i is given by the isomorphism of \hat{T} -torsors from \hat{T} to \hat{T} , which sends 1 to $\gamma(b)$.

This allows us to describe the isomorphism

$$
\iota\colon \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_1)\to \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_2)
$$

fibrewise over Gal_F . Namely, for any $\gamma \in Gal_F$, and any $f \in Hom(\bar{z}_1, \tilde{z}_1)$, we find a unique element $\iota(f) \in \text{Hom}(\bar{z}_2, \bar{z}_2)$ which makes the following diagram commute.

$$
\overline{z}_1 \xrightarrow{f} \gamma_{\overline{z}_1}
$$
\n
$$
\downarrow \iota
$$
\n
$$
\overline{z}_2 \xrightarrow{\iota(f)} \gamma_{\overline{z}_2}
$$

If $f = (\tau, 1)$, then $\iota(f) = (\tau b/\gamma^{-1}b, 1)$. Indeed, when $\tau^n = \gamma^{-1} s_1/s_1$, we have \int τb $\gamma^{-1}b$ \setminus^n $=\frac{\gamma^{-1}s_1}{\gamma}$ s_1 b^n $\frac{b^n}{\gamma^{-1}b^n} = \frac{\gamma^{-1}s_1}{s_1}$ s_1 s_1 $s₂$ $\gamma^{-1}s_2$ $\frac{\gamma^{-1} s_2}{\gamma^{-1} s_1} = \frac{\gamma^{-1} s_2}{s_2}$ $\frac{S_2}{S_2}$.

Thus $\iota(f) \in \text{Hom}(\bar{z}_2, \gamma \bar{z}_2)$ as required. In this way,

$$
\iota \colon \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_1) \to \pi_1^{\text{\'et}}(\mathsf{E}_\epsilon(\tilde{\mathbf{G}}),\bar{z}_2),
$$

is given concretely on each fibre over $\gamma \in \text{Gal}_F$ by

$$
\iota(\tau,\zeta) = \left(\tau \cdot \frac{b}{\gamma^{-1}b}, \zeta\right).
$$

Note that the conditions $b^n = s_1/s_2$ and $b \in \hat{Z}$ uniquely determine b up to multiplication by $\hat{Z}_{[n]}$. Since $\hat{Z}_{[n]}$ is a trivial Gal_F -module, the isomorphism ι of fundamental groups is independent of b. Finally, we compute, for any $y \in Y_{Q,n}$, $u \in$ \bar{F}^{\times} such that $s_1(y) \cdot u \in D_{Q,n}$, and any $(\tau, \zeta) \in \text{Hom}(\bar{z}_1, \bar{z}_1)$,

$$
[C_{\bar{z}_2} \circ \iota](\tau, \zeta)(s_1(y) \cdot u) = C_{\bar{z}_2}(\tau b/\gamma^{-1}b, \zeta)(s_1(y) \cdot u)
$$

\n
$$
= C_{\bar{z}_2}(\tau \gamma(b)/b, \zeta)(s_2(y) \cdot b^n(y)u)
$$

\n
$$
= \epsilon \left(\frac{\gamma^{-1} \sqrt[n]{b^n(y)u}}{\sqrt[n]{b^n(y)u}} \cdot \tau(y) \cdot \frac{b(y)}{\gamma^{-1}(b(y))} \right) \cdot \zeta(y)
$$

\n
$$
= \epsilon \left(\frac{\gamma^{-1} \sqrt[n]{u}}{\sqrt[n]{u}} \cdot \tau(y) \right) \cdot \zeta(u)
$$

\n
$$
= C_{\bar{z}_1}(\tau, \zeta)(s_1(y) \cdot u).
$$

REFERENCES 9

As noted in the introduction, this demonstrates compatibility between two approaches to the L-group.

Corollary 2.5. The L-group defined in $[Wei15]$ is isomorphic to the L-group defined in [\[GG14](#page-8-3)], for all pinned split reductive groups over local or global fields.

REFERENCES

- [B-D] Jean-Luc Brylinski and Pierre Deligne. "Central extensions of reductive groups by \mathbf{K}_2 ". In: Publ. Math. Inst. Hautes Études Sci. 94 (2001), pp. 5– 85.
- [GG14] Wee Teck Gan and Fan Gao. "The Langlands-Weissman Program for Brylinski-Deligne extensions". In: ArXiv e-prints (Sept. 2014). arXiv:[1409.4039 \[math.NT\]](http://arxiv.org/abs/1409.4039).
- [Wei15] M. H. Weissman. "L-groups and parameters for covering groups". In: ArXiv e-prints (July 2015). arXiv:[1507.01042 \[math.NT\]](http://arxiv.org/abs/1507.01042).

YALE-NUS COLLEGE, 6 COLLEGE AVE EAST, #B1-01, SINGAPORE 138614 E-mail address: marty.weissman@yale-nus.edu.sg