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Abstract:

One of the very first applications of the quantum field theoretic vacuum state was in

the development of the notion of Casimir energy. Now field theoretic Casimir energies,

considered individually, are always infinite. But differences in Casimir energies are

quite often finite — a fortunate circumstance which luckily made some of the early

calculations, (for instance, for parallel plates and hollow spheres), tolerably tractable.

We shall explore the extent to which this observation can be systematised. For instance:

What are necessary and sufficient conditions for Casimir energy differences to be finite?

When the Casimir energy differences are not finite, can anything useful be said? We

shall see that it is the difference in the first few Seeley–DeWitt coefficients that is

central to answering these questions. In particular, for any collection of conductors

(perfect or imperfect) and/or dielectrics, as long as one merely moves them around

without changing shape or volume, then the Casimir energy difference (and so the

Casimir forces) are guaranteed finite.
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1 Introduction

Quantum field theoretic Casimir energies (considered in isolation) are typically infinite,

requiring both regularization and renormalization to extract mathematically sensible

answers, this at the cost of sometimes obscuring the physics [1–5]. On the other hand

Casimir energy differences are quite often finite, and have a much more direct physical

interpretation [1, 2]. Additional background and general developments may be found

in references [6–15]. In this article, I shall first argue (mathematically) that there are

a large number of interesting physical situations where the Casimir energy differences,

(and so the Casimir energy forces), are automatically known to be finite, even before

starting specific computations. Secondly, I shall argue (mathematically) that one can

often develop physically interesting “reference models” such that the Casimir energy

difference between the physical system and the “reference model” is known to be finite,

even before starting specific computations. (I will not actually calculate any Casimir

energies — knowing that the result you are after is finite is often more than half the

battle.)

I shall first start with a simple formal argument to get the discussion oriented, and

then provide a more careful argument in terms of regularized (but not renormalized)

Casimir energies.

2 Formal argument

The formal argument starts with the exact result that:

Lemma 1 (Exact)

ω − ω∗ =
1√
4π

∫ ∞
0

dt

t3/2

{
e−ω

2
∗t − e−ω2t

}
. (2.1)

�

Now let ωn and (ω∗)n be two infinite sequences of numbers then, again as an exact

result:
N∑

n=1

{ωn − (ω∗)n} =
1√
4π

N∑
n=1

∫ ∞
0

dt

t3/2

{
e−(ω2

∗)nt − e−ω2
nt
}
. (2.2)
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Taking N →∞ and formally interchanging integral and summation, (and I will justify

this much more carefully later on):∑
n

{ωn − (ω∗)n} =
1√
4π

∫ ∞
0

dt

t3/2

∑
n

{
e−(ω∗)2nt − e−ω2

nt
}
. (2.3)

Then in terms of the heat kernel K(t) defined by

K(t) =
∑
n

e−ω
2
nt , (2.4)

we formally have: ∑
n

{ωn − (ω∗)n} =

∫ ∞
0

dt

t

1√
4πt
{K∗(t)−K(t)} . (2.5)

But, (now assuming that the ω2
n and (ω∗)

2
n are in fact the eigenvalues of some second-

order linear differential operators), by the standard Seeley–DeWitt expansion we have

both

K(t) = (4πt)−d/2

{
N∑
i=0

ai/2 t
i/2 +O

(
t(N+1)/2

)}
, (2.6)

and

K∗(t) = (4πt)−d/2

{
N∑
i=0

(a∗)i/2 t
i/2 +O

(
t(N+1)/2

)}
. (2.7)

Note d is the number of space dimensions. As will be discussed more fully below, the

integer indexed an have both bulk and boundary contributions, while the half-integer

indexed an+ 1
2

have only boundary contributions. Then for the difference in heat kernels

we have:

K∗(t)−K(t) = (4πt)−d/2

{
N∑
i=0

{
(a∗)i/2 − ai/2

}
ti/2 +O

(
t(N+1)/2

)}
. (2.8)

Now choose N = d+ 1, then formally

∑
n

{ωn − (ω∗)n} =

∫ ∞
0

dt

t
(4πt)−(d+1)/2

{
d+1∑
i=0

{
(a∗)i/2 − ai/2

}
ti/2

}
+ (UV finite).

(2.9)

Here the designation “UV finite” means that any remaining terms contributing to the

“UV finite” piece are now guaranteed to not have any infinities coming from the t→ 0

region of integration. That is, taking ECasimir = 1
2
~
∑

n ωn, we have the formal result:
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Lemma 2 (Formal)

∆(Casimir Energy) = −~
2

∫ ∞
0

dt

t
(4πt)−(d+1)/2

{
d+1∑
i=0

∆ai/2 t
i/2

}
+ (UV finite). (2.10)

�

All of the potentially UV-divergent terms are now concentrated in the d + 2 leading

terms proportional to the ∆ai. The rest of the article will involve several refinements

on this simple theme.

Note that for finiteness:

• In 3+1 dimensions we would want ∆a0 = ∆a1/2 = ∆a1 = ∆a3/2 = ∆a2 = 0.

• In 2+1 dimensions we would want ∆a0 = ∆a1/2 = ∆a1 = ∆a3/2 = 0.

• In 1+1 dimensions we would want ∆a0 = ∆a1/2 = ∆a1 = 0.

• In 0+1 dimensions we would want ∆a0 = ∆a1/2 = 0.

Generally, in d space dimensions, if we are comparing two physical systems for which

the first d + 2 Seeley–DeWitt coefficients are equal, then the difference in Casimir

energies will be finite.

3 Exact argument

Let us now regularize everything a little more carefully, to develop an exact rather than

formal argument. (Initially we shall use the complementary error function [erfc(x) =

1− erf(x)] as a particularly simple and mathematically transparent reguator, but will

subsequently show that physically almost any smooth cutoff function will do.) We have

the exact result that:

Lemma 3 (Exact)

ω erfc(ω/Ω) =
Ω√
π
e−ω

2/Ω2 − 1√
4π

∫ ∞
Ω−2

dt

t3/2
e−ω

2t . (3.1)

�

This leads to the further exact result that:∑
n

ωn erfc(ωn/Ω) =
Ω√
π

∑
n

e−ω
2
n/Ω2 − 1√

4π

∑
n

∫ ∞
Ω−2

dt

t3/2
e−ω

2
nt . (3.2)
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But, because all the relevant quantities are guaranteed finite, we can now exchange

sum and integral to obtain the exact (no longer just formal) result:∑
n

ωn erfc(ωn/Ω) =
Ω√
π

∑
n

e−ω
2
n/Ω2 − 1√

4π

∫ ∞
Ω−2

dt

t3/2

∑
n

e−ω
2
nt . (3.3)

Then in terms of the heat kernel:∑
n

ωn erfc(ωn/Ω) =
Ω√
π
K(Ω−2)− 1√

4π

∫ ∞
Ω−2

dt

t3/2
K(t). (3.4)

Now apply the Seeley–DeWitt expansion:

K(t) = (4πt)−d/2

{
N∑
i=0

ai/2 t
i/2 +O

(
t(N+1)/2

)}
. (3.5)

But then (now choosing N = d ) for the heat kernel term we have:

Ω√
π
K(Ω−2) = 2

(
Ω√
4π

)d+1
{

d∑
i=0

ai/2 Ω−i

}
+ (finite as Ω→∞). (3.6)

Working with the integral term is a little trickier. In the integral we instead choose

N = d+ 1. Then, treating the logarithmic term separately, we have∫ ∞
Ω−2

dt

t

1√
4πt

K(t) =
1√
4π

∫ ∞
Ω−2

dt

t3/2
(4πt)−d/2

{
d∑

i=0

{
ai/2

}
ti/2

}
+

a(d+1)/2

(4π)(d+1)/2
ln(Ω2) + (finite as Ω→∞). (3.7)

That the a(d+1)/2 term leads to logarithmic term in the Casimir energy (and effective

action) is well-known. See for instance references [5, 16, 17]. Performing the remaining

integrals: ∫ ∞
Ω−2

dt

t

1√
4πt

K(t) = − 1

(4π)(d+1)/2

{
d∑

i=0

ai/2 Ωd+1−i

d+ 1− i

}
+

a(d+1)/2

(4π)(d+1)/2
ln(Ω2) + (finite as Ω→∞). (3.8)

Now assembling all the pieces:∑
n

ωn erfc(ωn/Ω) = 2

(
Ω√
4π

)d+1
{

d∑
i=0

{
ai/2

}
Ω−i

}

+
1

(4π)(d+1)/2

{
d∑

i=0

ai/2 Ωd+1−i

d+ 1− i

}
+

a(d+1)/2

(4π)(d+1)/2
ln(Ω2)

+(finite as Ω→∞). (3.9)

We now have the exact result:
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Lemma 4 (Exact)

∑
n

ωn erfc(ωn/Ω) =

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+ k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞). (3.10)

For our current purposes the specific values of the dimensionless coefficients ki are not

important. �

4 erfc-regularized Casimir Energy

Now define the erfc-regularized Casimir energy:

(Casimir energy)erfc−regularized =
1

2
~
∑
n

ωn erfc(ωn/Ω). (4.1)

This is guaranteed to be finite as long as Ω is finite. Then:

Theorem 1 (erfc-regularized Casimir energy)

(Casimir energy)erfc−regularized =
1

2
~

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+

1

2
~k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞). (4.2)

�

Now take differences:

∆(Casimir energy)erfc−regularized =
1

2
~

{
d∑

i=0

ki ∆ai/2 Ωd+1−i

}
+

1

2
~k(d+1)/2 ∆a(d+1)/2 ln(Ω2)

+(finite as Ω→∞). (4.3)

Therefore, if the first d + 2 Seeley–DeWitt coefficients, [from 0 to (d + 1)/2], are un-

changed,

∆a0 = ∆a1/2 = · · · = ∆a(d+1)/2 = 0, (4.4)

then:

∆(Casimir energy)erfc−regularized = (finite as Ω→∞). (4.5)

We can now safely take the limit as the cutoff is removed (Ω→∞). We have:
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Theorem 2 (Casimir energy differences)

If we compare two systems where the first d+ 2 Seeley–DeWitt coefficients are equal,

∆a0 = ∆a1/2 = · · · = ∆a(d+1)/2 = 0, (4.6)

then:

∆(Casimir energy) = (finite). (4.7)

�

This is a very nice mathematical theorem, but how relevant is it to real world physics?

Just how general is this phenomenon?

5 Unchanging Seeley–DeWitt coefficients

Perhaps unexpectedly, there are very many physically interesting situations where the

(first few) Seeley–DeWitt coefficients are unchanging. The pre-eminent cases are these:

• Parallel plates.

• Thin spherical shells.

In both of these cases an infra-red regulator is needed, and some subtle thought is still

required. Much more radically:

• Take any collection of perfect conductors. Move them around relative to each

other. (Without distorting their shapes and/or volumes.)

• Then the change in Casimir energy is finite.

• Then the Casimir forces are finite.

(Subsequently, we shall show that similar comments can be made for both imperfect

conductors and dielectrics.)
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To establish these results we note that for a region V with boundary ∂V we have the

quite standard results that:

a0 ∝
∫
V

1
√
gd ddx = (volume);

a1/2 ∝
∫
∂V

1
√
gd−1 dd−1x = (surface area);

a1 ∝
∫
V

{R, V } √gd ddx+

∫
∂V

{K} √gd−1 dd−1x.

a3/2 ∝
∫
∂V

{R, V,K2, KijK
ij} √gd−1 dd−1x.

a2 ∝
∫
V

{R2, V 2, RV,∇2R,∇2V,RabR
ab, RabcdR

abcd} √gd ddx

+

∫
∂V

{R;n, V;n, Kii:jj, Kij:ij, V K,K
3, tr(K2)K, tr(K3)} √gd−1 dd−1x

+

∫
∂V

{RK, gijRninjK,RninjK
ij, gikRijklK

jl} √gd−1 dd−1x.

Here the { , , } denote various species-dependent linear combinations of the relevant

terms. For current purposes we do not need to know the specific values of any of

the dimensionless coefficients. (There are also contributions to the ai from kinks and

corners; but let’s stay with smooth boundaries for now.) Above we have retained terms

due to both intrinsic and extrinsic curvature, plus a scalar potential V (x). One could

in principle obtain even more terms from background electromagnetic or gauge fields,

but the terms retained above are sufficient for current purposes.

5.1 Parallel plates

Working with QED (so V = 0) in flat spacetime (Riemann tensor zero) with flat

boundaries (extrinsic curvature zero):

a0 ∝ (volume);

a1/2 ∝ (surface area);

a1 = 0;

a3/2 = 0;

a2 = 0.

So for finite Casimir energy differences one just needs to keep volume and surface area

fixed. For example: Apply periodic boundary conditions in d − 1 spatial directions,

and apply conducting box boundary conditions in the remaining spatial direction.
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Physically this means you put the Casimir plates inside a big box, of fixed size, with

two faces parallel to the plates. Consider the situation where one varies the distance

between the Casimir plates while keeping the size of the big box (the infra-red [IR]

regulator) fixed. From the above, and with no further calculation required, we can at

least deduce that the Casimir energy difference (and so the Casimir force between the

plates) is finite.

5.2 Hollow spheres

We are now working with QED in flat spacetime with thin spherical boundaries. The

idea is to understand as much as we can regarding Boyer’s calculation [2], but without

explicit computation. (We shall assume 3+1 dimensions.)

5.2.1 Step I (QED in flat spacetime)

Using only the fact that we are working with QED (V = 0) in flat spacetime (Riemann

tensor zero):

a0 ∝ (volume);

a1/2 ∝ (surface area);

a1 ∝
∫
∂V

{K} √g2 d2x;

a3/2 ∝
∫
∂V

{K2, KijK
ij} √g2 d2x;

a2 ∝
∫
∂V

{gijgklKij:kl, K
ij

:ij, K
3, tr(K2)K, tr(K3)} √g2 d2x.

Since the extrinsic curvature is non-zero, K 6= 0, keeping control of the higher ai, the

higher-order Seeley–DeWitt coefficients, is now a little trickier.

5.2.2 Step II (thin boundaries)

As long as the boundaries are thin, then Kinside = −Koutside, leading to cancellations in

both a1 and a2. Similarly the thin boundaries take up zero volume, so the total volume

is held fixed. (The outermost boundary, the IR regulator, is always held fixed.) Then:

∆a0 → 0;

∆a1/2 ∝ ∆(surface area);

∆a1 → 0;

∆a3/2 ∝ ∆

∫
∂V

{K2, KijK
ij} √g2 d2x;

∆a2 → 0.
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5.2.3 Step III (rescaling — conformal invariance)

As long as the inner boundaries for the two situations we are considering are simply

rescaled versions of each other, then
∫
∂V
KK

√
g2 d2x is scale invariant, thus leading

to a cancellation in a3/2. (The outermost boundary, the IR regulator, is always held

fixed.) Then:

∆a0 → 0;

∆a1/2 ∝ ∆(surface area);

∆a1 → 0;

∆a3/2 → 0;

∆a2 → 0.

Note we still have to deal with ∆a1/2.

5.2.4 Step IV (TE and TM modes)

In spherical symmetry, one can easily define TE and TM modes. Note that they have

equal and opposite contributions to a1/2, again leading to a cancellation in a1/2. (The

outermost boundary is always held fixed.) Then:

∆a0 → 0;

∆a1/2 → 0;

∆a1 → 0;

∆a3/2 → 0;

∆a2 → 0.

This finally is enough to guarantee finiteness of the Casimir energy difference.

5.2.5 Step V (finiteness)

From the above we have

∆(Casimir Energy) = (finite). (5.1)

This observation underlies the otherwise quite “miraculous cancellations” in Boyer’s

calculation of the Casimir energy of a hollow sphere [2]. Comparing two hollow spheres

of radius a and b; and letting the IR regulator (which is the same for each sphere) move

out to infinity:

∆(Casimir Energy) = ~ c B
(

1

a
− 1

b

)
. (5.2)
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“All” one needs to do is “merely” to calculate the numerical coefficient B, which is now

guaranteed to be finite. It is important to realize that if one has somehow determined

∆(Casimir Energy) = (finite), (5.3)

then

∆(Casimir Energy) =
1

2
~ {any regular resummation technique} (ωn − (ω∗)n). (5.4)

Boyer uses Riesz resummation, (the so-called “Riesz means”), which is justified only in

hindsight. If you know the answer you want is finite, then any of the standard “regular”

resummation techniques will do [18]. In contrast if you don’t know beforehand that

the answer you want is finite, then blindly calculating∑
n

(ωn − (ω∗)n) (5.5)

is asking for trouble.

5.3 Arbitrary arrangement of fixed-shape fixed-volume perfect conductors

Consider now any collection of fixed-shape fixed-volume perfect conductors in 3+1

dimensions. We are working with QED (V = 0) in flat spacetime (Riemann tensor

zero). Then:

a0 ∝ (volume);

a1/2 ∝ (surface area);

a1 ∝
∫
∂V

{K} √g2 d2x;

a3/2 ∝
∫
∂V

{K2, KijK
ij} √g2 d2x;

a2 ∝
∫
∂V

{gijgklKij:kl, K
ij

:ij, K
3, tr(K2)K, tr(K3)} √g2 d2x.

Fixed-shape fixed-volume implies fixed extrinsic curvature, so all the ∆ai ≡ 0.

That is:

• Take any collection of perfect conductors. Move them around relative to each

other. (Without distorting their shapes and/or volumes.)

• Then the change in Casimir energy, and the Casimir forces, are finite.

We shall subsequently see how to generalize this result to imperfect conductors and/or

dielectrics.
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6 Reference models

Consider now a non-zero potential (V 6= 0), in flat spacetime (Riemann tensor zero),

with periodic boundary conditions (so that there is no boundary). We have:

a0 ∝ (volume);

a1/2 = 0;

a1 ∝
∫
V

{V } √gd ddx;

a3/2 = 0;

a2 ∝
∫
V

{V 2} √gd ddx.

So for finiteness we “just” need to keep a0, a1, and a2 fixed.

6.1 1+1 dimensions

In (1+1) dimensions let us define the spatial average

V =

∫ L

0
V (x) dx

L
. (6.1)

Compare the two situations:

• D = −∇2 + V (x); eigenvalues ω2
n.

• D = −∇2 + V ; eigenvalues ω2
n.

Then: ∑
n

{ωn erfc(ωn/Ω)− ωn erfc(ωn/Ω)} = (finite as Ω→∞). (6.2)

That is:

(Casimir energy of D)− (Casimir energy of D) = (finite). (6.3)

In fact in this situation the reference eigenvalues ω̄n can be written down explicitly as

ωn =

√
(2πn)2

L2
+ V . (6.4)

Thence ∑
n

(
ωn −

√
(2πn)2

L2
+ V

)
= (finite). (6.5)

The ωn depend on V (x) and can be quite messy; the difference between the ωn and the

reference problem ωn is however well behaved.
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6.2 3+1 dimensions

In (3+1) dimensions define the two spatially averaged quantities:

V =

∫
V
V (x) d3x

volume(V)
; V 2 =

∫
V
V (x)2 d3x

volume(V)
. (6.6)

Now solve

m2
1 +m2

2 = 2V ; m4
1 +m4

2 = 2V 2 (6.7)

Now compare the three situations:

• D = −∇2 + V (x); eigenvalues ω2
n.

• D1 = −∇2 +m2
1; eigenvalues (ω1)

2

n.

• D2 = −∇2 +m2
2; eigenvalues (ω2)

2

n.

Then: ∑
n

{
ωn erfc(ωn/Ω)− 1

2
(ω1)n erfc

(
(ω1)n/Ω

)
− 1

2
(ω2)n erfc

(
(ω2)n/Ω

)}
= (finite as Ω→∞). (6.8)

This implies:

(Casimir energy of D)− 1

2

(
Casimir energy of D1

)
− 1

2

(
Casimir energy of D2

)
= (finite). (6.9)

While this argument does not calculate the finite piece for you, it at least guarantees

that you are looking for a finite answer. (And since the answer you are looking for us

guaranteed finite, almost any way of manipulating the series and thereby getting to

that finite answer will give the correct answer.)

But the two comparison models D1 and D2 are now sufficiently simple that one can

invoke analytic techniques, (zeta functions and the like [5, 19]), and simply define

(Casimir energy of D) =
1

2

(
Casimir energy of D1

)
+

1

2

(
Casimir energy of D2

)
+(finite). (6.10)

Of course this does not calculate the “finite piece” for you, but it gives you some

confidence regarding what to aim for before you start calculating.
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7 What if Casimir energy differences are not finite?

Now there are certainly (mathematical) situations where the ∆ai 6= 0 and the Casimir

energy difference is not naively finite. This merely means one has to be more careful

thinking about the physics. For instance:

• Real metals and real dielectrics are transparent in the UV.

• The UV cutoff Ω is then merely a stand-in for all the complicated physics.

For real metals and real dielectrics the cutoff represents real physics. See for instance

the discussion in references [20–22] and compare with the discussion in [23–26]. Note

that the discussion regarding real metals and real dielectrics has often lead to some

considerable disagreement regarding interpretation [27–29]. (My own view, as should

be clear from the current article, is that Casimir energies are ultimately determined by

looking at differences in zero-point energies, summed over all relevant modes.)

7.1 General class of cutoff functions

Let us write a general class of cutoff functions as

f
(ω

Ω

)
=

∫ ∞
0

g(ξ) erfc

(
ω

ξΩ

)
dξ;

∫ ∞
0

g(ξ) dξ = 1. (7.1)

Note f(0) = 1, while f(∞) = 0, and f(ω/Ω) is monotone decreasing.

To see just how general this class of cutoff functions is, we proceed by noting that

erfc

(
ω

ξΩ

)
=

2

Ωξ
√
π

∫ ∞
ω

exp

(
− x2

Ω2ξ2

)
dx. (7.2)

So we see

f ′
(ω

Ω

)
= − 2√

π

∫ ∞
0

g(ξ)

ξ
exp

(
− ω2

Ω2ξ2

)
dξ. (7.3)

Substituting χ = 1/ξ2 we obtain

f ′
(ω

Ω

)
=

1√
π

∫ ∞
0

g(χ−1/2)

χ
exp

(
−ω

2

Ω2
χ

)
dχ. (7.4)

But this is just the Laplace transform of g(χ−1/2)/χ, evaluated at the point s = ω2/Ω2.

Consequently, as long as the inverse Laplace transform of f ′(s1/2) exists, which is a

relatively mild condition on the cutoff function f(s1/2), then we can determine g(ξ) in

terms of f(ω/Ω).
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Indeed, there is a little-known algorithm due to Post [30], see also Bryan [31], and

reference [32], that allows for inversion of Laplace transforms by taking arbitrarily high

derivatives. Specifically, if G(s) is the Laplace transform of g(z) then

g(z) = lim
n→∞

(−1)n

n!

(n
z

)n+1

G(n)
(n
z

)
. (7.5)

This algorithm may not always be practical, since one needs arbitrarily high derivatives.

Even if not always practical, it again settles an important issue of principle — knowledge

of the cutoff f(ω/Ω) in principle allows one to reconstruct an equivalent weighting g(ξ).

The point is that almost any cutoff function f(ω/Ω) can be cast in this “weighted

integral over erf-functions” form. (In particular we could rephrase all of the preceding

discussion concerning erf-regularization in terms of this more general f -regularization,

but when ∆ai = 0 nothing new is obtained. It is only when ∆ai 6= 0 that general

f -regularization becomes at all interesting.)

7.2 f-regularized Casimir energy

Let us now consider a generic regularized sum of eigen-frequencies:∑
n

ωn f
(ωn

Ω

)
. (7.6)

Then our previous result

∑
n

ωn erfc(ωn/Ω) =

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+ k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞), (7.7)

becomes

∑
n

ωn f
(ωn

Ω

)
=

{
d∑

i=0

ki

(∫ ∞
0

g(ξ) ξd+1−i dξ

)
ai/2 Ωd+1−i

}

+k(d+1)/2 a(d+1)/2

{
ln(Ω2) + 2

∫ ∞
0

g(ξ) ln ξ dξ

}
+(finite as Ω→∞). (7.8)

The integrals over g(ξ) can be absorbed into redefining the dimensionless constants ki
in a f -dependent manner. That is:
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Theorem 3 (Physical cutoff)

For a general cutoff f(ω/Ω) one has

∑
n

ωn f
(ωn

Ω

)
=

{
d∑

i=0

[k(f)]i ai/2 Ωd+1−i

}
+ k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞). (7.9)

The [k(f)]i are dimensionless phenomenological parameters that depend on the detailed

physics of the specific cutoff function f(ω/Ω). However k(d+1)/2 is cutoff independent.

The Ω dependence represents real physics. Live with it! �

Definition 1 (Physically regularized Casimir energy)

For a general cutoff f(ω/Ω) one has

∆(Casimir energies)f−regularized =
1

2
~ ∆

(∑
n

ωn f
(ωn

Ω

))
. (7.10)

�

Theorem 4 (Physically regularized Casimir energy)

For a general cutoff f(ω/Ω) one has

∆(Casimir energies)f−regularized =
1

2
~

{
d∑

i=0

[k(f)]i ∆ai/2 Ωd+1−i

}
+

1

2
~ k(d+1)/2 ∆a(d+1)/2 ln(Ω2)

+(finite as Ω→∞).

The [k(f)]i are dimensionless phenomenological parameters that depend on the detailed

physics of the specific cutoff function f(ω/Ω). However k(d+1)/2 is cutoff independent.

The Ω dependence represents real physics. Live with it! �

Part of the reason it was never worthwhile to keep explicit track of the ki is that,

once the f -cutoff is introduced, the ki would in any case be replaced by the purely

phenomenological and cutoff dependent [k(f)]i.

Furthermore, if the first d+2 of the ∆ai are zero, then the cutoff dependence drops out

of the calculation. That is, even for imperfect conductors and dielectrics, if one is com-

paring two situations where the conductors/dielectrics have merely been moved around,

(without changing shape and/or volume), then the difference in Casimir energies (and

so the Casimir forces) are guaranteed finite.
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8 Forcing finiteness?

Can one force the Casimir energy difference to be finite?

By hook or by crook find a number of “simple” problems Di such that

ai/2(D) =
1

m

m∑
i=1

ai/2(Di); i ∈ {0, 1, 2, . . . , d+ 1}. (8.1)

Then it is certainly safe to say

(Casimir energy of D)− 1

m

m∑
i=1

(
Casimir energy of Di

)
= (finite). (8.2)

Of course this does not calculate the “finite piece” for you, but it gives you some

confidence regarding what to aim for before you start calculating. More formally,

if the Di are sufficiently simple one might apply analytic techniques (such as zeta

functions [5, 19] or the like) to argue that it might make sense to define:

(Casimir energy of D) =
1

m

m∑
i=1

(
Casimir energy of Di

)
+ (finite). (8.3)

A somewhat safer statement is to compare two systems and assert

∆(Casimir energy of D) =
1

m

m∑
i=1

∆
(
Casimir energy of Di

)
+ (finite). (8.4)

Only if the two sets of “reference problems” Di are the same (or at least sum to the

same
∑m

i=1 aj
[
Di

]
) does this process make any real physical sense, in which case it

reduces to our previous result

∆(Casimir energy of D) = (finite). (8.5)

Otherwise the sum
1

m

m∑
i=1

∆
(
Casimir energy of Di

)
, (8.6)

while analytically continued to be finite, is purely formal. It need not be a physical

energy difference. In short, one should seek at all times to calculate Casimir energy

differences between clearly defined and specified physical systems. This might, at a

pinch, involve differences between linear combinations of physical systems, but to get a

physically meaningful Casimir energy one must either enforce ∆
(∑m

i=1 aj
[
Di

])
= 0,

or develop an explicit physical model for the cutoff f(ω/Ω).
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9 Conclusions

In (d+ 1) dimensions, iff the first d+ 2 Seeley–DeWitt coefficients agree,

∆a0 = ∆a1/2 = . . .∆a(d+1)/2 = 0, (9.1)

then the difference in Casimir energies is guaranteed finite. This is an extremely useful

thing to check before you start explicitly calculating. The erfc function, in the form

erfc(ω/Ω), is a perhaps unexpectedly useful regulator

erfc(0) = 1; erfc(∞) = 0. (9.2)

More generally, any reasonably smooth function f(ω/Ω) satisfying

f(0) = 1; f(∞) = 0; (9.3)

will do. (Roughly speaking, as long as f(ω/Ω) has an inverse Laplace transform.)

For real metals and real dielectrics, which become transparent in the UV, the cutoff

is physical, and its influence on the Casimir energy is encoded in a small number of

dimensionless parameters [k(f)]i and an overall cutoff scale Ω. Various generalizations

of this argument, (such as counting differences in eigenstates, or calculating differences

of sums of powers of eigenvalues), are also possible. Similar arguments, regarding

differences in Seeley–DeWitt coefficients, can also be applied to the one-loop effective

action [33]. Finally, I should emphasise that I have not renormalized anything anywhere

in this article, the worst I have done is to temporarily regularize some infinite series,

to allow some otherwise formal manipulations to be mathematically well-defined.
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[23] C. E. Carlson, C. Molina–Paŕıs, J. Perez–Mercader and M. Visser,

“Schwinger’s dynamical Casimir effect: Bulk energy contribution”,

Phys. Lett. B 395 (1997) 76

doi:10.1016/S0370-2693(97)00009-9

[hep-th/9609195].
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