
PRODUCTS OF TWO CANTOR SETS

YUKI TAKAHASHI

Abstract. We consider products of two Cantor sets, and obtain the optimal
estimates in terms of their thickness that guarantee that their product is an

interval. This problem is motivated by the fact that the spectrum of the
Labyrinth model, which is a two dimensional quasicrystal model, is given by a

product of two Cantor sets. We also discuss the connection with the question

on the structure of intersections of two Cantor sets, which was considered by
many authors previously.

1. Introduction

1.1. Products of Cantor sets. Sums of Cantor sets have been considered
in many papers and in many different settings (e.g., [1], [4], [5], [6], [7], [8], [9],
[18], [20], [23], [25], [26]). It arises naturally in dynamical systems, in the study
of homoclinic bifurcations [23]. It also arises in number theory, in connection with
continued fractions as initiated by Hall [9]. In [9], he proved that any real number
can be written as a sum of two real numbers whose continued fractional coefficients
are at most 4. It is also connected to spectral theory (e.g., [5], [6], [7], [22]). The
spectra of certain types of two dimensional quasicrystal models can be written as
sums of two dynamically defined Cantor sets [6]. The study of sums of Cantor sets
also has natural connection to the study of intersections of Cantor sets (e.g., [11],
[13], [14], [17], [21], [28]). It is easy to see that a sum of two Cantor sets contains
an interval if and only if they have stable intersection.

In [21], Newhouse proved the following so-called Gap Lemma (for the definition
of thickness τ(·), see section 2):

Lemma 1.1 (Gap Lemma). Let K, L be Cantor sets with τ(K) · τ(L) > 1.
Then, if neither K nor L lies in a complementary domain of the other, K ∩ L
contains at least one element.

In fact, if Newhouse’s proof is slightly altered the condition τ(K) · τ(L) > 1
may be replaced with τ(K) · τ(L) > 1. The following is a direct consequence of
Gap Lemma:

Theorem 1.1. Suppose K and L are Cantor sets with τ(K)·τ(L) > 1. Assume
also that the size of the largest gap of K is not greater than the diameter of L, and
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2 Y. TAKAHASHI

the size of the largest gap of L is not greater than the diameter of K. Then K +L
is a closed interval.

Using Theorem 1.1 as a tool, we consider products of two Cantor sets. This
problem arises naturally in the study of the spectrum of the Labyrinth model [27].
For any two Cantor sets K,L > 0, we have

K · L = exp (logK + logL) .

Using this equality, if K and L do not contain 0, some results of products of Cantor
sets can be immediately obtained by that of sums of Cantor sets. For example, in
[2], the authors obtained an estimate for products of two or more Cantor sets to
be an interval.

The main difficulty arises when K or L contain 0. To the best of our knowledge,
this 0 ∈ K,L case has never been discussed before. If K contains 0, then logK
is “stretched to negative infinity”, making products of Cantor sets different from
sums of Cantor sets. Indeed, for example, in section 2 we will show that under
the condition of τ(K) · τ(L) > 1, products of two Cantor sets K · L may contain
countably many disjoint closed intervals. This is a phenomena which never appears
in sums of two Cantor sets under the condition of τ(K) · τ(L) > 1.

Initially this work was motivated by the question on spectral properties of the
Labyrinth model [27]. As mentioned above, the spectrum of the Labyrinth model
is a product of two Cantor sets, and in fact, these two Cantor sets both contain the
origin. Using our results, we can show that the spectrum of the Labyrinth model
is an interval for the small coupling constant regime. See [27].

1.2. Main results. For any Cantor set K, we denote K ∩ (0,∞) by K+, and
− (K ∩ (−∞, 0)) by K−. Let us give the following definition:

Definition 1.1. Let K be a Cantor set. We call K a

(1) 0-Cantor set if K+,K− 6= φ, inf K+ = 0, and inf K− = 0,
(2) 0+-Cantor set if minK = 0,
(3) 0×-Cantor set if K+,K− 6= φ, and 0 /∈ K, and
(4) 0+−-Cantor set if K+,K− 6= φ, inf K+ = 0, and inf K− > 0.

Our main results are the following:

Theorem 1.2. Let K,L be 0+-Cantor sets. Then, K · L is an interval if

(1.1) τ(L) >
2τ(K) + 1

τ(K)2
, or τ(K) >

2τ(L) + 1

τ(L)2
.

In particular, if

τ(K) = τ(L) >
1 +
√

5

2
,

then K · L is an interval. Furthermore, let M,N > 0 be real numbers with

(1.2) N <
2M + 1

M2
, and M <

2N + 1

N2
.

Then

(1) there exist 0+-Cantor sets K,L, such that τ(K) = M , τ(L) = N , and K ·L is
a disjoint union of {0} and countably many closed intervals, and
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(2) for any k > 2, there exist 0+-Cantor sets K,L, such that τ(K) = M , τ(L) = N ,
and K · L is a disjoint union of k closed intervals.

Similarly, we have

Theorem 1.3. Let K be a 0+-Cantor set, and let L be a 0-Cantor set. Then,
K · L is an interval if

(1.3) τ(L) >
2τ(K) + 1

τ(K)2
.

Furthermore, let M,N > 0 be real numbers with

(1.4) N <
2M + 1

M2
.

Then

(1) there exists a 0+-Cantor set K and a 0-Cantor set L such that τ(K) = M ,
τ(L) = N , and K · L is a disjoint union of countably many closed intervals, and
(2) for any k > 2, there exists a 0+-Cantor set K and a 0-Cantor set L such that
τ(K) = M , τ(L) = N , and K · L is a disjoint union of k closed intervals.

We also have the following:

Theorem 1.4. Let K,L be 0-Cantor sets. Then, if

(1.5) 2 (τ(K) + 1) (τ(L) + 1) 6 (τ(K)τ(L)− 1)
2
,

K · L is an interval. In particular, if

τ(K) = τ(L) > 1 +
√

2,

then K · L is an interval. Furthermore, let M,N > 0 be real numbers with

(1.6) 2(M + 1)(N + 1) > (MN − 1)2.

Then, there exist 0-Cantor sets K,L, such that τ(K) = M , τ(L) = N , and K · L
is a disjoint union of two intervals.

We believe that Theorem 1.4 does not hold if we replace “disjoint union of two
intervals” with “disjoint union of countably many closed intervals”, or “disjoint
union of k (> 3) closed intervals”. It would be interesting to prove that this is
indeed true.

To ensure that the product may contain countably many disjoint closed inter-
vals, we have the following estimate:

Theorem 1.5. Let M,N > 0 be real numbers with M > N . Then, if

(1.7) M <
N2 + 3N + 1

N2
, or N <

(2M + 1)2

M3
,

there exist 0-Cantor sets K,L, such that τ(K) = M , τ(L) = N , and K · L is a
disjoint union of {0} and countably many closed intervals.

We are not sure whether the estimate in Theorem 1.5 is optimal. We leave this
as an open problem.

As stated above, the study of intersections of Cantor sets is naturally connected
to the study of sums of Cantor sets. In fact, it is also connected to the study of
products of Cantor sets. Indeed, the estimate in Theorem 1.5 is exactly the same as
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P : ( 1+
√
5

2 , 1+
√
5

2 )

Q : (1 +
√

2, 1 +
√

2)

0 τ(K)

τ(L)
(a) (c)

(b)

Figure 1. (a), (b) are the graphs of (1.1), and (c) is the graph of (1.5).

the estimate that appears in [11] and [13], which is the optimal estimate that two
interleaved Cantor sets may have a one point intersection ([11] and [13] obtained
the same results independently). Our method provides different proofs to some of
the results presented there. On the other hand, we do not believe that our results
follow from the techniques in [11], [13]. We discuss this connection in more detail
in section 6.

1.3. Structure of this paper. In section 2, we give necessary definitions
and prove that the product of two Cantor sets K · L may contain countably many
disjoint closed intervals in the case of τ(K) · τ(L) > 1. In section 3 we prove the
key lemma, which is the optimal estimate of the thickness of logK for certain type
of Cantor set K. Using the results established in section 3, we prove Theorem 1.2,
1.3, and 1.4 in section 4. In section 5, we present some analogous results which
are not stated in section 4. In section 6, we discuss the connection between the
question on products of two Cantor sets and the question on intersections of two
Cantor sets. In section 7, we state some open problems.

2. Preliminaries

Definition 2.1. For any Cantor set K ⊂ R, we denote the right and left
endpoint of K by KR and KL, respectively. If two Cantor sets K1,K2 satisfy
KR

1 < KL
2 , we write K1 < K2. For any gaps U , U1 and U2, we define UR, UL, and

U1 < U2 analogously. For any set A ⊂ (0,∞), we denote logA by Ã.

Definition 2.2. We call K an extended Cantor set if K is a closed, perfect,
and nowhere dense set which is bounded from above and unbounded from below.
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The following is immediate:

Lemma 2.1. If a Cantor set K satisfies K > 0, K̃ is again a Cantor set. If K

is a 0+-Cantor set, then K̃+ is an extended Cantor set.

Definition 2.3. Let K be a Cantor set, or an extended Cantor set. Define
the thickness of K by

inf
U1<U2

max

{
UL2 − UR1
|U1|

,
UL2 − UR1
|U2|

}
,

where the inf is taken for all pairs of gaps of K, with at least one of them being a
finite gap. We denote this value by τ(K).

Remark 2.1. Definition 2.3 is not the most standard, but if K is a Cantor set
it is easy to see that it coincides with the usual definition of thickness. Compare
the definition in chapter 4 of [23].

If we drop the assumption of sizes of K and L in Theorem 1.1, we obtain
Theorem 2.1. For the reader’s convenience, we include the proof (Theorem 1.1 can
be shown in a similar way).

Theorem 2.1. Let K and L be Cantor sets with τ(K) ·τ(L) > 1. Then, K+L
is the disjoint union of finitely many closed intervals.

Proof. It is enough to show that K +L has at most finitely many open gaps
in [KL + LL,KR + LR]. Suppose x ∈ [KL + LL,KR + LR] and x /∈ K + L. It is
easy to see that

x /∈ K + L ⇐⇒ K ∩ (x− L) = φ.

Note that x− L is again a Cantor set. Since we have

τ(K) · τ(x− L) = τ(K) · τ(L) > 1,

the Gap Lemma implies that there are only three possibilities:

(1) the intervals [KL,KR] and [x− LR, x− LL] are disjoint;
(2) the set K is contained in a finite gap of the set (x− L);
(3) the set (x− L) is contained in a finite gap of the set K;

Case (1) contradicts the assumption that x ∈ [KL + LL,KR + LR]. It is easy to
see that the set of points which satisfy (2) or (3) is a union of finitely many open
intervals. �

The following is immediate from the definition of thickness:

Lemma 2.2. Let K be a Cantor set, and let U be a gap of the maximal
size of K. Let K1 = K ∩ [KL, UL] and K2 = K ∩ [UR,KR]. Then τ(K1) >
τ(K) and τ(K2) > τ(K).

Lemma 2.3. Let K be a Cantor set, and let C1, C2 > 0 be real numbers. Let
f : R → R be a strictly increasing continuous function. Assume further that for
any p1, p2, p3 ∈ K with p1 < p2 < p3, we have

C1
p3 − p2
p2 − p1

<
f(p3)− f(p2)

f(p2)− f(p1)
< C2

p3 − p2
p2 − p1

.

Write L = f(K). Then, we have C1τ(K) 6 τ(L) 6 C2τ(K).



6 Y. TAKAHASHI

Proof. Let ε > 0. By the definition of thickness there exit two gaps of L, say
W1,W2, which satisfy W1 < W2 and

τ(L) + ε > max

{
WL

2 −WR
1

|W1|
,
WL

2 −WR
1

|W2|

}
.

Let U1, U2 be the gaps of K with f(U1) = W1 and f(U2) = W2. Then,

max

{
WL

2 −WR
1

|W1|
,
WL

2 −WR
1

|W2|

}
> C1 max

{
UL2 − UR1
|U1|

,
UL2 − UR1
|U2|

}
> C1τ(K).

Since ε > 0 was arbitrary, τ(L) > C1τ(K). The other inequality can be shown
analogously. �

Corollary 2.1. Let ε, c > 0 be real numbers and assume that 0 < c < 1.
Then there exists δ > 0 such that for any Cantor set K with |K| < δ and KL > ε,

τ(K̃) > c · τ(K).

The following is an immediate consequence of Theorem 1.1, Lemma 2.2 and
Corollary 2.1:

Lemma 2.4. Let K and L be Cantor sets with τ(K) · τ(L) > 1. Assume that
0 /∈ K,L. Then K · L is the disjoint union of finitely many closed intervals.

Corollary 2.2. Let K and L be Cantor sets with τ(K) · τ(L) > 1. Suppose
that K or L contain 0. Then, one of the following occurs:

(1) (K · L) ∩ [0,∞) is the disjoint union of finitely many closed intervals;
(2) (K ·L)∩ [0,∞) is the disjoint union of {0} and countably many closed intervals
which accumulate to 0;

3. Estimates of thickness

Lemma 3.1. Let us define a function fk : R+ → R+ by

fk(x) =
log
(

1 + kx
1+x

)
log(1 + x)

,

where k is a positive real number. Then fk is a strictly decreasing function. In
particular, since limx→0+ fk(x) = k, we have fk(x) < k for all x ∈ R+.

Proof. We have

f ′k(x) =
(1 + k) log(1 + x)−

(
1 + kx

1+x

)
log (1 + x+ kx)

(1 + x+ kx) {log(1 + x)}2
.

Let us denote the numerator by gk(x). Then, since gk(0) = 0 and

g′k(x) = −k log(1 + x+ kx)

(1 + x)2
< 0,

we get gk(x) < 0. This implies f ′k(x) < 0. �
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Definition 3.1. Let K be a Cantor set with K+ 6= φ, and let C be a positive
number. If a gap U of K+ satisfies

(3.1)
UL

|U |
> C,

we call U a C-nice gap of K+, and a C-bad gap of K+ otherwise. If the inequality

(3.1) is in fact equality, we call U a C-gap of K+. Furthermore, we call Ũ a log-C-

nice gap of K̃+ if U satisfies (3.1). Define a log-C-bad gap of K̃+, and a log-C-gap

of K̃+ analogously. If U1, U2 are C-bad gaps of K+ which satisfy

(1) U1 < U2, and
(2) every gap contained in (UR1 , U

L
2 ) is a C-nice gap of K+,

we call the Cantor set V = [UR1 , U
L
2 ] ∩ K+ a C-nice Cantor set of K+, and Ṽ a

log-C-nice Cantor set of K̃+. If

(1) K is a 0+-Cantor set, and
(2) there is no C-bad gap of K+ in (0,KR),

we call K a C-nice 0+-Cantor set, and K̃+ a log-C-nice extended Cantor set.

Lemma 3.2. Let K be a Cantor set with K+ 6= φ, and let C be a positive
number. Assume that U1 and U2 are gaps of K+ such that

(1) U1 < U2, |U1| 6 |U2|, and
(2) U1 is a C-nice gap of K+.

Then, we have

Ũ2

L
− Ũ1

R

|Ũ1|
>

log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

Proof. Let us write

x =
|U1|
UL1

.

Note that x 6 1
C . By Lemma 3.1, we have

Ũ2

L
− Ũ1

R

|Ũ1|
>

log
(
UL1 + |U1|+ τ(K)|U1|

)
− log

(
UL1 + |U1|

)
log
(
UL1 + |U1|

)
− logUL1

=
log
(

1 + τ(K)x
1+x

)
log (1 + x)

>
log
(

1 +
τ(K) 1

C

1+ 1
C

)
log
(
1 + 1

C

) =
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

�

Lemma 3.3. Let K > 0 be a Cantor set, and let C be a positive number.
Suppose that every gap of K is a C-nice gap. Then

τ(K̃+) >
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .
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Remark 3.1. If 0 ∈ K, then K̃+ is an extended Cantor set.

Proof. Let U1 and U2 be gaps of K with U1 < U2.

Case 1) Suppose that |U1| 6 |U2|. By Lemma 3.2, we have

max

{
Ũ2

L
− Ũ1

R

|Ũ1|
,
Ũ2

L
− Ũ1

R

|Ũ2|

}
>
Ũ2

L
− Ũ1

R

|Ũ1|

>
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

Case 2) Suppose that |U1| > |U2|. By the mean value theorem, we have |Ũ1| > |Ũ2|.
Therefore,

max

{
Ũ2

L
− Ũ1

R

|Ũ1|
,
Ũ2

L
− Ũ1

R

|Ũ2|

}
=
Ũ2

L
− Ũ1

R

|Ũ2|
> τ(K)

>
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

It follows that

τ(K) = inf
U1<U2

max

{
Ũ2

L
− Ũ1

R

|Ũ1|
,
Ũ2

L
− Ũ1

R

|Ũ2|

}

>
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

�

Lemma 3.4. Let K be a Cantor set with K+ 6= φ, and let C be a positive

number. Assume that V is a log-C-nice Cantor set of K̃+. Then,

(1) |V | > log

(
1 +

τ(K)

1 + C

)
,

(2) τ(V ) >
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) , and

(3) for any gap U of V, |U | 6 log

(
1 +

1

C

)
.

Proof. Let U1, U2 be the C-bad gaps of K+ such that

U1 < U2, Ũ1

R
= V L, and Ũ2

L
= V R.

If |U1| 6 |U2|, we get

|V | = log

(
1 +

UL2 − UR1
UR1

)
> log

(
1 +

UL2 − UR1
(1 + C)|U1|

)
> log

(
1 +

τ(K)

1 + C

)
.
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The other case can be shown similarly. This proves (1). Lemma 3.3 implies (2),
and (3) is straightforward. �

Recall that a Cantor set K is called a 0×-Cantor set if K+,K− 6= φ, and 0 /∈ K.

Definition 3.2. Let C be a positive number and let K be a 0×-Cantor set.
Assume that U1, U2 are the gaps of K which satisfy

(1) 0 ∈ U1,

(2) U1 < U2, and

(3) every gap in (UR1 , U
L
2 ) is a C-nice gap of K+.

Then, we call the Cantor set V = [UR1 , U
L
2 ]∩K a C-nice 0×-Cantor set of K+, and

Ṽ a log-C-nice 0×-Cantor set of K̃+.

The following can be shown analogously to Lemma 3.4.

Lemma 3.5. Let K be a 0×-Cantor set, and let C be a positive number. Assume

that V is the log-C-nice 0×-Cantor set of K̃+. Then,

(1) |V | > log (1 + τ(K)) ,

(2) τ(V ) >
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) , and

(3) for any gap U of V, |U | 6 log

(
1 +

1

C

)
.

Lemma 3.6. Let K be an extended Cantor set. Then for any ε > 0, there exist
a decreasing sequence {kn} which satisfies

(1) kn → −∞, and
(2) K ∩ [kn,K

R] is a Cantor set with τ(K ∩ [kn,K
R]) > τ(K)− ε.

Proof. Without loss of generality, we can assume that KR = 0. Let

A = lim
N→−∞

sup {|U | | U is a gap of K contained in (−∞, N ]} .

Case 1) Suppose that A =∞. We can find a sequence of gaps {Un} (n = 1, 2, · · · )
such that

(a) |Un| > |U | for every gap U contained in (URn , 0),
(b) |Un+1| > |Un|, and
(c) Un+1 < Un.

Let kn = URn (n = 1, 2, · · · ). By the definition of thickness, it is easy to see that
τ(K ∩ [kn, 0]) > τ(K). Therefore, {kn} satisfies the desired properties.

Case 2) Suppose that 0 < A <∞. Let us take ε0 > 0 such that

τ(K) · A− ε0
A+ ε0

> τ(K)− ε.

Let us choose N < 0 which satisfies

sup{|U | | U is a gap contained in (−∞, N ]} < A+ ε0.

Then, we can take a sequence of gaps {Un} (n = 1, 2, · · · ) such that
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(a) every Un is contained in (−∞, N ],
(b) A− ε0 < |Un| < A+ ε0, and
(c) Un+1 < Un.

Let kn = URn (n = 1, 2, · · · ). Let us show that this {kn} satisfies the desired
properties. Retaking N and {Un} if necessary, we can further assume that for any

gap U contained in [N, 0],
UL−UR

1

|U | is sufficiently large. Therefore, it is enough to

show that for any Un we have

UL − URn
|U |

> τ(K)− ε,

where U is a gap which is contained in (−∞, N ] and satisfies Un < U . Let U and
Un be such gaps. Then,

UL − URn
|U |

=
UL − URn
|Un|

· |Un|
|U |
> τ(K) · A− ε0

A+ ε0
> τ(K)− ε,

which was to be proved.

Case 3) Suppose that A = 0. Let us assume that we cannot find such a sequence
{kn}, to derive a contradiction. Let N < 0 be a number such that

sup{|U | | U is a gap contained in (−∞, N ]} < 1.

By assumption, retaking N if necessary, we can assume that τ(K ∩ [UR, 0]) 6
τ(K) − ε for any gap U contained in (−∞, N ]. Let us choose a gap U0 contained
in (−∞, N ] in such a way that N −B is sufficiently large, where

B = UR0 + (1 + τ(K)− ε)τ(K)

ε
.

Let us show by induction that we can choose a sequence of gaps Un (n =
1, 2, · · · ) contained in (−∞, B] which satisfies

(3.2)

(a) Un < Un+1,

(b) |Un| 6
τ(K)− ε
τ(K)

|Un+1|, and

(c) ULn+1 − URn 6 (τ(K)− ε)|Un+1|,

for all n = 0, 1, 2, · · · . If this is shown, this apparently leads to a contradiction
since it implies |Un| goes to infinity.

Suppose that U0, U1, · · · , Un are already chosen. Since

τ(K ∩ [URn , 0]) 6 τ(K)− ε

and N−B is sufficiently large, there exists a gap Un+1 contained in (−∞, N ] which
satisfies

(a) Un < Un+1,

(b)
ULn+1 − URn
|Un+1|

6 τ(K)− ε, and

(c)
ULn+1 − URn
|Un|

> τ(K).
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Therefore,

|Un| 6
τ(K)− ε
τ(K)

|Un+1|, and ULn+1 − URn 6 (τ(K)− ε)|Un+1|.

Since we have

|Ui+1|+ (ULi+1 − URi ) 6 (1 + τ(K)− ε)|Ui+1| (i = n, n− 1, · · · , 0),

we get

URn+1 = UR0 +
{
|Un+1|+ (ULn+1 − URn ) + |Un|+ (ULn − URn−1) + · · ·+ |U1|+ (UL1 − UR0 )

}
< UR0 + {(1 + τ(K)− ε)|Un+1|+ (1 + τ(K)− ε)|Un|+ · · · }

< UR0 + (1 + τ(K)− ε)

{
1 +

τ(K)− ε
τ(K)

+

(
τ(K)− ε
τ(K)

)2

+ · · ·

}
= B.

Therefore, Un+1 is indeed contained in (−∞, B].
By induction, we can choose a sequence of gaps {Un} which satisfies the con-

dition (3.2), a clear contradiction. �

Lemma 3.7. Let C > 0 be a real number, and let K be a C-nice 0+-Cantor set.
Then, there exists a decreasing sequence {kn} which satisfies

(1) kn → −∞, and

(2) K̃+ ∩ [kn, K̃+

R
] is a Cantor set with

τ
(
K̃+ ∩ [kn, K̃+

R
]
)
>

log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) .

Proof. Let

A = lim
N→−∞

sup
{
|U | | U is a gap of K̃+ contained in (−∞, N ]

}
.

Note that A 6 log(1 + 1
C ).

Case 1) Suppose that A = log
(
1 + 1

C

)
. Then, there exists a sequence of gaps

{Un} (n = 0, 1, 2, · · · ) of K̃+ such that

a) |Un| ↑ log

(
1 +

1

C

)
,

b) U0 > U1 > U2 > · · · , and

c) |Un| > |U | for every gap U in [URn , K̃+

R
].

By Lemma 3.3, kn = URn (n = 0, 1, 2, · · · ) satisfies the desired properties.

Case 2) Suppose that every gap in K is a C ′-nice gap for some C ′ > C. Then,
since we have

τ(K̃+) >
log
(

1 + τ(K)
1+C′

)
log
(
1 + 1

C′

) >
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

)
by Lemma 3.3 and Lemma 3.1, the claim follows from Lemma 3.6.
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Case 3) Suppose that A < log
(
1 + 1

C

)
, and K has a C-gap. Let U be the log-C-

gap of K̃+ such that each gap in (−∞, UL] is not a log-C-gap of K̃+. Then, there

exists C ′′ > C such that every gap of K̃+ in (−∞, UL] is a log-C ′′-nice gap of K̃+.
Thefore, we get

τ
(

(−∞, UL] ∩ K̃+

)
>

log
(

1 + τ(K)
1+C′′

)
log
(
1 + 1

C′′

) >
log
(

1 + τ(K)
1+C

)
log
(
1 + 1

C

) ,

so again the claim follows from Lemma 3.6. �

4. Proof of the main results

In this section, we will prove our main results.

Proof of Theorem 1.2. Without loss of generality, we can assume that

τ(L) >
2τ(K) + 1

τ(K)2
.

Let C = τ(K)τ(L)− 1. Note that C > 0. It is easy to see that

1 +
τ(L)

1 + C
= 1 +

1

τ(K)
, and 1 +

1

C
6 1 +

τ(K)

1 + τ(K)
.

Case 1) Suppose that every gap in L is a C-nice gap. Since every gap in K is a
τ(K)-nice gap, by Lemma 3.3 we have

τ(K̃+) · τ(L̃+) >
log
(

1 + τ(K)
1+τ(K)

)
log
(

1 + 1
τ(K)

) · log
(

1 + τ(L)
1+C

)
log
(
1 + 1

C

) > 1.

Therefore, by Theorem 1.1 and Lemma 3.7, K̃+ + L̃+ is a half line.

Case 2) Suppose that there is a C-bad gap in L. Let V be the C-nice Cantor set
of L such that V R = LR. By Lemma 3.4, we get

|Ṽ | > log

(
1 +

τ(L)

1 + C

)
= log

(
1 +

1

τ(K)

)
.

Therefore, for any gap U of K̃+, we have |U | 6 |Ṽ |. Since τ(K̃+) · τ(Ṽ ) > 1,

Theorem 1.1 and Lemma 3.7 imply that K̃+ + L̃+ is a half line.
Next, let M,N > 0 be real numbers with condition (1.2). Without loss of

generality, we can assume that M > N . With this additional assumption, (1.2) is
equivalent to

N <
2M + 1

M2
.

Let C = M(1+N)
1+M . Then, it is easy to see that

1 +
1

M
> 1 +

N

1 + C
,

1 + 2M

M
=

1 + C +N

C
, and C > N.
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Let K be the middle- 1
1+2M Cantor set whose convex hull is [0, 1]. Write

K0 = K ∩
[

1 +M

1 + 2M
, 1

]
.

Then

K = {0} t
∞⊔
n=0

(
M

1 + 2M

)n
K0.

Let L0 be a Cantor set with sufficiently large thickness whose convex hull is[
1+C

1+C+N , 1
]
. Let us define a 0+-Cantor set L as follows:

L = {0} t
∞⊔
n=0

(
C

1 + C +N

)n
L0.

Since τ(L0) is sufficiently large, τ(L) = N . Note that

K̃+ + L̃+ =
⋃

m,n>0

{
−m log

(
1 + 2M

M

)
− n log

(
1 + C +N

C

)
+
(
K̃0 + L̃0

)}

=
⋃
n>0

{
−n log

(
1 + 2M

M

)
+
(
K̃0 + L̃0

)}
.

Therefore, since

(K̃0

R
+ L̃0

R
)− (K̃0

L
+ L̃0

L
) = (K̃0

R
− K̃0

L
) + (L̃0

R
− L̃0

L
)

= log

(
1 +

M

1 +M

)
+ log

(
1 +

N

1 + C

)
< log

(
1 +

M

1 +M

)
+ log

(
1 +

1

M

)
= log

(
1 + 2M

M

)
,

K̃+ + L̃+ is a disjoint union of countably many closed intervals.
Next, let us also show that K ·L can be a disjoint union of k intervals, for any

k > 2. The construction is almost the same as the construction above. Consider
exactly the same K and L0, and modify L to be

L = L1 t
k−2⊔
n=0

(
C

1 + C +N

)n
L0,

where L1 is a Cantor set which satisfies

(1) the convex hull of L1 is

[
0,

(
C

1 + C +N

)k−1]
, and

(2) τ(L1) is sufficiently large.

Then, τ(K) = M, τ(L) = N , and it is easy to see that K · L is a disjoint union of
k intervals. �



14 Y. TAKAHASHI

Remark 4.1. Since every gap in K and L is a τ(K)-nice gap and a τ(L)-nice
gap, respectively, K · L is an interval if

log
(

1 + τ(K)
1+τ(K)

)
log
(

1 + 1
τ(K)

) · log
(

1 + τ(L)
1+τ(L)

)
log
(

1 + 1
τ(L)

) > 1,

by Lemma 3.7. But interestingly this is not the optimal estimate.

Next, let us show Theorem 1.3. The proof is essentially the same as Theorem
1.2.

proof of Theorem 1.3. The first half is a verbatim repetition of Theorem
1.2. To show that the estimate is optimal, we consider L′ instead of L, which has
the same positive part as L and has the negative part of sufficiently large size and
thickness. �

To prove Theorem 1.4, we need a series of lemmas. Recall that for any Cantor
set K and real number C > 0, we defined log-C-nice Cantor set of K+, and log-C-
nice extended Cantor set of K+ in Definition 3.1. We define log-C-nice Cantor set
of K−, and log-C-nice extended Cantor set of K− analogously.

Lemma 4.1. Let K be a Cantor set, and let C < τ(K) be a positive number.

Suppose that U is a log-C-bad gap of K̃+. Then, there exists a set X ⊂ K̃− such
that

(1) X is a log -C-nice Cantor set of K̃−, or a log -C-nice extended Cantor set of K̃−,

(2) XR − UR > log

(
τ(K)− C

1 + C

)
, and

(3) UL −XL > log

(
τ(K)− C

1 + C

)
(if X is a log-C-nice extended Cantor set, we set XL = −∞).

Remark 4.2. In general, this set X is not unique.

Proof. Let W be the gap of K+ satisfying W̃ = U . Let U1 be the C-bad gap
of K− which satisfies

(1) |W | 6 |U1|, and
(2) the size of every C-bad gap of K− in (0, UL1 ) is less than |W |.
Then, by the definition of thickness, we have

UL1 > τ(K)|W | − C|W |.
Therefore,

Ũ1

L
− UR = logUL1 − logWR

> log(τ(K)− C)|W | − log(1 + C)|W |

= log

(
τ(K)− C

1 + C

)
.

Suppose next that U2 is the C-bad gap of K− such that

(1) |U2| < |W |, and
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(2) every gap in (UR2 , U
L
1 ) ∩K− is a C-nice gap

(if such U2 does not exist, then X = log
(
(0, UL1 ] ∩K−

)
is a desired set).

Then, by the definition of thickness, we have

WL > τ(K)|U2| − C|U2|.
Therefore,

UL − Ũ2

R
= logWL − logUR2

> log(τ(K)− C)|U2| − log(1 + C)|U2|

= log

(
τ(K)− C

1 + C

)
.

Then X = log
(
K− ∩ [UR2 , U

L
1 ]
)

satisfies the desired properties. �

We call the set X given in Lemma 4.1 a log-C-cover of U .

Lemma 4.2. Let x, y be positive real numbers with 2(x+ 1)(y+ 1) 6 (xy− 1)2.
Write

Cx,y =
x+ 1

xy − 1
, and Cy,x =

y + 1

xy − 1
.

Then, 0 < Cx,y < x and 0 < Cy,x < y. Furthermore, we have

x− Cx,y
1 + Cx,y

· y − Cy,x
1 + Cy,x

> 1.

Proof. It is easy to see that

2(x+ 1)(y + 1) 6 (xy − 1)2 ⇐⇒ y >
2x+ 1 + (x+ 1)

√
2x+ 1

x2
.

This implies that xy > 1. Therefore, since

x+ 1

xy − 1
< x⇐⇒ 2x+ 1

x2
< y,

the first claim follows. Also, since we have

x− Cx,y
1 + Cx,y

· y − Cy,x
1 + Cy,x

> 1⇐⇒ xy − 1 > Cy,x(x+ 1) + Cx,y(y + 1)

⇐⇒ xy − 1 >
(x+ 1)(y + 1)

xy − 1
+

(x+ 1)(y + 1)

xy − 1

⇐⇒ (xy − 1)2 > 2(x+ 1)(y + 1),

the second claim follows. �

For any Cantor sets K and L with τ(K) · τ(L) > 1, define CK,L and CL,K by

CK,L =
τ(K) + 1

τ(K)τ(L)− 1
, and CL,K =

τ(L) + 1

τ(K)τ(L)− 1
.

Lemma 4.3. Let K and L be Cantor sets with τ(K) · τ(L) > 1. Assume that V

is a log-CK,L-nice Cantor set of K̃+, or a log-CK,L-nice 0×-Cantor set of K̃+, or a

log-CK,L-nice extended Cantor set of K̃+. Similarly, suppose that T is a log-CL,K-

nice Cantor set of L̃+, or a log-CL,K-nice 0×-Cantor set of L̃+, or a log-CL,K-nice

extended Cantor set of L̃+. Then V + T is an interval, or a half line.
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Proof. Let us consider the case where V is a log-CK,L-nice Cantor set of K̃+,

and T is a log-CL,K-nice Cantor set of L̃+. Since

1 +
τ(K)

1 + CK,L
= 1 +

1

CL,K
, and 1 +

τ(L)

1 + CL,K
= 1 +

1

CK,L
,

by Theorem 1.1 and Lemma 3.4, V + T is an interval. Other cases can be shown
analogously. �

Lemma 4.4. Let K,L be Cantor sets with condition (1.5). Let U1, U2 be a

log-CK,L-bad gap of K̃+, and a log-CL,K-bad gap of L̃+, respectively. Let X,Y be
a log-CK,L-cover of U1, and a log-CL,K-cover of U2, respectively. Then, we have
X + Y ⊃ U1 + U2.

Proof. By Lemma 4.2, τ(K) > CK,L, τ(L) > CL,K , and

τ(K)− CK,L
1 + CK,L

· τ(L)− CL,K
1 + CL,K

> 1.

Therefore, by Lemma 4.1 we have

(XR + Y R)− (UR1 + UR2 ) = (XR − UR1 ) + (Y R − UR2 )

> log
τ(K)− CK,L

1 + CK,L
+ log

τ(L)− CL,K
1 + CL,K

> 0.

Similarly, (UL1 + UL2 ) − (XL + Y L) > 0. The claim follows from this and Lemma
4.3. �

Definition 4.1. Let K be a Cantor set with K+ 6= φ, and let C be a positive

number. Let us take the sequence of log-C-bad gaps {Un} (n = 0, 1, · · · , k) of K̃+,
where k is either finite or infinite, in the following way:

(1) U0 = (K̃+

R
,∞),

(2) U0 > U1 > U2 > U3 > · · · , and

(3) Vn = [URn+1, U
L
n ] ∩ K̃+ (n = 0, 1, 2, · · · ) are log-C-nice Cantor sets of K̃+

(if k is finite, set Vk = (−∞, ULk ]).

Then, we call {Un} and {Vn} the log-C-split gaps of K̃+ and log-C-split Cantor

sets of K̃+, respectively. If k is finite, we say this split is finite.

Remark 4.3. Note that if the split is finite in the above definition, Vk is either
a log-C-nice extended Cantor set, or a log-C-nice 0×-Cantor set.

Using these lemmas, we can complete the proof of Theorem 1.4.

proof of Theorem 1.4. Let {Un} (n = 0, 1, · · · , k) and {Vn} (n = 0, 1, · · · , k)

be the log-CK,L-split gaps of K̃+, and the log-CK,L-split Cantor sets of K̃+, re-
spectively. Similarly, let {Sn} (n = 0, 1, · · · , l) and {Tn} (n = 0, 1, · · · , l) be the

log-CL,K-split gaps of L̃+, and the log-CL,K-split Cantor sets of L̃+, respectively.
Then, by Lemma 4.3,

Vi + Tj (i = 0, 1, · · · , k, j = 0, 1, · · · , l)
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are intervals, or half lines. Let Xn (n = 1, 2, · · · , k) and Yn (n = 1, 2, · · · , l) be
log-CK,L-cover of Un, and log-CL,K-cover of Sn, respectively. Then, by Lemma 4.3,

Xi + Yj (i = 1, 2, · · · , k, j = 1, 2, · · · , l)

are intervals, or half lines. Note that, by Lemma 4.4, we have

(4.1) Xi + Yj ⊃ Ui + Sj (i = 1, 2, · · · , k, j = 1, 2, · · · , l).

Consider the case that k and l are both infinite. Other cases can be shown similarly.
We get

(K̃+ + L̃+) ∪ (K̃− + L̃−) ⊃
∞⋃
i=0

(Vi + Ti) ∪
∞⋃
i=1

(Xi + Yi)

⊃ (−∞, K̃+

R
+ L̃+

R
].

Similarly, (K̃+ + L̃+) ∪ (K̃− + L̃−) ⊃ (−∞, K̃−
R

+ L̃−
R

]. Therefore,

(K̃+ + L̃+) ∪ (K̃− + L̃−) =
(
−∞,max

{
K̃+

R
+ L̃+

R
, K̃−

R
+ L̃−

R
}]

,

which implies the first claim.
Next, let us show that this estimate is optimal. Let M,N be positive real

numbers with condition (1.6). Let

C1 =
MN(M + 1)

3MN + 2M + 2N + 1
, and C2 =

MN(N + 1)

3MN + 2M + 2N + 1
.

Note that C1 < M and C2 < N . It is easy to see that

(1)
1 + C1 +M

M − C1
· 1 + C2 +N

N − C2
= 1 +

1 +M

C1
= 1 +

1 +N

C2
, and

(2) 1 +
1

C1
> 1 +

N

1 + C2
, 1 +

1

C2
> 1 +

M

1 + C1
.

Let K be a 0-Cantor set such that

(1) K = K1 tK2 and 0 ∈ K1,
(2) K1,K2 are Cantor sets with sufficiently large thickness, and
(3) the convex hull of K1 and K2 are [C1 − M,C1] and [1 + C1, 1 + C1 + M ],
respectively.

Let us define a 0-Cantor set L = L1 t L2 analogously, with C2 instead of C1 and
N instead of M . Note that τ(K) = M and τ(L) = N . Let U =

(
KR

1 ,K
L
2

)
and

S =
(
LR1 , L

L
2

)
. Since

(1) |K̃2| < |S̃|, |L̃2| < |Ũ |, and

(2) |K̃2|+ |Ũ | = |L̃2|+ |S̃|, K̃−
R

+ L̃−
R

= ŨL + S̃L,

it is easy to see that (K̃+ + L̃+) ∪ (K̃− + L̃−) is the union of a closed interval and
a half line. �

Next, let us show Theorem 1.5. We need the following definition and lemma:
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K̃+· · ·

K̃−· · ·

0

Cantor set

Figure 2. K is a (C,M)-Cantor set (line segments represent Can-
tor sets)

Definition 4.2. Let K be a 0-Cantor set, and let C,M be positive numbers.
If

(1) K0 is a Cantor set whose convex hull is

[
1 + C

1 + C +M
, 1

]
,

(2) τ(K0) > max
{

1, M, C +
√
C(1 + C +M)

}
,

(3) K+ =

∞⊔
n=0

(
C

1 + C +M

)n
K0, and

(4) K− =

√
C

1 + C +M
K+,

we call K a (C,M)-Cantor set. See Figure 2.

Lemma 4.5. Let C,M > 0 be real numbers and let K be a (C,M)-Cantor set.
We have

(1) if C >
M2

3M + 1
, then τ(K) = M, and

(2) if C 6
M2

3M + 1
, then τ(K) = C +

√
C(1 + C +M).

Proof. Write U =
(

C
1+C+M , 1+C

1+C+M

)
. It is easy to see that

UL −KL >M ⇐⇒ C >
M2

3M + 1
.

The result follows from this. �

proof of theorem 1.5. First, let us assume that

M > N, and N <
(2M + 1)2

M3
.

Let

C1 =
M2

1 + 3M
, and C2 =

M2

(1 +M)(1 + 3M)
(1 +N).

Then, we have

1 +
1 +M

C1
= 1 +

1 +N

C2
, 1 +

1

C1
> 1 +

N

1 + C2
, and C2 >

N2

3N + 1
.

Let K, L be a (C1,M)-Cantor set and a (C2, N)-Cantor set, respectively. By
Lemma 4.5 we have τ(K) = M and τ(L) = N . It is easy to see that K · L is a
disjoint union of {0} and countably many closed intervals.
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Next, let us assume that

M > N, and M <
N2 + 3N + 1

N2
.

Write

C ′1 =
MN

3N + 1
, and C ′2 =

N2

3N + 1
.

Let K ′ be a
(
C ′1,M + M

N − 1
)
-Cantor set and L′ be a (C ′2, N)-Cantor set. Then,

by arguing analogously, τ(K ′) = M , τ(L′) = N , and K ′ · L′ is a disjoint union of
{0} and countably many closed intervals. �

Remark 4.4. It is immediate from the construction above that if the condition
(1.7) is satisfied, there exist 0-Cantor sets K and L, such that

(1) τ(K) = M, τ(L) = N ,
(2) neither K nor L lies in a complementary domain of the other, and
(3) K ∩ L consists of exactly one element.

In fact, [11] and [13] independently showed that the condition (1.7) is the optimal
estimate that guarantees the existence of such K and L. See section 6.

5. Other cases

In this section, we consider the cases that we have not yet discussed. The
proofs are analogous, so we only state the results. Recall that a Cantor set K is a
0+−-Cantor set if K+,K− 6= φ, inf K+ = 0, and inf K− > 0.

Theorem 5.1. Suppose that either of the following holds:

(1) K is a 0+-Cantor set, and L is a 0+−-Cantor set;
(2) K is a 0+-Cantor set, and L is a 0×-Cantor set;

Then, if the condition (1.3) is satisfied, K · L is an interval. Furthermore, let
M,N > 0 be real numbers that satisfy the condition (1.4). Then, for any k > 2,
there exist Cantor sets K,L, such that K and L satisfy one of the conditions above,
τ(K) = M , τ(L) = N , and K · L is a disjoint union of k closed intervals.

Theorem 5.2. Suppose that one of the following holds:

(1) K is a 0-Cantor set, and L is a 0+− Cantor set;
(2) K is a 0-Cantor set, and L is a 0×-Cantor set;
(3) K is a 0+−-Cantor set, and L is a 0×-Cantor set;

(4) K and L are both 0+−-Cantor sets;

Then, if the condition (1.5) is satisfied, K · L is an interval. Furthermore, let
M,N > 0 be real numbers with condition (1.6). Then, there exist Cantor sets K,L,
such that K and L satisfy one of the conditions above, τ(K) = M , τ(L) = N , and
K · L is a disjoint union of two intervals.

If K and L are both 0×-Cantor sets, the best we can hope for is K ·L to become
a disjoint union of two intervals.

Theorem 5.3. Let K,L be 0×-Cantor sets. Then, if the condition (1.5) is
satisfied, K · L is a disjoint union of two intervals. Furthermore, let M,N > 0 be
real numbers with condition (1.6). Then there exist 0×-Cantor sets K and L such
that τ(K) = M , τ(L) = N , and K · L is a disjoint union of three intervals.
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So far, we have not considered the case that minK > 0 or minL > 0. In fact,
this turns out to be very simple. We have the following:

Theorem 5.4. For any real numbers M,N > 0, there exist a Cantor set K
and a 0+-Cantor set L such that minK > 0, τ(K) = M , τ(L) = N , and K · L is
a disjoint union of {0} and countably many closed intervals.

Outline of the proof. Let us take sufficiently small ε > 0. Let K be a
Cantor set such that

(1) K ⊂ [1, 1 + ε] and τ(K) = M, and

(2) K = K1 tK2, where K1,K2 are Cantor sets with sufficiently large thickness.

Let L be the middle 1
1+2N -Cantor set whose convex hull is [0, 1]. It is easy to see

that K · L is the disjoint union of {0} and countably many closed intervals. �

6. Connection with question on intersections of two Cantor sets

In this section, we discuss the connection between question on products of two
Cantor sets and question on intersections of two Cantor sets. For any Cantor sets
K and L, if neither K nor L lies in a complementary domain of the other we say K
and L are interleaved. Williams showed the following in [28] (this result was later
extended by [11] and [13], independently):

Theorem 6.1 (Theorem 1 of [28]). Let K,L be interleaved Cantor sets. Then

if τ(K), τ(L) > 1 +
√

2, K ∩ L contains infinitely many elements. Furthermore,

for any M,N < 1 +
√

2 there exist interleaved Cantor sets K and L such that
τ(K) = M , τ(L) = N , and K ∩ L consists of exactly one element.

Remark 6.1. In fact, Williams showed much more. For example, he also
showed that if τ(K), τ(L) > 1 +

√
2, K ∩L contains a Cantor set. We are not sure

whether our method can be applied to prove this statement.

To illustrate the connection, we present a completely different proof of Theorem
6.1 using our method. See also Remark 4.4.

outline of the proof of Theorem 6.1. For the sake of simplicity, we only
consider the case τ(K) = τ(L) = 1 +

√
2. Write C = 1√

2
.

By the Gap Lemma, K ∩ L 6= φ. Translating K and L if necessary, we can
assume that 0 ∈ K ∩ L. Let us only consider the case that K and L are both
0-Cantor sets.

Let {Un} (n = 0, 1, · · · ) and {Vn} (n = 0, 1, · · · ) be the log-C-split gaps of

K̃+ and the log-C-split Cantor sets of K̃+, respectively. Let Xn (n = 1, 2, · · · ) be
log-C-covers of Un (n = 1, 2, · · · ). Similarly, let {Sn} and {Tn} be the log-C-split

gaps of L̃+ and the log-C-split Cantor sets of L̃+, respectively. Let Yn be a log-C-
cover of Sn. For the sake of simplicity, we assume that both splits are infinite. By
Lemma 3.4 and the Gap Lemma, we have

(1) for all n ∈ N, |Xn| > |Un| and |Yn| > |Sn|,
(2) for all n,m ∈ N, Vn ∩ Tm 6= φ if con(Vn) ∩ con(Tm) 6= φ, and

(3) for all n,m ∈ N, Xn ∩ Ym 6= φ if con(Xn) ∩ con(Ym) 6= φ,

where con(A) is the convex hull of a set A. The claim follows from this. �
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7. Open problems

In this section, we state a few questions and open problems that are suggested
by the results of this paper.

(1) In [2], the author generalized Theorem 1.1 for sums of three or more
Cantor sets. It is natural to try to extend their results to products of
three or more Cantor sets.

(2) It is also natural to consider the product of middle α-Cantor set and
middle β-Cantor set instead of general Cantor sets.

(3) Similarly, we can consider products of two dynamically defined Cantor sets
instead of general Cantor sets. In this case, we believe that the estimate
in Theorem 1.4 will be different; but this question is beyond the scope of
our paper.
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