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Abstract

This paper aims at answering two fundamental questions: &m@a spectral efficiency (ASE)
behaves with different system parameters; how to desigmarmgg-efficient network. Based on stochastic
geometry, we obtain the expression and a tight lower-boendASE of Poisson distributed networks
considering multi-user MIMO (MU-MIMO) transmission. Witthe help of the lower-bound, some
interesting results are observed. These results are tedid@a numerical results for the original expres-
sion. We find that ASE can be viewed as a concave function wgipect to the number of antennas
and active users. For the purpose of maximizing ASE, we deimate that the optimal number of
active users is a fixed portion of the number of antennas. Wfittimal number of active users, we
observe that ASE increases linearly with the number of ar@enAnother work of this paper is joint
optimization of the base station (BS) density, the numbeargénnas and active users to minimize the
network energy consumption. It is discovered that the ogiticombination of the number of antennas

and active users is the solution that maximizes the enéffgyemcy. Besides the optimal algorithm,
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we propose a suboptimal algorithm to reduce the computtioomplexity, which can achieve near

optimal performance.
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I. INTRODUCTION

Network densification is a key approach to cope with the 1G@&fkic demand of 5G cellular
networks [1][2]. Especially, spatial densification, whititludes increasing the number of an-
tennas per BS (i.e., multi-input multi-output, MIMO) andethumber of BSs (i.e., ultra dense
network, UDN), has been recognized as an essential parttufef®G cellular networks.

In this context, a fundamental question arises, which is Hmvnetwork throughput behaves
with the BS density, the number of antennas and other systéeameters. This is of crucial im-
portance since we should know the appropriate amount dadstriucture (e.g., BSs and antennas
per site) that can meet the network throughput demands. ©mwttrer hand, energy-efficiency
is also an important requirement of 5G cellular network, rghiae energy-efficiency should be
improved at least 100X [3]. Specifically, as increasing tiBed@nsity and the number of antennas
both boost the network capacity, it is interesting to find @tiroal combination of BS density
and number of antennas for reducing network energy consampt

To address the above two fundamental questions, we needieiergfapproach to evaluate
the performance of the whole network. Previous studies ennttwork throughput or energy-
efficiency mainly focused on the hexagonal model, in which thacro cells are modeled as
hexagonal grids and the small cells are distributed in eaatroncell [4]. Due to the irregularity
of future small cells, the regular grid models may be too lided to characterize the network
performance accurately. Furthermore, such works higtyyae the time-consuming system-level
simulations, which makes it difficult to shed more lights grstem design. For mathematical
tractability, stochastic geometry has been applied to tieyais and optimization of cellular

networks in recent years|[5].

A. Related Works

Stochastic geometry has been used for the analysis of aelha@tworks since late 90's.][6]
introduced stochastic geometry as a communication netplarining tool. By modeling the BSs
as a Poisson point process (PPP), [7] studied the sigriatéderence-plus-noise-ratio (SINR)
of the cellular networks. Andrewet al. derived more tractable expressions for SINR and average
data rate in[[B]. Extensive work on heterogeneous netwadiksNets) can be found in[9]. Some
interesting results have been obtained[ih[[8][9]. For eXamwithout considering cell range

expansion and the thermal noise, the SINR distribution efrsisloes not depend the transmit



power of BSs nor the BS densities. In order to better suiityeaetworks, more complex point

processes have also been adopted in the subsequent sGahsgdering the fact that there exists
repulsion between the well-planned macro BSs| [10] modtiedcellular networks as Ginibre

point process (GPP) and analyzed the mean interferencecwedage probability. On the other
hand, for the hot areas where lots of small cells are deplojetsson cluster process (PCP)
can be used to model the BSs with attraction [11].

Based on the analysis from stochastic geometry, some othekswiocused on the optimal
system parameters to improve the network performance.cigdlye from the perspective of
energy-efficient networks, the optimal deployment striagtednave been widely studied. As the
BSs are reported to consume 60-80% energy of the whole nlefd@}, most researchers mainly
evaluated the energy consumption of BSs. Based on stochygsimetry,[[13] jointly optimized
the transmit power of BSs and BS densities under coveraderpence constraint. Besides the
coverage performance, improving each user’ data rate asaafgrimary goal of future networks.
In this context,[[14] took the load of each BS into consideratind studied the energy optimal
BS densities while guaranteeing users’ data rate const@onsidering the huge energy waste
of UDN in the off-peak period, BS sleeping is an efficient aygwh to reduce the network energy
consumption. To characterize the potential gains of BSpshge the performance of different
sleeping strategies has been analyzed_ in [15]. Moreovesupport flexible management, the
introduction of UDN also brings about changes in networkhaecture. Under the recently
proposed separation architecturie,|[16] derived the optsmall cell density considering both
the coverage and data rate constraints.

However, most of the afore-mentioned works assumed onlglesiantenna is equipped for
each BS, i.e., the potential gains of multi-antenna caneatliealed. To take a step further, the
coverage probability and average data rate in Poissonldistd network with multi-antenna BSs
have been obtained ih [17]. Based on the approach of equivalalistribution approach| [18]
studied the error probability of Poisson distributed ne&sawith different MIMO arrangements.
Due to the intractability of the expression for the Laplagedtion of the inter-cell interference,
it is difficult to study the relationship between networkfoemance and system parameters (e.g.,
the number of antennas) in_[17][18]. Hence, with the help oégdlitz matrix, [19] derived a
more tractable expression for the coverage probabilitysiclaming maximal ratio transmission

(MRT) beamforming. It is found that the benefit of adding margennas will become smaller



with the increase of the number of antennas. Extensioh dfda8 be found in[[20], in which
space-division multiple access (SDMA) was studied. Altitoy19][20] have provided some
interesting results, the limitation is that they only calesed fixed-rate transmission. This may
be not very suitable for today’s cellular network, where@de modulation and coding (AMC)
is applied (i.e., average data rate may be more appropriat&)ture networks, a large number
of antennas might be deployed, which is referred as massiN¢QM Assuming the number
of antennas is sufficiently large, [21][22] studied the parfance of massive MIMO networks.
Furthermore, the system parameters were jointly optimipethaximize the energy-efficiency
in [22].

In this paper, we aim at fully characterizing the properioéshe network throughput and
energy consumption in Poisson distributed networks witltirantenna BSs. We consider MU-
MIMO in this paper, i.e., more than one users will be schedlineeach slot each cell. Specifically,
zero-forcing (ZF) precoding is adopted to eliminate theasdell interference. Based on the
theory of stochastic geometry, we derive the expressionaalogver-bound for the average data
rate of a typical user. Then, ASE of the network can be expreggth these two expressions.
Based on the analysis results, how ASE behaves with otheéersyparameters (i.e., the BS
density, the number of antennas, and the number of active)usediscussed in detail. Thus, the
potential gains of more BSs and more antennas are chamsttelCompared to previous work,
more interesting and insightful results have been obtaiBsgecially, the functional relationship
between ASE and system parameters (i.e., the number ofreagiethe number of active users)
is fully quantified. Furthermore, to minimize the networkeegy consumption, we formulate an
optimization problem, where the BS density, the number ¢¢rmmas, and the number of active
users are jointly optimized. This work provides system giesnsight for the deployment of

future energy-efficient network.

B. Contributions

In this paper, the functional relationship between ASE atigtiosystem parameters will be
studied theoretically. From the perspective of ASE and ndtvenergy consumption, the optimal
configurations of system parameters will be discussed. Taie gontributions of this paper are

summarized as follows:

« Using tools from stochastic geometry, we derive the expoassnd a lower-bound for the



average data rate of a typical user. Numerical results shathe low-bound is quite tight
in most cases. Additionally, the lower-bound is quite ubgfuhe analysis and optimization
of this paper. We discover that the average data rate maepgrtls on the ratio between
the number of active users and the number of antennas.

« The functional relationships between ASE and other systararpeters are discussed. It is
observed that ASE increases linearly with the BS densityeurtide infinite user density
assumption. Another result that has never been reportedeingus works is that, ASE is
a concave function with respect to the number of antennasaatice users when treating
them as continuous variables.

« For arbitrary number of antennas, we demonstrate that thimalpnumber of active users
to maximized ASE is approximately a fixed portion of the numbkantennas. With the
number of active users set as the optimal number, we find tB& iMcreases linearly with
the number of antennas. We define GAPA as the gain on ASE penraato quantify the
performance gain by deploying one more antenna.

« Although the above results are mostly obtained from the nratable lower-bound. These
properties of the original expression are validated thhomgmerical results. Because of the
tightness of the lower-bound, we find the properties of thegimal expression are consistent
with those of the lower-bound.

« To pursue the energy optimal deployment strategy, we jowoptimized the system param-
eters to minimize the network energy consumption. We find tha optimal combination
of the number of antennas and number of active users is theicgolthat maximizes the
energy-efficiency. Besides the optimal algorithm, we alsappsed a suboptimal algorithm
based on the lower-bound to solve the non-convex problenmé¥igal results show that
the performance loss of the suboptimal algorithm is nelglegiAnd we find that we should
equip more antennas and schedule more active users for thhevB8h have higher transmit

power.

C. Paper Organization

The rest of this paper is organized as follows. Secfidon licdess the system model and
performance metrics in this paper. Secfioh Il analyzes ASthe whole network. In Sectidn 1V,

we discuss the relationship between ASE and other systeamgders. The system parameters
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Fig. 1. lllustration of the network model.

are jointly optimized in SectionV. Finally, SectignlVI suranzes and concludes this paper.
Notation We use underling-) to indicate the results obtained based on the lower-boured. W

use the subscript§)4sr and (-)gc to indicate the results related to ASE maximization and

energy consumption minimization, respectively.

[I. SYSTEM MODEL AND PERFORMANCE METRICS
A. Network Model

We consider a downlink cellular network, which is depictedFig.[1. The BSs are located
according to a homogeneous PRR = {z¢,x1,...} in the Euclidean plane. The intensity of
o, is \,. We assume that each BS is equipped withantennas. The single-antenna users are
arranged according to some stationary point process. Térs'ysoint process is independent of
the base stations’ point process. Each user is associatkedhsinearest BS, i.e., each BS serves
the users which are located within its Voronoi cell. We apsgigndard path loss propagation
model with path loss exponent > 2. Since cellular networks are typically interference lieait
[23], we neglect the effect of the thermal noise in this papée small scale fading on each
link is i.i.d. Rayleigh fading. The correlations betweeffatient antennas are ignored. Due to the
limitation of frequency resource, we assume universalueagy reuse is applied in this paper.

At each time slot, each BS servés users through SDMA, i.e., the number of active user

is K. We assume the user density is larger enough that there dasat< users within each



BS’s Voronoi cell, which is a common assumption in previousks [17][20]. Besides, this is a
reasonable assumption in 5G cellular network, since toigeoservice for dense crowds of users
is a typical scenario of METIS |2]. In this paper, we mainlg®s on ZF precoding and assume
perfect channel state information at each BS, i.e., then® isitra-cell interference. Cooperation
between BSs is not considered in this paper. As a result, thebar of active user& should
not exceed the number of antennas, ife.< M. The total transmit power of each BS #5 We
consider equal power allocation for tl€ users in each cell.

Let the M x 1 vectorh;, ~ CN(0,I) denote the small scale fading between tkié BS
and itsk-th active user. Letw;, denote the precoding vector at BSor the k-th user. Con-
sidering ZF precoding, the unit-norm precoding vectqr. equals thet-th normalized column
of H; (H}Hi)_l, where H; = [h,-o,hﬂ, ...,hi(K_l)}. The transmitted signal of theéth BS is

= Zfz‘ol w,.Sik, Wheres;, is the data symbol destined for tleth active user. Without loss
of generality, we assume theth active user of thé)-th BS is located at the origin, which
is referred as the typical userl [8]. Based on Slivnyaks Té@of25], we mainly focus on the

analysis of the typical user. The small scale fading betwbeninterfering BSs and the typical

user is denoted as;, ~ CN(0,I). The received signal of the typical user is
i LTI
Yo = IIxoll Thizo+ Y 7 il vipzi (1)
xiefbb\{xo}

From (), the signal-to-interference-ratio (SIR) of the typicabusan be expressed as

goo ||zl ™

Z:m@l)b\{:vo} gio ||$iH_a’

SIRy = (2

? for i > 0. The desired channel powes,

2
K—-1
Wheregoo = thOWOOH and Gio = Zkz:O ‘Vjowik

is the squared-norm of the projection of veciay, on Null (h01, .-.,hO(K_1>), which follows
Gamma(M +1— K, 1) [26]. For the interfering links, as;;, is a unit-norm vector and indepen-

’ is the squared-norm of complex Gaussian, which is expoalatisitributed.

dent ofv],, ||viwi

? for different

We follow the approximation in [17], i.e., neglect the cdaten betweed viowik

k. Therefore, the equivalent channel gajnis the sum ofK” independent exponential distributed
random variables, which followSamma (K, 1) ,i > 0. The accuracy of this approximation will

be demonstrated in our numerical results.



B. Performance Metrics

Throughput and energy-efficiency are two key performandécators of future cellular net-
works [2]. Therefore, we will focus on the performance netrof ASE and network energy
consumption in this paper.

1) Area Spectral EfficiencyOne of the major purpose of this paper is to study the relahign
between ASE and other system parameters (€.g\,, M, K). ASE is the performance metric
reflecting the network capacity, which is defined as the aeethroughput per HZ per unit area.
In accordance with [19][20][22], ASE is the product of BS dityy the number of active users
served by each BS, and the average data rate of the typicalTuseeveal the potential gains
via spatial densification, the functional relationshipvietn ASE and other system parameters
is of crucial importance. Through the expressions of ASIE, ttieoretical gains of increasing
BS density and number of antennas will be characterized isngaper. Some interesting and
insightful observations will be obtained.

2) Network Energy Consumptioffuture cellular networks should meet the explosive demand
of data rate at the cost of similar energy consumption witticoorent networks. Thus, network
energy consumption is another focus of this paper. SinceBS® consume the largest portion
of energy in cellular networks, we will mainly evaluate theerall BS energy consumption. For
each BS, we adopt the following energy consumption mad€i[27

P
EC =~ + MP.+ K*P,,. + Py, (3)
n

where n denotes the power amplifier efficienc¥, is the circuit power per antenna, which
indicates the energy consumption of the corresponding REnshK®P,,. accounts for the
energy consumption for precoding which is related to the Imemof active usersF, is the
non-transmission power, which accounts for the energy wopson of baseband processing,
cooling, etc. Considering the BS energy consumption maaetivork energy consumption is

defined as the average energy consumption per unit area, i.e.
P 3
Nﬂ%ﬂbg+Mﬂ+Kﬂm+%. (4)
We do not consider the energy consumption of backhaul in fhjger. Thus, the energy consumption model is slightly

different from [27]. However, the results in this paper candpplied to the scenario considering backhaul energy copison

directly.



In the following part of this paper, using stochastic geawete will discuss the relationship
between ASE and other system parameters. Furthermore) giveASE target, how to design

an energy optimal network will also be studied.

IIl. A NALYSIS OF AREA SPECTRAL EFFICIENCY

In this section, we will first derive the expression for theeige data rate of the typical
user. Then we will give the expression of ASE. Besides, tohtrr study how ASE behaves
with different system parameters, a more tractable loveeml will also be provided, which is

demonstrated to be quite tight through numerical results.

A. Area Spectral Efficiency

ASE is the product of BS density,, the number of active user& and average data rate
of usersE [R]. Hence, we first need to deriv@ [R] to get the expression of ASE. Similar to
[28], we derive the average data rate of the typical userctijravithout calculation of SIR
distribution. And more tractable expressions are providdxd tractability facilitates the analysis
of properties of ASE in the following section.

Theorem 1:The average data rate of the typical user is given by

1 <1_ (%)M-i-l—K)
o0 z +z
T ©

whereB (-, -, -) is the incomplete Beta function.

Proof: See Appendix_A. [
Theorem[ L provides an expression for the average data rateev§. An observation from
Theorent( 1 is that, the average data rate of the typical uses dot depend on the BS density
A, nor the transmit power”. This phenomenon is similar to the single antenna case|in [8]
Nevertheless, we consider a more general case, where antdthna and MU-MIMO are both
taken into account. It is important to point out that, the signand transmit power invariance
property does not hold when considering multi-tier netwdtkhas been shown that the SIR
distribution depends on the BS density and transmit poweiftefrent tiers in[20]. However, the

emphasis of this paper is the analysis and optimizationrgflsitier network. Further extension
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on multi-tier network is left for future works. Based on Them[1, ASE of the network can be
expressed as

T =MNKE|[R]. (6)

Although a tractable expression fé [R] is derived, we also find that it is cumbersome to
study the relationship betweehi [R] and the number of active usefs. Therefore, we also
derive a tight lower-bound foE' [R], which will be presented in Theoren 2.

B. A Tight Lower-Bound

To shed more lights on the system design of future networkphtain a tight lower-bound
E [R] for the average data rate of the typical user.

Theorem 2:A lower-bound for the average data rate of the typical useiven by

M-K

BlR = [ wl 1= ® 4 (7)
- Jo Ze‘z—i-zav(l—%,z)
where~ (-, -) is the lower incomplete Gamma function.
Proof: See Appendix B [ |
Similar to Theorenill, the lower-bound in Theoreim 2 does npedd onP nor \,. Fig.[2

compares the results of Monte Carlo simulations, ThedremdL Eheoreni 2. Firstly, we can
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find that the analytic results in Theordrh 1 match the simuatesults quite weH. Secondly,
the lower-bound proposed in Theoréin 2 is quite tight #ox: M, especially when the number
of antennas is large. Besides, the average data rate desr@@b the number of active users
K. The reason is that, if more users are scheduled in eachloeliegrees of freedom to boost
the received useful power will be reduced while the intdr-ceerference will be stronger. In
fact, it is not difficult to show that” 1] decreases withk” from Theorem( 2. However, it is
cumbersome to derive this property based on Theddem 1 tieadhg In other words, the tight
lower-boundZ [R] can provide an efficient way to study the relationship betwe network
performance and other system parameters theoretically.

From Theorenl]2, we find that the lower-bout{R] only depends on the ratio between
the number active users and the number of antennas % Fig. [3 illustrates the average
data rate of the typical user with different It is worth noting that, even for the expression
in Theorem[IL,E [R] is mainly related to the ratia. The mismatch of considering different
M is relatively small. This phenomenon can be explained byammeg the equivalent channel

gains. Similar to the procedures in Appendix B, taking expiéans of - ¢;,, we haveSI R, ~

goo

MRl = = (M -1 zoll = . We can see that the approximate users’ SIR
KZ%G‘%\{IO}HM”?Q (K ) Zzieq)b\{zo}ﬂxﬂra PP
only depends on the ratio. Therefore, we observe the results on average data rateyif8Fi

From Theoreni]2, the lower-bound of ASE is given by

T =NKER]. (8)

Based on(d) and (8), more detailed discussions on the variation trends of ASth different
system parameters will be provided in the next section, efidreoreni 2 also plays a crucial

rule in theoretical analysis.

IV. IMPACT OF SYSTEM PARAMETERS ONASE

In the previous section, we have provided the expressionaataver-bound for ASE. In
this section, we will further discuss how ASE behaves witlfiedent system parameters. The

following analysis provides system design insight on howdésign an efficient network. We

2In order to validate the approximation for the channel powfethe interfering links, the values af;, are calculated based
on the precoding matrices in simulations. From the numkrisults, we find that Gamma approximation is quite accui@te
the analysis of average data rate.
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mainly focus on three system parameters, i.e., the BS gengitthe number of antennak/

and the number of active users.

A. Relationship Between ASE and Other System Parameters

1) BS Density:As E [R] is only related toM and K, ASE T' increase linearly with the BS
density\, when M, K are fixed. That is to say, deploying more BSs is an efficient twayoost
the network capacity. It is worth noting that, this conctusionly holds under the assumption
that the user density is always sufficiently larger than tig d&nsity, i.e., the user density is
infinite.If the user density is not so large (e.g., rural aje¢he relationship between ASE and
BS density can be investigated similarly {0 [19]. Nevertissl this is not the emphasis of this
paper, more detailed discussion on BS density when the we®sitg is not sufficiently large
will be left for future works.

2) Number of BS Antennadf the BS density)\, and the number of active users are fixed,
we have the following results on the number of antennas.

Proposition 1: If the BS density)\, and the number of active usef§ are fixed, ASET is
an increasing concave function of the number of anterv

Proof: We need to prove that [R] is an increasing concave function &f. The only item
related toM in E[R] is — (ﬁ)Mﬂ_K . It is not difficult to show that— (Flz)MH_K is an
increasing and concave function &f. Combining the fact that integration is a linear operation,
we know thatFE [R] is also an increasing concave function/df. n

From Propositiori 11, we know that deploying more antennasy@wimproves the network
capacity. However, the benefit of more antennas will becomallsr with the increase of the
number of antennas. Hence, it seems like that increasinguihgber of antennas is not such
attractive. Nevertheless, our following analysis shovat ththe number of active users can be
adjusted adaptively t@/, more gains on ASE can be achieved.

3) Number of active usersthe number of active users affects both the power distribution
of desired signal and interfering signal. It is of vital imamt to study how the number of active
user affects the network capacity. However, the expressiafi [R] is complex with respect to

K. Therefore, the analysis is based on the lower-bo{#hd

3In this section, we tread/, K as continuous variables to study the properties of ASE.
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Proposition 2: With the BS density\, and the number of antennd fixed, the low-bound
of ASE T is a concave function of the number of active uskrs
Proof: The low-bound is expressed as

T o 1 K(l—e_ZMf(K) p o
e S (e Lt ©)

M—-K

For the itemK (1 — e—ZT), we first get the second order derivative with respecktoWe

havea‘r’—;2 (K (1 _ e—zM;;K)) — _%e‘z%” < 0. Combining the fact that integration is a

linear operation, we know’ is concave with respect t&. [ |

Since the low-bound of ASH" is a concave function of<, there exists a unique optimal
K, s to maximize ASEZ. The optimal number of active users will be discussed initeta
subsection B, in which some interesting results will be oles@& Although the analysis is based
on the low-bound’, numerical results in subsection B demonstrate that thiysieas consistent
with the expressiof’.

4) ASE with respect tqM, K): In the previous parts, we have discussed the functional
relationship between ASE ang,, M, K when the other two parameters are fixed. Herein, we
will discuss the functional property of ASE with respect twe tpair (M, K). Although the
analysis is based of, numerical results show that the conclusion also holdsHeretxpression
T.

Theorem 3:The low-bound of ASEL is concave with respect tQ\/, K).

Proof: See AppendikxC. [

Theorem[B reveals the functional relationship between A8#& @/, k). To our best of
knowledge, similar results have never been reported. [FidepictsT and T with respect to
(M, K). Itis intuitive that,T" is concave with respect {d/, K'), which demonstrates our analysis.
Furthermore, we find the original expressidhcan also be viewed as a concave function of
(M, K). That is to say the analysis based on the lower-bdlrstill holds for the expressiof.
Besides, the results of Propositioh 1 and Proposition 2 eavidwed as corollaries of Theorem
3.

B. The Optimal Number of Active Users

As we have analyzed, if givei/, there exists an optimal active usétg ¢, to maximize ASE.

Therefore, we will study the optimak™, in this part. The following analysis is also based
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on the lower-bound’. The optimal number of active users derived based on therlbaend
is denoted adi’, ¢, Numerical results demonstrate that the results still ahén considering
the expressiof’.

1) ASE maximization problemfo derive K¢, we formulate an optimization problem as

M-K
Py NE [Pl_1-—e” K g
max - Ap Jo 2 emigaBa (12 2) z (10)

st. Ke{1,2,3, .., M}

Substitutingu = % into PO, and relaxingu to [0, 1], we have the following optimization
problem. 1
o 1 1—e?ut?
max )\bMu/ — 5 ¢ dz
v 0 Ze_z—l—zav(l—g,z)

(11)
G(u)

st. wel0,1].

Interestingly, from the optimization proble(fdIl), we know that the optimal® ¢, is unrelated
to M. That is to say, the ratio between the optimal number of aatisers and the number of
antennas remains nearly the same for arbitiafyi.e., the optimal number of active users is
approximaterMu;SEH Additionally, the lower-bound of ASH” with optimal K¢, IS

TP = \yMG (U g5). (12)

“In fact, Mu* s need to be rounded as the number of active users can only dgeist
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We can see that the lower-bound of ASE will increase lineailh the number of antennas.
We defineG(u’, ) as the gain on ASE per antenna (GAPA), which means the gainS A
by deploying one more antenna. The next procedure is to mzgi6i(«) to find the value of

uysp and GAPA. We have the following results.

1 1
1— 7zﬂ+z_ 1 72E+z .
1. 7 dz = 0. There is a

2
z e*z—i—zafy(l—%,z

unique solution for this equation, which satisfiese [0,1] and can be derived through the

Lemma 1:u 4 is the solution of the equatiolf®

bisection method.
Proof: See AppendixD. [

Based on LemmBl|1, we can derivg,, and G(u’gp).

2) Numerical lllustrations:In simulations, we set the path loss exponent 4. Following
Lemmall, we deriva:’s, = 0.5913 and the GAPAG(u’ ;) = 0.8165 nats/s/Hz. Thus,
given the number of antennad, the optimal number of active users to maximize the lower-
bound of ASE is approximatel§.5913M/ 3 Fig. 3 depictsT’ and " with different K. Firstly,
we can find that botli” andT" are concave with respect #, which demonstrates Proposition
2. For M = 5,10, 15, the optimal number of active users that maximiZesand 7" are both
Khep = K\sp = 3,6,9. This demonstrates our analysis about the optifigl . Furthermore,
the conclusion based dfi is also true for the expressidh. To further demonstrate this, we
obtain the optimalK’, ¢, that maximizesl’ for different M/ by exhaustive search. The optimal
K¢ With different M is provided in FigB. Although’¢, = u* sz M is derived based on
the lower-boundl’, when considering the expressidh we find that the optimak™ ¢, is either
|lut M| or [ulgpM]. This demonstrates that our analysis based on the lowareboan be
applied to the original expression directly.

Interestingly, in subsection A, we found that the lowershdwf ASE is a concave function
of M when K is fixed. However, if the number of active useksis set asu ¢ M, from (12,
we know that the lower-bound of ASE approximately increasesarly with the number of
antennas. Wherk set as the optimal number, Fig. 7 illustratEsand T" with different M. We

find that both7T and T increase linearly with\/. H That is to say, with optimal configuration,

5This value needs to be rounded as the number of active usersnia be integers.
®Part of similar phenomenons were observed via numericaltseim [30]. However, the reasons behind these phenomenons
have not been discovered. Instead of simulations, we agivihese results through rigorous theoretical analysisisTthe

reasons behind have been fully explained.
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increasing the number of antennas is as efficient as inagdése BS density, i.e., both of them
can boost the network capacity linearly. Actually, from @hem([2, it is not difficult to find that,

if only the ratiou = % remains fixed, ASE can increase linearly with the number ¢éramas.
The difference is that, if we set= v ,, ASE will be maximized. The reasons are as follows.
Recalling Fig.[B in Section]ll, the average data rate of eactive user mainly depends on
u. That is to say, although we increadé, if only u is fixed, the average data rate of each
active user nearly remains fixed, i.e., the increase in tlséretk power is counter-balanced by

the channel power of the interfering links. Furthermore thumber of active user&” = uM,
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which increases linearly with the number of antennas. Thezewe arrive at the conclusion

that ASE increases linearly with the number of antennas.

V. ENERGY OPTIMAL SYSTEM PARAMETERS

In this section, we pursue an energy optimal strategy tormz@ network energy consumption
while guaranteeing the ASE design target. Specifically, arenfilate an optimization problem
where the BS density, the number of antennas and active aisejsintly optimized. The optimal

algorithm and a suboptimal algorithm are proposed to sdieenon-convex problem.

A. Problem Formulation

While guaranteeing the network ASE is above the taffjét, we aim at minimizing the
average network energy consumption per unit area,)ibe(.% + MP,. + Kf”Ppre + PO). We try
to answer the fundamental question how many BSs and anteioasd be deployed and how
many users should be scheduled in each slot. Thereforee rammeterg\,, M, K') will be

jointly optimized. We can formulate the energy minimizatiproblem as

P
P2 : min A%—+MR+K%@+%>
Ap>0; M, KeENT n
s.t. MK E[R] > T, (13)
K < M.

It is intuitive that, the inequality constraing, X' £ [R] > T"" can be replaced by the equality
constraint\,K F [R] = T"". Thus, we have the relationship

Ttar
~ KEIR]
Plugging (14) into P2, we can arrive at the following equivalent optimization lplem,

M\ . (14)

KE[R]
max 5
M,KeN+ ot MP,. + K3P,.. + Fy
st K <M. (15)
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In fact, the problem is energy-efficiency maximization pgesh. In most cases, energy con-
sumption minimization problem is not equivalent to the gyezfficiency maximization problem.

However, due to the equality, = the problem(I3) (I3 in this paper are equivalent. In

KE[R
other words, the optimal combination of the number of anésrend active users that maximizes
the energy-efficiency is also the optimal solution that mizes the network energy consumption.
Although the optimization probler?2 is non-convex, the optimal algorithm and a suboptimal

algorithm will be proposed to solvB2 in this section.

B. Optimal Algorithm

We first relax)/, K to (0, +oo) in optimization problem({IH). Thus, we arrive at a fractional
programming problem. The major obstacle to solving thisfmm is the complicated expression
of E [R], especially the complex relationship betweBnR| and K. This motivates us to study
the optimal M when K is fixed, which is more tractable. From Propositidn 1, we kribat
E [R] is a concave function af/. As the denominator is a linear function, the above optititza
problem is a concave fractional program, and the objectinetion is pseudoconcave. Due to the
generalized concavity of the objective function, we haweftlilowing results about the concave
fractional programs [31],

1) A local maximum is the global maximum;

2) It is possible to solve concave fractional programs wiindard concave programming

algorithms.

Based on the first order derivative of the objective functie obtain the optimal/;,..
Theorem 4:WhenK is given, the optimal number of antenfg;, . = round (max (]\7, K))
where M is the solution of the equation

OE [R]

57 <£ + MP.+ K*P,, + PO> — E[R|P.=0. (16)

U

F(M)
The above equation has a unique solution, which is locatéd’in 1, +oc0) and can be derived
through the bisection method.
Proof: See AppendixE [

"The operationround (-) chooses the integer which leads to a smaller network enamgguenption from{|-], [-]}.
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From Theoreni 4, we can find how},. varies with other system parameters. Based on the

JE[R]

. .. . .. OM* P.
method of implicit differentiation, we have EC = — £ oM > 0.
P P _P/'1+Kifpr-e+P()) O°BIR] (P | N Pt K3 PpretFo)

Thus, M, increases with the ratiw. In other words, the smaller the circuit power
per antenna’, compared with other energy consumption is, the more antearepreferred.

Based on Theoreim 4, we have derived the optimal number ohaasd/;, when givenk.
Therefore, by comparing all possible results foy we can derive the optimal algorithm f&2.

. First, obtain the optimal number of antennis;. for all possibleK € {1,2,3,...} based

on Theoreni}#.
« Then, substituté\/;, into (I4), we can derive\; ;.
. Select the optimal solutio\;;, M}, K},) that minimizes the network energy consump-

tion.

C. Suboptimal Algorithm Based on The Lower-Bound

Although the optimal algorithm proposed in this subsectian derive the optimal solution of
P2, the exhaustive search féf}, is time consuming. To reduce the computational complexity,
we also propose a suboptimal algorithm based the lowerdauTheoreniR. Replacing [R]
with £ [R] and relaxingM, K to (0,4o00) in (I3, we arrive at the following related but not

equivalent problem.

KER]
MKEO) T L MP,+ K*Pye + Py
st K <M. (17)

In Section 1V, we have demonstrated that the optimal numbexctive users that maximizes
KE[R] is u)sM. Based on this result, for the above problem, the optiig). and K7
satisfy the following properties.

Lemma 2: The optimal(M ¢, K5) for problem ([I7) must satisfyK 7, < ulgpMpe, i.€.,
the constraintx” < M can be removed.

Proof: From the analysis in Sectidnllll, we know thAtE [R] is maximized at’ ¢z M7

when givenM 7. Hence, for arbitrarys’ > v’ ¢z M, We haveK [R]‘K_K, < K [R]‘

K=u}spMpc
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Besides, the denominatéf + M P, + K*P,,. + PO‘ > 4 MP.+ K*Ppre + P0’

K=K’ K=u}s5Mpc

KE[R] KE[R]
Above all, we have£+1\/[Pc+K3Ppre+Po < PINPAKe P T s Therefore, the
. K . K=K’ K K=ujygpMpo
optimal (M5, K3) must satisfyK 5 < u'sp My u

From Theoreni]3, we know that the numerafo¥ [R] is concave with respect tQV/, K).

Besides, it is not difficult to show that the denominator isvex with respect tgM, K'). Hence,
the above optimization problem is a concave fractional mog and the objective function is
pseudoconcave. We use alternating optimization to soleeotttimization problem({I7), i.e.,
M, K are optimized sequentially. About the optimél;, ., K7, we have the following results.
Theorem 5:When M is fixed, the optimalKy, for (I7) satisfiesF', (M, K) = 0, where

_ (KEIR)

EK(MvK) OK

(£ 4+ MP.+ K*Pye + Po) = 3K3E [R] Py (18)

The unique solution for the above equation lieginu’ ¢, M) and can be obtained through the
bisection method.
Proof: See AppendixTF. [
Also based on the method of implicit differentiation, we éav

. O(KEIR)
O o Pre (81{—) (19)
P MP.+ P .
O(Fpe)  ZUE (24 MP+ KOPye+ By) — 6K2E R By

From LemmalR, we knowky. < u*M. Therefore, we havea% > 0 for Kj.. The

denominator of above equation is demonstrated be to negativAppendix[F. Above all,

0K : : s : &Lt M Pt Po :
NI > 0, i.e., the optimalK’},~ increases with the rati Pore . That is to say,

Ppre

compared with other energy consumption, the smaller theggrensumption for precoding is,
the more active users are preferred.
Theorem 6:When K is fixed, the optimalM 7, for (I7) satisfies the following equation

0L K] 5+MP+K3P + Py —E[R|P.=0 (20)
oM\ 7 ‘ ey C

Fp(MK)
There is a unique solution for this equation, which lieg i, +occ). Additionally, the solution
can be derived through the bisection method.
Proof: See Appendix G. [
Similar to the discussion for Theordr 4, we can arrive at teclusion thatM/ 7, increases

- - 3 Py
with the ratlow

c

, which means the property @i}, is consistent with\/,.
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In summary, the optimal{;,, K3, can be derived via Theordm[3, 6 when the other parameter
is fixed. Due to the generalized concavity of the objectivecfion, the optimal solution fofTT)
can be derived by alternating optimization. Above all, we the suboptimal algorithm foP2
as follow

« Optimize K by using Theoreri5;

« UpdateM by using Theorenl6;

« Repeat the above two procedures until convergence. Roundetults, we obtain the

suboptimalM };,, K

« SubstituteM 5, K7, into (1)), we can obtain the suboptimaj ..

For complexity analysis, we denote the search regioni¢y., M}, Ky, M as[1, L.
For the optimization of\/},., K}, M} based on Theoref[4.5,6, the complexity of bisection
method isO (log, L). As the optimal algorithm needs exhaustive searchif§r., the complexity
of the optimal algorithm i®) (L log, L). Additionally, the complexity of the suboptimal algorithm
is O (N log, L), where N is the number of iterations. Through the suboptimal alpanit the
complexity can be reduced bj% times. Indeed) is unbounded in the optimization problems.
We need to seL sufficiently large (e.g., 100) in simulations. On the othandh, our numerical
results will show that the suboptimal algorithm can coneetg the stable point with small

number of iterations/{ < 5). Therefore, the complexity can be reduced sufficiently.

D. Numerical lllustrations

In this subsection, we demonstrate the proposed algorithrosigh numerical results. We set
the path loss exponent = 4. The parameters of BS energy consumption model are consiste
with [27]. We consider three types of BSs, i.e., macro BSgronBSs, and pico BSs. For the
macro BSs,P = 54dBm, n = 0.388, P. = 16.9W, P,,. = 1.74W P, = 65.8. For the micro
BSs, P = 46dBm, n = 0.285, P. = 13.3W, P, = 1.74W F, = 65.8W. For the pico BSs,

P = 33dBm, n = 0.08, P. = 6.8W, P, = 1.74AW P, = 1.5W. To study the potential gains

of MU-MIMO, we consider two compared scenarios: (i) SU-MIM@is corresponds to the

8As the optimization in each phase is non-decreasing, altieign optimization can converge to local optimal point. Foe

quasiconcave function, we can derive the global optimahtpoi
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scenario only single-user MIMO is applied, i.&, = 1; (ii) Single Antenna, which means only
single antenna BSs are consideied.

Fig. [BE10 depict the network energy consumption consigetire configurations of macro,
micro, and pico BSs. We can easily find that the suboptimabrédlgn can achieve near-
optimal performance. Compared to the single-antenna soerifawe only consider single-user

transmission, we find that deploying multi-antenna can &%, 33%, 14% energy for macro,

9For the scenario SU-MIMOK is set as 1 and/ is optimized based on Theordm 4. For the scenario Singlendatewe
setM = K =1.
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micro, and pico networks, respectively. If MU-MIMO is codsred, 28%, 27%, 10% more
energy can be further saved for the scenarios of macro, macr pico networks, respectively.
That is to say, equipping multi-antenna with larger BSs cavesmore energy. Additionally,
we find that the network energy consumption increases lyedth the ASE targetl™. The
reason is that, the optimal’;,., K7, is the solution that maximizes the energy-efficiency, which

is unrelated tdl'". Thus, the optimal network energy consumption can be expceas

o Ttar' E % %3
NEC = KBy rcs (n + MpoFPe + Ko Ppre + Po) : (21)

Therefore, we know that the network energy consumptionemses linearly with thg™".
Through simulation results, we find théf;, = 35, Kj,~ = 6 for macro BSsMy,- = 11, Kj,» =
3 for micro BSs, andV/; = 5, K}, = 2 for pico BSs. That is to say, it is preferable to equip
more antennas with larger BSs which have higher transmiteposnd more users will be
scheduled for larger BSs. The reasons are as follows, megatie discussion for the optimal
Mo, Koo My in TheoremZ )6, the smallgP. and P,.. compared with the total energy
consumption, the larget/; ., K-, M- is. For macro, micro, pico BSs, the ratio between
% + P, and P. is 39.03, 11.42, 3.88, respectively. And ratio betwesenir P, and P, is
379.13, 87.3, 15.19. This meais and F,,. occupy entirely different fractions of total energy
consumption for different type of BSs, i.e., the smallesttfee macro BSs, the largest for pico
BSs. Thus, we observe the fact that more antennas and asgve are preferred for larger BSs.
Fig. [11 depicts the convergence of the suboptimal algoritta find that the suboptimal
algorithm can converge to the stable point with small iieralhumber. For configurations of
macro, micro, and pico BSs, the iteration number is less Bharhis demonstrates the efficiency
of the suboptimal algorithm. Moreover, we find the maximurargg-efficiency for macro, micro
and pico BSs are approximately 0.01, 0.02, and &@&/s/H = /W, respectively. This means

deploying small BSs is an efficient way to improve the netwenlergy-efficiency.

VI. CONCLUSIONS

By modeling the positions of BSs as PPP, this paper has stidie fundamental questions.
The first one is the functional relationship between ASE atittrosystem parameters. Based
on the expression and a tight lower-bound of the averagerdtgeof the typical user, we have

found that average data rate of the typical user is mainbtedlto the ratio between the number
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of active users and the number of antennas. Additionallyi ASSjointly concave with respect
to the number of antennas and the number of active usersh&gurpose of maximizing ASE,
we have demonstrated that the number of active users sheulktbas a fixed portion of the
number of antennas. Furthermore, with the number of acteesuset to optimal, we have found
that ASE increases linearly with the number of antennas.

Another fundamental question we try to answer is the opticoaibination of the BS density,
the number of antennas and active users to minimize the ne®vergy consumption. We have
discovered that the optimal number of antennas and actiees us the solution that maximizes
energy-efficiency. Numerical results have demonstratatlttre proposed suboptimal algorithm
can achieve near optimal performance. Besides, we alsdfthat it is preferable to equip more
antennas and schedule more active users for the BSs whiehhiglver transmit power.

Using stochastic geometry, we have fully explored the perémce of ASE and network
energy consumption of the cellular network with multi-amta BSs. The insightful results in
this paper shed many lights on system design. Especiallyhave found that ASE increases
linearly with the number of antennas when considering ogiticonfiguration. Besides, we have
obtained GAPA to accurately quantify of the gains by depigymore antennas. Furthermore,
the energy optimal deployment strategy has also been pedpétw to densify the network in
an energy-efficient way is studied. Further extension «f wrk is to consider the cooperation

between BSs, where more gains will be predicted since tlez-adll interference is handled.

APPENDIX A

Proof of Theoreni]l: Denote the distance between the typical user and the seB&g
|zo|| @asrg, and the distance between the typical user and the integf@5s|z;|| asr;, i > 0.
From the null probability of PPP, the distance between tipecty} user and the serving BS is
expressed ag(ro) = 2 roe ™70, Following the law of total expectation, the average data of
the typical user can be calculated as

E[R] = E,, |Es, ¢ |log |1+ f—g rol | - (22)

z,L-G(Pb\{:vO}
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On the basis of Lemma 1 in [29], the conditional expectatian be derived as follows.

Fy, g llog <1 + o0y a> ro]
[3*2900

Zwie%\{wo} gior;.
— . —Q .«
= Jo fE%,g € ZZIiE‘P\{zo}gZOTi ro}dz

M+1-K

= 0 — 1+zz S E‘I)b HZEiE‘I:‘b\{-TO} <1+ZT,-1(¥7”8)K‘| dZ (23)

_ 27 [T 1 —— ydy
(Q fooo 1_<1iz)]¥1+1 K b fTO < (1+zya7‘g)K> dZ

(&
z

K
2 oo
1 \M+1-K  _ )\ mzar? 2 1—( 1 ) du
_ fOO 1_(1+z) b szfa ( 1+u7% dz
=Jo —— ,

&

where (a) follow from the fact thatgg, g;0 are Gamma distributedp) follows from the prob-

ability generating functional (PGFL) of PPP_[25]. Subdtiig the conditional expectation, we
have the following results.
|

goory ©
E?"O [Eébyg llog <1 + Zzigéb\{zo} gioria>
2 . oo

L \MA1-K —Npmzar: 2 [1-——-2t—r |d
__ 00 oo (1_<1+z) )2 )\ —W)\M”Q b O‘/zia < ( )
=" Jo - T\ o€ oe

_ jooo %(1_(141rz) B )

K, 2
(1+2) ¥ 420 KB(,1-2 K+2)

(24)

dzdry

dz.

Two major algebraic manipulations in the last step are:vgrging the order of integration, ii)
integration by parts to simplify the expression. [ ]

APPENDIX B

Proof of Theoreni]2: The lower-bound is the result by applying the Jensen’s iakiyu
E [log (1 + %)} > log (1 + ﬁ) Applying this inequality, we have the following results.

goory
Efbb,g [log <1 + Zwieq)b\{;o} giona>‘|
=F 1 1 L
@p.8 [Og ( + Zzi€<1>b\{10} %ﬁ' r8‘>‘|
> Fg, |log (1 + ! — )] (25)
Ee [Zwie@b\{wo} 900 i TO}

(a) M—-K
= Eg, [log <1 + K — aﬂ,
Dzsedy\{wo} Ti T

L2t}




26

where (a) following from g;0,i > 0 are independent and Gamma distributed. Specifically,
E, {Zm P\ (z0} 27; 0‘7’8‘} =F [g%} Yricay\(zo} B [gi0]ri “r6. AS gio ~ Gamma(K, 1) for i >
0, we haveFE [g,] = K. According to [[Z#l] - follows the inverse gamma ditributiof; (M +
K —1,1). Furthermore, the expectatidn [QOO} . Hence, we arrive at above results.

The major procedures of the calculation f6fR] is similar to the proof of Theorem 1. Firstly,

we need to obtain the conditional expectation

1 IVII;K
Eq)b [ 06 (1 * Zwie¢b\{w}rio‘r§‘) "

M-K

= e T B e R 4 (26)
z
[}
MoKy 7rzar (1 e Y f)d
_ 174 b 0 Y
= o ie——e¢ i/ dz.

Then, following the law of total expectation, we have

M-K

E(I)b log 1 + Ei,

x; “xf
z;€0\{=}
_ o
M—K .2 [ 2 (27)
=== —\pmzozx 2 (1—e7¥
o 1-e " K b 0/ 2 ) Y 2
= Jo JoT e =@ 2T\ exp (—mAp1g) dzdrg
M—K
= [ S —;
*ﬁ .
Ze z+za'y(1 2 z)
|

APPENDIX C

Proof of Theoreni]3:Based on(d), considering integration is a linear operation, we only

need to prove thak’ (1 — e‘z%) is concave. The corresponding Hessian matrix is expressed

M
asH = Ze "k +> ., ., |- For arbitrary non-zero vector = [y, y2]" € R*, we have
K K2
-1 M y
22 M., K 1
y'Hy =% % [y, 1] Mo
K K?2 y2 (28)

22 My, M 2
=K€K Y — KYe

< 0.

Hence,H is negative-definite. Therefore, we arrive at Theofém 3. [ ]
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APPENDIX D

Proof of Lemma]1: The first and second order derivatives®fu) are as follows,

1 1 1
o __ oo ll—efziJrz—z%efzﬁJrzd 82 _ (ool z2u—13@ Zy Ttz d 29
8tG (U) —Jo % efz—i-z%ﬁ/(l—%,z) 2, 8t2G (u) = 0 Zm Z. ( )

As g—;G(u) < 0, G(u) is a concave function ofi. Thus, if ignoring the constraint € [0, 1],

V26 (u) =

0. As .G (u) < 0, 2G (u) is a decreasing function of. For 2G (0) and 2G (1), we

the optimalu’ ¢ could be derive by setting the first order derivative as zee

have the following results. First, fon = 0, we havelim,_, (1 — et —z%e‘ziﬂ) =

limu_m (]_ — Z%) = llmu_>0 (1 — ez(c%z/u)) =1. ThUS,%G (0) = OOO %ﬁdz > 0
“iu e Ftzay(1l-2,2
Foru =1, %G(l) = — ¢ ——=+———~dz < 0. Therefore, we know that there is a unique

e*z+237(1—%,z)
solution for 2G (u) = 0 in [0, 1]. The solution can be derived via the bisection method. m

APPENDIX E

Proof of Theoreni]4When ignoring the constraink’ < M, the local optimal)/ can be
obtained by setting the first order derivative of the objecfunction in(IH) as zero. Therefore,
we arrive at(I@). The first order derivative of the left item of the equati@gl) is

OF (M) O*E[R] (P 3
= —+MP.+ K°P,.+ Fy | .
oM oar \ g T et A et o

From PropositiofilL, we know th&(2IE < 0. Thus, we havéD < o, i.e., F(M) is a decreas-

(30)

ing function of M. For K — 1, F(K — 1) = 22|~ (24 (K —1)P.+ K*Pe + ) >
0. If M — +oo, the first order derivativéimM_Hroo‘if—A[f] = 0. Thus, limy ., F(M) =

—limy 1 E'[R] P. < 0. Combining the fact that'(M) is a decreasing function af/, we
know that there is a unique solution f@6l), which is located i/ — 1, +o0). And the solution
can derived through the bisection method. Because thei@olig unique, the solution is the
global optimal point. Above all, considering the consttaih < M and the fact that\/ is an
integer, we get Theoref 4. [

APPENDIX F

Proof of Theoreral5:When M is fixed, we derive the optimal’};,. by setting the first order
derivative of the objective function iff7)) as zero. By this, we have the equatiBg (M, K) = 0.

The first order derivativ%%EK(M, K) = W%(TEJ—RD (% +MP.+ K3P,,.. + Po) —6K?E [R] Pyre.
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As KE [R] is concave with respect t, we have X I (M, K) < 0. Therefore ' (M, K) is
decreasing function of. For K = 0, F (M, K) = ;% (KE [R])‘K:O (% + MP, + Po) > 0.
Combining Lemma ]2, we know that the solution By (M, K) = 0 lies in (0, u%¢zM) and

can be obtained through the bisection method. [ ]

APPENDIX G

Proof of Theoreni]6: Similar to Theorenti 5, the optimal’;,, is obtained by setting the
first order derivative of the objective function {fi7) as zero. Thus, we arrive at the equation

2
Fy (M, K) = 0. The first order derivativg?V—IEM(M, K) = %}QR} (% + MP.+ K3P,,. + Po) <
0. ForM = K, F,,(M,K) = 9BIR] (% +KPC+K3PW +P0) > 0. For M — +o0, we

oM
know thatlimy, oo Fpr (M, K) = —limy, 4o E [R]P. < 0. Thus, there is a unique solution

for F,,(M, K) = 0, which lies in (K, +o0). Additionally, the solution can be derived through

the bisection method. [ ]
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