
Constant-factor approximations for asymmetric TSP on

nearly-embeddable graphs

Dániel Marx ∗ Ario Salmasi † Anastasios Sidiropoulos ‡

January 8, 2016

Abstract

In the Asymmetric Traveling Salesperson Problem (ATSP) the goal is to find a closed walk
of minimum cost in a directed graph visiting every vertex. We consider the approximability of
ATSP on topologically restricted graphs. It has been shown by Oveis Gharan and Saberi [14]
that there exists polynomial-time constant-factor approximations on planar graphs and more
generally graphs of constant orientable genus. This result was extended to non-orientable genus
by Erickson and Sidiropoulos [9].

We show that for any class of nearly-embeddable graphs, ATSP admits a polynomial-time
constant-factor approximation. More precisely, we show that for any fixed k ≥ 0, there exist
α, β > 0, such that ATSP on n-vertex k-nearly-embeddable graphs admits a α-approximation
in time O(nβ). The class of k-nearly-embeddable graphs contains graphs with at most k apices,
k vortices of width at most k, and an underlying surface of either orientable or non-orientable
genus at most k. Prior to our work, even the case of graphs with a single apex was open.
Our algorithm combines tools from rounding the Held-Karp LP via thin trees with dynamic
programming.

We complement our upper bounds by showing that solving ATSP exactly on graphs of
pathwidth k (and hence on k-nearly embeddable graphs) requires time nΩ(k), assuming the
Exponential-Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on
undirected graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT parame-
terized by treewidth.

∗Institute of Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary;
dmarx@cs.bme.hu. Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parame-
terized complexity and the search for tight complexity results,” reference 280152 and OTKA grant NK105645.
†Dept. of Computer Science and Engineering, The Ohio State University, Columbus OH, USA;

salmasi.1@osu.edu. Supported by NSF grant CCF 1423230 and CAREER 1453472.
‡Dept. of Computer Science and Engineering and Dept. of Mathematics, The Ohio State University, Columbus

OH, USA, sidiropoulos.1@osu.edu. Supported by NSF grant CCF 1423230 and CAREER 1453472.

1

ar
X

iv
:1

60
1.

01
37

2v
1

 [
cs

.D
S]

 7
 J

an
 2

01
6

1 Introduction

An instance of the Asymmetric Traveling Salesman Problem (ATSP) consists of a directed graph
~G and a (not necessarily symmetric) cost function c : E(~G) → R+.The goal is to find a spanning
closed walk of ~G with minimum total cost. This is one of the most well-studied NP-hard problems.

Asadpour et al. [2] obtained a polynomial-time O(log n/ log logn)-approximation algorithm for
ATSP, which was the first asymptotic improvement in almost 30 years [13, 4, 10, 19]. Build-
ing on their techniques, Oveis Gharan and Saberi [14] described a polynomial-time O(

√
g log g)-

approximation algorithm when the input includes an embedding of the input graph into an ori-
entable surface of genus g. Erickson and Sidiropoulos [9] improved the dependence on the genus
by obtaining a O(log g/ log log g)-approximation.

Anari and Oveis Gharan [1] have recently shown that the integrality gap of the natural linear
programming relaxation of ATSP proposed by Held and Karp [17] is log logO(1) n. This implies
a polynomial-time log logO(1) n-approximation algorithm for the value of ATSP. We remark that
the best known lower bound on the integrality gap of the Held-Karp LP is 2 [5]. Obtaining a
polynomial-time constant-factor approximation algorithm for ATSP is a central open problem in
optimization.

1.1 Our contribution

We study the approximability of ATSP on topologically restricted graphs. Prior to our work, a
constant-factor approximation algorithm was known only for graphs of bounded genus. We signifi-
cantly extend this result by showing that there exist a polynomial-time constant-factor approxima-
tion algorithm for ATSP on nearly embeddable graphs. These graphs include graphs with bounded
genus, with a bounded number of apices and a bounded number of vortices of bounded pathwidth.
For any a, g, k, p ≥ 0, we say that a graph is (a, g, k, p)-nearly embeddable if it is obtained from a
graph of Euler genus g by adding a apices and k vortices of pathwidth p (see [21, 20, 8] for more
precise definitions). The following summarizes our result.

Theorem 1.1. Let a, g, k ≥ 0, p ≥ 1. There exists a O(a(g+ k+ 1) + p2)-approximation algorithm
for ATSP on (a, g, k, p)-nearly embeddable digraphs, with running time nO((a+p)(g+k+1)4).

The above algorithm is obtained via a new technique that combines the Held-Karp LP with a
dynamic program that solves the problem on vortices. We remark that it is not known whether
the integrality gap of the LP is constant for graphs of constant pathwidth.

We complement this result by showing that solving ATSP exactly on graphs of pathwidth p
(and hence on p-nearly embeddable graphs) requires time nΩ(p), assuming the Exponential-Time
Hypothesis (ETH). This is surprising in light of the fact that both TSP on undirected graphs and
Minimum Cost Hamiltonian Cycle on directed graphs are FPT parameterized by treewidth. The
following summarizes our lower bound.

Theorem 1.2. Assuming ETH, there is no f(p)no(p) time algorithm for ATSP on graphs of path-
width at most p for any computable function f .

1.2 Overview of the algorithm

We now give a high level overview of the main steps of the algorithm and highlight some of the
main challenges.

2

Step 1: Reducing the number of vortices. We first reduce the problem to the case of nearly
embeddable graphs with a single vortex. This is done by iteratively merging pairs of vortices.
We can merge two vortices by adding a new handle on the underlying surface-embedded
graph. For the remainder we will focus on the case of graphs with a single vortex.

Step 2: Traversing a vortex. We obtain an exact polynomial-time algorithm for computing
a closed walk that visits all the vertices in the vortex. We remark that this subsumes as a
special case the problem of visiting all the vertices in a single face of a planar graph, which
was open prior to our work.

Let us first consider the case of a vortex in a planar graph. Let ~W be an optimal walk that
visits all the vertices in the vortex. Let F be the face on which the vortex is attached. We give
a dynamic program that maintains a set of partial solutions for each subpath of F . We prove
correctness of the algorithm by establishing structural properties of ~W . The main technical
difficulty is that ~W might be self-crossing. We first decompose ~W into a collection W of
non-crossing walks. We form a conflict graph I of W and consider a spanning forest F of I.
This allows us to prove correctness via induction on the trees of F .

The above algorithm can be extended to graphs of bounded genus. The main difference is
that the dynamic program now computes a set of partial solutions for each bounded collection
of subpaths of F .

Finally, the algorithm is extended to the case of nearly-embeddable graphs by adding the
apices to the vortex without changing the cost of the optimum walk.

Step 3: Finding a thin forest in the absence of vortices. The constant-factor approximation
for graphs of bounded genus was obtained by showing by constructing thin forests with a
bounded number of components in these graphs [14, 9]. We extend this result by constructing
thin forests with a bounded number of components in graphs of bounded genus and with a
bounded number of additional apices. Prior to our work even the case of planar graphs with
a single apex was open; in fact, no constant-factor approximation algorithm was known for
these graphs.

Step 4: Combining the Held-Karp LP with the dynamic program. We next combine
the dynamic program with the thin forest construction. We first compute an optimal walk
~W visiting all the vertices in the vortex, and we contract the vortex into a single vertex. A
natural approach would be to compute a thin forest in the contracted graph. Unfortunately
this fails because such a forest might not be thin in the original graph. In order to overcome
this obstacle we change the feasible solution of the Held-Karp LP by taking into account ~W ,
and we modify the forest construction so that it outputs a subgraph that is thin with respect
to this new feasible solution.

Step 5: Rounding the forest into a walk. Once we have a thin spanning subgraph of G we
can compute a solution to ATSP via circulations, as in previous work.

1.3 Organization

The rest of the paper is organized as follows. Section 2 introduces some basic notation. Section
3 defines the Held-Karp LP for ATSP. Section 4 presents the main algorithm, using the dynamic

3

program and the thin forest construction as a black box. Section 5 presents the technique for com-
bining the dynamic program with the Held-Karp LP. Section 6 gives the algorithm for computing
a thin tree in a 1-apex graph. This algorithm is generalized to graphs with a bounded number of
apices in Section 7, and to graphs of bounded genus and with a bounded number of apices in Sec-
tion 8. In Section 9 we show how to modify the thin forest construction so that we can compute a
spanning thin subgraph in a nearly-embeddable graph, using the solution of the dynamic program.

The dynamic program is given in Sections 10, 11, 12, 13, and 14. More precisely, Section 10
introduces a certain preprocessing step. Section 11 establishes a structural property of the optimal
solution. Section 12 presents the dynamic program for a vortex in a planar graph. Sections 13 and
14 generalize this dynamic program to graphs of bounded genus and with a bounded number of
apices respectively.

Finally, Section 15 presents the lower bound.

2 Notation

In this section we introduce some basic notation that will be used throughout the paper.
Graphs. Unless otherwise specified, we will assume that for every pair of vertices in a graph

there exists a unique shortest path; this property can always achieved by breaking ties between
different shortest paths in a consistent manner (e.g. lexicographically). Moreover for every edge
of a graph (either directed or undirected) we will assume that its length is equal to the shortest
path distance between its endpoints. Let ~G be some digraph. Let G be the undirected graph
obtained from ~G by ignoring the directions of the edges, that is V (G) = V (~G) and E(G) =
{{u, v} : (u, v) ∈ E(~G) or (v, u) ∈ E(~G)}. We say that G is the symmetrization of ~G. For some
x : E(~G)→ R we define cost ~G(x) =

∑
(u,v)∈E(~G) x((u, v)) ·d ~G(u, v). For a subgraph S ⊆ G we define

costG(S) =
∑

e∈E(S) c(e). Let z be a weight function on the edges of G. For any A,B ⊆ V (G) we
define z(A,B) =

∑
a∈A,b∈B z({a, b}).

Asymmetric TSP. Let ~G be a directed graph with non-negative arc costs. For each arc
(u, v) ∈ E(~G) we denote the cost of (u, v) by c(u, v). A tour in ~G is a closed walk in ~G. The cost
of a tour τ = v1, v2, . . . , vk, v1 is defined to be cost ~G(τ) = d ~G(vk, v1) +

∑k−1
i=1 d ~G(vi, vi+1). Similarly

the cost of an open walk W = v1, . . . , vk is defined to be cost ~G(W) =
∑k−1

i=1 d ~G(vi, vi+1). The cost
of a collection W of walks is defined to be cost ~G(W) =

∑
W∈W cost ~G(W). We denote by OPT ~G the

minimum cost of a tour traversing all vertices in ~G. For some U ⊆ V (~G) we denote by OPT ~G(U)

the minimum cost of a tour in ~G that visits all vertices in U .

3 The Held-Karp LP

We recall the Held-Karp LP for ATSP [16]. Fix a directed graph ~G and a cost function c : E(~G)→
R+. For any subset U ⊆ V , we define

δ+
~G

(U) := {(u, v) ∈ E(~G) : u ∈ U and v /∈ U}

and δ−~G
(U) := δ+

~G
(V \ U).

We omit the subscript ~G when the underlying graph is clear from context. We also write δ+(v) =
δ+({v}) and δ−(v) = δ−({v}) for any single vertex v.

4

Let G be the symmetrization of ~G. For any U ⊆ V (G), we define

δG(U) := {{u, v} ∈ E(G) : u ∈ U and v /∈ U}.

Again, we omit the subscript G when the underlying graph is clear from context. We also extend
the cost function c to undirected edges by defining

c({u, v}) := min{c((u, v)), c((v, u))}.

For any function x : E(~G) → R and any subset W ⊆ E(~G), we write x(W) =
∑

a∈W x(a). With
this notation, the Held-Karp LP relaxation is defined as follows.

minimize
∑

a∈A c(a) · x(a)

subject to x(δ+(U)) ≥ 1 for all nonempty U (V (~G)

x(δ+(v)) = x(δ−(v)) for all v ∈ V (~G)

x(a) ≥ 0 for all a ∈ E(~G)

We define the symmetrization of x as the function z : E(G)→ R where

z({u, v}) := x((u, v)) + x((v, u))

for every edge {u, v} ∈ E(G). For any subset W ⊆ E(G) of edges, we write z(W) :=
∑

e∈W z(e).

Let ~W ⊆ ~G. Let α, s > 0. We say that ~W is α-thin (w.r.t. z) if for all U ⊆ V we have

|E(~W) ∩ δ(U)| ≤ α · z(δ(U)).

We also say that ~W is (α, s)-thin (w.r.t. x) if ~W is α-thin (w.r.t. z) and

c(E(~W)) ≤ s ·
∑

e∈E(~G)

c(e) · x(e).

We say that z is ~W -dense if for all (u, v) ∈ E(~W) we have z({u, v}) ≥ 1. We say that z is ε-thick
if for all U (V (G) with U 6= ∅ we have z(δ(U)) ≥ ε.

4 An approximation algorithm for nearly-embeddable graphs

The following Lemma is implicit in the work of Erickson and Sidiropoulos [9] (see also [3]).

Lemma 4.1. Let ~G be a digraph and let x be a feasible solution for the Held-Karp LP for ~G. Let
α, s > 0, and let S be a (α, s)-thin spanning subgraph of G (w.r.t. x), with at most k connected
components. Then, there exists a polynomial-time algorithm which computes a collection of closed
walks C1, . . . , Ck′, for some k′ ≤ k, such that their union visits all the vertices in V (~G), and such
that

∑k
i=1 cost ~G(Ci) ≤ (2α+ s)

∑
e∈E(~G) c(e) · x(e).

The following is the main technical Lemma that combines a solution to the Held-Karp LP with
a walk traversing the vortex that is computed via the dynamic program. The proof of Lemma 4.2
is deferred to Section 5.

5

Lemma 4.2. Let a, g, p > 0, let ~G be a (a, g, 1, p)-nearly embeddable graph, and let G be its
symmetrization. There exists an algorithm with running time nO((a+p)g4) which computes a feasible
solution x for the Held-Karp LP for ~G with cost O(OPT ~G) and a spanning subgraph S of G with
at most O(a+ g) connected components, such that S is (O(a · g + p2), O(1))-thin w.r.t. x.

Using Lemma 4.2 we are now ready to obtain an approximation algorithm for nearly-embeddable
graphs with a single vortex.

Theorem 4.3. Let a, g ≥ 0, p ≥ 1. There exists a O(a · g+p2)-approximation algorithm for ATSP
on (a, g, 1, p)-nearly embeddable digraphs, with running time nO((a+p)(g+1)4).

Proof. We follow a similar approach to [9]. The only difference is that in [9] the algorithm uses an
optimal solution to the Held-Karp LP. In contrast, here we use a feasible solution that is obtained
by Lemma 4.2, together with an appropriate thin subgraph.

Let ~G be (a, g, 1, p)-nearly embeddable digraph. By using Lemma 4.2, we find in time nO((a+p)g4)

a feasible solution x for the Held-Karp LP for ~G with cost O(OPT ~G) and a spanning subgraph S of
G with at most O(a+g) connected components, such that S is (O(a·g+p2), O(1))-thin w.r.t. x. Now
we compute in polynomial time a collection of closed walks C1, . . . , Ck′ , for some k′ ∈ O(a+g), that
visit all the vertices in V (~G), and such that the total cost of all walks is at most O((a·g+p2)·OPT ~G),

using Lemma 4.1. For every i ∈ {1, . . . , k′}, let vi ∈ V (~G) be an arbitrary vertex visited by Ci.
We construct a new instance (~G′, c′) of ATSP as follows. Let V (~G′) = {v1, . . . , vk′}. For any
u, v ∈ V (~G′), we have an edge (u, v) in E(~G′), with c′(u, v) being the shortest-path distance
between u and v in G with edge weights given by c. By construction we have OPT ~G′ ≤ OPT ~G. We

find a closed tour C in ~G′ with cost ~G′(C) = OPT ~G′ in time 2O(|V (~G′)|) · nO(1) = 2O(a+g) · nO(1). By
composing C with the k′ closed walks C1, . . . , Ck′ , and shortcutting as in [12], we obtain a solution
for the original instance, of total cost O(a · g + p2) · OPT ~G.

We are now ready to prove the main algorithmic result of this paper.

Proof of Theorem 1.1. We may assume k ≥ 2 since otherwise the assertion follows by Theorem 4.3.
We may also assume w.l.o.g. that p ≥ 2. Let ~G be a (a, g, k, p)-nearly embeddable digraph. It suf-
fices to show that there exists a polynomial time computable (a, g+k−1, 1, 2p)-nearly embeddable
digraph ~G′ with V (~G′) = V (~G) such that for all u, v ∈ V (~G) we have d ~G(u, v) = d ~G′(u, v). We com-

pute ~G′ as follows. Let ~H1, . . . , ~Hk be the vortices of ~G and let ~F1, . . . , ~Fk be the faces on which they
are attached. For each i ∈ {1, . . . , k} pick distinct ei, fi ∈ E(~Fi), with ei = {wi, w′i}, fi = {zi, z′i}.
There exists a path decomposition Bi,1, . . . , Bi,`i of ~Hi, of width at most 2p, and such that Bi,1 = ei,
and Bi,`i = fi. For each i ∈ {1, . . . , k − 1}, we add edges (wi, zi), (zi, wi), (w′i, z

′
i), and (z′i, w

′
i) to

~G′, and we set their length to be equal to the shortest path distance between their endpoints in
~G. We also add a handle connecting punctures in the disks bounded by ~Fi and ~Fi+1 respectively,
and we route the four new edges along this handle. Since we add k − 1 handles in total the Euler
genus of the underlying surface increases by at most k − 1. We let ~H be the single vortex in ~G′

with V (~H) =
⋃k
i=1 V (~Hi) and E(~H) =

(⋃k
i=1E(~Hi)

)
∪
(⋃k−1

i=1 {(wi, zi), (zi, wi), (w′i, z′i), (z′i, w′i)}
)

.

It is immediate that

B1,1, . . . , B1,`1 , {f1, e2}, B2,1, . . . , B2,`2 , {f2, e3}, . . . , Bk,1, . . . , Bk,`k

is a path decomposition of ~H of width at most 2p. Thus ~G′ is (a, g+k−1, 1, 2p)-nearly embeddable,
which concludes the proof.

6

5 Combining the Held-Karp LP with the dynamic program

In this Section we show how to combine the dynamic program that finds an optimal closed walk
traversing all the vertices in a vortex, with the Held-Karp LP. The following summarizes our exact
algorithm for traversing the vortex in a nearly-embeddable graph. The proof of Theorem 5.1 is
deferred to Section 14.

Theorem 5.1. Let ~G be an n-vertex (a, g, 1, p)-nearly embeddable graph and let ~H be the single
vortex of ~G. Then there exists an algorithm which computes a walk ~W visiting all vertices in V (~H)
of total length at most OPT ~G(V (~H)) in time nO((a+p)g4).

Definition 5.2 (~W -augmentation). Let ~G be a directed graph. Let x : E(~G)→ R and let ~W ⊆ ~G.
We define the ~W -augmentation of x to be the function x′ : E(~G) → R such that for all e ∈ E(~G)
we have

x′(e) =

{
x(e) + 1 if e ∈ E(~W)
x(e) otherwise

The following summarizes the main technical result for computing a thin spanning subgraph in
a nearly embeddable graph. The proof of Lemma 5.3 is deferred to Section 9.

Lemma 5.3. Let ~G be a (a, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let ~W be a
walk in ~G visiting all vertices in V (~H). Let G, H, and W be the symmetrizations of ~G, ~H, and
~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense. Then there exists a
polynomial time algorithm which given ~G, ~H, A, ~W , z, and an embedding of ~G \ (A ∪ ~H) into a
surface of genus g, outputs a subgraph S ⊆ G \H, satisfying the following conditions:

(1) W ∪ S is a spanning subgraph of G and has O(a+ g) connected components.

(2) W ∪ S is O(a · g + p2)-thin w.r.t. z.

We are now ready to prove the main result of this section.

Proof of Lemma 4.2. Let ~H be the single vortex of ~G. We compute an optimal solution y : E(~G)→
R for the Held-Karp LP for ~G. We find a tour ~W in ~G visiting all vertices in V (~H), with cost ~G(~W) =

O(OPT ~G) using Theorem 5.1. Let x : E(~G) → R be the ~W -augmentation of y. Since for all

e ∈ E(~G) we have x(e) ≥ y(e), it follows that x is a feasible solution for the Held-Karp LP. Moreover
since cost ~G(~W) = O(OPT ~G), we obtain that cost ~G(x) = cost ~G(y) + costG(~W) = O(OPT ~G). Let z
be the symmetrization of x.

Note that z is 2-thick and ~W -dense. Therefore, by Lemma 5.3 we can find a subgraph S ⊆ G\H
such that T = W ∪S is a O(a ·g+p2)-thin spanning subgraph of G (w.r.t. z), with at most O(g+a)
connected components. Therefore, there exists a constant α such that for every U ⊆ V (G) we have
|T ∩ δ(U)| ≤ α · (a · g+ p2) · z(δ(U)). We can assume that α ≥ 1. Now we follow a similar approach
to [9].

Let m =
⌊
n2/α

⌋
. We define a sequence of functions z0, . . . , zm, and a sequence of spanning

forests T1, . . . , Tm satisfying the following conditions.

(1) For any i ∈ {0, . . . ,m}, zi is non-negative, 2-thick and ~W -dense.

(2) For any i ∈ {1, . . . ,m}, Ti has at most O(a+ g) connected components.

7

(3) For every U ⊆ V (G) we have |Ti+1 ∩ δ(U)| ≤ α · (a · g + p2) · zi(δ(U)).

We set z0 = 3
⌊
zn2
⌋
/n2. Now suppose for i ∈ {0, . . . ,m− 1} we have defined zi. We define zi+1

and Ti+1 as follows. We apply Lemma 5.3 and we obtain a subgraph Ti+1 of G with at most O(a+g)
connected components such that for every U ⊆ V (G) we have |Ti+1∩δ(U)| ≤ α·(a·g+p2)·zi(δ(U)).
Also, for every e ∈ E(G) we set zi+1(e) = zi(e) if e 6∈ Ti+1, and zi+1(e) = zi(e)− 1/n2 if e ∈ Ti+1.
Now by using the same argument as in [9], we obtain that zi+1 is non-negative and 2-thick. By
the construction, we know that z is ~W -dense and thus for all (u, v) ∈ ~W we have z0({u, v}) ≥ 3.
Note that for all e ∈ E(G) we have zi+1(e) ≥ zi(e) − 1/n2. Thus for all e ∈ E(G) and for all
i ∈ {0, . . . ,m} we have zi(e) ≥ 2. Therefore for all i ∈ {0, . . . ,m} we have that zi is ~W -dense.

Now, similar to [9] we set the desired S to be the subgraph Ti that minimizes costG(Ti), which
implies that S is a (O(a · g + p2), O(1))-thin spanning subgraph with at most O(a + g) connected
components.

6 Thin trees in 1-apex graphs

The following is implicit in the work of Oveis Gharan and Saberi [14].

Theorem 6.1. If G is a planar graph and z is an α-thick weight function on the edges of G for
some α > 0, then there exists a 10/α-thin spanning tree in G w.r.t. z.

For the remainder of this section, let G be an 1-apex graph with planar part Γ and apex a.
Let z be a 2-thick weight function on the edges of G. We will find a O(1)-thin spanning tree in
G (w.r.t. z). We describe an algorithm for finding such a tree in polynomial time. The algorithm
proceeds in five phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 0.1. We start with Γ and we
proceed to partition it via tiny cuts. Each time we find a tiny cut U , we partition the remaining
graph by deleting all edges crossing U . This process will stop in at most n steps. Let Γ′ be the
resulting subgraph of Γ where V (Γ′) = V (Γ) and E(Γ′) ⊂ E(Γ).

Phase 2. By the construction, we know that there is no tiny cuts in each connected component
of Γ′. Therefore, following [14], in each connected component C of Γ′, we can find a O(1)-thin
spanning tree TC (w.r.t. z). More specifically, we will find a 100-thin spanning tree in each of them.

Phase 3. We define a graph F with V (F) being the set of connected components of Γ′ and
{C,C ′} ∈ E(F) iff there exists an edge between some vertex in C and some vertex in C ′ in Γ. We
set the weight of {C,C ′} to be z(C,C ′). We call F the graph of components.

We define a graph G′ obtained from G by contracting every connected component of Γ′ into a single
vertex. We remark that we may get parallel edges in G′.

8

Phase 4. In this phase, we construct a tree T ′ in G′. We say that a vertex in F is originally
heavy, if it has degree of at most 15 in F . Since F is planar, the minimum degree of F is at most
5. We contract all vertices in V (G′) \ {a} into the apex sequentially. In each step, we find a vertex
in F with degree at most 5, we contract it to the apex in G′, and we delete it from F . Since the
remaining graph F is always planar, there is always a vertex of degree at most 5 in it, and thus we
can continue this process until all vertices of V (G′) \ {a} are contracted to the apex.

Initially we consider all vertices of F having no parent. In each step when we contract a vertex
C with degree at most 5 in F to the apex in G′, for each neighbor C ′ of C in F , we make C the
parent of C ′ if C ′ does not have any parents so far. Note that each vertex in F can be the parent
of at most 5 other vertices, and can have at most one parent.

Every time we contract a vertex C to the apex, we add an edge e to T ′. If C is originally heavy,
we add an arbitrary edge e from C to the apex; we will show in Lemma 6.3 that z(C, {a}) ≥ 0.5,
which implies that such an edge always exists in G. Otherwise, we add an arbitrary edge from C
to its parent (which is a neighbor vertex, therefore such an edge exists in G). We will show in the
next section that each vertex in F is originally heavy or it has a parent (or both). Therefore, T ′ is
a tree on G′.

Phase 5. In this last phase we compute a tree T in G. We set E(T) = E(T ′)∪
⋃
C∈V (F)E(TC).

We prove in the next subsection that T is a O(1)-thin spanning tree in G.

6.1 Analysis

We next show that T is a O(1)-thin spanning tree in G.

Lemma 6.2. The weight of every edge in F is less than 0.1.

Proof. Let {C,C ′} ∈ E(F). By construction, each component of Γ′ is formed by finding a tiny cut
in some other component. Suppose C was formed either simultaneously with C ′ or later than C ′

by finding a tiny cut in some C ′′. If C ′ ⊆ C ′′ then z(C,C ′) < z(δ(C)) < 0.1. Otherwise, the total
weight of edges from C to C ′ is a part of a tiny cut which means that z(C,C ′) < 0.1.

Lemma 6.3. Let C be an originally heavy vertex in F . Then z(C, {a}) ≥ 0.5.

Proof. For every neighbor C ′ of C in F , by Lemma 6.2 we have that the weight of {C,C ′} is less
than 0.1. By the assumption on z, we have that z(δ(C)) ≥ 2. Now since C has degree of at most
15, we have that z(C, {a}) ≥ 0.5, as desired.

Lemma 6.4. Each vertex C ∈ V (F) is originally heavy or it has a parent (both cases might happen
for some vertices).

Proof. Let C ∈ V (F). If it is originally heavy, we are done. Otherwise, it has degree of at least 15.
We know that all vertices in F are going to be contracted to a at some point, and we only contract
vertices with degree at most 5 in each iteration. This means that at least 10 other neighbors of C
were contracted to the apex before we decided to contract C to the apex. Therefore one of them
is the parent of C.

Lemma 6.5. T is a spanning tree in G.

9

Proof. Suppose G has n vertices and F has m vertices. After the second phase of our algorithm,
we obtain a spanning forest on Γ with m components and n−m− 1 edges. Each time we contract
a vertex of F to the apex, we add a single edge to T . Therefore, T has n − 1 edges. It is now
sufficient to show that T is connected.

We will show that for every vertex u in Γ, there is path between u and a in T . Let u be a vertex
of Γ. Suppose u is in some component Cu which is a vertex of F . If Cu is originally heavy, then
there is an edge e in T between a vertex v ∈ Cu and the apex. Since we have a spanning tree in
Cu, there is a path between u and v in T . Therefore, there is path between u and the apex a in T .

Otherwise, Cu must have some parent Cu1 and there is an edge between these two components.
Therefore, there is a path between u and each vertex of these two components. Now, the same
argument applies for Cu1 . Either it is originally heavy or it has a parent Cu2 . If it is originally
heavy, we are done. Otherwise, we use the same argument for Cu2 . Note that by construction and
the definition of a parent, we do not reach the same component in this sequence. Therefore, at
some point, we reach a component Cuk which is originally heavy and we are done.

Now we are ready to show that T is a O(1)-thin tree in G (w.r.t. z). We have to show that
there exists some constant α such that for every cut U , |E(T) ∩ δ(U)| ≤ α · z(δ(U)). Let U be a
cut in G. We can assume w.l.o.g. that a /∈ U , since otherwise we can consider the cut V (G) \ U .
We partition E(T) ∩ δ(U) into three subsets:

(1) T1 = {{a, v} ∈ E(T) ∩ δ(U) : v ∈ V (Γ)}.

(2) T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.

(3) T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

Lemma 6.6. There exists some constant α1 such that |T1| ≤ α1 · z(δ(U)).

Proof. Let e = {a, v} ∈ T1 where v ∈ V (Γ). Let Cv ∈ V (F) such that v ∈ Cv. By the construction
of T , Cv is originally heavy. If Cv ⊆ U , we can charge e to z(Cv, {a}), which we know is at least
0.5. Otherwise suppose Cv is not a subset of U . By the assumption we have a /∈ U and thus v ∈ U
which implies that U ∩ Cv 6= ∅. By the construction, we know that there is no tiny cuts in Cv.
Therefore, z(δ(U) ∩ E(G[Cv])) ≥ 0.1. Thus we can charge e to the total weight of the edges in
δ(U) ∩ E(G[Cv]). Note that for each Cv ∈ V (F), there is at most one edge in T1 between a and
Cv. Therefore we have that |T1| ≤ 10 · z(δ(U)).

Lemma 6.7. There exists some constant α2 such that |T2| ≤ α2 · z(δ(U)).

10

Proof. We have

|T2| =

∣∣∣∣∣∣
⋃

C∈V (F)

(E(C) ∩ T2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

C∈V (F)

(E(C) ∩ E(T) ∩ δ(U))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

C∈V (F)

(E(TC) ∩ δ(U))

∣∣∣∣∣∣
≤

∑
C∈V (F)

100 · z(δ(U) ∩ E(C))

≤ 100 · z(δ(U)),

concluding the proof.

Lemma 6.8. There exists some constant α3 such that |T3| ≤ α3 · z(δ(U)).

Proof. We partition T3 into three subsets:

(1) T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.

(2) T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.

(3) T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆
U}.

First for each e = {u, v} ∈ T31 where v ∈ Cv for some Cv ∈ V (F), we have that Uv = U ∩ Cv
is a cut in Cv which is not tiny. By the construction, Cv can be the parent of at most five other
vertices in F and it can have at most one parent. Therefore, there are at most six edges in T3 with
a vertex in Cv. So we can charge e and at most five other edges to z(δ(Uv)). Since z(δ(Uv)) ≥ 0.1
we get |T31| ≤ 60 · z(δ(U)).

Second for each e = {u, v} ∈ T32 where u ∈ Cu for some Cu ∈ V (F), we have that Uu = U ∩Cu
is a cut in Cu which is not tiny. Therefore, the same argument for Cv as in the first case, applies
here for Cu and we get |T32| ≤ 60 · z(δ(U)).

Finally, for T33 we need to find a constant α33 such that |T33| ≤ α33 · z(δ(U)). First, we define
a new cut U1 as follows. For every C ∈ V (F) with C ∩ U 6= ∅, if C ∩ U 6= C, we add all the
other vertices of C to U and we say that C is important. This process leads to a new cut U1 such
that for every C ∈ F , either C ∩ U1 = ∅ or C ⊆ U1. Let U2 = {C ∈ V (F) : C ⊆ U1}. Let
X = {C ∈ V (F) : C /∈ U2} and Y = X ∪ {a}.

Let

T331 = {{u, v} ∈ T33 : u ∈ U, u ∈ C for some C ∈ V (F) with degF [U2](C) < 19}.

Let also T332 = T33 \ T331.
For each edge e = {u, v} ∈ T331 where u ∈ U and u ∈ Cu for some Cu ∈ V (F), we have

degF [U2](Cu) < 19. By Lemma 6.2, we know that for any C,C ′ ∈ V (F), z(C,C ′) ≤ 0.1. Therefore,

11

we get z(Cu, Y) ≥ 0.2. Note that there are at most six edges in T331 with a vertex in Cu. So we
can charge e and at most five other edges to z(Cu, Y). Therefore, |T331| ≤ 30 · z(δ(U)).

Let V1 = {C ∈ U2 : degF [U2](C) ≥ 19} and V2 = {C ∈ U2 : degF [U2](C) ≤ 5}. By Euler’s
formula, we know that the average degree of a planar graph is at most 6. Since F [U2] is planar,
we get |V1| ≤ |V2|. For any C ∈ V2, if C is important, then C ∩ U is a cut for C and we have
z(C ∩ U, Y) ≥ 0.1. If C is not important, then we have z(C, Y) ≥ 1.5. Note that for any C ′ ∈ V1,
there are at most six edges in T332 with a vertex in C ′. Therefore, we have |T332| ≤ 60 · z(δ(U)).

Now since T3 = T31 ∪ T32 ∪ T331 ∪ T332, we have |T3| ≤ 210 · z(δ(U)) completing the proof.

Lemma 6.9. T is a O(1)-thin spanning tree in G.

Proof. By Lemma 6.5 we know that T is a spanning tree. For any U ⊆ V (G), by Lemmas 6.6, 6.7
and 6.8 we get |T | ≤ 320 · z(δ(U)). This completes the proof.

We are now ready to prove the main result of this Section.

Theorem 6.10. Let G be a 1-apex graph and let z : E(G)→ R≥0 be β-thick for some β > 0. Then
there exists a polynomial time algorithm which given G and z outputs a O(1/β)-thin spanning tree
in G (w.r.t. z).

Proof. For β ≥ 2, by Lemma 6.9 we know that we can find a 320-thin spanning tree in G. For any
β with 0 < β < 2, the assertion follows by scaling z by a factor of 2/β.

7 Thin forests in graphs with many apices

Let a ≥ 1. In this section, we describe an algorithm for finding thin-forests in an a-apex graph.
The high level approach is analogous to the case of 1-apex graphs. We construct a similar graph
F of components and contract each vertex of F to some apex.

Let e0 = {u0, v0} ∈ E(G). Let G′ be obtained from G by contracting e0. We define a new
weight function z′ on the edges of G′ as follows. For any {u, v0} ∈ E(G), we set z′({u, v0}) =
z({u, v0}) + z({u, u0}). For any other edge e we set z′(e) = z(e). We say that z′ is induced by z.
Similarly, when G′ is obtained by contracting a subset X of edges in G, we define z′ by inductively
contracting the edges in X in some arbitrary order.

For the remainder of this section letG be a a-apex graph with the set of apicesA = {a1,a2, · · · ,aa}.
Let Γ be the planar part of G. Let z be a 2-thick weight function on the edges of G. The algorithm
proceeds in 5 phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(100 · a). Similar to the case
of 1-apex graphs, we start with Γ and repeatedly partition it via tiny cuts until there are no more
such cuts and we let Γ′ be the resulting graph.

Phase 2. For each connected component C of Γ′ we find a O(a)-thin tree TC using Theorem
6.1.

Phase 3. We define F and G′ exactly the same way as in the case of 1-apex graphs.

Lemma 7.1. For every {C,C ′} ∈ E(F), we have z(C,C ′) ≤ 1/(100 · a).

Proof. The same argument as in Lemma 6.2 applies here. The only difference here is that a cut U
is tiny if z(δ(U)) < 1/(100 · a).

12

Phase 4. We construct a forest T ′ on G′. Let m = |V (F)|. We define a sequence of planar
graphs F0, F1, · · · , Fm, a sequence of graphs G′0, G

′
1, · · · , G′m and a sequence of weight functions

z0, z1, · · · , zm as follows. Let F0 = F , G′0 = G′ and z0 = z. We also define a sequence of forests
P0, . . . , Pm where each Pj contains a tree rooted at each ai ∈ A. We set P0 to be the forest that
contains a tree for each ai ∈ A and with no other vertices.

Let C ∈ V (Fj) for some j. For any ai ∈ A, we say that C is ai-heavy in Fj if zj(C, {ai}) ≥ 1/a.
Let C ′ ∈ V (F). For any ai ∈ A, we say that C ′ is originally ai-heavy if C ′ is ai-heavy in F .

We maintain the following inductive invariant:

(I1) For any j ∈ {0, . . . ,m− 1}, let v ∈ V (Fj) be a vertex of minimum degree. Then either there
exists some ai ∈ A such that v is originally ai-heavy or v ∈ V (Pj).

Consider some i ∈ {0, . . . ,m − 1}. Let vi ∈ V (Fi) be a vertex with minimum degree. If vi
is originally aj-heavy for some aj ∈ A, then we contract vi to aj . Otherwise, by the inductive
invariant (I1), we have that vi ∈ V (Pi). Thus there exists a tree in Pi containing vi that is rooted
in some aj ∈ A; we contract vi to aj . In either case, by contracting vi to aj we obtained G′i+1 from
G′i. We also delete vi from Fi to obtain Fi+1. We let zi+1 be the weight function on G′i+1 induced
by zi.

Finally, we need to define Pi+1. If vi was originally aj-heavy then we add vi to Pi via an edge
{vi,aj}. For each u ∈ V (Fi) that is a neighbor of vi, and is not in V (Pi), we add u to Pi+1 by
adding the edge {vi, u} iff the following conditions hold:

(i) For all ar ∈ A, we have that u is not ar-heavy in Fi.

(ii) u is aj-heavy in Fi+1.

In this case we say that v is the parent of u. This completes the description of the process that
contracts each vertex in V (G′) into some apex.

Lemma 7.2. Let j ∈ {0, 1, . . . ,m − 1}. Let C ∈ V (Fj) be a vertex with minimum degree. Then
there exists ai ∈ A such that C is ai-heavy in Fj.

Proof. Since C has at most 5 neighbors in Fj , by Lemma 7.1 we have zj(C,A) ≥ 2−5/(100 ·a) ≥ 1.
Therefore by averaging, there exists an apex ai such that zj(C, {ai}) ≥ 1/a.

Lemma 7.3. For any j ∈ {0, . . . ,m} and for any v ∈ V (Γ) ∩ V (Pj), we have degPj
(v) ≤ 6.

Proof. By the construction, in each step we pick a vertex of minimum degree and contract it
into some apex. Since Fi is planar, its minimum degree is at most 5. This means that for any
v ∈ V (Γ) ∩ V (Pj), v can be the parent of at most five other vertices and can have at most one
parent. This completes the proof.

Lemma 7.4. The inductive invariant (I1) is maintained.

Proof. For any j ∈ {0, . . . ,m − 1}, let v ∈ V (Fj) be a vertex of minimum degree. If there exists
some ai ∈ A such that v is originally ai-heavy, then we are done. Suppose for all ai ∈ A, v is not
originally ai-heavy. By Lemma 7.2 we know that there exists some al ∈ A such that v is al-heavy
in Fj . Let j∗ ∈ {1, . . . , j} be minimum such that v is not at-heavy in Fj∗−1 for all at ∈ A, and v
is at′-heavy in Fj∗ for some at′ ∈ A. Let u ∈ V (Fj∗−1) be vertex that is contracted to some apex
in step j∗. It follows by construction that u is the parent of v in Pj∗ . Since j ≥ j∗ it follows that
v ∈ V (Pj), concluding the proof.

13

Now we are ready to describe how to construct T ′ in G′. For any l ∈ {0, . . . ,m − 1}, let
C ∈ V (Fl) be a vertex of minimum degree. If C is originally ai-heavy for some ai ∈ A and we
contract C to ai, we pick an arbitrary edge e between C and ai and we add it to T ′. Otherwise,
by Lemma 7.4 we have C ∈ V (Pl). This means that C has a parent C ′. In this case, we pick an
arbitrary edge e between C and C ′ and we add it to T ′.

Phase 5. We construct a forest T in G the same way as in the 1-apex case. We set E(T) =
E(T ′) ∪

⋃
C∈V (F)E(TC).

This completes the description of the algorithm.

7.1 Analysis

By the construction, T has a connected components. We will show that T is a O(a)-thin spanning
forest. Let U be a cut in G. Similar to the 1-apex case, we partition E(T)∩δ(U) into three subsets:

(1) T1 = {{ai, v} ∈ E(T) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.

(2) T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.

(3) T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

Lemma 7.5. There exists a constant α1 such that |T1| ≤ α1 · a · z(δ(U)).

Proof. A similar argument as in the case of 1-apex graph applies here with two differences. First,
a cut U is tiny if z(δ(U)) < 1/(100 ·a). Second, for any ai ∈ A and C ∈ V (F) where C is originally
ai-heavy, we have that z(C, {ai}) ≥ 1/a. Therefore, we get |T1| ≤ 100 · a · z(δ(U)).

Lemma 7.6. There exists a constant α2 such that |T2| ≤ α2 · a · z(δ(U)).

Proof. Again, a similar argument as in the case of 1-apex graphs applies here. The only difference
here is the definition of tiny cut. Therefore, we get |T2| ≤ 100 · a · z(δ(U)).

Lemma 7.7. There exists a constant α3 such that |T3| ≤ α3 · a · z(δ(U)).

Proof. Similar to the 1-apex case, we partition T3 into three subsets:

(1) T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.

(2) T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.

(3) T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆
U}.

The arguments for T31 and T32 are the same as in 1-apex graphs. The only difference here
is that a cut U is tiny if z(δ(U)) < 1/(100 · a). Therefore, we have |T31| ≤ 600 · a · z(δ(U)) and
|T32| ≤ 600 · a · z(δ(U)).

Now for T33 we want to find a constant α33 such that |T33| ≤ α33 · a · z(δ(U)). We define two
new cuts U1 and U2 as follows. For every C ∈ V (F) with C ∩ U 6= ∅, if C ∩ U 6= C, we add all
other vertices of C to U (delete all other vertices of C from U) to obtain U1 (U2) and we say that
C is U -important. Let U ′1 = {C ∈ V (F) : C ⊆ U1} and U ′2 = {C ∈ V (F) : C ⊆ U2}.

14

For any e = {u, v} ∈ T33 where u ∈ U , v /∈ U , u ∈ Cu and v ∈ Cv for some Cu, Cv ∈ V (F),
by the construction of T3, we have that both Cu and Cv have been contracted to the same apex
ai for some ai ∈ A. Let j ∈ {0, . . . ,m} be the step during which Cu is contracted to ai. Let
B = {C ∈ V (F) : C is contracted to ai}. Let D be the connected component of F [B] containing
Cu. Let Din

U ′1
= D[U ′1], Dout

U ′1
= D[V (D) \ U ′1], Din

U ′2
= D[U ′2], Dout

U ′2
= D[V (D) \ U ′2].

We consider the following two cases:

Case 1: ai /∈ U . We know that Cu ∈ U . By the construction, we have that zj(Cu, {ai}) ≥ 1/a.
If z0(Cu, {ai}) ≥ 1/(100 · a), we can charge e to z0(Cu, {ai}) and we know that there are at
most six edges in T33 with a vertex in Cu.

Otherwise, we have that z0(Cu, (V (D) \ Cu)) ≥ 99/(100 · a). If z0(Cu, (V (Dout
U ′1

) \ Cu)) ≥
1/(100 · a), then by the construction of Dout

U ′1
we get z0(Cu, (G \ U)) ≥ 1/(100 · a). Therefore

we can charge e to z0(Cu, (G \ U)).

Otherwise, we have that z0(Cu, (V (Din
U ′1

)\Cu)) ≥ 98/(100·a). This implies that degDin
U′1

(Cu) ≥

98. Now note that Din
U ′1

is a planar graph and its average degree is at most 6. Now a similar

argument as in the 1-apex case applies here. Let V1 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≥ 98}. Let

V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 5}. By planarity of Din
U ′1

, we have that |V1| ≤ |V2|. For any

C ∈ V2, if C is U -important, then C ∩ U is a cut for C which is not tiny. Therefore we have
z(C∩U,G\U) ≥ 1/(100 ·a). If C is not U -important, we have z(C,G\U) ≥ 95/(100 ·a). Now
note that for any C ′ ∈ V1 there are at most six edges in T33 with a vertex in C ′. Therefore
we have |T33| ≤ 1000 · a · z(δ(U)).

Case 2: ai ∈ U . Let X1 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≥ 98}. Let X2 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≤ 5}.

We know that Cv /∈ U . We follow a similar approach as in the first case by considering U ′2,
Din
U ′2

and Dout
U ′2

. The same argument applies here by replacing U ′1, Din
U ′1

, Dout
U ′1

, X1 and X2 with

U ′2, Dout
U ′2

, Din
U ′2

, V1 and V2 respectively. Therefore, we get |T33| ≤ 1000 · a · z(δ(U)).

Now from what we have discussed, we have |T31| ≤ 600 · a · z(δ(U)), |T32| ≤ 600 · a · z(δ(U)) and
|T33| ≤ 1000 · a · z(δ(U)). Therefore, we get |T3| ≤ 2200 · a · z(δ(U)) completing the proof.

Lemma 7.8. T is a O(a)-thin spanning forest in G with at most a connected components.

Proof. By the construction, T is a spanning forest and has at most a connected components. Let
α = α1 + α2 + α3, where α1, α2 and α3 are obtained by Lemmas 7.5, 7.6, 7.7. Therefore for any
U ⊂ V (G), we have |T | ≤ α · a · z(δ(U)) = 2400 · a · z(δ(U)) completing the proof.

We are now ready to prove the main result of this Section.

Theorem 7.9. Let a ≥ 1 and let G be a a-apex graph with set of apices A = {a1, . . . ,aa}. Let
z : E(G) → R≥0 be β-thick for some β > 0. Then there exists a polynomial time algorithm which
given G, A and z outputs a O(a/β)-thin spanning forest in G (w.r.t. z) with at most a connected
components.

Proof. By Lemma 7.8, for β ≥ 2, we know that we can find a (2400a)-thin spanning forest in G
(w.r.t. z) with at most a connected components. For any other 0 < β < 2, the claim follows by
scaling z by a factor of 2/β.

15

8 Thin forests in higher genus graphs with many apices

The following theorem is implicit in the work of Erickson and Sidiropoulos [9].

Theorem 8.1 (Erickson and Sidiropoulos [9]). Let G be a graph with eg(G) = g, and let z be a
β-thick weight function on the edges of G for some β ≥ 0. Then there exists a polynomial time
algorithm which given G, z, and an embedding of G into a surface of Euler genus g, outputs a
O(1/β)-thin spanning forest in G (w.r.t. z), with at most g connected components.

In this section, we study the problem in higher genus graphs. First, the following two Lemmas
can be obtained by Euler’s formula.

Lemma 8.2. Let G be a graph of genus g ≥ 1 with |V (G)| ≥ 10g. Then there exists v0 ∈ V (G)
with degG(v0) ≤ 7.

Lemma 8.3. Let G be an n vertex graph of genus g ≥ 1. Then the average degree of vertices of G
is at most 6 + 12(g − 1)/n.

For the remainder of this section, let G be an a-apex graph with the set of apices A =
{a1,a2, . . . ,aa} on a surface of genus g. Let Γ = G \ A, where Γ is a graph of genus g. Let z
be a 2-thick weight function on the edges of G. We will find a O(a · g)-thin (w.r.t. z) spanning
forest in G with at most O(a+ g) connected components. The high level approach is similar to the
case where Γ was planar. The algorithm proceeds in 5 phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(1000 · a · g). We construct Γ′

the same way as in Section 7. The only difference here is the definition of tiny cut.
Phase 2. Similar to the planar case, for each connected component C of Γ′ we find a O(a·g)-thin

forest TC , with at most g connected components, using Theorem 8.1
Phase 3. We define F and G′ the exact same way as in Section 7.

Lemma 8.4. For every {C,C ′} ∈ E(F), we have z(C,C ′) ≤ 1/(1000 · a · g).

Proof. The same argument as in Lemma 6.2 applies here. The only difference here is the definition
of tiny cut.

Phase 4. We construct a spanning forest T ′ on G′, with at most a+10g connected components.
We follow a similar approach as in the planar case. Let m = |V (F)| − 10g. If m ≤ 0, we
set E(T ′) = ∅ and we skip to the next phase. Otherwise, we define two sequences of graphs
F0, F1, . . . , Fm, G′0, G

′
1, . . . , G

′
m, a sequence of weight functions z0, z1, . . . , zm, a sequence of forests

P0, P1, . . . , Pm satisfying the inductive invariant (I1) the exact same way as in Section 7. For any
j ∈ {0, 1, . . . ,m − 1}, C ∈ V (Fj) and ai ∈ A, we also define the notion of ai-heavy and originally
ai-heavy the same way as in Section 7. The only differences here is that m = |V (F)| − 10g instead
of |V (F)|.

Lemma 8.5. Let j ∈ {0, 1, . . . ,m}. Let C ∈ V (Fj) be a vertex of minimum degree. Then there
exists ai ∈ A such that C is ai-heavy in Fj.

Proof. By the construction, |V (Fj)| ≥ 10g. Therefore by Lemma 8.2, we have degFj
(C) ≤ 7.

Therefore by Lemma 8.4, we get zj(C,A) ≥ 2− 7/(1000 · a · g) ≥ 1. This implies that there exists
ai ∈ A such that zj(C, {ai}) ≥ 1/a.

16

Lemma 8.6. For any j ∈ {0, . . . ,m} and for any v ∈ Γ ∩ Pj, we have degPj
(v) ≤ 8.

Proof. A similar argument as in the planar case applies here. The only difference here is that the
minimum degree is at most 7. Therefore, every vertex can be the parent of at most 7 other vertices
and can have at most one parent.

Lemma 8.7. The inductive invariant (I1) is maintained.

Proof. The exact same argument as in Section 7 applies here.

Now we construct a forest T ′ on G′ the same way as in Section 7.

Lemma 8.8. T ′ has at most a+ 10g connected components.

Proof. If |V (F)| ≤ 10g, then we are done. Otherwise, we have |Fm| = 10g. Now since |A| = a, by
the construction, we have that the number of connected components of T ′ is at most a+ 10g.

Phase 5. We construct a forest T in G the exact same way as in Section 7, by setting
E(T) = E(T ′) ∪

⋃
C∈V (F)E(TC).

This completes the description of the algorithm.

8.1 Analysis

Lemma 8.9. T is a spanning forest in G, with at most O(a+ g) connected components.

Proof. For any C ∈ V (F), let gC be the genus of Γ[C]. By Theorem 8.1 we know that the number
of connected components in TC is at most gC . Therefore, by Lemma 8.8 we have that the number
of connected components in T is at most a+ 10g +

∑
C∈V (F) gC ≤ a+ 11g.

For the thinness of T , we follow a similar approach as in the planar case. There are two main
differences here: First for any j ∈ {0, 1, . . . ,m}, by Lemma 8.3 we have that the average degree of
Fj is at most 20g. Second a cut U is tiny if z(δ(U)) < 1/(1000 · a · g).

Let U be a cut in G. Similar to the planar case, we partition E(T) ∩ δ(U) into three subsets:

(1) T1 = {{ai, v} ∈ E(T) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.

(2) T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.

(3) T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

Also similar to the planar case, we partition T3 into three subsets:

(1) T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.

(2) T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.

(3) T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) such that u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆
U}.

Lemma 8.10. For any index i ∈ {1, 2, 31, 32}, there exists a constant αi such that |Ti| ≤ αi · a · g ·
z(δ(U)).

17

Proof. A similar argument as in Lemmas 7.5, 7.6 and 7.7 applies here. There are two differences
here. First the definition of a tiny cut is different. Second, for each C ∈ V (F), C can be the parent
of at most seven vertices and can have at most one parent. Therefore we get |T1| ≤ 1000·a·g·z(δ(U)),
|T2| ≤ 1000 · a · g · z(δ(U)), |T31| ≤ 8000 · a · g · z(δ(U)) and |T32| ≤ 8000 · a · g · z(δ(U)).

Lemma 8.11. There exists a constant α33 such that |T33| ≤ α33 · a · g · z(δ(U)).

Proof. Let e = {u, v} ∈ T33. We follow a similar approach as in the planar case. We define U1, U2,
U ′1, U ′2, B, Din

U ′1
, Dout

U ′1
, Din

U ′2
and Dout

U ′2
the exact same way as in Lemma 7.7. Let V1 = {C ∈ Din

U ′1
:

degDin
U′1

(C) ≥ 98g}, V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 20g}, X1 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≥ 98g},

and X2 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≤ 5g}. By Lemma 8.3 we have that |V1| ≤ |V2| and |X1| ≤ |X2|.

With these definitions, the rest of the proof is the same as in Lemma 7.7, and thus we get |T33| ≤
10000 · a · g · z(δ(U)).

Lemma 8.12. T is a O(a·g)-thin spanning forest in G, with at most O(a+g) connected components.

Proof. By combining Lemmas 8.9, 8.10 and 8.11 and we get |T | ≤ 24000 · a · g · z(δ(U)), which
proves the assertion.

We are now ready to prove the main result of this Section.

Theorem 8.13. Let a, g ≥ 1. Let G be a graph and A ⊆ V (G), with |A| = a, such that H = G\A is
a graph of genus g. Let z : E(G)→ R≥0 be β-thick for some β > 0. Then there exists a polynomial
time algorithm which given G, A, an embedding of H on a surface of genus g, and z outputs a
O((a · g)/β)-thin spanning forest in G (w.r.t. z) with at most O(a+ g) connected components.

Proof. For β ≥ 2, by Lemma 8.12, we can find a (24000 · a · g)-thin spanning forest with at most
a+11g connected components. For 0 < β < 2, the claim follows by scaling z by a factor of 2/β.

9 Thin subgraphs in nearly-embeddable graphs

9.1 (0, g, 1, p)-nearly embeddable graphs

For the remainder of this subsection, let ~G be a (0, g, 1, p)-nearly embeddable digraph and let G
be its symmetrization. Let ~H be the single vortex of ~G of width p, attached to some face ~F of
~G. Let H and F be the symmetrizations of ~H and ~F respectively. Let {Bv}v∈V (F) be a path-

decomposition of H of width p. Let ~W be a closed walk in ~G visiting all vertices in V (~H) and let
W be its symmetrization. Let z : E(G) → R≥0 be α-thick, for some α ≥ 2, and ~W -dense. Let G′

be the graph obtained by contracting F to a single vertex v∗ in G \H.
Following [9] we introduce the following notation. For any u, v ∈ V (G), a ribbon R between

u and v is the set of all parallel edges e = {u, v} such that for every e, e′ ∈ R, there exists a
homeomorphism between e and e′ on the surface. Let R′ be a set of parallel edges in G. We say
that an edge e ∈ R′ is central if the total weight of edges on each side of e in R′ (containing e), is
at least z(R′)/2.

We will find a O(1)-thin spanning forest S in G′ (w.r.t. z), with at most g connected components,
such that S is O(1)-thin in G (w.r.t. z). We follow a similar approach to [9] to construct S. We
apply some modifications that assure S is O(1)-thin in G (w.r.t. z).

18

9.1.1 The modified ribbon-contraction argument

If |V (G′)| ≤ g, then we set E(S) = ∅ and we are done. Otherwise, let l = |V (G′)|−g. We define two
sequences of graphs G0, . . . , Gl and G′0, . . . , G

′
l, with G0 = G and G′0 = G′. For each j ∈ {0, . . . , l},

Gj is obtained by uncontracting v∗ ∈ V (G′j). Let i ≥ 0 and suppose we have defined G′i. Let Ri be
the heaviest ribbon in G′i (w.r.t. z). Let R′i ⊆ E(Gi) be the corresponding set of edges in Gi. We
contract all the edges in Ri and we let G′i+1 be the graph obtained after contracting Ri. We also
perform the contraction in a way such that for all i ∈ {0, . . . , l − 1} we have v∗ ∈ G′i.

Let i ∈ {0, . . . , l − 1}. If Ri = {u, v} where u, v 6= v∗, similar to [9], we let ei be a central edge
in Ri and we add ei to S. Otherwise, suppose that Ri = {u, v∗} for some u ∈ V (G′i). If there exists
an edge e ∈ Ri with e ∈ W or z(e) ≥ 0.1, we let ei = e and we add it to S. Otherwise, we can
assume that there is no edge e ∈ R with e ∈W or z(e) ≥ 0.1.

Let Qi be the set of vertices v ∈ V (F) with an endpoint in R′i. By the construction, Qi is
a subpath of F . Let v1, v2 ∈ V (F) be the endpoints of Qi. Let W ′i be the restriction of W on⋃
v∈Qi

Bv. Let W ′′i be the subgraph of W ′i obtained by deleting all edges e with both endpoints in
Bv1 or Bv2 .

For any subgraph C of W , we define the i-load of C as follows. The i-load of C is the total
weight of all edges in R′i with an endpoint in C. Let Ci be the connected component of W ′′i with
the maximum i-load. Let Yi = {e ∈ R′′i : e has an endpoint in Ci}. We let ei be a central edge in
Yi and we add ei to S.

We set T = S ∪W . We will show that T is a O(p2)-thin spanning subgraph of G (w.r.t. z),
with at most g connected components.

Lemma 9.1. T is a spanning subgraph of G with at most g connected components.

Proof. By the construction, S has at most g connected components in G′. Now note that W is a
closed walk visiting H in G. Therefore, all vertices of F are in the same connected component in
T . This means that T has at most g connected components.

Lemma 9.2. For any i ∈ {0, . . . , l − 1}, W ′i has at most 2p connected components.

Proof. This follows immediately from the fact that {Bv}v∈V (F) is a path-decomposition of width p
and there is no edge in Ri ∩W .

Lemma 9.3. For any i ∈ {0, . . . , l − 1}, W ′′i has at most p(p+ 1) connected components.

Proof. By Lemma 9.2 we know that W ′i has at most 2p connected components. W ′′i is obtained
by deleting at most p(p − 1) edges of W ′i . Therefore, W ′′i has at most p(p + 1) = 2p + p(p − 1)
connected components.

Lemma 9.4. For any i ∈ {0, . . . , l − 1}, the i-load of W ′i is at least 0.4.

19

Proof. The i-load of W ′i is z(R′i). Following [9] we know that z(Ri) ≥ 2/5 and thus z(R′i) ≥ 2/5.

Lemma 9.5. For any i ∈ {0, . . . , l − 1}, the i-load of W ′′i is at least 0.2.

Proof. By Lemma 9.4 the i-load of W ′ is at least 0.4. By the construction, we have z({u, v1}) ≤ 0.1
and z({u, v2}) ≤ 0.1. By deleting edges with both endpoints in Bv1 or Bv2 , we decrease the i-load
by at most 0.2. Therefore, the i-load of W ′′i is at least 0.2.

Lemma 9.6. For any i ∈ {0, . . . , l − 1}, the i-load of Ci is at least 1/5p(p+ 1).

Proof. By Lemma 9.5 we know that the i-load of W ′′i is at least 0.2. By Lemma 9.3 there are at
most p(p+ 1) connected components in W ′′i . Therefore the i-load of Ci is at least 1/5p(p+ 1).

Lemma 9.7. There exists a constant β such that for any U ⊆ V (G), we have |S ∩ δ(U)| ≤
β · p2 · z(δ(U)).

Proof. First we partition S ∩ δ(U) into two subsets:

(1) S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F)}.

(2) S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F)}.

By the construction, following [9] we have |S1| ≤ 20 · z(δ(U)). Let e = {u, v} ∈ S2. Let
i ∈ {0, . . . , l − 1} be the step that we add e to S. If e ∈ W , we can charge it to z(e) ≥ 1/2 and
we are done. Suppose e 6∈ W . If there exists an edge e′ ∈ E(Ci) ∩ δ(U), we know that by the
construction, e′ does not have both endpoints in Bv1 or Bv2 . Therefore, for all j 6= i we have
e′ /∈ E(Cj). Thus we can charge e to z(e′) ≥ 1/2 and we are done. Otherwise, suppose there is
no edge in E(Ci) ∩ δ(U). In this case, by the construction, for all e′′ ∈ Ri with an endpoint in Ci,
we have e′′ ∈ δ(U). Now we know that e is the central edge in Yi. By Lemma 9.6 we know that
the i-load of Ci is at least 1/5p(p + 1). Therefore, we can charge e to the i-load of Ci and we get
|S2| ≤ 10 · p2z(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 20 · p2 · z(δ(U)).

Lemma 9.8. Let ~G be a (0, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let ~W be a
walk in ~G visiting all vertices in V (~H). Let G, H, and W be the symmetrizations of ~G, ~H, and
~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense. Then there exists a
polynomial time algorithm which given ~G, ~H, ~W , z, and an embedding of ~G \ ~H into a surface of
genus g, outputs a subgraph S ⊆ G \H, satisfying the following conditions:

(1) W ∪ S is a spanning subgraph of G and has O(g) connected components.

(2) W ∪ S is O(p2)-thin w.r.t. z.

Proof. The assertion follows immediately by Lemmas 9.1 and 9.7.

20

9.2 (a, g, 1, p)-nearly embeddable graphs

For the remainder of this subsection, let a, g, k, p ≥ 0 and ~G be an n-vertex (a, g, 1, p)-nearly
embeddable digraph and let G be its symmetrization. Let ~H be the single vortex of width p,
attached to a face ~F of ~G. Let H and F be the symmetrization of ~H and ~F respectively. Let
A ⊆ V (G) with |A| = a be the set of apices of G, where Γ = G \ (A ∪ H) is a graph of genus
g. Let ~W be a walk in ~G visiting all vertices in V (~H) and let W be its symmetrization. Let
z : E(G) → R≥0 be α-thick, for some α ≥ 2, and ~W -dense. Let G′ be the graph obtained by
contracting F to a single vertex v∗ in G \H.

We follow a similar algorithm as in Section 8 to find a O(a · g + p2)-thin spanning forest S
in G′, with at most O(a + g) connected components. We modify the algorithm such that S is a
O(a · g + p2)-thin subgraph of G.

We first start with Γ and construct Γ′ the same way as in Section 8. For each connected
component C of Γ′, we want to find a O(p2)-thin spanning forest TC , with at most g connected
components. Let Cv∗ be the connected component of Γ′ with v∗ ∈ Cv∗ . Cv∗ is a graph of genus
at most g. For this component, we apply the modified ribbon-contraction argument on Subsection
9.1 to find TCv∗ . Therefore, TCv∗ is a O(p2)-thin spanning forest in Cv∗ with at most g connected
components. The rest of the algorithm is the same as in Section 8 and we find a O(a · g + p2)-thin
spanning forest S in G′, with at most O(a+ g) connected components. Let T = S ∪W .

Lemma 9.9. T is a spanning subgraph of G with at most O(a+ g) connected components.

Proof. The same proof as in Lemma 9.1 applies here. The only difference here is that S has at most
O(a + g) connected components in G′. Therefore, T has at most O(a + g) connected components
in G.

Lemma 9.10. S is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. Let U ⊆ V (G) be a cut. Similar to Subsection 9.1, we partition S ∩ δ(U) into two subsets.

(1) S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F)}.

(2) S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F)}.

First, by the construction and Lemma 8.12, we have |S1| ≤ 24000 · a · g · z(δ(U)). Now we
partition S2 into three subsets.

(1) S21 = {{aj , v} ∈ S2 : aj ∈ A, v ∈ V (F)}.

(2) S22 = {{u, v} ∈ S2 : v ∈ V (F), u and v are in different components of Γ′}.

(3) S23 = {{u, v} ∈ S2 : v ∈ V (F), u, v ∈ Cv∗}.

By the construction, we know that |S21| ≤ 1 and |S22| ≤ 7. Also, by Lemma 9.7 we have
|S23| ≤ 20 · p2 · z′(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 8(24000 · a · g + 20p2)z(δ(U)).

Lemma 9.11. T is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. By Lemma 9.10 we know that S is a O(a · g + p2)-thin subgraph of G (w.r.t. z). Now note
that z is ~W -dense. Therefore, T = S ∪W is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

We are now ready to prove the main result of this Section.

Proof of Lemma 5.3. It follows by Lemmas 9.9 and 9.11.

21

10 A preprocessing step for the dynamic program

Definition 10.1 (Facial normalization). Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embed-
dable graph. Let ~F be the face on which the vortex is attached. We say that ~G is facially normalized
if the symmetrization of ~F is a simple cycle and every v ∈ V (~F) has at most one incident edge that
is not in E(~F).

Lemma 10.2. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There exists
a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph ~G′ such that
the following holds. Let ~H be the vortex in ~G and let ~H ′ be the vortex in ~G′. Then OPT ~G(V (~H)) =

OPT ~G′(V (~H ′)). Moreover there exists a polynomial-time algorithm which given any closed walk ~W ′

in ~G′ that visits all vertices in V (~H ′), outputs some closed walk ~W in ~G that visits all vertices in
V (~H) with cost ~G(~W) = cost ~G′(

~W ′).

Proof. Let ~F be the face in ~G that ~H is attached to. Let F be the symmetrization of ~F . We first
construct a (0, g, 1, p)-nearly embeddable graph ~G′′, with a vortex ~H ′′ attached to a face ~F ′′ such
that the symmetrization of ~F ′′ is a simple cycle. Initially we set ~G′′ = ~G. If ~F is a simple cycle
then there is nothing to be done. Otherwise, suppose that ~F is not a simple cycle. Therefore,
∂F contains a family of simple cycles C = {C1, . . . , Ck} for some k, and a family of simple paths
P = {P1, . . . , Pl} for some l, such that every Pi ∈ P is a path x1, x2, . . . , xm where x1 ∈ Cα and
xm ∈ Cβ for some Cα, Cβ ∈ C. We allow P to contain paths of length 0.

For every P = x1, x2, . . . , xm ∈ P, where x1 ∈ C and xm ∈ C ′ for some C,C ′ ∈ C, we update
~G′′ as follows. Let x′1 ∈ V (C) and x′m ∈ V (C ′) be neighbors of x1 and xm. We first duplicate P to
get a new path P ′ = y1, y2, . . . , ym. For every edge e ∈ E(P), we set the cost of the corresponding
edge e′ ∈ P ′ equal to the cost of e. Also, for every j ∈ {1, . . . ,m}, we add two edges (xi, yi)
and (yi, xi) to ~G′′ with cost ~G′′(xi, yi) = cost ~G′′(yi, xi) = 0. Also, we delete edges (x1, x

′
1), (x′1, x1),

(xm, x
′
m), and (x′m, xm) and we add edges (y1, x

′
1), (x′1, y1), (ym, x

′
m) and (x′m, ym) with the same

cost respectively.

By the construction, ~G′′ is a (0, g, 1, p)-nearly embeddable graph, such that ~F ′′ is a simple cycle.
Also suppose that ~W ′′ is a closed walk in ~G′′ that visits all vertices in V (~H ′′). Then we can find a
closed walk ~W in ~G that visits all vertices in V (~H) with cost ~G(~W) = cost ~G′′(

~W ′′).

Now we construct a facially normalized graph ~G′. Initially we set ~G′ = ~G′′. For every v ∈ V (~F ′′)
that has more than one incident edge in E(~G′′) \ E(~F ′′) we update ~G′ as follows. Let vleft, vright ∈
V (~F ′′) be the left and right neighbors of v on ~F ′′. Let V = {v1, . . . , vm} be the set of all neighbors
of v in V (~G′′) \ V (~F ′′). Let V ′ = {v′1, . . . , v′m}. First we delete v from ~G′ and we add V ′ to V (~G′).
For every (v, vi) ∈ E(~G′′) we add (v′i, vi) to E(~G′) with cost ~G′(v

′
i, vi) = cost ~G′′(v, vi). Also, for every

j ∈ {1, . . . ,m− 1}, we add (v′j , v
′
j+1) and (v′j+1, v

′
j) to E(~G′) with cost ~G′(v

′
j , vj+1) = 0. Finally we

add (v′1, vleft), (vleft, v
′
1), (v′m, vright) and (vright, v

′
m) to ~G′ with the same costs as in ~G′′.

22

It is immediate that ~G′ is the desired graph.

Lemma 10.3. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There exists
a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph ~G′′ such that
the following conditions hold:

(1) Let ~H be the vortex in ~G and let ~H ′′ be the vortex in ~G′′. Then OPT ~G(V (~H)) = OPT ~G′(V (~H ′′)).

(2) There exists a polynomial-time algorithm which given any closed walk ~W ′′ in ~G′′ that visits
all vertices in V (~H ′′), outputs some closed walk ~W in ~G that visits all vertices in V (~H) with
cost ~G(~W) = cost ~G′′(

~W ′′).

(3) Let ~Γ be the genus-g piece of ~G′′. Let ~F ′′ be the face of ~Γ on which the vortex ~H ′′ is attached.
Then any v ∈ V (~Γ) \ V (~F ′′) has degree at most 4.

(4) There exists some closed walk ~W ∗ in ~G′′ that visits all vertices in V (~H ′′), with cost ~G′′(
~W ∗) =

OPT ~G′′(V (~H ′′)), and such that every edge in ~Γ is traversed at most once by ~W ∗.

We say that a graph ~G′′ satisfying the above conditions is cross normalized.

Proof. We begin with computing the facially normalized graph ~G′ given by Lemma 10.2. Clearly
~G′ satisfies conditions (1) and (2).

We next modify ~G′ so that it also satisfies (3). This can be done as follows. Let ~Γ′ be the
genus-g piece of ~G′ and let ~F ′ be the face on which the vortex is attached. We replace each
v ∈ V (~Γ′) \ V (~F ′) of degree d > 4 by a tree Tv with d leaves and with maximum degree 4; we
replace each edge incident to v an edge incident to a unique leaf, and we set the length of every
edge in E(Tv) to 0.

It remains to modify ~G′ so that it also satisfies (4). Let ~H ′ be the vortex in ~G′. Let ~W ′ be a walk
in ~G′ that visits all vertices in ~H ′ with cost ~G′(

~W ′) = OPT ~G′(V (~H ′)). We may assume w.l.o.g. that
~W ′ contains at most n2 edges. Thus, every vertex in v ∈ V (~Γ′) \ V (~F ′) is visited at most n2 times
by ~W ′. We replace each v ∈ V (~Γ′) \ V (~F ′) by a grid Av of size 3n2 × 3n2, with each edge having
length 0. Each edge incident to v in ~G′, corresponds to a unique sides of Av so that the ordering
of the sides agrees with the ordering of the edges around v (in ψ). We replace each (u, v) ∈ E(~Γ′),
by a matching of size 3n2 between the corresponding sides of Au and Av, where each edge in the
matching has length equal to the length of (u, v). Let ~G′′ be the resulting graph.

We obtain the desired walk ~W ∗ in ~G′′ as follows. Let x1, . . . , x4` be the vertices in the boundary
of Av, with ` = 3n2− 1, appearing in this order along a clockwise traversal of Av, and such that x1

is the lower left corner. Then for any i ∈ {1, . . . , 4}, the vertices x(i−1)`+1, . . . , x(i−1)`+n2 correspond

to the copies of v on the i-th side of Av. We traverse ~G′ starting at some arbitrary vertex in V (~H ′),
and we inductively construct the walk ~W ∗. We consider each edge (u, v) in the order that it is
traversed by ~W ′. Suppose that (u, v) is the t-th edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. For

23

each i ∈ {1, . . . , 4}, we let the t-th copy of v on the i-th side of Av to be x(i−1)`+t. We distinguish

between the following cases: (i) If u, v ∈ V (~H ′), then (u, v) ∈ E(~G′′) and we simply traverse (u, v)
in ~G′′. (ii) If u ∈ V (~H ′) and v /∈ V (~H ′) then we traverse the edge in ~G′′ that connects u to the
t-th copy of v in the appropriate side of Av. (iii) If u /∈ V (~H ′) and v ∈ V (~H ′) then we traverse the
edge in ~G′′ that connects the t-th copy of u in the appropriate side of Au to v. (iv) If u, v /∈ V (~H ′)
then we traverse the edge in ~G′′ that connects the t-th copy of u to the t-th copy of v in the
appropriate sides of Au and Av respectively. Finally, for any pair of consecutive edges (u, v), (v, w)
traversed by ~W ′, with v /∈ V (~H ′), we need to add a path P in Av connecting two copies of v in the
corresponding sides of Av. Since Av is a grid of size 3n2 × 3n2 this can be done so that all these
paths are edge-disjoint. More precisely, this can be done as follows. Suppose that (u, v) is the t-th
edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. If P connects vertices x and y in consecutive sides
of Av, then we proceed as follows. We may assume w.l.o.g that x = xt and y = x`+t+1, since other
cases can be handled in a similar way. We set P to be the unique path starting at xt, following
t + 1 horizontal edges in Av, and finally following ` − t vertical edges to x`+t+1. Otherwise, if P
connects vertices x and y in opposite sides of Av, then we proceed as follows. We may assume
w.l.o.g that x = xt and y = x2`+t+1, since other cases can be handled in a similar way. We set P
to be the unique path starting at xt, following t + n2 horizontal edges in Av, and then following
`− 2t vertical edges, and finally following `− t− n2 − 1 horizontal edges to x2`+t+1.

By the construction, it is immediate that all the paths P constructed above are pairwise edge-
disjoint, which implies that every edge in E(~G′′) is visited by ~W ∗ at most once, concluding the
proof.

11 Uncrossing an optimal walk traversing a vortex

Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. By Lemma 10.3 we may
assume w.l.o.g. that ~G is facially normalized and cross normalized. Let ~G′ ⊆ ~G be the piece of
genus g and fix a drawing ψ of ~G′ into a surface of genus g. Let ~H be the single vortex in ~G and
suppose that ~H is attached to some face ~F of ~G′. Fix an optimal solution ~WOPT, that is a closed
walk in ~G that visits all vertices in ~H minimizing cost ~G(~W); if there are multiple such walks pick

consistently one with a minimum number of edges. Since ~G is cross normalized we may assume
w.l.o.g. that ~WOPT traverses every edge in E(~G′) \ E(~F) at most once.

11.1 The structure of an optimal solution

Definition 11.1 (Shadow). LetW be a collection of walks in ~G. We define shadow ofW (w.r.t. ~G′)
to be the collection of open and closed walks obtained by restricting every walk in W on ~G′ (note
that a walk in W can give rise to multiple walks in W ′, and every open walk in W ′ must have both
endpoints in ~F).

24

We say that two edje-disjoint paths P , P ′ in ~G′ cross (w.r.to ψ) if there exists v ∈ V (P)∩V (P ′)
such that v has degree 4 (recall that ~G is cross normalized), with neighbors u1, . . . , u4, such that
the edges {v, u1}, . . . , {v, u4} appear in this order around v in the embedding ψ, P contains the
subpath u1, v, u3, and P ′ contains the subpath u2, v, u4. We say that two walks in ~G′ cross (at v,
w.r.to ψ) if they contain crossing subpaths. Finally, a walk is self-crossing if it contains two disjoint
crossing subpaths.

Lemma 11.2 (Uncrossing an optimal walk of a vortex). There exists a collectionW = { ~W1, . . . , ~W`}
of closed walks in ~G satisfying the following conditions:

(1) Every edge in E(~G′) \ E(~F) is traversed in total at most once by all the walks in W.

(2) V (~W1) ∪ . . . ∪ V (~W`) is a strongly-connected subgraph of ~G.

(3) V (~H) ⊆ V (~W1) ∪ . . . ∪ V (~W`).

(4)
∑`

i=1 cost ~G(~Wi) ≤ OPT ~G(V (~H)).

(5) Let W ′ be the shadow of W. Then the walks in W ′ are non-self-crossing and pairwise non-
crossing.

Proof. Initially, we set W = { ~WOPT}. Recall that since ~G is cross normalized, every edge in
E(~G′) \ E(~F) is traversed at most once by ~WOPT. Clearly, this choice of W satisfies conditions
(1)–(4). We proceed to iteratively modify W until condition (4) is also satisfied, while inductively
maintaining (1)–(4).

Suppose that the current choice for W does not satisfy (5). This means that either there exist
two distinct crossing walks in W, or there exists some self-crossing walk in W. In either case, it
follows that there exist subpaths P , P ′ of the walks in W that are crossing (w.r.to φ). This means
that there exists v ∈ V (P) ∩ V (P ′) and e1, e2 ∈ E(P), e3, e4 ∈ E(P ′) such that ψ(e1), ψ(e4),
ψ(e2), ψ(e3) appear in this order around ψ(v). We modify P and P ′ by swapping e1 and e3. It is
immediate that the above operation preserves conditions (1)–(4). Moreover, after performing the
operation, the total number of crossings and self-crossings (counted with multiplicities) between
the walks in W decreases by at least one. Since the original number of crossings is finite, it follows
that the process terminates after a finite number of iterations. By the inductive condition, it is
immediate that when the process terminates the collection W satisfies condition (5), concluding
the proof.

For the remainder of this section let W and W ′ be as in Lemma 11.2. Let I be a graph with
V (I) =W ′ and with

E(I) =

{
{W,W ′} ∈

(
W ′

2

)
: V (W) ∩ V (W ′) 6= ∅

}
.

Let ~W, ~Z be distinct closed walks in some digraph, and let v ∈ V (~W) ∩ V (~Z). Suppose that
~W = x1, . . . , xk, v, xk+1, . . . , xk′ , x1 and ~Z = y1, . . . , yr, v, yr+1, . . . , yr′ , y1. Let ~S be the closed walk
x1, . . . , xk, v, yr+1, . . . , yr′ , y1, . . . , yr, v, xk+1, . . . , xk′ , x1. We say that ~S is obtained by shortcutting
~W and ~Z (at v).

Let J be a subgraph of I. Let WJ be a collection of walks in ~G constructed inductively as
follows. Initially we set WJ = W. We consider all {W,W ′} ∈ E(J) in an arbitrary order. Note

25

that since {W,W ′} ∈ E(J), it follows that W and W ′ cross at some v ∈ V (~G′). Let R and R′ be
the walks in WJ such that W and W ′ are sub-walks of R and R′ respectively. If R 6= R′ then we
replace R and R′ in WJ by the walk obtained by shortcutting R and R′ at v. This completes the
construction of WJ . We say WJ is obtained by shortcutting W at J .

Lemma 11.3. There exists some forest F in I such that the collection of walks obtained by short-
cutting W at F contains a single walk.

Proof. Let F be a forest obtained by taking a spanning subtree in each connected component of
I. Let W,W ′ ∈ W. Let WF be obtained by shortcutting W at F . It suffices to show that W
and W ′ become parts of the same walk in WF . By condition (2) of Lemma 11.2 we have that
there exists a sequence of walks W1, . . . ,Wt ∈ W, with W1 = W , Wt = W ′, and such that for any
i ∈ {1, . . . , t− 1}, there exists some walk Ai ∈Wi ∩ ~G′, and some walk Bi+1 ∈Wi+1 ∩ ~G′ such that
{Ai, Bi+1} ∈ E(I). Therefore Ai and Bi+1 are in the same connected component of I. Thus there
exits some tree Ti in F such that Ai, Bi+1 ∈ V (Ti). It follows that after shortcutting W at F , the
walks Ai and Bi+1 become parts of the same walk. By induction on i ∈ {1, . . . , t − 1}, it follows
that A1 and Bt become parts of the same walk in WF , and thus so do W and W ′, concluding the
proof.

For the remainder let F be the forest given by Lemma 11.3.

Lemma 11.4. All leaves of F intersect F .

Proof. Suppose that there exists some leaf ~W of F with V (~W)∩V (F) = ∅. Then simply removing
~W from W leaves a new collection of walks that visits all vertices in V (~H) and such that the union
of all walks is a strongly-connected subgraph of ~G. Thus after shortcutting all these walks we may
obtain a new single walk ~R that visits all vertices in V (~H) with cost ~G(~R) ≤ cost ~G(~WOPT) and with

fewer edges than ~WOPT, contradicting the choice of ~WOPT.

12 The dynamic program for traversing a vortex in a planar graph

For the remainder of this section let ~G be a n-vertex (0, 0, 1, p)-nearly embeddable graph (that is,
planar with a single vortex). Let ~H be the vortex in ~G and suppose it is attached on some face ~F .
Fix an optimal solution ~WOPT, that is a closed walk in ~G that visits all vertices in ~H minimizing
cost ~G(~W); if there are multiple such walks pick consistently one with a minimum number of edges.

Let F be the symmetrization of ~F . We present an algorithm for computing a walk traversing all
vertices in V (~H) based on dynamic programming. By Lemma 10.3 we may assume w.l.o.g. that ~G
is facially normalized and cross normalized.

Fix a path-decomposition {Bv}v∈V (F) of ~H of width p.

Let S be a collection of walks in ~G. For any v ∈ V (~G) we denote by in-degreeS(v) the number
of times that the walks in S enter v; similarly, we denote by out-degreeS(v) the number of times
that the walks in S exit v. We define ~G[S] to be the graph with V (~G[S]) =

⋃
W∈S V (W) and

E(~G[S]) =
⋃
W∈S E(W).

26

12.1 The dynamic program

Let P be the set of all subpaths of F , where we allow allow for simplicity in notation that a path
be closed. Let u, v be the endpoints of P . Let

~HP = ~H

 ⋃
x∈V (P)

Bx

 .
Let CP be the set of all possible partitions of Bu ∪ Bv. Let Din

P = {0, . . . , n}Bu∪Bv , Dout
P =

{0, . . . , n}Bu∪Bv , that is, every element of Din
P ∪ Dout

P is a function f : Bu ∪ Bv → {0, . . . , n}.
Let A = V (F)2.

12.1.1 The dynamic programming table

The dynamic programming table is indexed by all pairs (P, φ) where P ∈ P and

φ = (C, f in, fout, a, l, r, p) ∈ IP

where

IP = CP ×Din
P ×Dout

P × (A ∪ (A×A) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil).

A partial solution is a collection of walks in ~G.
We say that a partial solution S is compatible with (P, φ) if the following conditions are satisfied:

(T1) For every x ∈ V (~HP) there exists some walk in S that visits x. That is V (~HP) ⊆
⋃
Q∈S V (Q).

(T2) If a 6= nil and a ∈ A, let a = (u′, v′). Let Q1 be the shortest path from u′ to l in ~G. Let Q2

be the shortest path from l to r in ~G. Let Q3 be the shortest path from r to v′ in ~G. Let
Q∗1 be the walk from u′ to v′ obtained by the concatenation of Q1, Q2 and Q3. Then Q∗1 is a
sub-walk of some walk in S. We refer to Q∗ as the grip of S, and in this case we say that it
is an unbroken grip. If a ∈ V (P)2 then we say that the unbroken grip is closed and otherwise
we say that it is open. Otherwise, if a ∈ (A × A), let a = ((u′1, v

′
1), (u′2, v

′
2)). Let Q′1 be the

shortest path from u′1 to l in ~G. Let Q′2 be the shortest path from l to v′1 in ~G. Let Q∗2 be
the path from u′1 to v′1 obtained by the concatenation of Q′1 and Q′2. Let Q′′1 be the shortest
path from u′2 to r in ~G. Let Q′′2 be the shortest path from r to v′2 in ~G. Let Q∗3 be the path
from u′2 to v′2 obtained by the concatenation of Q′′1 and Q′′2. Then Q∗2 and Q∗3 are sub-walks
of some walks in S. We refer to (Q∗2, Q

∗
3) as the broken grip of S.

(T3) If a = nil or a ∈ A, then every open walk in S has both endpoints in Bu∪Bv, except possibly
for one walk W ∈ S that contains the grip as a sub-walk. If a = (Q1, Q2) ∈ (A × A), then
every open walk in S has both endpoints in Bu ∪ Bv, except possibly for at most two walks
W1,W2 ∈ S that contain Q1 and Q2 as sub-walks (note that Q1 and Q2 might be sub-walks
of the same walk in S).

(T4) For all x ∈ Bu ∪Bv we have

f in(x) = in-degreeS(x) and fout(x) = out-degreeS(x).

27

(T5) For any x, y ∈ Bu ∪ Bv we have that if x and y are in the same set of the partition C then
they are in the same weakly-connected component of

⋃
W∈SW . Moreover for any z ∈ V (~HP)

there exists z′ ∈ Bu ∩Bv such that z and z′ are in the same weakly-connected component of⋃
W∈SW .

12.1.2 Merging partial solutions

We compute the values of the dynamic programming table inductively as follows. Let P, P1, P2 ∈ P
such that E(P1) 6= ∅, E(P2) 6= ∅, E(P1) ∩ E(P2) = ∅, and P = P1 ∪ P2. Let u ∈ V (P1),
w ∈ V (P1) ∩ V (P2), v ∈ V (P2) such that u,w are the endpoints of P1 and w, v are the endpoints
of P2. Let

φ = (C, f in, fout, a, l, r, p) ∈ IP ,

φ1 = (C1, f
in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 ,

φ2 = (C2, f
in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

For any i ∈ {1, 2} let Si be a partial solution that is compatible with (Pi, φi). We proceed to
compute a collection of walks S that is compatible with (P, φ). This is done in phases, as follows:

Merging phase 1: Joining the walks. We check that for all x ∈ Bw we have f in1 (x) = fout2 (x)
and f in2 (x) = fout1 (x). If not then the merging procedure return nil. For any x ∈ Bw and for
any i ∈ {1, 2} let Ei(x)in (resp. Ei(x)out) be the multiset of all edges in all walks in Si that
are incoming to (resp. outgoing from) x counted with multiplicities. Since fout1 (x) = f in2 (x)
and fout2 (x) = f in1 (x) it follows that |E in

1 (x)∪E in
2 (x)| = |Eout

1 (x)∪Eout
2 (x)|. Pick an arbitrary

bijection σx : E in
1 (x)∪E in

2 → Eout
1 (x)∪Eout

2 (x). We initially set S = S1∪S2. For each x ∈ Bw
we proceed as follows. For each e ∈ E in(x)

1 ∪ E in
2 (x) we modify the walk traversing e so that

immediately after traversing e it continues with the walk traversing σx(e) ∈ Eout
1 ∪ Eout

2 .

Merging phase 2: Updating the grip. We check that at least one of the following conditions
is satisfied:

(1) Suppose that a = l = r = p = a1 = l1 = r1 = p1 = a2 = l2 = r2 = p2 = nil. Then there
is nothing to do.

(2) Suppose that a1 = l1 = r1 = p1 = nil, l = l2, r = r2, p = p2 and a = a2 = (u∗2, v
∗
2) ∈ A

with {u∗2, v∗2} ∩ V (P1) ⊆ {u,w}, or a2 = l2 = r2 = p2 = nil, l = l1, r = r1, p = p1 and
a = a1 = (u∗1, v

∗
1) ∈ A with {u∗1, v∗1} ∩ V (P2) ⊆ {w, v}. Then there is nothing to do.

(3) Suppose that a1 6= nil, a2 6= nil, and a 6= nil. Suppose a1 = a2 = a = (u∗, v∗) ∈ A,
with a ∈ V (P1) × V (P2) or a ∈ V (P2) × V (P1). Suppose l1 = l2 = l, r1 = r2 = r and
p1 = p2 = p. Then we proceed as follows to ensure that (T2) holds. We may assume
w.l.o.g. that a ∈ V (P1)×V (P2) since the remaining case can be handled in a similar way.
Let Q∗ be the grip between u∗ and v∗ in ~G. It follows by (T2) that for any i ∈ {1, 2}
there exists a walk ~Wi ∈ Si that contains Q∗ as a sub-walk. It follows by the definition
of the merging phase 1 that for any i ∈ {1, 2} there exists ~W ′i ∈ S that contains Q∗ as
a sub-walk. We will modify S in order to ensure that (T2) holds. We remove Q∗ from
~W ′2 and we merge ~W ′1 with ~W ′2 \Q∗ (via concatenation).

28

(4) Suppose that a1, a2, a ∈ A. Suppose that a1 = (u∗1, v
∗
1), a2 = (u∗2, v

∗
2), a = (u∗, v∗), with

u∗ ∈ {u∗1, u∗2}, and v∗ ∈ {v∗1, v∗2}. Suppose that l1 = l, l2 = r2 = r and p1 = p2 = p, or
l2 = l, l1 = r1 = r and p1 = p2 = p, or l = r = p1 = p2 and l2 = r2, or l = r = p1 = p2

and l1 = r1. Then we proceed as follows to ensure that (T2) holds. We may assume
w.l.o.g. that a = (u∗2, v

∗
1), l1 = l, l2 = r2 = r and p1 = p2 = p since the other cases can

be handled in a similar way. For any i ∈ {1, 2} let Q∗i be the grip of Si. It follows by

(T2) that for any i ∈ {1, 2} there exists a walk ~Wi ∈ Si that contains Q∗i as a sub-walk.

It follows that for any i ∈ {1, 2} there exists ~W ′i ∈ S that contains Q∗i as a sub-walk.
We will modify S in order to ensure that (T2) holds. If a = a1 or a = a2 then there is
nothing left to do. Otherwise, let R′1 be the shortest path in ~G from u∗1 to r1. Let R′′1
be the shortest path in ~G from r1 to l2. Let R′′′1 be the shortest path in ~G from l2 to v∗2.
Let R∗1 be the path in ~G from u∗1 to v∗2 obtained by concatenation of R′1, R′′1 and R′′′1 .
Let R′2 be the shortest path in ~G from u∗2 to p. Let R′′2 be the shortest path in ~G from
p to l1. Let R′′′2 be the shortest path in ~G from l1 to v∗1. Let R∗2 be the path in ~G from
u∗2 to v∗1 obtained by concatenation of R′2, R′′2 and R′′′2 . We remove Q∗1 and Q∗2 from ~W ′1
and ~W ′2 and replace them by R∗1 and R∗2.

(5) Suppose that a1 = nil and a = a2 ∈ (A × A), or a2 = nil and a = a1 ∈ (A × A). Then
there is nothing to do.

(6) Suppose that a1 ∈ A, a2 ∈ A and a ∈ (A×A). Suppose a1 = (u1, v1), a2 = (u2, v2) and
a = ((u′, v′), (u′′, v′′)), with v′ ∈ {v1, v2} and u′′ ∈ {u1, u2}. We may assume w.l.o.g that
a = ((u′, v1), (u2, v

′′)). Suppose that l = l1 = r1, r = l2 = r2 and p = p1 = p2. For any
i ∈ {1, 2}, let Qi be the grip of Si. It follows by (T2) that for any i ∈ {1, 2} there exists
a walk ~Wi ∈ Si that contains Qi as a sub-walk. It follows that for any i ∈ {1, 2} there
exists ~W ′i ∈ S that contains Qi as a sub-walk. Let Q′1 be the shortest path in ~G from u1

to l1. Let Q′2 be the shortest path in ~G from l1 to l2. Let Q′3 be the shortest path in ~G
from l2 to v2. Let Q∗1 be the path in ~G from u1 to v2 obtained by concatenation of Q′1,
Q′2 and Q′3. Let Q′′1 be the shortest path in ~G from u′ to l1. Let Q′′2 be the shortest path
in ~G from l1 to v1. Let Q∗2 be the path in ~G from u′ to v1 obtained by concatenation of
Q′′1 and Q′′2. Let Q′′′1 be the shortest path in ~G from u2 to l2. Let Q′′′2 be the shortest path
in ~G from l2 to v′′. Let Q∗3 be the path in ~G from u2 to v′′ obtained by concatenation
of Q′′′1 and Q′′′2 . Then we remove Q1 and Q2 from ~W ′1 and ~W ′2, and replace them by Q∗1,
Q∗2 and Q∗3.

29

(7) Suppose that a1 ∈ (A × A), a2 ∈ A and a ∈ (A × A), or a1 ∈ A, a2 ∈ (A × A) and
a ∈ (A×A). We may assume w.l.o.g that a1 ∈ (A×A), a2 ∈ A and a ∈ (A×A). Suppose
that a1 = ((u1, v1), (u′1, v

′
1)), a2 = (u2, v2) and a = ((u, v), (u′, v′)), with (u, v) = (u1, v1),

u′ ∈ {u1, u2}, and v′ ∈ {v1, v2}, or (u, v) = (u2, v2), u′ ∈ {u1, u2}, and v′ ∈ {v1, v2}. We
may assume w.l.o.g that (u, v) = (u1, v1) and (u′, v′) = (u2, v

′
1). Suppose that l = l1,

r = l2 = r2 and p = p1 = p2. Let (Q1, Q
′
1) be the grip of S1 and let Q2 be the grip of

S2. Let R1 be the shortest path in ~G from u′1 to r1. Let R2 be the shortest path in ~G
from r1 to r2. Let R3 be the shortest path in ~G from r2 to v2. Let R′ be the path in ~G
from u′1 to v2 obtained by concatenation of R1, R2 and R3. Let R′1 be the shortest path
in ~G from u2 to r2. Let R′2 be the shortest path in ~G from r2 to v′1. Let R′′ be the path
in ~G from u2 to v′1 obtained by concatenation of R′1 and R′2. Then we remove Q′1 and
Q2, and replace them by R′ and R′′.

If none of the above holds then the merging procedure returns nil.

Merging phase 3: Checking connectivity. We check that condition (T5) holds for S and we
return nil if it does not.

Lemma 12.1. If the merging procedure outputs some partial solution S then S is compatible with
φ.

Proof. It follows immediately by the definition of compatibility.

12.1.3 Initializing the dynamic programming table

For all P ∈ P containing at most one edge and for all φ ∈ IP with φ = (C, f in, fout, a, l, r, p) we
proceed as follows. We enumerate all partial solutions S that are compatible with (P, φ) and have
minimum cost. Any walk in any such partial solution can intersect ~G \ ~H only on the at most two
oppositely-directed edges in E(P). Moreover there are at most O(n7) possibilities for a, l, r and
p. Thus the enumeration can clearly be done in time nO(1) by ensuring that for all walks W ∈ S,
their sub-walks that do not intersect E(P) are shortest paths between vertices in Bu ∪ Bv. The
total running time of this initialization step is therefore nO(p).

12.1.4 Updating the dynamic programming table

For all P ∈ P containing m > 1 edges, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅ and P1 ∪ P2 = P , and for all φ1 ∈ IP1 and φ2 ∈ IP2 we proceed as follows.
Suppose that for all paths P ′ containing m′ < m edges and all φ′ ∈ IP ′ we have computed the
partial solutions in the dynamic programming table at (P ′, φ′). If there exist partial solutions

30

Figure 1: Example of a basic path.

S1 and S2 at (P1, φ1) and (P2, φ2) respectively, we call the merging process to merge S1 and S2.
Suppose that the merging process returns a partial solution S at (P, φ) for some φ ∈ IP . If there
is no partial solution stored currently at (P, φ) then we store S at that location. Otherwise if there
there exists a partial solution S ′ stored at (P, φ) and the cost of S is smaller than the cost of S ′
then we replace S ′ with S.

12.2 Analysis

Let W be the collection of walks given by Lemma 11.2. Let W ′ be the shadow of W. Let F be the
forest obtained by Lemma 11.3. For every connected component T of F pick some vT ∈ V (T) and
consider T to be rooted at vT .

Let ~G′ be the planar piece of ~G, that is ~G′ = ~G \ (V (~H) \ (~F)). Fix some planar drawing ψ of
G′. Let D be the disk with ∂D = ψ(F) with ψ(~G) ⊂ D.

Let P ∈ P with endpoints u, v, and let T be a subtree of some tree in F . We say that P covers
T if for all D ∈ V (T) we have V (D)∩ V (F) ⊆ V (P). We say that P avoids T if for all D ∈ V (T)
we have V (D) ∩ V (P) ⊆ {u, v}.

Definition 12.2 (Basic path). Let P ∈ P. Let u, v ∈ V (P) be the endpoints of P . We say that P
is basic (w.r.t. W) if either P \{u, v} does not intersect any of the walks in W (in this case we call
P empty basic) or the following holds. There exists some tree T in F and some D ∈ V (T), with
children D1, . . . , Dk, intersecting D in this order along a traversal of D, such that the following
conditions are satisfied (see Figure 1):

(1) For any i ∈ {1, . . . , k}, let TDi be the subtree of T rooted at Di and let TD be the subtree of T
rooted at D. Then at least one of the following two conditions is satisfied:

(1-1) P covers TD and avoids T \ TD.

(1-2) There exists j ∈ {1, . . . , k} such that for all l ≤ j, P covers TDl
and P avoids TD \⋃j

m=1 TDm.

(2) Let T ′ be a tree in F with T ′ 6= T . Then either P covers T ′ or P avoids T ′.

31

Figure 2: Part of the collection of walks in W (left) and the corresponding P -facial restriction of
W depicted in bold (right).

Definition 12.3 (Facial restriction). Let P ∈ P be basic. Let W ′ be the collection of walks
obtained by restricting every W ∈ W on HP . If P is empty, we say that W ′ is the P -facial
restriction of W. Suppose that P is not empty. Let T , D, TD, k and j be as in Definition
12.2. Let F ′ = {T ′ ∈ F : P covers T ′} and let R =

⋃
T ′∈F ′ V (T ′). If P covers TD and avoids

T \ TD, we say that R ∪ W ′ ∪ V (TD) is the P -facial restriction of W. Otherwise, we say that
R ∪W ′ ∪ {D} ∪

⋃j
i=1 V (TDi) is the P -facial restriction of W. Figure ?? depicts an example of a

P -facial restriction.

Definition 12.4 (Important walk). Let P ∈ P be a basic path. Let W ′ be the P -facial restriction
of W. Let W ′′ be the shadow of W ′. Let Q be a walk in G[W ′′]. We say that Q is P -important
(w.r.to. W) if the following conditions hold:

(1) Both endpoints of Q are in V (P).

(2) Q is the concatenation of walks Q1, . . . , Q` such that for each i ∈ {1, . . . , `} there exists
some Wi ∈ W such that Qi is a sub-walk of Wi, and for each j ∈ {1, . . . , ` − 1} we have
{Wj ,Wj+1} ∈ E(F).

Proposition 12.5. For any u, v ∈ V (P), there exists at most one P -important walk from u to v.

Proof. It follows immediately by the fact that F is a forest.

Lemma 12.6. Let P ∈ P be basic w.r.t. W with endpoints u, v ∈ V (F), where u = v if P is
closed. Let WP be the P -facial restriction of W. Let Γ =

⋃
~W∈WP

~W . Let C be the partition
of Bu ∪ Bv that corresponds to the weakly-connected components of Γ. For any x ∈ Bu ∪ Bv let
f in(x) = in-degreeWP

(x) and fout(x) = out-degreeWP
(x). Then there exists some a ∈ A∪(A×A)∪nil

and l, r, p ∈ (V (~G) ∪ nil) such that the dynamic programming table contains some partial solution
S at location (P, (C, f in, fout, a, l, r, p)), such that cost ~G(S) ≤ cost ~G(WP).

Proof. Let us first assume that F contains only one tree. We will deal with the more general case
later on. First suppose that P is an empty basic path. Let P = x1, x2, . . . , xm, where x1 = u and
xm = v. We will prove the assertion by induction on m. For the base case, suppose that m = 2, and

32

thus P contains only one edge. Let a = l = r = p = nil. In this case, a partial solution S at location
(P, (C, f in, fout, a, l, r, p)) is computed in the initialization step of the dynamic programming table
and clearly we have cost ~G(S) ≤ cost ~G(WP) and we are done. Now suppose that m > 2 and we have
proved the assertion for all m′ < m. We first decompose P into two edge-disjoint paths P1 and P2,
such that V (P1)∩V (P2) = w for some 1 < j < m and w = xj . For i ∈ {1, 2} letWPi be the Pi-facial

restriction of ~WOPT and let Γi =
⋃
~W∈WPi

~W . Let C1 be the partition of Bu ∪Bw that corresponds

to the weakly-connected components of Γ1 and let C2 be the partition of Bw ∪Bv that corresponds
to the weakly-connected components of Γ2. For any x ∈ Bu ∪ Bw let f in1 (x) = in-degreeWP1

(x)

and fout1 (x) = out-degreeWP1
(x). Also for any x ∈ Bw ∪ Bv let f in2 (x) = in-degreeWP2

(x) and

fout2 (x) = out-degreeWP2
(x). By the induction hypothesis, there exists partial solutions S1 and

S2 that are compatible with (P1, (C1, f
in
1 , f

out
1 , nil, nil, nil, nil)) and (P2, (C2, f

in
2 , f

out, nil, nil, nil, nil))
respectively, and we have cost ~G(S1) ≤ cost ~G(WP1), cost ~G(S2) ≤ cost ~G(WP2). The dynamic program
will merge S1 and S2 to get the desired S. Note that by the construction, for every x ∈ Bw we have
f in1 (x) = fout2 (x) and f in2 (x) = fout1 (x). Therefore, by the first merging phase, we can merge walks in
S1 and S2. Also, we let a = l = r = p = nil and we proceed the second phase of merging. Finally, by
the construction and definition of P -facial restriction, (T5) holds and the merging process returns
a partial solution S compatible with (P, (C, f in, fout, a, l, r, p)) with cost ~G(S) ≤ cost ~G(WP), as
desired.

Now suppose that P is not empty basic. Let T , D, TD, k and j be as in Definition 12.2. We
will prove the assertion by induction on T . For the base case, suppose that D is a leaf of T .
Suppose that P = x1, x2, . . . , xm for some m > 0, where x1 = u and xm = v, and D is a (possibly
closed) walk from xi ∈ V (P) to xj ∈ V (P). We may assume w.l.o.g. that i ≤ j. There are some
possible cases here based on i and j. First suppose that i > 1, j < m and j − i ≥ 3. In this
case, let P1 = x1, . . . , xi, P2 = xi, xi+1, P3 = xi+1, . . . , xj−1, P4 = xj−1, xj and P5 = xj , . . . , xm.
Let P6 = P1 ∪ P2, P7 = P6 ∪ P3 and P8 = P7 ∪ P4. For i ∈ {1, 2, 3, 4, 5, 6, 7, 8} let WPi be the
Pi-facial restriction of ~WOPT and let Γi =

⋃
~W∈WPi

~W . We also define Ci, f
in
i and fouti as in the

previous case. Note that P1, P3 and P5 are empty basic paths. We let a1 = a3 = a5 = nil,
l1 = l3 = l5 = nil, r1 = r3 = r5 = nil, p1 = p3 = p5 = nil and thus we can find partial solutions
S1, S3 and S5 compatible with (P1, (C1, f

in
1 , f

out
1 , a1, l1, r1, p1)), (P3, (C3, f

in
3 , f

out
3 , a3, l3, r3, p3)) and

(P5, (C5, f
in
5 , f

out
5 , a5, l5, r5, p5)) respectively. We also have cost ~G(S1) ≤ cost ~G(WP1), cost ~G(S3) ≤

cost ~G(WP3) and cost ~G(S5) ≤ cost ~G(WP5). Let a2 = a4 = a6 = a7 = a8 = (xi, xj). If D does not
have a parent in T , then we let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 = p2 = p4 =
p6 = p7 = p8 ∈ V (D) to be an arbitrary vertex of D. Otherwise, suppose that D has a parent D′

in T . If D′ does not have a parent in T , then we let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 =
r7 = r8 = p2 = p4 = p6 = p7 = p8 ∈ V (D) ∩ V (D′). Otherwise, suppose that D′ has a parent
D′′ in T . In this case, we let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 ∈ V (D) ∩ V (D′)
and p2 = p4 = p6 = p7 = p8 ∈ V (D′) ∩ V (D′′). Therefore, by computing the initialization step,
we can find a partial solution S2 compatible with (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)) and a partial

solution S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)), and we have cost ~G(S2) ≤ cost ~G(WP2)

and cost ~G(S4) ≤ cost ~G(WP4). Now by merging S1 and S2, we get a partial solution S6 compatible
with (P6, (C6, f

in
6 , f

out
6 , a6, l6, r6, p6)). By merging S6 and S3, we get a partial solution S7 compatible

with (P7, (C7, f
in
7 , f

out
7 , a7, l7, r7, p7)). By merging S7 and S4, we get a partial solution S8 compatible

with (P8, (C8, f
in
8 , f

out
8 , a8, l8, r8, p8)), and finally by merging S8 and S5, we get the desired partial

solution S compatible with (P, (C, f in, fout, a, l, r, p)) with cost ~G(S) ≤ cost ~G(WP). If i = 1 or

33

j = m, we will follow a similar approach. The only different is that instead of dividing P into five
paths, we divide it into four paths. Finally, the last case is when j− i < 3. In this case, if i 6= j, we
define the same subpaths P1, P2, P4 and P5, and we follow a similar approach. Otherwise, suppose
that i = j. In this case, we let P1 = x1, . . . , xi and P2 = xi, . . . , xm and by following the same
approach by mering two partial solutions, we get the desired S.

Now suppose that D ∈ V (T) is non-leaf. In this case, we prove the assertion by induction on
j, where j comes from Definition 12.2. Note that we perform a second induction inside the first
induction. For the base case, suppose that j = 1. In this case, D1 is a child of D and P covers
TD1 and avoids TD \ TD1 . Therefore, by using the first induction hypothesis on D1, there exists
a ∈ A∪(A×A)∪nil and l, r, p ∈ V (~G)∪nil such that the dynamic programming table contains some
partial solution S at location (P, (C, f in, fout, a, l, r, p)) with cost ~G(S) ≤ cost ~G(WP). Now for the
same a, l, r, p and S, we have that S is compatible with (P, (C, f in, fout, a, l, r, p)), as desired. Now
suppose that we have proved the assertion for all 1 ≤ j′ < j. By Definition 12.2, there exists a basic
path P1 ⊆ P , where u is the first vertex of P1, such that for all l ≤ j − 1, P1 covers TDl

and avoids

TD \ (
⋃j−1
m=1 TDm). Also there exists a basic path P2 ⊆ P , where v is the last vertex of P2, such that

P2 covers TDj and avoids T \TDj . Let u′ ∈ V (F) and v′ ∈ V (F) be the other endpoints of P1 and P2

respectively. Let P3 ∈ P be the path between u′ and v′ that does not contain v and let P4 = P1∪P3.
By the construction, P3 and P4 are basic. For i ∈ {1, 2, 3, 4}, let WPi be the Pi-facial restriction
of ~WOPT and let Γi =

⋃
~W∈WPi

~W . Let C1, C2, C3 and C4 be the partitions of Bu ∪Bu′ , Bv′ ∪Bv,
Bu′ ∪Bv′ and Bu ∪Bv′ that corresponds to the weakly connected components of Γ1, Γ2, Γ3 and Γ4

respectively. For any x ∈ Bu ∪ Bu′ let f in1 (x) = in-degreeWP1
(x) and fout1 (x) = out-degreeWP1

(x),

for any x ∈ Bv′ ∪ Bv let f in2 (x) = in-degreeWP2
(x) and fout2 (x) = out-degreeWP2

(x), for any x ∈
Bu′ ∪ Bv′ , let f in3 (x) = in-degreeWP3

(x) and fout3 (x) = out-degreeWP3
(x), and for any x ∈ Bu ∪ Bv′

let f in4 (x) = in-degreeWP4
(x) and fout4 (x) = out-degreeWP4

(x). By the second induction hypothesis,

there exists some a1 ∈ A ∪ (A × A) ∪ nil and l1, r1, p1 ∈ V (~G) ∪ nil, such that the dynamic
programming table contains some partial solution S1 at location (P1, (C1, f

in
1 , f

out, a1, l1, r1, p1)),
with cost ~G(S1) ≤ cost ~G(WP1). Also by the first induction hypothesis, there exists some a2 ∈
A ∪ (A × A) ∪ nil and l2, r2, p2 ∈ V (~G) ∪ nil, such that the dynamic programming table contains
some partial solution S2 at location (P2, (C2, f

in
2 , f

out, a2, l2, r2, p2)), with cost ~G(S2) ≤ cost ~G(WP2).
Let a3 = l3 = r3 = p3 = nil. Let a4 = a1, l4 = l1, r4 = r1 and p4 = p1. Since P3 is basic, there
exists a partial solution S3 compatible with (P3, (C3, f

in
3 , f

out
3 , a3, l3, r3, p3)). Now we merge S1 and

S3 to get a partial solution S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)). Note that for every

x ∈ Bu′ , we have f in3 (x) = fout1 (x) and fout3 (x) = f in1 (x). Therefore, we can apply the first merging
phase. Also we have a4 = a1, l4 = l1, r4 = r1 and p4 = p1, and thus we can apply the second
merging phase. Finally, by the construction (T5) holds and we get a partial solution S4 compatible
with (P4, (C4, f

in
4 , f

out
4 , a4, l4, r4, p4)). Now, we merge two partial solutions S4 and S2 to get the

desired S. Clearly, for every x ∈ Bv′ we have f in4 (x) = fout2 (x) and fout4 (x) = f in2 (x). Therefore,
we can apply the first phase of merging. If a2 = l2 = r2 = p2 = a4 = l4 = r4 = p4 = nil, then
we let a = l = r = p = nil. Otherwise, if a4 = l4 = r4 = p4 = nil and a2 = (u∗2, v

∗
2) ∈ A with

{u∗2, v∗2} ∩ V (P4) ⊆ {u, v′}, then we let a = a2, l = l2, r = r2 and p = p2. If a2 = l2 = r2 = p2 = nil
and a4 = (u∗4, v

∗
4) with {u∗4, v∗4} ∩ V (P2) ⊆ {v′, v}, then we let a = a4, l = l4, r = r4 and p = p4.

Otherwise, if a2 6= nil, a4 6= nil, a4 = a2, l4 = l2, r4 = r2 and p4 = p2, then we let a = a4, l = l4,
r = r4 and p = p4. Otherwise, if a2 = (u∗2, v

∗
2) ∈ A, a4 = (u∗4, v

∗
4) ∈ A, l4 = r4 and p1 = p2, then

we let a = (u∗, v∗), where u∗ ∈ {u∗2, u∗4} and v∗ ∈ {v∗2, v∗4}, l = l2, r = r4 and p = p2. Otherwise, if

34

a2 = nil and a4 ∈ (A × A), then we let a = a4, l = l4, r = r4 and p = p4. Otherwise, if a4 = nil
and a2 ∈ (A×A), then we let a = a2, l = l2, r = r2 and p = p2. Otherwise, if a2 = (u∗2, v

∗
2) ∈ A,

a4 = (u∗4, v
∗
4) ∈ A, l2 = r2, l4 = r4 and p2 = p4, then we let a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v2, v4}

and u′′ ∈ {u2, u4}, l = l2, r = r2 and p = p2. Otherwise, if a4 = ((u4, v4), (u′4, v
′
4)) ∈ (A × A),

a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then we let a = ((u4, v4), (u2, v
′
4)), l = l4, r = r2 and p = p2.

Therefore, after applying the second merging phase, we get a partial solution S compatible with
(P, (C, f in, fout, a, l, r, p)).

Now we have to show that cost ~G(S) ≤ cost ~G(WP). Let us first suppose that D is a closed
walk. We will deal with the case where D is an open walk later on. If a2 = l2 = r2 = p2 = nil or
a4 = l4 = r4 = p4 = nil, then this is immediate. If a2 = a4, l2 = l4, r2 = r4 and p2 = p4, then
we have a = a2, l = l2, r = r2 and p = p2, and thus this case is also immediate. Suppose that
a2 = (u∗2, v

∗
2) 6= nil, a4 = (u∗4, v

∗
4) 6= nil, l4 = r4 and p1 = p2, and a = (u∗, v∗), where u∗ ∈ {u∗2, u∗4}

and v∗ ∈ {v∗2, v∗4}. We may assume w.l.o.g that a = (u∗2, v
∗
4). We have that l = l2, r = r4 and p = p2.

For i ∈ {2, 4} let Q∗i be the grip of Si, and let ~Wi ∈ Si that contains Q∗i as a sub-walk. Let Y1 be

the shortest-path in ~G from u∗2 to l2. Let Y2 be the shortest-path in ~G from l2 to l4. Let Y3 be the
shortest-path in ~G from l4 to v∗4. Let R∗1 be the path in ~G from u∗2 to v∗4 obtained by concatenation
of Y1, Y2 and Y3. Let Y ′1 be the shortest-path in ~G from u∗4 to r4. Let Y ′2 be the shortest-path
in ~G from r4 to l2. Let Y ′3 be the shortest-path in ~G from l2 to v∗2. Let R∗2 be the path in ~G
from u∗4 to v∗2 obtained by concatenation of Y ′1 , Y ′2 and Y ′3 . Now by the construction, we have that
cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(R∗1) + cost ~G(R∗2)− cost ~G(Q∗2)− cost ~G(Q∗4). Note that by
the construction, there exists a P -important walk from u∗2 to v∗4 (w.r.t.W) and a P -important walk
from u∗4 to v∗2 (w.r.t. W). By Proposition 12.5 these walks are unique. Let R′1 be the P -important
walk from u∗2 to v∗4 (w.r.t. W) and let R′2 be the P -important walk from u∗4 to v∗2 (w.r.t. W). Also,
there exists a P2-important walk from u∗2 to v∗2 (w.r.t. W) and a P4-important walk from u∗4 to
v∗4 (w.r.t. W), and thus by Proposition 12.5 these walks are unique. Let Q′2 be the P2-important
walk from u∗2 to v∗2 (w.r.t. W) and let Q′4 be the P4-important walk from u∗4 to v∗4 (w.r.t. W). By
the definition of important walks, we have that cost ~G(R∗1) ≤ cost ~G(R′1), cost ~G(R∗2) ≤ cost ~G(R′2),
cost ~G(Q∗2) ≤ cost ~G(Q′2) and cost ~G(Q∗4) ≤ cost ~G(Q′4). Also by the construction, we have that
cost ~G(R′1) + cost ~G(R′2) = cost ~G(Q′2) + cost ~G(Q′4). Therefore, we have

cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(R∗1) + cost ~G(R∗2)− cost ~G(Q∗2)− cost ~G(Q∗4)

≤ cost ~G(S2) + cost ~G(S4) + cost ~G(R′1) + cost ~G(R′2)− cost ~G(Q∗2)− cost ~G(Q∗4)

= (cost ~G(S2)− cost ~G(Q∗4)) + (cost ~G(S4)− cost ~G(Q∗2)) + cost ~G(R′1) + cost ~G(R′2)

≤ cost ~G(WP1) + cost ~G(WP2)

= cost ~G(WP).

Now suppose that D is an open walk. If a2 = nil and a4 ∈ (A×A), or a4 = nil and a2 ∈ (A×A),

35

then this is immediate. If a2 = (u∗2, v
∗
2) ∈ A, a4 = (u∗4, v

∗
4) ∈ A, l2 = r2, l4 = r4 and p2 = p4,

then we have a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v∗2, v∗4} and u′′ ∈ {u∗2, u∗4}. We may assume
w.l.o.g that v′ = v∗2 and u′′ = u∗4. Then we have l = l2, r = r2 and p = p2. Let R1 be the
shortest-path in ~G from u′ to l2. Let R2 be the shortest-path in ~G from l1 to v′. Let R′ be the
path from u′ to v′ obtained by the concatenation of R1 and R2. Let Y1 be the shortest path
in ~G from u′′ to l4. Let Y2 be the shortest path in ~G from l4 to v′′. Let Y ′ be the path from
u′′ to v′′ obtained by the concatenation of Y1 and Y2. Let Z1 be the shortest path in ~G from
u∗2 to l2. Let Z2 be the shortest path in ~G from l2 to l4. Let Z3 be the shortest path in ~G
from l4 to v∗4. Let Z ′ be the path from u∗2 to v∗4 obtained by the concatenation of Z1, Z2 and
Z3. Let Q∗2 be the grip of S2 and let Q∗4 be the grip of S4. By the construction, we have that
cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(R′) + cost ~G(Y ′) + cost ~G(Z ′)− cost ~G(Q∗2)− cost ~G(Q∗4). By
the construction, there exists a P -important walk from u∗2 to v∗4, a P -important walk from u′ to
v∗2, and a P -important walk from u∗4 to v′′. Therefore by Proposition 12.5, these important walks
are unique. Let R′′, Y ′′ and Z ′′ be the important walks from u′ to v′, u′′ to v′′, and u∗2 to v∗4
respectively. Therefore, we have that

cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(R′) + cost ~G(Y ′) + cost ~G(Z ′)− cost ~G(Q∗2)− cost ~G(Q∗4)

≤ cost ~G(S2) + cost ~G(S4) + cost ~G(R′′) + cost ~G(Y ′′) + cost ~G(Z ′′)− cost ~G(Q∗2)− cost ~G(Q∗4)

≤ cost ~G(WP1) + cost ~G(WP2)

= cost ~G(WP).

If a4 = ((u4, v4), (u′4, v
′
4)) ∈ (A × A), a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then we

have a = ((u4, v4), (u2, v
′
4)), l = l4, r = r2 and p = p2. Let (Q∗4, Q

∗∗
4) be the grip of S4, and

let Q∗2 be the grip of S2. We may assume w.l.o.g that Q∗4 is a path from u4 to v4, and Q∗∗4 is
a path from u′4 to v′4. Let Y1 be the shortest path in ~G from u2 to l2. Let Y2 be the shortest
path in ~G from l2 to v′4. Let Y ′ be the path from u2 to v′4 obtained by the concatenation of
Y1 and Y2. Let Z1 be the shortest path in ~G from u′4 to r4. Let Z2 be the shortest path in
~G from r4 to l2. Let Z3 be the shortest path in ~G from l2 to v2. Let Z ′ be the path from
u′4 to v2 obtained by the concatenation of Z1, Z2 and Z3. By the construction, we have that
cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(Y ′) + cost ~G(Z ′) − cost ~G(Q∗2) − cost ~G(Q∗∗4). By the
construction, there exists a P -important walk from u′4 to v2, and a P -important walk from u2

to v′4. Therefore by Proposition 12.5, these important walks are unique. Let Y ′′ and Z ′′ be the
important walks from u2 to v′4, and u′4 to v2 respectively. Therefore we have

cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(Y ′) + cost ~G(Z ′)− cost ~G(Q∗2)− cost ~G(Q∗∗4)

≤ cost ~G(S) = cost ~G(S2) + cost ~G(S4) + cost ~G(Y ′′) + cost ~G(Z ′′)− cost ~G(Q∗2)− cost ~G(Q∗∗4)

≤ cost ~G(WP1) + cost ~G(WP2)

= cost ~G(WP).

Now suppose that F contains more than one tree. Let A = {T1, . . . , Tm} be the set of all trees
in F . For every T ∈ A we define the level of T , L(T), as follows. Let D be the root of T . We
set L(T) = 0, if there exists a basic path P ′ that covers T and avoids all T ′ ∈ F \ {T }. We call
a minimal such path, a corresponding basic path for T and we denote it by PT ; it is immediate

36

that there is a unique such minimal path. Let F0 = {T ∈ F : L(T) = 0}. Now for i ≥ 0, suppose
that we have defined trees of level i and Fi. Suppose that L(T) /∈ {0, . . . , i}. We set L(T) = i+ 1
if there exists a basic path P ′ that covers T such that for all T ′ ∈

⋃i
j=0Fj , P ′ either avoids or

covers T ′, and for all T ′′ ∈ (F \ {T }) \
⋃i
j=0Fj , P ′ avoids T ′′. We also call a minimal such path

corresponding basic for T and we denote it by PT . Let Fi+1 = {T ∈ F : L(T) = i+ 1}.
We say that some T ∈ F is outer-most if there is no T ′ ∈ F such that L(T ′) > L(T) and

PT ⊂ PT ′ .
Let us first suppose that there exists only one outer-most tree T ∈ F , such that PT ⊆ P . We

will deal with the more general case later. Also, suppose that T ∈ Fm for some m ≥ 0. We will
prove the assertion by induction on m. We also prove that for this case, we have a = l = r = p = nil.
For the base case, if m = 0, then by the construction, T is the only tree with a corresponding basic
path PT ⊆ P . For this case, we have already established the assertion and we are done. Now
suppose that we have proved the assertion for all m′ < m. Let F ′ = F \ {T }. Let T1, . . . , Tt ∈ F ′
be all outer-most trees in F ′, such that for j ∈ {1, . . . , t} we have PTj ⊆ P , and they intersect F in
this order. By the construction, for every j ∈ {1, . . . , t} we have L(Tj) < m. For every j ∈ {1, . . . , t}
let PTj be a corresponding basic path for Tj . By the induction hypothesis, for every j ∈ {1, . . . , t}
there exists a partial solution Sj for PTj . Now, we can apply the same argument when we had only
one tree T ∈ F for T . Note that for each j ∈ {1, . . . , t}, we have aj = lj = rj = pj = nil. The
only difference is that the intermediate basic paths here are not necessarily empty basic paths, and
each Tj appears as an intermediate basic path, with a partial solution Sj . Therefore, by following
a similar approach to the previous cases and merging appropriately we get a partial solution S, as
desired.

Now, suppose that there exist more than one outer-most trees T ∈ F , where PT ⊆ P . Let
B = {T1, . . . , Tt} be the set of all such trees, where they intersect consecutive subpaths of P in this
order. In this case, we prove the assertion by induction on t. For the base case where t = 1, we
have already proved the assertion. Now suppose that we have proved the assertion for all t′ < t.
Let B′ = {T1, . . . , Tt−1}. Let P ′ ⊆ P be the subpath of P such that B′ is the set of all outer-most
trees, with PTj ⊆ P ′ for all 1 ≤ j ≤ t − 1. By the induction hypothesis, there exists a partial
solution S ′ for P ′. Let P ′′ = P ⊆ P ′. By the construction, P ′′ is a corresponding basic path for
Tt, and thus by the induction hypothesis, there exists a partial solution S′′ for P ′′. Therefore, by
merging S ′ and S ′′ we get a partial solution S for P , as desired.

Theorem 12.7. Let ~G be an n-vertex (0, 0, 1, p)-nearly embeddable graph (that is, planar with a
single vortex) and let ~H be the vortex of ~G. Then there exists an algorithm which computes a walk
~W visiting all vertices in V (~H) of total length OPT ~G(V (~H)) in time nO(p).

37

Proof. We have F ∈ P and it is immediate to check that F is basic. Since F is a cycle, both
the endpoitns of F are some vertex v◦. It follows by Lemma 12.6 that there exists some φ ∈ IF
such that the dynamic programming table contains a partial solution S at location (F, φ). Let
φ = (C, f in, fout, a, l, r, p). It follows by condition (T4) that for all x ∈ Bv◦ we have in-degreeS(x) =
out-degreeS(x). Thus by repeatedly merging pairs of walks that respectively terminate to and start
from the same vertex, we obtain a collection S ′ of closed walks with cost ~G(S ′) = cost ~G(S) that visit

all vertices in V (~H). By Lemma 11.3 we can assume that C is the trivial partition containing only
one cluster, that is C = {{Bv◦}}. Since C is trivial, it follows by (T5) that all vertices in V (~H)
are in the same weakly-connected component of

⋃
W∈SW . Thus all vertices in V (~H) are in the

same strongly-connected component of
⋃
W∈S′W . Since all walks in S ′ are closed, by repeatedly

shortcutting pairs of intersecting walks, we obtain a walk ~W with that visits all vertices in V (~H)
with cost ~G(~W) = cost ~G(S ′) = cost ~G(S) ≤ cost ~G(~WOPT) = OPT ~G.

The running time is polynomial in the size of the dynamic programming table, which is at most
|P| ·maxP∈P |IP | = O(n2) · pO(p) · nO(p) ·O(n2) = nO(p).

13 The dynamic program for traversing a vortex in a bounded
genus graph

For the remainder of this section let ~G be a n-vertex (0, g, 1, p)-nearly embeddable graph. Let ~H
be the vortex in ~G, attached to some face ~F . Let ~G′ = ~G \ (V (~H) \ (~F)) and fix some embedding ψ
of ~G′ on a surface S of genus g. Let F be the symmetrization of ~F . Let ~WOPT be a closed walk in
~G that visits all vertices in ~H with minimum cost ~G(~W). Fix a path-decomposition {Bv}v∈V (F) of
~H of width p. We present a similar algorithm as in Section 12 for computing a walk traversing all
vertices in V (~H) based on dynamic programming. By Lemma 10.3 we may assume w.l.o.g. that ~G
is facially normalized and cross normalized.

13.1 The dynamic program

Let Q be the set of all subpaths of F , where we allow a path to be closed. For every integer m, let

Pm = {A ⊆ Q : |A| ≤ m, for every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}.

And let
P∞ = {A ⊆ Q : For every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}.

For every P = {Q1, . . . , Qm} ∈ P∞, let E(P) =
⋃m
i=1E(Qi) and let V (P) =

⋃m
i=1 V (Qi). For each

i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Similar to the planar case, let

~HP = ~H

 ⋃
x∈V (P)

Bx

 .
Let B =

⋃m
i=1(Bui ∪ Bvi). Let CP be the set of all possible partitions of B. Let Din

P = {0, . . . , n}B,
Dout
P = {0, . . . , n}B, that is, every element of Din

P ∪ Dout
P is a function f : B → {0, . . . , n}.

38

13.1.1 The dynamic programming table.

Let P = P324000g4 . With these definitions, the dynamic programming table is indexed the exact

same way as in the planar case. Also, a partial solution is again a collection of walks in ~G.
We say that a partial solution S is compatible with (P, φ) if the same conditions (T1)-(T5) as

in the planar case are satisfied. The only difference here is that instead of Bu ∪Bv, we have B.

Merging partial solutions. We follow a similar approach as in the planar case. Let P =
{Q1, . . . , Qm}, P1 = {Q′1, . . . , Q′m′}, P2 = {Q′′1, . . . , Q′′m′′} ∈ P such that E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅, and E(P) = E(P1) ∪ E(P2). Let φ = (C, f in, fout, a, l, r, p) ∈ IP , φ1 =
(C1, f

in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 , φ2 = (C2, f

in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

Let S1 and S2 be partial solutions compatible with (P1, φ1) and (P2, φ2) respectively. Similar
to the planar case, we compute a partial solution S compatible with (P, φ) as follows.

Merging phase 1: Joining the walks. For every w ∈ V (P1) ∩ V (P2), we check that for all
x ∈ Bw we have f in1 (x) = fout2 (x) and f in2 (x) = fout1 (x). If not then the merging procedure
returns nil. Otherwise, for every w ∈ V (P1) ∩ V (P2) and every x ∈ Bw, we follow the exact
same approach as in the planar case.

Merging phase 2: Updating the grip. This phase is exactly the same as in the planar case.

Merging phase 3: Checking connectivity. Similar to the planar case, we check that condition
(T5) holds for S and we return nil if it does not.

13.1.2 Initializing the dynamic programming table.

For all P ∈ P1 with |E(P)| ≤ 1, we follow the same approach as in the planar case.

13.1.3 Updating the dynamic programming table.

For all P ∈ P with |E(P)| > 1, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅, E(P1)∩E(P2) = ∅
and E(P1)∪E(P2) = E(P), and for all φ1 ∈ IP1 and φ2 ∈ IP2 we proceed as follows. Suppose that
for all P ′ ∈ P with |E(P ′)| < |E(P)| and all φ′ ∈ IP ′ , we have computed the partial solutions in
the dynamic programming table at (P ′, φ′). Now similar to the planar case, if there exists partial
solutions S1 and S2 at (P1, φ1) and (P2, φ2) respectively, we call the merging process to (possibly)
get a partial solution S at (P, φ) for some φ ∈ IP . Now similar to the planar case, if there is no
partial solution at (P, φ) then we store S at (P, φ). Otherwise if there there exists a partial solution
S ′ stored at (P, φ) and cost ~G(S) < cost ~G(S ′) then we replace S ′ with S.

13.2 Analysis

Let W be the collection of walks given by Lemma 11.2. Let F be the forest given by Lemma
11.3. Let T be a subtree of F . We say that T is trivial if ψ(F) ∪

⋃
D∈V (T) ψ(D) is contractible.

Otherwise, we say that T is non-trivial.
Let Q ∈ Q, and let T be a subtree of some tree in F . We define the terms Q covers T and Q

avoids T the exact same way as in the planar case. Let P = {Q1, . . . , Qm} ∈ P∞. We say that P
covers T if for all D ∈ V (T) we have V (D) ∩ V (F) ⊆ V (Q1 ∪ . . . ∪Qm). We say that P avoids T
if for all Qi ∈ P we have that Qi avoids T .

39

Definition 13.1 (Basic family of paths). Let P = {Q1, . . . , Qm} ∈ P∞. For each i ∈ {1, . . . ,m},
let ui and vi be the endpoints of Qi. We say that P is basic (w.r.t.W) if either V (P)\(

⋃m
i=1{ui, vi})

does not intersect any of the walks inW (in which case we call it empty basic) or there exists T ∈ F
and D ∈ V (T), with children D1, . . . , Dk, intersecting D in this order along a traversal of D, such
that the exact same conditions (1) & (2) as in Definition 12.2 hold, and |P | is minimal subject to
the following:

(3) If P covers TD and avoids T \ TD, let T [P] = TD, and otherwise let T [P] =
⋃j
i=1 TDi. For

every two disjoint subtrees T1 and T2 of T [P], the following holds. If there exists Qi ∈ P such
that Qi covers T1 ∪ T2 and avoids T \ (T1 ∪ T2), then there exist edge-disjoint subpaths Q′i, Q

′′
i

of Qi such that Qi = Q′i ∪Q′′i , Q′i covers T1 and avoids T \ T1, and Q′′i covers T2 and avoids
T \ T2.

Moreover if for each non-trivial tree T ′ in F with T ′ 6= T , we have that P avoids T ′, then we say
that P is elementary. Furthermore, if for each non-trivial tree T ′ in F , we have that P avoids T ′,
then we say that P is trivial.

Definition 13.2 (Twins). Let P, P ′ ∈ P∞. We say that P and P ′ are twins if for each subtree T
of F , P covers T if and only if P ′ covers T , and P avoids T if and only if P ′ avoids T .

Definition 13.3 (Succinctness). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. For each i ∈ {1, . . . ,m},
let ui and vi be the endpoints of Qi, let Q′i = Qi \ {ui} and let Q′′i = Qi \ {vi}. We say that P
is succinct if for all i ∈ {1, . . . ,m}, P and {Q1, . . . , Qi−1, Q

′
i, Qi+1, . . . , Qm} are not twins, and

moreover P and {Q1, . . . , Qi−1, Q
′′
i , Qi+1, . . . , Qm} are not twins.

Lemma 13.4. Let P ∈ P∞ be non-empty basic. Then there exists some succinct and basic P ′ ∈ P∞
such that P and P ′ are twins with E(P ′) ⊆ E(P).

Proof. It is immediate by Definition 13.3.

Lemma 13.5. Let P ∈ P∞ be non-empty basic elementary and succinct. Let T , D, j, D1, . . . , Dj

be as in Definition 13.1. Then there exist P1, P2 ∈ P∞ satisfying the following conditions:

(1) P1 and P2 are non-empty basic elementary and succinct.

(2) P1 covers
⋃j−1
i=1 TDi and avoids T \ (

⋃j−1
i=1 TDi).

(3) P2 covers TDj and avoids T \ TDj .

40

(4) E(P1) ⊆ E(P), E(P2) ⊆ E(P), and E(P1) ∩ E(P2) = ∅.

Proof. We begin by defining auxiliary Z1, Z2 ∈ P∞. The desired P1 and P2 will be succinct twins
of Z1 and Z2. First we define Z1. Initially, we set Z1 = P and we inductively modify Z1 until it
covers C1 =

⋃j−1
i=1 TDi and avoids A1 = T \ (

⋃j−1
i=1 TDi) as follows: If Z1 contains a path Q that

does not intersect C1 then we remove Q from Z1. If Z1 contains a path Q that intersects both C1

and A1 then we proceed as follows: let R be the collection of paths obtained from Q by deleting
all vertices in A1 ∩Q; let R′ be the collection obtained from R by removing all paths that do not
intersect C1; let R′′ be the collection obtained from R′ by replacing each Q′ ∈ R′ be the minimal
subpath Q′′ ⊆ Q′ with V (Q′′) ∩ C1 = V (Q′) ∩ C1. We repeat the above process until the resulting
Z1 covers C1 =

⋃j−1
i=1 TDi and avoids A1 = T \ (

⋃j−1
i=1 TDi). In a similar fashion we define Z2 that

covers C2 = TDj and avoids A2 = T \ TDj . It is immediate by construction that E(Z1) ⊂ E(P),
E(Z2) ⊂ E(P) and E(Z1) ∩ E(Z2) = ∅.

Next we argue that Z1 is basic. It is immediate that conditions (1) & (2) of Definition 13.1
are satisfied. It remains to establish condition (3) of Definition 13.1. Let Q ∈ P1. By construction
there exists Q′ ∈ P such that Q ⊆ Q′. Let T [Z1] and T [P] be as in Definition 13.1. Let T1 and
T2 be disjoint subtrees of T [Z1] such that Q covers T1 ∪ T2 and avoids T \ (T1 ∪ T2). Let TQ′
be the minimal subtree of T [P] that contains all the nodes of T [P] that are covered by Q′. Let
T ′ = TQ′ ∪ T1 ∪ T2. By definition we have that T ′ is a subtree of T [P]. Therefore there exist
disjoint subtrees T ′1 and T ′2 of T ′ such that T1 ⊆ T ′1 , T2 ⊆ T ′2 , and T ′ = T ′1 ∪ T ′2 . Since P is basic,
it follows by condition (3) of Definition 13.1 that there exist edge-disjoint subpaths Q′1, Q

′
2 of Q′

such that Q′1 covers T ′1 and avoids T \ T ′1 and Q′2 covers T ′2 and avoids T \ T ′2 . Let Q1 = Q ∩ Q′1
and Q2 = Q∩Q′2. It now follows that Q1 covers T1 and avoids T \ T1 and Q2 covers T2 and avoids
T \ T2, establishing Condition (3) of Definition 13.1.

It remains to show that |P1| is minimal subject to condition (3) of Definition 13.1. Suppose
not. Then there are Q,Q′ ∈ P1 that are consecutive in F such that we can replace Q and Q′ in P1

by some subpath Q′′ that contains Q and Q′. If Q and Q′ are subpaths of the same path in P then
this is a contradiction because by construction there must exist a vertex in V (Q′′)\ (V (Q)∪V (Q′))
that P1 must avoid. Therefore there must exist distinct R,R′ ∈ P such that Q ⊆ R and Q′ ⊆ R′.
However this means that we can replace R and R′ in P by some subpath containing both R and
R′, contradicting the fact that P is basic. This establishes that |P1| is minimal subject to condition
(3) of Definition 13.1. We have thus obtained that Z1 is basic. It is also immediate by construction
that since P is elementary, Z1 is also elementary. By the exact same argument it follows that Z2

is also basic and elementary.
For any i ∈ {1, 2} let Pi be a succinct twin of Zi obtained by Lemma 13.4. Since Zi is basic

and elementary, it follows that Pi is also basic and elementary, and thus condition (1) is satisfied.
Since Pi is a twin of Zi, it follows that conditions (2) & (3) are satisfied. Since E(Zi) ⊂ E(P) and
E(Pi) ⊆ E(Zi), we get E(Pi) ⊂ E(P). Finally, since E(Z1)∩E(Z2) = ∅, we have E(P1)∩E(P2) = ∅,
and thus condition (4) is satisfied, which concludes the proof.

Definition 13.6 (P -facial restriction). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. We define the P -
facial restriction ofW the exact same way as in Definition 12.3. We remark that P is now a family
of paths, while in the planar case P is a single path; the definition remains the same by replacing
the notion of basic path given in Definition 12.2 by the notion of basic family of paths given in
Definition 13.1.

41

Lemma 13.7 (Malnič and Mohar [22]). Let S be an either orientable or non-orientable surface
of Euler genus g, and let x ∈ S. Let X be a collection of noncontractible curves. Suppose that at
least one of the following holds: (i) The curves in X are disjoint and (freely) nonhomotopic. (ii)
There exist x ∈ S such that for every C,C ′ ∈ X , we have C ∩ C ′ = x, and the curves in X are
nonhomotopic (in π1(S, x)). Then,

|X | ≤

0 if S is the 2-sphere
1 if S is the torus or the projective plane
3(g − 1) otherwise

We recall the following result on the genus of the complete bipartite graph [15].

Lemma 13.8. For any n,m ≥ 1, the Euler genus of Km,n is d(m− 2)(n− 2)/4e.

Lemma 13.9. Let P ∈ P∞ be elementary and succinct. Then |P | ≤ 18000g3.

Proof. Let T [P] be as in Definition 13.1. If T [P] is trivial, we can find Q ∈ Q such that Q covers
T [P] and avoids T \T [P], and thus |P | = 1 and we are done. Now suppose that T [P] is non-trivial.
Let m = |P | and suppose that P = {Q1, . . . , Qm} such that Q1, . . . , Qm are subpaths of F in this
order along a traversal of F . Let Z1, . . . , Zm′ be a sequence of disjoint subsets of P such that
P =

⋃m′

i=1 Zi, and each Zi is maximal subject to the following condition: Let Z ′i be the minimal
subpath of F that contains all the paths in Zi and does not intersect any other paths in P ; then Z ′i
avoids all non-trivial tress in F \ T . For every j ∈ {1, . . . ,m′ − 1}, let Pj be the subpath between
Z ′j and Z ′j+1 and let P ′ = {P1, . . . , Pm−1}. Note that since P is basic, for every two consecutive Z ′j
and Z ′j+1, there exists a non-trivial tree Tj such that Tj intersects Pj .

We construct a set R of non-trivial trees as follows. We initially set R = {T1}. In each step
i > 1, if there exists T ′ ∈ R such that T ′ intersects Pi, we continue to the next step. Otherwise, we
let T ′i be some non-trivial tree that intersects Pi and we add T ′i to R and we continue to the next
step. We argue that |R| ≤ 20g. Suppose not. For each T ′ ∈ R where T ′ intersects some P ′ ∈ P ′
at some x′ ∈ V (P ′), we construct a path γT ′ in the surface, with both endpoints on ψ(F), and
such that after contracting ψ(F) into single point, the loop resulting from γT ′ is non-contractible,
as follows. First suppose that ψ(T ′) contains some non-contractible loop γ. Then let ζ be a path
in ψ(T ′) between x′ and some point in γ. We set γT ′ to be the path starting at x′, traversing ζ,
followed by γ, followed by the reversal of ζ, and terminating at x′. Otherwise, suppose that ψ(cT ′)
does not contain any non-contractible loops. Since T ′ is non-trivial, it follows that ψ(T ′) contains
some path ξ with both endpoints in ψ(F) such that after contracting ψ(F) into a single point, the
loop obtained from ξ is non-contractible. Let ξ′ be some path in ψ(T ′) between x′ and some point
in ξ. By Thomassen’s 3-path condition [23] it follows that ξ ∪ ξ′ contains some path ξ′′ with both
endpoints in ψ(F), such that one of these endpoints is x′, and such that after contracting ψ(F)
into a single point, the loop resulting from ξ′′ is non-contractible. We set γT ′ to be ξ′′.

Let L be the set of all loops obtained from the paths γT ′ as follows. Pick a point x in the interior
of the disk bounded by ψ(F). Connect x to both endpoints of each γT ′ by paths such that all chosen
paths are interior disjoint. During this process each path γT ′ gives rise to a non-contractible loop
in L such that any two loops in L intersect only at x. Let L′, L′′, L′′ ∈ L be distinct. We show that
L′, L′′ and L′′′ can not be all homotopic. Suppose not. Since they are interior-disjoint, by removing
them from the surface we obtain three connected components. Since ψ(T) does not intersect any
of L′, L′′ and L′′′, it has to be inside one of the three connected components completely. We may

42

assume w.l.o.g that T is inside the component which is bounded by L′ and L′′. Therefore, there is
no path from T to L′′′ without crossing L′ ∪ L′′, which is a contradiction.

Let L′ ⊆ L be a maximal subset such that for all L′, L′′ ∈ L′ we have that L′ and L′′ are
non-homotopic. Since |L| > 20g and for every three loops in L′ we know that at most two of them
are homotopic, we have that |L′| > 10g, which contradicts Lemma 13.7. Therefore, we have that
|R| ≤ 20g and thus there exists T0 ∈ R such that T0 intersects at least 10g = 200g2/20g elements
of P ′. Let x1 be a point inside the face. Let x2 be a point in the root of T0 and let x3 be a point
in ψ(D). There exists P ′1, . . . , P

′
10g ∈ P ′ such that for every i ∈ {1, . . . , 10g}, T0 intersects P ′i .

For every i ∈ {1, . . . , 10g}, let yi be a point on P ′i . By the construction, for every yi we can find
non-crossing paths to x1, x2 and x3. Therefore, we get an embedding of K3,10g in a surface of genus
g which contradicts Lemma 13.8. This establishes that m′ ≤ 200g2.

Let i ∈ {1, . . . ,m′}. We next we bound |Zi|. Suppose Zi = {Qa, Qa+1, . . . , Qa+`}. Let x
be an arbitrary point in ψ(D). For each j ∈ {0, . . . , b(` − 1)/2c} pick an arbitrary point xj ∈
ψ(Qa+2j) ∩ ψ(T); we define a path in the surface between xj and x as follows: we start from the
vertex D′ of T containing xj ; if D′ is a closed walk then we traverse D′ clockwise until we reach
the point that connects D′ to its parent; otherwise we traverse the unique path between xj and the
point that connects D′ to its parent. We continue in this fashion until we reach D, and we finally
traverse D clockwise until we reach x. This completes the definition of the path γj . It is immediate
that for all j 6= j′, the paths γj and γj′ are non-crossing.

Let S′ be the surface obtained by contracting ψ(F) into a single point y, and identifying x with
y (note that S′ has Euler genus at most g+ 2). For each j ∈ {0, . . . , b(`− 1)/2c} let γ′j be the loop
in S′ obtained from γj after the above contraction and identification. We argue that there can be
at most 4 loops γ′j that are pairwise homotopic. Suppose for the sake of contradiction that there
are at least 5 such loops. It follows that there must exist t ∈ {0, . . . , b(` − 1)/2c} such that γ′t,
γ′t+1, and γ′t+2 are all pairwise homotopic. We are going to obtain a contradiction by arguing that
the paths Qa+2t and Qa+2t+1 violate the fact that P is basic. To that end, let Q′ be the minimal
subpath of F that contains both Qa+2t and Qa+2t+1 and does not intersect any other paths in P .
We will show that (P \{Qa+2t, Qa+2t+1})∪{Q′} is basic, thus violating the fact that |P | is minimal
subject to condition (3) of definition 13.1. Let T1, T2 be disjoint subtrees of T [P] such that Q′

covers T1 ∪ T2 and avoids T \ (T1 ∪ T2). We need to show that there exist edge-disjoint subpaths
Q′1 and Q′2 of Q′ such that Q′ = Q′1 ∪ Q′2, Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2 and
avoids T \ T2. Let λ be the subpath of ψ(F) in S between xt and xt+1 that contains xt+1. Since
γ′t, γ

′
t+1, and γ′t+2 are homotopic, it follows that γt ∪ λ ∪ γt+2 bounds a disk Ψ in S. Each xs is

contained in the image of a unique vertex D′s of T [P]. Let B be the path in T [P] between D′t and
D′t+2. For each r ∈ {1, 2}, Tr intersects B into some possibly empty subpath Br. It follows that
there exist disjoint disks Ψ1,Ψ2 ⊂ Ψ such that for each r ∈ {1, 2}, ψ(Tr)∩Ψ ⊂ Ψr. Therefore there
exist edge-disjoint subpaths Q′1 and Q′2 of Q′ with Q′ = Q′1 ∪ Q′2 such that ψ(Q′) ∩ Ψ1 ⊆ ψ(Q′1)
and ψ(Q′) ∩ Ψ2 ⊆ ψ(Q′2). It follows that Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2 and
avoids T \ T2. This contradicts the fact that P is basic, and concludes the proof that there are at
most four loop γ′t that are pairwise homotopic.

43

Pick I ⊆ {0, . . . , b(`− 1)/2c}, with |I| ≥ b(`− 1)/10c such that for all t 6= t′ ∈ I, we have that
γ′t and γ′t′ are non-homotopic. Since the paths γt are non-crossing, we may assume w.l.o.g. that the
paths γ′t are interior disjoint after an infinitesimal perturbation. By Lemma 13.7 on S′ it follows
that |I| ≤ 3(g + 1). Since |I| ≥ `/15, we get ` ≤ 45(g + 1). Therefore |Zi| ≤ 45(g + 1).

We conclude that m ≤
∑m′

i=1 |Zi| ≤ m′ ·maxi∈{1,...,m′} |Zi| ≤ 9000g2(g + 1) ≤ 18000g3.

Lemma 13.10. Let P1 = {Q1, . . . , Qm} ∈ P be succinct. Let P2 = {Q′1, . . . , Q′l} ∈ P such that P1

and P2 are twins, V (P1) ⊆ V (P2) and E(P1) ⊆ E(P2). For every i ∈ {1, . . . ,m}, let ui and vi be
the endpoints of Qi. Let B1 =

⋃m
i=1(Bui ∪ Bvi). Let WP1 be the P1-facial restriction of W. Let

Γ1 =
⋃
~W∈WP1

~W . Let C1 be the partition of B1 that corresponds to the weakly-connected components

of Γ1. For any x ∈ B1 let f in1 (x) = in-degreeWP1
(x) and fout1 (x) = out-degreeWP1

(x). We similarly

define C2, f
in
2 , f

out
2 and WP2 for P2. Suppose that there exists some a1 ∈ A ∪ (A × A) ∪ nil and

l1, r1, p1 ∈ (V (~G)∪ nil) such that the dynamic programming table contains some partial solution S1

at location (P1, (C1, f
in
1 , f

out
1 , a1, l1, r1, p1)), with cost ~G(S1) ≤ cost ~G(WP1). Then there exists some

a2 ∈ A∪(A×A)∪nil and l2, r2, p2 ∈ (V (~G)∪nil) such that the dynamic programming table contains
some partial solution S2 at location (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)), with cost ~G(S2) ≤ cost ~G(WP2).

Proof. Let E1 = E(P2) \E(P1). For every e ∈ E1, let Qe ∈ Q be the path containing a single edge
e, and let Pe = {Qe}. Note that Pe is an empty basic family of paths and |E(Pe)| = 1. Therefore
for every e ∈ E1, the initialization step of the dynamic programming, finds a partial solution Se
for Pe. By merging S1 with all these partial solutions sequentially in an arbitrary order, we get a
partial solution S2 for P2, as desired.

Lemma 13.11. Let P = {Q1 . . . , Qm} ∈ P be basic and trivial (w.r.t. W). For every i ∈
{1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui ∪ Bvi). Let WP be the P -

facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds to

the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP
(x) and fout(x) =

out-degreeWP
(x). Then there exists some a ∈ A∪(A×A)∪nil and l, r, p ∈ (V (~G)∪nil) such that the

dynamic programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)),
with cost ~G(S) ≤ cost ~G(WP).

Proof. Since P is trivial, we have that P ∈ P1, and thus the exact same argument as in Lemma
12.6 applies here.

44

Lemma 13.12. Let P = {Q1 . . . , Qm} ∈ P be succinct and elementary (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui ∪ Bvi). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds to

the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP
(x) and fout(x) =

out-degreeWP
(x). Then there exists some a ∈ A∪(A×A)∪nil and l, r, p ∈ (V (~G)∪nil) such that the

dynamic programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)),
with cost ~G(S) ≤ cost ~G(WP).

Proof. Let T , D, k, D1, . . . , Dk and j be as in Definition 13.1. We prove the assertion by induction
on T . For the base case, where D is a leaf of T , the same argument as in Lemma 12.6 applies here.
Suppose that D is non-leaf. In this case, we prove the assertion by another induction on j. For the
base case, where j = 1, the same argument as in Lemma 12.6 applies here. Now suppose that we
have proved the assertion for all j′ < j. Let P1 ∈ P∞ such that V (P1) ⊆ V (P), E(P1) ⊆ E(P),
P1 covers

⋃j−1
i=1 TDi and avoids T \ (

⋃j−1
i=1 TDi). Let P2 ∈ P∞ such that E(P2) = E(P) \E(P1). By

the construction, P1 and P2 are elementary. Therefore, by Lemma 13.4, there exists elementary
and succinct P ′1 ∈ P∞ and P ′2 ∈ P∞ for P1 and P2 respectively. Moreover, by Lemma 13.5, we
have that E(P ′1) ⊆ E(P), E(P ′2) ⊆ E(P) and E(P ′1) ∩ E(P ′2) = ∅ . By Lemma 13.9 we have that
P, P ′1, P

′
2 ∈ P18000g3 . We next define some P ′′1 ∈ P∞. Let Γ be the graph obtained as the union

of all paths in P , that is Γ =
⋃
Q∈P Q. Similarly, let Γ′ =

⋃
Q∈P ′2

Q, let Γ′′ = Γ \ E(Γ′), and let

Γ′′′ be the graph obtained from Γ′′ by deleting all isolated vertices. We define P ′′1 to be the set of
connected components in Γ′′′. Note that Γ′′′ has at most 36000g3 connected components, and each
such component is a path. Thus P ′′1 ∈ P36000g3 , and E(P ′1) ⊆ E(P ′′1). By the induction hypothesis,
there exists a partial solution S ′1 for P ′1, and thus by Lemma 13.10, there exists a partial solution
S ′′1 for P ′′1 . Also, by the induction hypothesis, there exists a partial solution S ′2 for P ′2. By merging
S ′′1 and S ′2, we get a partial solution S for P , as desired.

We define the following three types of non-trivial trees in F :

(1) We say that a non-trivial tree T is of the first type, if there exists a non-leaf D ∈ V (T), such
that D is a closed walk, with V (D) ∩ V (F) = ∅, such that ψ(D) is non-contractible.

(2) We say that a non-trivial tree T is of the second type, if it is not of the first type and there
exists a leaf D ∈ V (T) such that ψ(D) ∪ ψ(F) is non-contractible.

(3) We say that a non-trivial tree T is of the third type, if it is not of the first type nor of the
second type.

We say that a non-trivial tree T is good, if at least one of the following conditions holds:

(1) T is of the second type, and for every D1, D2 ∈ V (T) where ψ(D1)∪ψ(F) and ψ(D1)∪ψ(F)
are non-contractible, we have that the loops obtained from ψ(D1) and ψ(D1) by contracting
ψ(F) into a single poit x are homotopic in π1(S, x). Let D ∈ V (T) such that ψ(D) ∪ ψ(F)
is non-contractible. We let β(T) to be the homotopy class of the loop ψ(D) in the surface
obtained after contracting ψ(F) into a single point.

(2) T is of the third type and the following holds. Let X = ψ(F) ∪
⋃
D∈V (T) ψ(D) and let X ′ be

the image of X after contracting ψ(F) into a single point x. Then and all non-contractible
loops in X ′ are homotopic in π1(S, x). We let β(T) be the homotopy class in π1(S, x) of all

45

Figure 3: Example of good non-trivial trees T0, T1, and T2 that are pairwise friends; note that T0

is of the second type while T1 and T2 are of the third type.

non-contractible loops in X ′; note that we may always take a non-contractible loop in X ′

that contains the basepoint x since X is connected.

Otherwise, we say that T is a bad tree.
Let T0 and T1 be non-trivial good trees in F . We say that T0 is a friend of T1 if β(T0) = β(T1)

(see Figure 3 for an example).

Definition 13.13 (Friendly). Let P ∈ P∞. We say that P is friendly if the following holds.

(1) P avoids all non-trivial bad trees.

(3) For any two non-trivial good trees T0 and T1 in F that P covers, we have that β(T0) = β(T1).

(3) If P covers a non-trivial good tree T0, then P covers all non-trivial good trees T1 with β(T0) =
β(T1).

Lemma 13.14. There exists at most 12g bad trees in F .

Proof. We partition all bad trees in F into three sets:

(1) F1 = {T ∈ F : T is a bad tree of the first type}.

(2) F2 = {T ∈ F : T is a bad tree of the second type}.

(3) F3 = {T ∈ F : T is a bad tree of the third type}.

We first bound |F1|. Let T ∈ F1. We let β(T) to be the homotopy class of some non-leaf
D ∈ V (T), such that D is a closed walk, with V (D) ∩ V (F) = ∅, and ψ(D) is non-contractible.
Note that by the definition of trees of the first type, such a non-leaf D ∈ V (T) exists. Let
T1, T2, T3 ∈ F1 be distinct. We show that β(T1) = β(T2) = β(T3) cannot happen. Suppose not,
and we have that β(T1) = β(T2) = β(T3). For any i ∈ {1, 2, 3}, let Di ∈ V (Ti) such that β(Ti) is
the homotopy class of Di. By removing ψ(D1), ψ(D2) and ψ(D3) from the surface we obtain three
connected components. We may assume w.l.o.g that ψ(D2) is inside an annulus bounded by ψ(D1)
and ψ(D3). Therefore, there is no path in the surface from ψ(D2) to ψ(F), that does not intersect
ψ(D1 ∪D3), which is a contradiction. Therefore by Lemma 13.7 we have that |F1| ≤ 6g.

46

Next we bound |F2| and |F3|. Let T ∈ F2. By the construction, there exist D1, D2 ∈ V (T)
where ψ(D1)∪ψ(F) and ψ(D2)∪ψ(F) are non-contractible, and the loops obtained from ψ(D1) and
ψ(D2) after contracting ψ(F) into a single point y are non-homotopic in π1(S, y). Let x be a point in
the interior of the disk bounded by ψ(F). For every T ∈ F2, similarly to Lemma 13.9, we construct
two non-homotopic loops γT ′ and γ′T ′ in the surface, corresponding to D1 and D2 respectively, such
that they only intersect at x. Let L be the set of all these loops. Let L′, L′′, L′′′ ∈ L be distinct.
Similarly to Lemma 13.9, we show that L′, L′′ and L′′′ can not be all homotopic. Suppose not.
We may assume w.l.o.g. that L′′ is inside the disk bounded by L′ and L′′′. Let T ′′ ∈ F2 be the
tree corresponding to L′′. Now note that L′′ is inside the disk bounded by L′ and L′′′, and thus
all non-contractible loops in ψ(F) ∪

⋃
D∈V (T) ψ(D) are in the same homotopy class as L′′. This

contradicts the fact that ψ(D1)∪ψ(F) and ψ(D2)∪ψ(F) are non-homotopic. Therefore, by Lemma
13.7 we have that |F2| ≤ 3g. Using a similar argument, we can show that |F3| ≤ 3g.

Therefore, we have that |F1|+ |F2|+ |F3| ≤ 12g, completing the proof.

Lemma 13.15. Let P = {Q1 . . . , Qm} ∈ P∞ be friendly, succinct and basic (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui ∪ Bvi). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds to

the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP
(x) and fout(x) =

out-degreeWP
(x). Then there exists some a ∈ A∪(A×A)∪nil and l, r, p ∈ (V (~G)∪nil) such that the

dynamic programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)),
with cost ~G(S) ≤ cost ~G(WP).

Proof. If P does not cover any non-trivial trees in F , then P is trivial and thus we have that P ∈ P1

and by Lemma 13.11 there exists a partial solution S for P . Otherwise suppose that P covers a
non-trivial good tree T in F . By the definition of friendly, for every non-trivial good tree T ′ in
F with β(T) = β(T ′), we have that P covers T ′. Let A = {T ′ ∈ F : β(T) = β(T ′)}. Suppose
that A = {T0, . . . , Tm} such that they intersect F in this order along a traversal of F . For any
i ∈ {0, . . . ,m}, let Pi ∈ P∞ be elementary and succinct such that Pi covers Ti and avoids any
other non-trivial trees in F . By Lemma 13.9 we have that Pi ∈ P18000g3 . Moreover, by Lemma
13.12 we have that there exists a partial solution Si for Pi. For any i ∈ {0, . . . ,m}, let P ′i ∈ P∞ be
succinct and basic, such that P ′i covers

⋃i
j=0 Tj and avoids any other non-trivial trees in F . By the

construction, each P ′i can be obtained by merging P ′i−1 with Pi and some trivial and empty basic
family of paths, and thus we have that P ′i ∈ P36000g3 . Therefore, by induction and Lemma 13.11,
there exists a partial solution S ′i for each P ′i , and thus there exists a partial for solution S ′m for P ′m.
Note that P ′m = P . Therefore, we get a partial solution S for P , as desired.

Lemma 13.16. Let P = {F}. Let v◦ ∈ V (F). Let WP be the P -facial restriction of W. Let
Γ =

⋃
~W∈WP

~W . Let C be the partition of Bv◦ that corresponds to the weakly-connected components

of Γ. For any x ∈ Bv◦ let f in(x) = in-degreeWP
(x) and fout(x) = out-degreeWP

(x). Then there

exists some a ∈ A∪ (A×A)∪nil and l, r, p ∈ (V (~G)∪nil) such that the dynamic programming table
contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)), with cost ~G(S) ≤ cost ~G(WP).

Proof. We first partition F to the sets of basic families of paths as follows:

(1) F1 = {P ′ ∈ P∞ : P ′ is elementary and succinct, P ′ covers some bad tree T }.

(2) F2 = {P ′ ∈ P∞ : P ′ is basic, succinct and friendly}.

47

(3) F3 = {P ′ ∈ P∞ : P ′ is basic, succinct and trivial}.

(4) F4 = {P ′ ∈ P∞ : P ′ is basic, succinct and empty}.

For every bad tree T in F , let P1 ∈ F1 such that P1 covers T and avoids any other non-trivial
tree in F . Since P1 is elementary and succinct, by Lemma 13.9 we have that |P1| ≤ 18000g3.
Moreover by Lemma 13.12 there exists a partial solution S1 for P1. Also by Lemma 13.14, there
exist at most 12g bad trees in F , and thus |F1| ≤ 12g. Therefore there exists P ′1 ∈ P216000g4 , such
that for any T ′ ∈ F , P ′1 covers (resp. avoids) T ′ if and only if there exists P1 ∈ F1 such that P1

covers (resp. avoids) T ′. Moreover the dynamic programming table contains a partial solution S ′1
for P ′1. Now we will show that |F2| ≤ 3g. For every P2 ∈ F2, let T2 be some non-trivial good tree
that P2 covers. Let x be a point in the interior of the disk bounded by ψ(F). Similar to Lemma
13.9 we construct a non-contractible loop γP2 that contains x, corresponding to T2. Let L be the
set of all these interior-disjoint loops. For every P ′, P ′′ ∈ F2, since P ′ and P ′′ are succinct and
friendly, γP ′ and γP ′′ are not homotopic. Therefore by Lemma 13.7 we have that |L| ≤ 3g, and
thus |F2| ≤ 3g. Furthermore for every P2 ∈ F2, by Lemma 13.15, we have that P2 ∈ P36000g3 ,
and there exists a partial solution S2 for P2. Therefore there exists P ′2 ∈ P108000g4 , such that for
any T ′ ∈ F , P ′2 covers (resp. avoids) T ′ if and only if there exists P2 ∈ F2 such that P2 covers
(resp. avoids) T ′. Moreover the dynamic programming table contains a partial solution S ′2 for P ′2.
Let P ′1,2 ∈ P324000g4 such that for any T ′ ∈ F , P ′1,2 covers (resp. avoids) T ′ if and only if there
exists P ′ ∈ F1 ∪ F2 such that P ′ covers (resp. avoids) T ′. By merging S ′1 and S ′2 we get a partial
solution S ′1,2 for P ′1,2.

Let
F5 = {{Q} ∈ F3 ∪ F4 : Q is maximal subject to E(Q) ∩ E(P ′1,2) = ∅}.

For every P3 ∈ F3, by Lemma 13.11 we have that P3 ∈ P1 and there exists a partial solution S3

for P3. Finally, for every P4 ∈ F4, we have that P4 ∈ P1 and also the dynamic programming table
contains a partial solution S4 for P4. Therefore for every {Q} ∈ F5, the dynamic programming table
contains a partial solution for {Q}. By merging these partial solutions with P ′1,2 in an arbitrary
order, we get a partial solution S, as desired. We remark that after merging the current partial
solution with the partial solution for some {Q} ∈ F5, we obtain a new partial solution for some
P ∈ P∞ with fewer paths. Therefore for all intermediate P ∈ P∞ we have P ∈ P324000g4 , concluding
the proof.

Theorem 13.17. Let ~G be an n-vertex (0, g, 1, p)-nearly embeddable graph and let ~H be the vortex
of ~G. Then there exists an algorithm which computes a walk ~W visiting all vertices in V (~H) of
total length OPT ~G(V (~H)) in time nO(pg4).

Proof. Let P = {F}. By Lemma 13.16, there exists a partial solution for P . Now the exact same
argument as in Theorem 12.7 applies here.

14 The algorithm for traversing a vortex in a nearly-embeddable
graph

In this Section we obtain an exact algorithm for computing a closed walk that traverses all the
vertices in the single vortex of a nearly-embeddable graph.

48

Proof of Theorem 5.1. The algorithm is as follows. Let A ⊂ V (~G) be the set of apices and let ~F
be the face on which the vortex is attached. For each A′ ⊆ A we construct a (0, g, 1, p+ a)-nearly
embeddable graph ~GA′ as follows: Initially we set ~GA′ = ~G \ A. We then add A′ to V (~GA′) and
for every u ∈ A′ and every v ∈ V (~F) we add edges (u, v) and (v, u) of length d ~G(u, v) and d ~G(v, u)
respectively; let EA′ be the set of all these new edges. We consider A′ as being part of the vortex
and we modify the path decomposition of the vortex by adding A′ to each one of its bubbles; it is
immediate that the result is a path decomposition of width at most a+p. We then run the algorithm
of Theorem 13.17 on ~GA′ and find an optimal closed walk visiting all vertices in V (~H) ∪ A′. Let
~WA′ be the resulting walk in ~GA′ . We obtain a walk ~W ′A′ in ~G visiting all vertices in V (~H) with

cost ~G(~W ′A′) = cost ~GA′
(~WA′) by replacing every edge in (u, v) ∈ EA′ by a shortest path from u to v

in ~G. After considering all subsets A′ ⊆ A, we output the walk ~W ′A′ of minimum cost that we find.
This completes the description of the algorithm.

It is immediate that the running time is O(2an(a+p)g4) = O(n(a+p)g4). It remains to show that
the algorithm computes an optimum walk. Let ~R be the walk computed by the algorithm. Let
~WOPT be a walk of minimum cost in ~G visiting all vertices in V (~H). Let A∗ be the set of apices
visited by ~WOPT, that is A∗ = A∩V (~WOPT). Let ~G′ be the genus-g piece of ~G. We can construct a
walk ~Z in ~GA∗ that visits all the vertices in V (~H)∪A∗ of cost cost ~G(~WOPT) as follows: we replace

every sub-walk of ~WOPT that is contained in ~G′, has endpoints u, v ∈ V (~F), and visits some apex
w ∈ A∗, by the path u,w, v in ~GA∗ . It is immediate that the resulting walk does not traverse any
apices and therefore it is contained in ~GA∗ . Thus we have

cost ~G(~R) ≤ cost ~G(~W ′A∗) = cost ~GA∗
(~WA∗) ≤ cost ~G(~WOPT) ≤ OPT ~G,

which concludes the proof.

15 The lower bound for graphs of bounded pathwidth

In this section we present the proof of Theorem 1.2. This is done via the following chain of
reductions:

Clique
folklore
====⇒ Multicolored

Biclique
Lemma 15.4
=======⇒ Edge

Balancing

Lemma 15.8
=======⇒ Constrained

Closed Walk

Lemma 15.5
=======⇒ ATSP

15.1 Edge Balancing

Let D be a directed graph and let χ : E(D) → Z+ be an assignment of integers to the edges. We
can extend χ to a set F ⊆ E(D) of edges in the obvious way by defining χ(F) =

∑
e∈F χ(e). Let

δ+
D(v) and δ−D(v) be the set of outgoing and incoming edges of v, respectively. We say that χ is

balanced at v ∈ V (D) if
∑

e∈δ+D(v) χ(e) =
∑

e∈δ−D(v) χ(e) holds and we say that χ is balanced if it is

balanced at every v ∈ V (D).

Edge Balancing: Given a directed graph D and a set Xe of positive integers for every
edge e ∈ E(D), the task is to select a χ(e) ∈ Xe for every edge e ∈ E(D) such that χ is
balanced.

49

An easy counting argument shows that it is sufficient to require that χ balanced at all but one
vertex:

Proposition 15.1. If χ is balanced at every vertex of V (D) \ {v}, then it is also balanced at v.

We give a lower bound for Edge Balancing by a parameterized reduction from Multicol-
ored Biclique.

Multicolored Biclique: Given a graph G with a partition (V1, . . . , V2k) of vertices,
find a vertex vi ∈ Vi for every 1 ≤ i ≤ 2k such that vi1 and vi2 are adjacent for every
1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k.

There is a very simple folklore reduction from Clique to Multicolored Biclique (see, e.g.,
[7]) where the output parameter equals the input one, hence the lower bound of Chen et al. [6] for
Clique can be transferred to Multicolored Biclique.

Theorem 15.2. Assuming ETH, Multicolored Biclique cannot be solved in time f(k)no(k)

for any computable function f .

The reduction from Multicolored Biclique to Edge Balancing uses the technique of
k-non-averaging sets to encode vertices [11, 18]. We say that a set X of positive integers is k-non-
averaging if for every choice of k (not necessarily distinct) integers x1, . . . , xk ∈ X, their average
is in X only if x1 = x2 = · · · = xk. For example, X = {(k + 1)i | 1 ≤ i ≤ n} is certainly a
k-non-averaging set of size n. However, somewhat surprisingly, it is possible to construct much
denser k-non-averaging sets where each integer is polynomially bounded in k and the size n of the
set.

Lemma 15.3 (Jansen et al. [18]). For every k and n there exists a k-non-averaging set X of n
positive integers such that the largest element of X has value at most 32p2n2. Furthermore, X can
be constructed in time O(p2n3) time.

Lemma 15.4. Assuming ETH, Edge Balancing has no f(k)no(k) time algorithm for any com-
putable function f , where k is the number of vertices of D.

Proof. The proof is by reduction from Multicolored Biclique. Let G be an undirected graph
with a partition V1, . . . , V2k of the vertices in V (G). By padding the instance with isolated vertices,
we may assume without loss of generality that each Vi has the same number n of vertices; let vi,j
be the j-th vertex of Vi. We construct an instance of Edge Balancing on a directed graph D
having 2k + 1 vertices w, w1, w2, . . . , w2k. Let us use Lemma 15.3 to construct a k-non-averaging
set X = {x1, . . . , xn} of n positive integers such that the maximum value in X is M = O(k2n2).
Let B = 2kM . The edges of D and the sets of integers on them are constructed the following way
(see Figure 4). For every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k, we introduce the edge (wi1 , wi2) into
D and we define the set X(wi1

,wi2
) the following way: for every edge vi1,j1vi2,j2 between Vi1 and

Vi2 , let us introduce the positive integer xj1 + Bxj2 into X(wi1
,wi2

). Next, for every 1 ≤ i ≤ k, we
introduce the edge (w,wi) and let X(w,wi) = {kx + By | x ∈ X, 1 ≤ y ≤ kM}. Finally, for every
k + 1 ≤ i ≤ 2k, we introduce the edge (wi, w) and let X(wi,w) = {y + Bkx | x ∈ X, 1 ≤ y ≤ kM}.
This completes the description of the reduction.

Biclique ⇒ balanced assignment χ. Suppose that vi,ji ∈ Vi for 1 ≤ i ≤ 2k form a solution
of Multicolored Biclique. We define χ : E(D)→ Z+ the following way. For every 1 ≤ i1 ≤ k
and k + 1 ≤ i2 ≤ 2k, we set (see the values on the edges in Figure 4)

50

w1

w2

w3

w4

w5

w6

xji1 +Bxji2

kxji1 +BY2

w

Y1 +Bkxji2

Figure 4: The instance of Edge Balancing constructed in the proof of Lemma 15.4. The values
on the edges indicate the value of χ corresponding to a solution (vi,ji)i=1,...,2k of the Multicolored
Biclique instance (we have Y1 =

∑
1≤i≤k xji and Y2 =

∑
k+1≤i≤2k xji).

• χ((wi1 , wi2)) = xji1 +Bxji2 ,

• χ((w,wi1)) = kxji1 +BY2, where Y2 =
∑

k+1≤i≤2k xji , and

• χ((wi1 , w)) = Y1 +Bkxji2 , where Y1 =
∑

1≤i≤k xji .

Note that χ(e) ∈ Xe holds for every edge e ∈ E(D). Let us verify that χ is balanced. For any
1 ≤ i1 ≤ k, we have

χ(δ+
D(wi1)) =

∑
k+1≤i2≤2k

(xji1 +Bxji2) = kxji1 +BY2 = χ((w,wi1)) = χ(δ−D(wi1)),

as required. Similarly, for for any k + 1 ≤ i2 ≤ 2k, we have

χ(δ−D(wi2)) =
∑

1≤i1≤k
(xji1 +Bxji2) = Y1 +Bkxji2 = χ((wi2 , w)) = χ(δ+

D(wi2)).

Thus we have shown that χ is balanced at w1, . . . , w2k and it follows by Proposition 15.1 that χ
is balanced also at w.

Balanced assignment χ ⇒ biclique. For the reverse direction of the equivalence, suppose
that χ : E(D) → Z+ is a balanced assignment with χ(e) ∈ Xe for every e ∈ E(D). For every
1 ≤ i1 ≤ k, the definition of X(w,wi1

) implies that χ((w,wi1)) is of the form kxji1 + Byi1 where
xji1 ∈ X for some 1 ≤ ji1 ≤ n and yi1 is a positive integer. As kxji1 ≤ kM < B follows
from xji1 ∈ X, the value of χ((w,wi1)) uniquely determines ji1 and yi1 . Similarly, for every
k + 1 ≤ i2 ≤ 2k, we have that χ((wi2 , w)) is of the form yi2 + Bkxji2 for uniquely determined
positive integers 1 ≤ ji2 ≤ n and yi2 .

Having defined the values j1, . . . , j2k, we show that χ((wi1 , wi2)) = xji1 + Bxji2 for every
1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k. If this is true, then the vertices vi,ji ∈ Vi for 1 ≤ i ≤ 2k form

51

a solution of Multicolored Biclique: the fact that xji1 + Bxji2 was introduced into X(wi1
,wi2

)

implies that there is an edge between vi1,ji1 ∈ Vi1 and vi2,ji2 ∈ Vi2 .
As the balance requirement holds at vertex wi1 , it also holds if we count modulo B. We have that

χ((w,wi1)) modulo B is exactly kxji1 < B (here we use that kM < B). For every k+ 1 ≤ i2 ≤ 2k,

the value χ((wi1 , wi2)) modulo B is an integer from X and the value χ(δ+
D(wi1)) modulo B is exactly

the sum of these k integers from X (as again by kM < B, this sum cannot reach B). Therefore, we
have that the sum of k integers from X is exactly kxji1 . Since X is a k-non-averaging set, this is
only possible if these k integers are all equal to xji1 . Thus we have shown that χ((wi1 , wi2)) = xji1
modulo B for every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k.

Let us consider now a vertex wi2 for k+1 ≤ i2 ≤ 2k. The balance requirement in particular im-
plies that bχ(δ+

D(wi2))/Bc = bχ(δ−D(wi2))/Bc. First, we have bχ(δ+
D(wi2))/Bc = bχ((wi2 , w))/Bc =

kxji2 . Therefore, the fact that χ is balanced at wi2 implies

kxji2 = bχ(δ−D(wi2))/Bc =

 ∑
1≤i1≤k

χ((wi1 , wi2))/B

 =
∑

1≤i1≤k
bχ((wi1 , wi2))/Bc,

where the third equality holds because we have χ((wi1 , wi2))/B−bχ((wi1 , wi2))/Bc ≤M/B < 1/k.
The definition of X(wi1

,wi2
) implies that bχ((wi1 , wi2))/Bc is an integer from X. Therefore, the

equation above states the the sum of k integers from X is exactly kxji2 . Since X is a k-non-
averaging set, this is only possible if these k integers are all equal to xji2 . Therefore, we have
shown that χ((wi1 , wi2)) modulo B is exactly xij1 and bχ((wi1 , wi2))/Bc is exactly xji2 , proving
that χ((wi1 , wi2)) = xji1 +Bxji2 indeed holds.

15.2 Constrained Closed Walk and ATSP

To make the hardness proof for ATSP cleaner, we first prove hardness for the variant of the
problem, where instead of optimizing the length of the tour, the only constraint is that certain
vertices cannot be visited more than once.

Constrained Closed Walk: Given an unweighted directed graph G and set U ⊆ V (G)
of vertices, find a closed walk (of any length) that visits each vertex at least once and
visits each vertex in U exactly once.

There is a simple reduction from Constrained Closed Walk to ATSP that preserves
treewidth.

Lemma 15.5. An instance of Constrained Closed Walk on an unweighted directed graph
D can be reduced in polynomial time to an instance of ATSP with polynomially bounded positive
integer weights on an edge-weighted version D∗ of D.

Proof. It is easy to see that if we assign weight 1 to every edge (u, v) with v ∈ U and weight 0 to
every other edge, then the Constrained Closed Walk instance has a solution if and only if the
resulting weighted graph has closed walk of length at most |U | (or, equiavelently, less than |U |+ 1)
visiting every vertex. To ensure that every weight is positive, let us replace every weight 0 with
weight ε := 1/(2n2). As a minimum solution of ATSP contains at most n2 edges, this modification
increases the minimum cost by at most 1/2. Thus it remains true that the Constrained Closed
Walk instance has a solution if and only if there is a closed walk of length less than |U |+1 visiting
every vertex. Finally, to ensure that every cost is integer, we multiply each of them by 2n2.

52

The rest of the section is devoted to giving a lower bound for Constrained Closed Walk.
The lower bound proof uses certain gadgets in the construction of the instances. Formally, we define
a gadget to be a graph with a set of distinguished vertices called external vertices; every other vertex
is internal. To avoid degenerate situations, we always require that the external vertices of a gadget
are independent and each external vertex has either indegree 0 or outdegree 0 in the gadget; in
particular, this implies that a path between two external vertices contains no other external vertex.
Also, this implies that there is no closed walk containing an external vertex.

We say that a set P of paths of the gadget satisfies a gadget if (1) both endpoints of each path
are external vertices and (2) every internal vertex of the gadge tis visited by exactly one path in
P. If a path P ∈ P connects two external vertices of a gadget, then we define the type of P to be
the (ordered) pair of its endpoints. If P satisfies the gadget, then we define the type of P to be the
multiset of the types of the paths in P. For brevity, we use notation such as a×(v1, v2)+b×(v3, v4)
to denote the type that contains a times the pair (v1, v2) and b times the pair (v3, v4). For a gadget
H, we let the set T (H) contain every possible type of a set P of paths satisfying H.

We construct gadgets where we can exactly tell the type of the collections of paths that can
satisfy the gadget, that is, the set T (H) is of a certain form. In the first gadget, we have a simple
choice between one path or a specified number of paths.

Lemma 15.6. For every s ≥ 1, we can construct in time polynomial in n a gadget Hs with the
following properties:

1. Hs has four external vertices ain, aout, bin, and bout.

2. Hs minus its external vertices has constant pathwidth.

3. T (Hs) contains exactly two types: the type (bin, bout) and the type s × (ain, aout) (in other
words, the gadget can be satisfied by a path from bin to bout), can be satisfied by a collection
of s paths from ain to aout), but cannot be satisfied by any other type of collection of paths).

Proof. The gadget Hs has 6s internal vertices vij (1 ≤ i ≤ 6, 1 ≤ j ≤ s) connected as shown in

Figure 5(a). Additionally, we introduce the edges (bin, v
1
1), (v6

s , bout, and for every 1 ≤ j ≤ s, the
edges (ain, v

3
j) and (v4

j , aout). It is clear that statement (2) holds: Hs minus its vertices is a graph
with constant pathwidth.

This gadget can be satisfied by a path from bin to bout (see Figure 5(b)) and also by a collection
of s paths where the j-th path is ain, v3

j , v
2
j , v

1
j , v

6
j , v

5
j , v

4
j , aout (see Figure 5(c)). To complete the

proof of statement (3), we need to show that if P satisfies Hs, then P is one of these two types.
The basic observation is that if a path in P contains v2

j , then it has to contain v1
j and v3

j as well (as

each internal vertex is visited exactly once), hence the three vertices v1
j , v

2
j , v

3
j have to appear on

the same path of P. The same is true for the vertices v4
j , v

5
j , v

6
j . Suppose that P contains a path P

starting at bin. Then its next vertex is v1
1, which should be followed by v2

1 and v3
1 by the argument

above. The next vertex is v4
1 (the only outneighbor of v3

j not yet visited), which is followed by

v5
1 and v6

1. Now the next vertex is v1
2, the only outneighbor of v6

1 not yet visited. With similar
arguments, we can show that P is exactly of the form shown in Figure 5(b), hence P contains only
this path, and P is of type {(bin, bout)}.

Suppose now that P does not contain a path starting at bin. Then the only way to reach vertex
v1

1 is with a path starting as ain, v3
1, v2

1, v1
1. This has to be followed by the unique outneighbor v6

1

of v1
1 that was not yet visited. This means that the path contains also v5

1 and v4
1, which has to be

53

bin bout

aoutain

v11

v21

v31
v41

v61

v51 v22

v32
v42

v62

v52

v12

v2s

v4s

v6s

v5s

v1s

v3s

bin bout

aoutain

bin bout

aoutain

(a)

(bin, bout) s× (ain, aout)

(b) (c)

Figure 5: The gadget of Lemma 15.6 with two collections of paths satisfying it.

54

ain aout

cin cout

v

Hx1
Hx2

Hx3

Figure 6: The gadget HX of Lemma 15.7 for a set X = {x1, x2, x3} of three integers. The gray
rectangles represent the internal vertices of the three gadgets Hx1 , Hx2 , and Hx3 .

followed by aout. Then with similar arguments, we can show for every j ≥ 2 that v1
j is visited by the

path ain, v3
j , v

2
j , v

1
j , v

6
j , v

5
j , v

4
j , aout. This means that |P| = s and the type of P is s×(ain, aout).

Lemma 15.7. Let X be a set of n positive integers, each at most M and let S =
∑

x∈X x. In time
polynomial in n and M , we can construct a gadget HX with the following properties:

1. HX has four external vertices ain, aout, cin, and cout.

2. HX minus its external vertices has constant pathwidth.

3. T (Hs) contains exactly |X| types: for every x ∈ X, it contains the type (cin, cout) + (S−x)×
(ain, aout).

Proof. The gadget HX is constructed the following way (see Figure 6). Let us introduce an internal
vertex v and the edge (cin, v). For every x ∈ X, let us introduce a copy of Hx defined by Lemma 15.6
where ain, aout, v, cout of HX play the role of ain, ain, bin, bout, respectively. If we remove the four
external vertices of HX , then we get a graph with constant pathwidth: if we remove one more
vertex, v, then we get the disjoint union of internal vertices of the gadgets Hx’s, which have
constant pathwidth by Lemma 15.6.

For every x ∈ X, the gadget can be satisfied by the following collection of paths. The copy of
Hx in HX can be satisfied by a path from v to cout, which can be extended with the edge (cin, v)
to a path from cin to cout. For every x′ ∈ X, x′ 6= x, we can satisfy the copy of Hx′ in HX by a
collection of x′ paths from ain to aout. This way, we constructed a collection P of paths satisfying
HX that consists of a single path of type (cin, cout) and exactly

∑
x′∈X\{x} x

′ = S−x paths of type
(ain, aout).

To complete the proof of statement (3), consider a collection P of paths satisfying HX . Let P
be the unique path of P visiting vertex v. The vertex of P after v is has to be an internal vertex
of the copy of Hx for some x ∈ X (here we use that the external vertices of the gadget Hx are

55

independent, hence v cannot be followed by any of ain, aout, and cout). As v was identified with
vertex bin of Hx, Lemma 15.6 implies that P visits every internal vertex of this copy of Hx and
leaves Hx at its vertex bout, which was identified with cout. Consider now some x′ ∈ X with x′ 6= x.
Vertex bin of Hx′ was identified with v, path P is the only path of P visiting v, and P does not
visit any internal vertex of Hx′ . Therefore, by Lemma 15.6, the internal vertices of Hx′ are visited
by exactly x′ paths of type (ain, aout). Thus P contains one path of type (cin, cout) and exactly∑

x′∈X\{x} x
′ = S − x paths of type (ain, aout).

Lemma 15.8. Assuming ETH, there is no f(p)no(p) time algorithm for Constrained Closed
Walk on graphs of pathwidth at most p for any computable function f .

Proof. The proof is by reduction from Edge Balancing on a directed graph D with k vertices
w1, . . . , wk. We construct a Constrained Closed Walk instance on a directed graph D∗ the
following way. First, let us introduce the vertices w1, . . . , wk into D∗, as well as two auxiliary
vertices cin and cout. For every edge e = (wi1 , wi2) ∈ E(D) with a set Xe of integers associated to it
in the Edge Balancing instance, we construct a copy of the gadget HXe defined by Lemma 15.7
and identify external vertices ain, aout, cin, cout of the gadget HXe with vertices wi1 , wi2 , cin, cout

of D∗, respectively. Let Se =
∑

x∈Xe
x for every edge e ∈ V (D), let S+

i =
∑

e∈δ+D(wi)
Ss, let

S−i =
∑

e∈δ−D(wi)
Ss, and let S∗ =

∑
e∈E(D)Xe =

∑k
i=1 S

+
i =

∑k
i=1 S

−
i . We further extend D∗ the

following way.

1. For every 1 ≤ i ≤ k, we introduce a set P+
i of S+

i paths of length two from cin to wi (that is,
each of these paths consists of vertex cin, vertex wi, and one extra newly introduced vertex).

2. For every 1 ≤ i ≤ k, we introduce a set P−i of S−i paths of length two from wi to cout.

3. We introduce a set P∗ of S∗ + |E(D)| paths of length two from cout to cin.

Let Z := {w1, . . . , wk, cin, cout}; note that Z form an independent set in G∗ (as the external vertices
of each gadget are independent). We define U := V (D∗) \ Z to be the set of vertices that have to
be visited exactly once. This completes the description of the reduction.

Observe that if we remove Z from D∗, then what remains is the disjoint union of the internal
vertices of the gadgets HXe , which have constant pathwidth by Lemma 15.7. As removing a vertex
can decrease pathwidth at most by one, it follows that D∗ has pathwidth |Z| + O(1) = O(k).
Thus if we are able to show that the constructed instance D∗ of Constrained Closed Walk is
a yes-instance if and only if D is a yes-instance of Edge Balancing, then this implies that an
f(p)no(p) time algorithm for Constrained Closed Walk on graphs of pathwidth p can be used
to solve Edge Balancingon k vertex graphs in time (k)no(k), which would contradict ETH by
Lemma 15.4.

Balanced assignment χ ⇒ closed walk. Suppose that balanced assignment χ : E(D)→ Z+

is a solution to the Edge Balancing instance. For every e = (wi1 , wi2) ∈ E(D), the construction
of the gadget HXe implies that HXe can be satisfied by a collection Pe of paths having type
(cin, cout) + (Se − χ(e))× (wi1 , wi2). Let P be a collection of paths that is the union of the set P∗,
the sets P+

i and P−i for 1 ≤ i ≤ k, and the set Pe for e ∈ E(G). Observe that every vertex of U is
contained in exactly one path in P and the paths in P are edge disjoint. Let H∗ be the subgraph
of D∗ formed by the union of every path in P. It is easy to see that H∗ is connected: every path
in P has endpoints in Z and the paths in P∗, P−i , P+

i ensure that every vertex of Z is in the same

56

component of H∗. It is also clear that every vertex of U has indegree and outdegree exactly 1, as
each vertex in U is visited by exactly one path in P. We show below that every vertex of Z is
balanced in H∗ (its indegree equals its outdegree). If this is true, then H∗ has a closed Eulerian
walk, which gives a closed walk in G∗ visiting every vertex at least once and every vertex in U
exactly once, what we had to show.

The endpoints of every path in P are in Z, hence every vertex of U is balanced in H∗ (in
particular has indegree and outdegree exactly 1). Consider now a vertex wi.

• For every e ∈ δ+
D(wi), the set Pe contains Se − χ(e) paths starting at wi.

• For every e ∈ δ−D(wi), the set Pe contains Se − χ(e) paths ending at wi.

• The set P+
i contains S+

i paths ending at wi.

• The set P−i contains S−i paths starting at wi.

As these paths are edge disjoint, the difference between the outdegree and the indegree of wi in H∗

is

(S−i +
∑

e∈δ+D(wi)

(Se−χ(e)))−(S+
i +

∑
e∈δ−D(wi)

(Se−χ(e))) = (S−i +S+
i −χ(δ+

D(wi)))−(S+
i +S−i −χ(δ−D(wi))) = 0,

since χ is balanced at wi. Consider now vertex cin.

• For every 1 ≤ i ≤ k, the set P+
i contains S+

i paths starting at cin.

• For every e ∈ E(D), the set Pe contains one path starting at cin.

• The set P∗ contains S∗ + |E(D)| paths ending at cin.

It follows that cin is balanced in H∗ with indegree and outdegree exactly S∗+ |E(D)| =
∑k

i=1 S
+
i +

|E(D)| and a similar argument shows the same for cout. Thus we have shown that the Constrained
Closed Walk instance has a solution.

Closed walk ⇒ balanced assignment χ. For the reverse direction, suppose that the con-
structed Constrained Closed Walk instance has a solution (a closed walk W). The closed walk
can be split into a collection P of walks with endpoints in Z and every internal vertex in U . In fact,
these walks are paths: (1) as each vertex of U is visited only once, the internal vertices of each walk
are distinct, (2) the walk cannot be a cycle, since we have stated earlier that no gadget has a cycle
through an external vertex. When defining the sets P∗, P+

i , P−i , we introduced a large number
of vertices into D∗ with indegree and outdegree 1. The fact that these vertices are visited implies
that P has to contain the set P∗ and the sets P+

i and P−i for every 1 ≤ i ≤ k. Moreover, every
path of P not in these sets contains an internal vertex of some gadget HXe (here we use that Z is
independent) and a path of P cannot contain the internal vertices of two gadgets (as this would
imply that it has an internal vertex in Z). Therefore, the remaining paths can be partitioned into
sets Pe for e ∈ E(D) such that the internal vertices of HXe are used only by the paths in Pe. This
means that the set Pe satisfies gadget HXe . If e = (wi1 , wi2), then it follows by Lemma 15.7 that
Pe has type (cin, cout) + (Se − χ(e))(wi1 , wi2) for some integer χ(e) ∈ Xe. In particular, this means
that Pe contains Se − χ(e) paths starting at wi1 and the same number of paths ending at wi2 .

57

We claim that χ form a solution of the Edge Balancing problem. Consider a vertex wi.
Taking into account the contribution of the paths in P−i and Pe for e ∈ δ+

D(wi), we have that the
outdegree of wi in the walk W is exactly

S−i +
∑

e∈δ+D(wi)

(Se − χ(e)) = S+
i + S−i − χ(δ+

D(wi)).

Taking into account the contribution of the paths in P+
i and Pe for e ∈ δ−D(wi), we have that the

indegree of wi in the walk W is exactly

S+
i +

∑
e∈δ−D(wi)

(Se − χ(e)) = S−i + S+
i − χ(δ−D(wi)).

As the indegree of wi in W is clearly the same as its outdegree, these two values have to be equal.
This is only possible if χ(δ+

D(wi)) = χ(δ−D(wi)), that is χ is balanced at wi. As this is true for every
1 ≤ i ≤ k, it follows that the Edge Balancing instance has a solution.

References

[1] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally thin
trees, and asymmetric tsp. In 55th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2015.

[2] Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin
Saberi. An o (log n/log log n)-approximation algorithm for the asymmetric traveling salesman
problem. 2010.

[3] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation
of indivisible goods. SIAM Journal on Computing, 39(7):2970–2989, 2010.

[4] Markus Bläser. A new approximation algorithm for the asymmetric tsp with triangle inequality.
ACM Transactions on Algorithms (TALG), 4(4):47, 2008.

[5] Moses Charikar, Michel X Goemans, and Howard Karloff. On the integrality ratio for asymmet-
ric tsp. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 101–107. IEEE, 2004.

[6] Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

[7] Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the twenty-
third annual ACM-SIAM symposium on Discrete Algorithms, pages 68–81. SIAM, 2012.

[8] Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. Springer-Verlag Berlin
and Heidelberg GmbH & amp, 2000.

[9] Jeff Erickson and Anastasios Sidiropoulos. A near-optimal approximation algorithm for asym-
metric tsp on embedded graphs. In Proceedings of the thirtieth annual symposium on Compu-
tational geometry, page 130. ACM, 2014.

58

[10] Uriel Feige and Mohit Singh. Improved approximation ratios for traveling salesperson tours and
paths in directed graphs. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 104–118. Springer, 2007.

[11] Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM Journal on Computing,
43(5):1541–1563, 2014.

[12] Alan M Frieze and Giulia Galbiati. On the worst-case performance of some algorithms for the
asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.

[13] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.

[14] Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling salesman problem on graphs
with bounded genus. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pages 967–975. SIAM, 2011.

[15] F. Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books, 1994.

[16] Michael Held and Richard Karp. The traveling salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

[17] Michael Held and Richard M Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970.

[18] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.

[19] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation algo-
rithms for asymmetric tsp by decomposing directed regular multigraphs. Journal of the ACM
(JACM), 52(4):602–626, 2005.

[20] Ken-ichi Kawarabayashi and Bojan Mohar. Some recent progress and applications in graph
minor theory. Graphs and Combinatorics, 23(1):1–46, 2007.

[21] László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–
86, 2006.

[22] A. Malnič and B. Mohar. Generating locally cyclic triangulations of surfaces. Journal of
Combinatorial Theory, Series B, 56(2):147–164, 1992.

[23] Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal of
Combinatorial Theory, Series B, 48(2):155–177, 1990.

59

	1 Introduction
	1.1 Our contribution
	1.2 Overview of the algorithm
	1.3 Organization

	2 Notation
	3 The Held-Karp LP
	4 An approximation algorithm for nearly-embeddable graphs
	5 Combining the Held-Karp LP with the dynamic program
	6 Thin trees in 1-apex graphs
	6.1 Analysis

	7 Thin forests in graphs with many apices
	7.1 Analysis

	8 Thin forests in higher genus graphs with many apices
	8.1 Analysis

	9 Thin subgraphs in nearly-embeddable graphs
	9.1 (0, g, 1, p)-nearly embeddable graphs
	9.1.1 The modified ribbon-contraction argument

	9.2 (a,g,1,p)-nearly embeddable graphs

	10 A preprocessing step for the dynamic program
	11 Uncrossing an optimal walk traversing a vortex
	11.1 The structure of an optimal solution

	12 The dynamic program for traversing a vortex in a planar graph
	12.1 The dynamic program
	12.1.1 The dynamic programming table
	12.1.2 Merging partial solutions
	12.1.3 Initializing the dynamic programming table
	12.1.4 Updating the dynamic programming table

	12.2 Analysis

	13 The dynamic program for traversing a vortex in a bounded genus graph
	13.1 The dynamic program
	13.1.1 The dynamic programming table.
	13.1.2 Initializing the dynamic programming table.
	13.1.3 Updating the dynamic programming table.

	13.2 Analysis

	14 The algorithm for traversing a vortex in a nearly-embeddable graph
	15 The lower bound for graphs of bounded pathwidth
	15.1 Edge Balancing
	15.2 Constrained Closed Walk and ATSP

