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Abstract

We perform a theoretical study of nonlinear optical isolator devices based on coupled micro-

cavities with gain and loss. Using coupled-mode theory, we derive a correspondence between the

boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and

the PT -breaking transition in the underlying linear system. For zero detuning and weak input

intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the

PT transition point. When the couplings to the external ports are unequal, the isolation ratio

exhibits an abrupt jump at the transition point, determined by the ratio of the couplings. This

could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical

isolation can be switched on or off using tiny variations in the inter-resonator separation.
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I. INTRODUCTION

For many years, the implementation of compact optical isolators has been a major re-

search goal in the field of integrated optics [1, 2]. Optical isolation requires the breaking of

Lorentz reciprocity; this is traditionally achieved using magneto-optic materials, but such

materials are challenging to incorporate into integrated optics devices [3, 4]. The most

commonly-pursued alternative method for breaking reciprocity is to exploit optical nonlin-

earity [1, 5–10]. Two recent demonstrations of nonlinearity-based on-chip optical isolators

have drawn especially strong attention [9, 10]. These very similar experiments both fea-

tured a pair of coupled whispering-gallery microcavities, one containing loss and the other

saturable (nonlinear) gain. Light transmission across the structure was found to be strongly

nonreciprocal, depending on whether it first passed through the gain or loss resonator.

Aided by the high Q factors of the resonators, isolation was observed for record-low powers

of ∼ 1µW [9].

The use of dual resonators containing gain and loss in Refs. [9, 10] was inspired by “PT

symmetric optics”, which concerns optical structures that are invariant under simultaneous

parity-flip (P ) and time-reversal (T ) operations [11–17, 19, 20]. The concept originated

from the observation that PT symmetric Hamiltonians, despite being non-Hermitian, can

exhibit real eigenvalue spectra [21, 22], as well as “PT -breaking transitions” between real and

complex eigenvalue regimes. The PT -breaking transition point is an “exceptional point”,

where two eigenstates coalesce and the effective Hamiltonian becomes defective [23, 24]. Near

the transition, the dynamical behavior of the optical fields can exhibit highly interesting

features [25–27]; for instance, the presence of gain saturation has been found to stabilize

PT -symmetric steady states past the usual PT transition point [26, 27].

Despite these intriguing conceptual links, it was not clear from Refs. [9, 10] how PT

symmetry relates to the working of the nonlinear optical isolators in question. Strictly

speaking, PT symmetry holds in the dual-resonator structures only in the linear limit; in

the nonlinear regime, the gain saturates and no longer matches the loss, so the structures

are not PT symmetric and do not possess distinct “PT -symmetric” or “PT -broken” phases.

Ref. [9] indicated that optical isolation occurs (in the nonlinear regime) if the system is tuned

so that it would be PT -broken in the linear regime; however, the actual correspondence was

not shown theoretically nor experimentally. The dynamical behavior of the system, including
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the uniqueness and stability of the steady-state solution(s), was also unexplored.

In this paper, we present a theoretical analysis of the dual-resonator structure, aiming

to clarify the relationships between the PT phase, the performance of the nonlinear optical

isolator, and the uniqueness and stability of the steady-state optical modes. Using coupled-

mode theory [28–31], we study the conditions for steady-state solutions to exist, and the

asymptotic stability of those solution(s). We find that stability in the nonlinear system has

a close correspondence with the PT transition boundary of the underlying linear system.

It is particularly useful to focus on the “weak-input limit”, where the input intensity is

low relative to the gain saturation threshold within the amplifying resonator. In this limit,

we show that the nonlinear solutions at non-zero frequency detunings are asymptotically

stable in the PT -symmetric phase, and become unstable in the PT -broken phase. For small

frequency detunings, there can exist regions in the PT -broken phase where multiple steady-

state solutions exist, and we show that only the highest-intensity solution is asymptotically

stable. Specifically, there is always one stable steady-state solution at zero detuning.

For the zero-detuning case in the weak-input limit, we show that the nonlinear system

exhibits a sharp transition between isolating behavior (corresponding to the PT -broken

phase) and reciprocal behavior (corresponding to the PT -symmetric phase). Although this

transition coincides exactly with the PT transition point, it is an inherently nonlinear effect,

arising from a jump between different solution branches of the cubic equations governing

the output intensities for forward and backward transmission.

We also show that the performance of the nonlinear optical isolator is modified in a

useful way when the two resonator-to-waveguide coupling rates are unequal. In this case, a

small shift across the transition point causes the isolation ratio (the ratio between forward

and backward transmission intensities) to undergo an abrupt jump, which approaches a

discontinuity in the weak-input limit. The magnitude of this jump is given by the ratio of

the coupling rates. This phenomenon can be used to realize a nonlinear optical isolator that

exhibits very large changes in the isolation ratio, actively controlled by tiny shifts in (e.g.)

the inter-resonator separation.
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II. COUPLED-MODE EQUATIONS

The dual-resonator structure is shown schematically in Fig. 1(a). The setup is identical to

Refs. [9, 10], consisting of two evanescently coupled microcavities with resonant frequencies

ω1 and ω2. One resonator contains saturable gain, and the other is lossy. The resonators are

coupled to separate optical fiber waveguides, which act as input/output ports (labeled 1–4),

with couplings κ1 and κ2. The direct inter-resonator coupling rate is µ. In the “forward

transmission” configuration, light is injected from port 1 at a fixed operating frequency ω,

exiting at ports 2 and 4. Alternatively, in the “backward transmission” configuration, light

is injected at port 4 and exit at ports 1 and 3. We are interested in the level of isolation

between ports 1 and 4, which serve as the operational input and output ports for the device.

The dual-resonator system can be described by coupled-mode equations [9, 10], formu-

lated using the standard framework of coupled-mode theory [28–31]. In this section and

the next, we briefly summarize these equations, which have previously been presented in

Refs. [9, 10]. For forward transmission, the coupled-mode equations are

da1
dt

= (i∆ω1 + g)a1 − iµa2 (1)

da2
dt

= (i∆ω2 − γ)a2 − iµa1 +
√
κ2sin (2)

IF = κ1|a1|2. (3)

Here, a1 and a2 denote the complex amplitudes for the slowly-varying field amplitudes in

the gain resonator and loss resonators, respectively; ∆ω1,2 ≡ ω − ω1,2 denote the operating

frequency’s detuning from each resonator’s natural frequency; g > 0 and γ > 0 are the net

gain rate in resonator 1 and the net loss rate in resonator 2; sin is the amplitude of the

incoming light in port 1; and IF is the power transmitted forward into port 4.

For backward transmission, a different set of coupled-mode equations holds:

da1
dt

= (i∆ω1 + g)a1 − iµa2 +
√
κ1 sin (4)

da2
dt

= (i∆ω2 − γ)a2 − iµa1 (5)

IB = κ2 |a2|2, (6)

where IB is the power transmitted into port 1.
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FIG. 1. (a) Schematic of a resonator with saturable gain coupled to a lossy resonator, with

both resonators coupled to optical fiber ports. Solid arrows indicate forward transmission (port

1 → 4), and dashed arrows indicate backward transmission (port 4 → 1). (b)–(d) Transmission

characteristics in the linear (non-gain-saturated) regime, when the gain and loss are PT symmetric

(g = γ = 0.4). Here, we plot the intensity in the active resonator (|a1|2) under forward transmission

(solid lines), and in the passive resonator (|a2|2) under backward transmission (dashes), versus the

frequency detuning. These resonator intensities are proportional to the forward and backward

transmission intensities via Eqs. (3) and (6). In the PT-symmetric phase µ > γ, there are two

transmission peaks; in the PT-broken phase µ < γ, these merge into a single peak.

The gain/loss rates g and γ consist of several radiative and non-radiative terms [9]:

g =
1

2
(g′ − γ1 − κ1) (7)

γ =
1

2
(γ2 + κ2) , (8)

where g′ is the intrinsic amplification rate in resonator 1, and γ1,2 are the intrinsic loss

rates in the resonators. Until stated otherwise, we will impose the following simplifying

restrictions:

κ1 = κ2 = γ1 = γ2, (9)

∆ω1 = ∆ω2 ≡ ∆ω, (10)

g′ =
g0

1 + |a1/as|2
. (11)
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Eq. (9) corresponds to a “critical coupling” criterion with respect to the individual cavity-

waveguide couplings. The intrinsic loss and outcoupling rates are all tuned to the same

value; note also that g = g′/2 − γ. Eq. (10) states that the resonators have the same

natural frequency. Eqs. (9)–(10) serve as simplifying assumptions, to avoid dealing with

a proliferation of free parameters; later, we will discuss the implications of relaxing these

assumptions. Another important constraint, PT symmetry, will be imposed in the next

section. Eq. (11) describes saturable gain, where g0 is the unsaturated amplification rate,

and as ∈ R+ is a gain saturation threshold.

The suitability of the system as an optical isolator is characterized using the “isolation

ratio”, which is the ratio of forward to backward transmittance at fixed input power:

R ≡ TF
TB

=
IF (Iin)

IB(Iin)
, (12)

where IF is obtained by solving Eqs. (1)–(3) with ȧ1 = ȧ2 = 0 (steady state), and IB is

obtained from Eqs. (4)–(6). When the system is reciprocal, R = 1.

III. LINEAR OPERATION

We now impose the important constraint g = γ. This means that in the linear regime,

as → ∞, the gain and loss resonators become PT symmetric. To understand the im-

plications, consider the “closed” system without resonator-fiber couplings. Its detuning

eigenfrequencies are

∆ω = i
g − γ

2
±

√
µ2 − γg −

(
g − γ

2

)2

. (13)

When g = γ, these reduce to ∆ω = ±
√
µ2 − γ2. As µ and γ are varied while keeping g = γ,

the system has a PT symmetry-breaking transition at µ = γ. For µ > γ, the detunings are

real (PT-symmetric phase), and for µ < γ they are purely imaginary (PT-broken phase).

With the resonator-fiber couplings, the closed system’s eigenmodes become transmission

resonances. In the PT-symmetric phase µ > γ, the resonator modes and transmission

amplitudes exhibit two intensity peaks, at ∆ω = ±
√
µ2 − γ2, corresponding to the (real)

detunings of the closed system, as shown in Fig. 1(b). In the PT-broken phase µ < γ, there

is a single peak at zero detuning, as shown in Fig. 1(d). As noted in Ref. [9], however, the
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PT-symmetric and PT-broken phases will give very different isolation behaviors when gain

saturation is introduced.

In the linear regime, the coupled-mode equations (1)–(3) and (4)–(6) obey optical reci-

procity by explicit construction [29]. For fixed sin, the forward and backward transmission

amplitudes are exactly equal, IF = IB; the isolation ratio is R = 1, as shown in Fig. 1(b)–(d).

IV. NONLINEAR OPERATION: MULTIPLE SOLUTIONS AND STABILITY

We turn now to the nonlinear, gain-saturated regime, setting g0 = 4γ, so that g → γ

as as → ∞. This means that the system would be PT symmetric in the absence of gain

saturation. If we use as as the natural intensity scale for the coupled-mode equations, the

nonlinear system has four remaining independent parameters: ∆ω, µ, γ, and |sin|2.

For finite as, optical reciprocity is broken, and the system can act as an isolator. However,

it is no longer PT symmetric, since g 6= γ, and thus we can no longer rigorously define “PT

symmetric” or “PT broken” phases. Still, we can relate the nonlinear system’s isolation

behavior to the PT symmetric phases as defined in the linear limit.

In the linear regime, the solutions to the coupled-mode equations were unique. With

nonlinearity, the coupled-mode equations can have multiple steady-state solutions. For

forward transmission, steady-state solutions are determined by combining Eqs. (1)–(2) into:

|α|2x3 +
(

2|α− 1|2 − 2− β
)
x2 +

(
|α− 2|2 − 2β

)
x− β = 0, (14)

where α, β, and x are the following dimensionless variables:

α =
(−i∆ω + γ)2 + µ2

γ(−i∆ω + γ)
, β =

µ2

∆ω2 + γ2
1

γ

∣∣∣∣sinas
∣∣∣∣2 , x =

∣∣∣∣a1as
∣∣∣∣2 . (15)

Since x ∈ R+, there is either one, two, or three physical steady-state solutions. There

must be at least one solution, since the polynomial has a positive third-order coefficient and

negative zeroth-order coefficient. The backward transmission case is handled similarly, using

Eqs. (4)–(5); it gives the same cubic equation (14), but with the replacement

β =
1

γ

∣∣∣∣sinas
∣∣∣∣2 . (16)

Solving the polynomial reveals a domain in parameter space where there are three physical

steady-state solutions, outside of which the solution is unique. This is shown in Fig. 2(a)–
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FIG. 2. (a)–(b) Domains in which the nonlinear coupled-mode equations have multiple steady-

state solutions, for forward (a) and backward (b) transmission. Here, we show the parameter space

defined by ∆ω and µ, with fixed γ = 0.4, sin = 0.5, and as = 3; symbols indicate the points in the

parameter space corresponding to the curves in (c) and (d). Within the small-∆ω region bounded

by the red curves, the highest-intensity (or only) solution is asymptotically stable. (c)–(d) Plots

showing the emergence of multiple solutions at several values of µ, fixing ∆ω = 0. The horizontal

axis is the normalized intensity in the gain resonator, |a1/as|2; the vertical axis is the left-hand side

of the cubic Eq. (14), and its counterpart for backward transmission; the steady-state coupled-mode

equations are satisfied when the curves cross zero.

(b). The three-solution domain lies within the “PT -broken” phase of the linear system,

µ < γ.

The boundaries of the three-solution domain depend on γ and sin, as the choice of forward

or backward transmission. It consists of two sets of curves; the black curves in Fig. 2(a)–

(b) involve a degeneracy of two low-intensity roots of the cubic polynomial [Fig. 2(c)–(d)].

Crossing this boundary causes no discontinuity in the intensity of the stable steady-state

solution. The red curves in Fig. 2(a)–(b) involve the degeneracy of two high-intensity roots

of the cubic polynomial (14); as we shall see, crossing this boundary destabilizes the steady-

state solution.

Through numerical stability analysis, detailed in Appendix A, we find that the highest-

intensity solution in the three-solution domain is asymptotically stable (i.e., the Lyapunov

exponents are all negative). The two lower-intensity solutions are unstable: small pertur-

bations from these steady states eventually evolve into the highest-intensity state. In the
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one-solution domain, the solution is asymptotically stable for small detuning ∆ω, and un-

stable for large ∆ω.

Interestingly, the region of asymptotic stability in the nonlinear system is closely con-

nected to the PT symmetry phases of the linear system. For µ < γ, which corresponds to

the PT -broken phase, the frequency range of asymptotic stability is bounded by the solid

and dashed red curves shown in Fig. 2(a)–(b). These bounds diverge at µ = γ, which cor-

responds to the transition from the PT -broken to the PT -symmetric phase in the linear

system. For µ > γ, the steady state solution becomes asymptotically stable for all ∆ω.

In the one-solution domain, the onset of asymptotic instability (at sufficiently large ∆ω)

is associated with the appearance of sustained time-domain beating in both the resonator

intensities and the transmittance. This is shown in Appendix A (Fig. 6).

V. ISOLATION RATIOS AT ZERO DETUNING

Let us now focus on zero detuning, ∆ω = 0. In this case, there is always an asymptotically

stable steady-state solution, and we shall be able to derive an important connection to the

PT transition of the linear system. The variables α and β, defined in Eq. (15), simplify to

α = 1 +

(
µ

γ

)2

β =
|sin/as|2

γ
×


(
µ

γ

)2

, (Forward)

1, (Backward).

(17)

Hence, the cubic polynomial in Eq. (14) is entirely determined by two quantities: (i) µ/γ

and (ii) |sin/as|2/γ. The first quantity is also the tuning parameter for the PT transition.

The second quantity determines the strength of the input relative to the gain saturation

threshold. We will be particularly interested in the “weak-input” limit, defined as

sin �
√
γ as. (18)

When β � 1, the steady state behavior will be principally determined by the PT -tuning

parameter µ/γ.

Fig. 3 plots the isolation ratio R ≡ IF/IB versus µ/γ, for several different values of γ and

sin. In the weak-input regime, the isolation ratio curves are almost identical for different
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PT critical point

PT critical point

FIG. 3. Isolation ratio versus µ/γ, for (a) weak inputs sin = 0.15 and as = 3, and (b) strong

inputs regime sin = 9 and as = 3, using several choices of γ. In the weak-input regime, the

isolation ratio is mainly determined by the PT-breaking parameter µ/γ, and reaches a plateau for

µ/γ > 1, corresponding to the PT-symmetric phase of the linear system. (c) Isolation ratios near

the µ/γ ≈ 1, showing the emergence of a “kink” in the weak-input regime. Circles show exact

numerical solutions of the coupled-mode equations, and the solid curve shows the low-intensity

limiting expressions given in Eqs. (21)–(22).

γ, which verifies that the system is controlled by the combination µ/γ. For µ/γ < 1,

corresponding to the PT-broken phase of the linear system, we find that R > 1, and hence

the system functions as a good optical isolator. For µ/γ > 1, we find that R ≈ 1. This

agrees with the qualitative behaviors reported in Ref. [9].

Let us examine the vicinity of the transition point in greater detail. Fig. 3(c) shows that

in the weak input regime, the isolation ratio curve exhibits a kink at µ/γ = 1. To understand

this, we return to the definition of the isolation ratio:

R =
IF
IB

= (µ/γ)−2
xF
xB
, (19)

where xF and xB are the solutions to Eq. (14) for the forward and backward transmission

cases. For β → 0, Eq. (14) reduces to

x

(
x− 1− (µ/γ)2

1 + (µ/γ)2

)2

= 0. (20)
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For µ/γ < 1, the double-root in Eq. (20) is positive, and β is just a small correction. Hence,

x ≈ 1 to lowest order for forward and backward transmission, and Eq. (19) implies that

R ≈ (µ/γ)−2 for µ/γ < 1, sin �
√
γ as. (21)

For µ/γ > 1, the double-root is negative, so the highest-intensity root in the β → 0 limit

is x = 0. For non-zero β, this root becomes O(β), so xF/xB ≈ βF/βB = (µ/γ)2. The

isolation ratio is

R ≈ 1 for µ/γ > 1, sin �
√
γ as. (22)

The limiting expressions (21)–(22) are plotted in Fig. 3(c), and agree well with the numerical

solutions. This helps explain why the PT phase of the linear system affects the isolation

functionality of the nonlinear system. Both phenomena are determined by the parameter

µ/γ, with a critical point at µ/γ = 1; the kink in the isolation ratio arises from switching

steady-state solution branches at the critical point.

VI. IMBALANCED INPUT/OUTPUT COUPLINGS

Thus far, we have assumed that the waveguide-resonator couplings, κ1 and κ2, are equal.

If the couplings are unequal, the isolation behavior of the system can be quite different. To

study this, we replace Eq. (9) with

γ1 + κ1 = γ2 + κ2 = 2γ. (23)

For g0 = 4γ, the gain in resonator 1 is

g =
2γ

1 + |a1/as|2
− γ, (24)

which ensures that the decoupled system remains PT symmetric, as before, with critical

point µ = γ. With this generalization, the steady-state equations (14)–(16) are altered only

by the replacements

β → κ2
γ
β (Forward)

β → κ1
γ
β (Backward).

(25)

By varying the couplings and losses so that Eq. (23) is satisfied, we can access different

values of κ1/κ2, subject to the constraint 0 < κ1, κ2 < 2γ.
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FIG. 4. Isolation ratio versus µ/γ for different microcavity-waveguide coupling strengths. The

system parameters are ∆ω = 0, sin = 0.03, as = 3, γ = 1, and g0 = 4γ. Thin solid lines show the

analytic approximation in the weak-input (sin �
√
γ as) limit, given by Eq. (26).

The discussion of Section V generalizes to this case in a straightforward way. Using the

previous zero-detuning and weak-input assumptions, we find that xF/xB ≈ 1 for µ/γ < 1,

as before; but for µ/γ > 1, Eq. (25) gives xF/xB ≈ βF/βB = (κ2/κ1)(µ/γ)2. The isolation

ratio now becomes

R = (κ1/κ2)(µ/γ)−2xF/xB

≈

 (κ1/κ2) (µ/γ)−2 for µ/γ < 1

1 for µ/γ > 1.

(26)

For κ1 6= κ2, this predicts a discontinuity in the isolation ratio at µ/γ = 1.

Fig. 4 plots the isolation ratios at zero detuning. The equal-coupling case, which we

have previously discussed, is shown as a solid black curve. For comparison, we also plot the

isolation ratio curves for κ1 � κ2, and for κ1 � κ2. In all three cases, the isolation ratio

approaches unity for µ/γ > 1. Below the critical value, however, the unequal-coupling curves

change abruptly by a factor of κ1/κ2, in this case by two orders of magnitude. (Interestingly,

for κ1 � κ2, the isolation ratio decreases below unity, before becoming large again for

µ/γ → 0.) The numerical results match Eq. (26) very well.

This phenomenon may be exploited in device applications for realizing an actively switch-

able optical isolator. Using a small variation in the controlling µ/γ parameter (e.g., by
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varying the inter-cavity separation, which affects µ), we can switch between strong optically

isolating and reciprocal regimes.

VII. CONCLUSION

We have analyzed the relationship between the linear and nonlinear behaviors of dual

microcavity resonators with gain and loss. The PT transition of the linear system is shown

to correspond closely with the dynamical and steady-state behaviors of the gain-saturated

nonlinear system, for which PT symmetry does not strictly apply. For µ > γ, corresponding

to the linear system’s “PT -symmetric” phase, the resonances are always asymptotically

stable, and the isolation ratio approaches unity. But for µ < γ, corresponding to the linear

system’s “PT -broken” phase, the coupled-mode dynamics are unstable at sufficiently large

frequency detunings. For steady-state operation, it is thus preferable to adopt zero detuning.

Using the crucial “weak-input” approximation, Eq. (18), we derived a kink in the isola-

tion ratio at the critical point µ = γ. Upon relaxing the constraint of equal waveguide-port

couplings, this kink turns into a discontinuity, meaning that the isolation ratios vary ex-

tremely quickly with µ/γ in the vicinity of the critical point. This could be useful for

actively-controllable on-chip optical isolators.

We are grateful to B. Peng and H. Wang for helpful discussions. This research was

supported by the Singapore National Research Foundation under grant No. NRFF2012-02,

and by the Singapore MOE Academic Research Fund Tier 3 grant MOE2011-T3-1-005.

APPENDIX A: STABILITY ANALYSIS

This appendix discusses the stability analysis for the nonlinear coupled-mode equations.

For forward transmission, we combine Eqs. (1)–(3) and (9)–(11) with the “PT symmetry”

condition g0 = 4γ, to obtain the time-dependent equations

da1
dt

=

(
i∆ω − γ + κ1

2
+

2γ

1 + |a1/as|2

)
a1(t)− iµa2(t), (A1)

da2
dt

= (i∆ω − γ + κ2
2

) a2(t)− iµa1(t) +
√
κ2 sin. (A2)
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We assume a steady-state input sin, and define

a1(t) = ã1 + ρ1(t) (A3)

a2(t) = ã2 + ρ2(t), (A4)

where ã1,2 is the steady-state solution that we wish to analyze and ρ1,2(t) are time-dependent

perturbations. We insert this into Eqs. (A1)–(A2), omitting terms that are quadratic or

higher-order in ρ1 and ρ2. The gain-saturation factor simplifies to:

2γ

1 + |as|−2(ã1 + ρ1)(ã∗1 + ρ∗1)
≈ 2γ

1 + |as|−2(|ã1|2 + ã1ρ∗1 + ã∗1ρ1)
(A5)

≈ 2γ

1 + |ã1/as|2

[
1− ã1ρ

∗
1(t) + ã1

∗ρ1(t)

|as|2 + |ã1|2

]
. (A6)

The result is a pair of time-dependent equations,

dρ1
dt

= Aρ1(t) +Bρ∗1(t) + Cρ2(t) (A7)

dρ2
dt

= Cρ1(t) +Dρ2(t), (A8)

where

A = i∆ω − γ + κ1
2

+
2γ

1 + |ã1/as|2
− 2γ |ã1/as|2

(1 + |ã1/as|2)2
(A9)

B = − 2γ ã1
2/|as|2

(1 + |ã1/as|2)2
(A10)

C = −iµ (A11)

D = i∆ω − γ + κ2
2

(A12)

We then assume that the perturbations have the exponential time-dependence

ρ1(t) = u1e
λt + v∗1e

λ∗t (A13)

ρ2(t) = u2e
λt + v∗2e

λ∗t. (A14)

Plugging these into Eqs. (A7)–(A12), we derive the matrix equation
A B C 0

B∗ A∗ 0 C∗

C 0 D 0

0 C∗ 0 D∗




u1

v1

u2

v2

 = λ


u1

v1

u2

v2

 . (A15)
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FIG. 5. (a) Lyapunov exponents for the highest-intensity steady-state solution under forward

transmission, versus detuning ∆ω. Results are shown for µ ∈ {0.1, 0.2, 0.3, 0.4}. The other model

parameters are fixed at γ = 0.4 and sin = 0.5. (b) Bounds of the asymptotic stability region under

forward transmission, for several values of the amplitude sin, with fixed γ = 0.4 and as = 3. The

bandwidth of the asymptotic stability region increases with µ, and diverges at µ = γ, which is

the PT transition point of the linear system. (c) Bounds of the asymptotic stability region under

backward transmission, with the same model parameters.

A stable state must have Lyapunov exponents Re(λ) < 0 for all four eigenvalues. For back-

ward transmission, we can derive equations that have exactly the same form as Eqs. (A7)–

(A15), except that the steady-state amplitudes ã1 and ã2 must be computed using Eqs. (4)–

(5).

As discussed in Section IV, there is a domain in parameter space where the coupled-

mode equations admit three physical steady-state solutions. By numerically computing

the Lyapunov exponents, we find that the highest-intensity solutions are asymptotically

stable. Fig. 5(a) plots the Lyapunov exponents for the highest-intensity solutions versus

the detuning ∆ω (in the parts of this plot that lie outside the three-solution domain, the

highest-intensity solution is taken to be the single unique solution). It can be seen that the

Lyapunov exponents become negative within a frequency band centered around ∆ω = 0.

This agrees with Fig. 2(a)–(b). In particular, the discontinuity in the µ = 0.1 curve is

a result of crossing into the three-solution domain, whereupon a new branch of solutions,
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FIG. 6. Time-dependent mode amplitudes under (a) forward transmission for ∆ω = 0 (three-

solution domain), (b) forward transmission for ∆ω = 0.2 (one-solution domain), (c) backward

transmission for ∆ω = 0 (three-solution domain), and (d) backward transmission for ∆ω = 0.2

(one-solution domain). The other model parameters are µ = 0.1, as = 3.0, and sin = 0.5. We start

each simulation with initial conditions perturbed from a steady-state solution by δa1 = δa2 = 0.001.

In the three-solution domain, perturbing the two lower-intensity solutions causes the system to

evolve to the highest-intensity steady-state, which is asymptotically stable.

which are asymptotically-stable, become the highest-intensity solutions. For µ > γ, which

corresponds to the PT-symmetric phase of the linear system (Section III), the solution is

asymptotically stable for all ∆ω.

As for the lower-intensity solutions within the three-solution domain, they are partially

unstable, as one or more Lyapunov exponents satisfy Re(λ) > 0.

To confirm these results, we solve the time-domain coupled-mode equations numerically

(using the general-purpose ODE solver LSODE). Fig. 6(a) and (c) shows the time-dependent

intensities, under forward and backward transmission, within the three-solution domain

(µ = 0.1 and ∆ω = 0.0, with as = 3.0 sin = 0.5 as before). The simulations show that

perturbations to the lower-intensities steady states cause the system to evolve into the

highest-intensity steady state, as expected from the stability analysis.

In the single-solution domain, the steady-state solution loses its asymptotic stability at
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FIG. 7. Beating amplitudes ∆|a1,2|2, defined as the difference of the maximum and minimum

values of |a1,2(t)|2 over time t, versus the PT-breaking parameter µ/γ. The amplitudes a1,2(t)

are solved numerically using the full time-dependent coupled-mode equations, using ∆ω = 0.5,

γ = 0.4, sin = 0.5, and as = 3.

large detunings, as indicated in Fig. 2(a)–(b). In this regime, small perturbations set up a

self-sustained oscillation in the mode amplitudes, as shown in Fig. 6. The mid-point of this

oscillation coincides with the real part of the “unphysical” complex root of Eq. (14) (which

became unphysical at the boundary of asymptotic stability).

Fig. 7 shows the beating amplitude of ∆|a1|2, versus µ/γ. The system is detuned so that

∆ω = 0.5. For small µ/γ, the beating is non-zero, but at µ ≈ γ the system crosses the

asymptotic stability boundary and reaches a steady state where ∆|a1|2 = 0. This is yet

another interesting link between the coupled-mode dynamics and the PT transition.
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