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Abstract

This paper aims at answering two fundamental questions: howarea spectral efficiency (ASE)

behaves with different system parameters; how to design an energy-efficient network. Based on stochastic

geometry, we obtain the expression and a tight lower-bound for ASE of Poisson distributed networks

considering multi-user MIMO (MU-MIMO) transmission. Withthe help of the lower-bound, some

interesting results are observed. These results are validated via numerical results for the original expres-

sion. We find that ASE can be viewed as a concave function with respect to the number of antennas

and active users. For the purpose of maximizing ASE, we demonstrate that the optimal number of

active users is a fixed portion of the number of antennas. Withoptimal number of active users, we

observe that ASE increases linearly with the number of antennas. Another work of this paper is joint

optimization of the base station (BS) density, the number ofantennas and active users to minimize the

network energy consumption. It is discovered that the optimal combination of the number of antennas

and active users is the solution that maximizes the energy-efficiency. Besides the optimal algorithm,

we propose a suboptimal algorithm to reduce the computational complexity, which can achieve near

optimal performance.
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I. INTRODUCTION

Network densification is a key approach to cope with the 1000xtraffic demand of 5G cellular

networks [1][2]. Especially, spatial densification, whichincludes increasing the number of an-

tennas per BS (i.e., multi-input multi-output, MIMO) and the number of BSs (i.e., ultra dense

network, UDN), has been recognized as an essential part of future 5G cellular networks.

In this context, a fundamental question arises, which is howthe network throughput behaves

with the BS density, the number of antennas and other system parameters. This is of crucial im-

portance since we should know the appropriate amount of infrastructure (e.g., BSs and antennas

per site) that can meet the network throughput demands. On the other hand, energy-efficiency

is also an important requirement of 5G cellular network, where the energy-efficiency should be

improved at least 100x [3]. Specifically, as increasing the BS density and the number of antennas

both boost the network capacity, it is interesting to find an optimal combination of BS density

and number of antennas for reducing network energy consumption.

To address the above two fundamental questions, we need an efficient approach to evaluate

the performance of the whole network. Previous studies on the network throughput or energy-

efficiency mainly focused on the hexagonal model, in which the macro cells are modeled as

hexagonal grids and the small cells are distributed in each macro cell [4]. Due to the irregularity

of future small cells, the regular grid models may be too idealized to characterize the network

performance accurately. Furthermore, such works highly rely on the time-consuming system-level

simulations, which makes it difficult to shed more lights on system design. For mathematical

tractability, stochastic geometry has been applied to the analysis and optimization of cellular

networks in recent years [5].

A. Related Works

Stochastic geometry has been used for the analysis of cellular networks since late 90’s. [6]

introduced stochastic geometry as a communication networkplanning tool. By modeling the BSs

as a Poisson point process (PPP), [7] studied the signal-to-interference-plus-noise-ratio (SINR)

of the cellular networks. Andrewset al. derived more tractable expressions for SINR and average

data rate in [8]. Extensive work on heterogeneous networks (HetNets) can be found in [9]. Some

interesting results have been obtained in [8][9]. For example, without considering cell range

expansion and the thermal noise, the SINR distribution of users does not depend the transmit
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power of BSs nor the BS densities. In order to better suit reality networks, more complex point

processes have also been adopted in the subsequent studies.Considering the fact that there exists

repulsion between the well-planned macro BSs, [10] modeledthe cellular networks as Ginibre

point process (GPP) and analyzed the mean interference and coverage probability. On the other

hand, for the hot areas where lots of small cells are deployed, Poisson cluster process (PCP)

can be used to model the BSs with attraction [11].

Based on the analysis from stochastic geometry, some other works focused on the optimal

system parameters to improve the network performance. Especially, from the perspective of

energy-efficient networks, the optimal deployment strategies have been widely studied. As the

BSs are reported to consume 60-80% energy of the whole network [12], most researchers mainly

evaluated the energy consumption of BSs. Based on stochastic geometry, [13] jointly optimized

the transmit power of BSs and BS densities under coverage performance constraint. Besides the

coverage performance, improving each user’ data rate is also a primary goal of future networks.

In this context, [14] took the load of each BS into consideration and studied the energy optimal

BS densities while guaranteeing users’ data rate constraint. Considering the huge energy waste

of UDN in the off-peak period, BS sleeping is an efficient approach to reduce the network energy

consumption. To characterize the potential gains of BS sleeping, the performance of different

sleeping strategies has been analyzed in [15]. Moreover, tosupport flexible management, the

introduction of UDN also brings about changes in network architecture. Under the recently

proposed separation architecture, [16] derived the optimal small cell density considering both

the coverage and data rate constraints.

However, most of the afore-mentioned works assumed only single antenna is equipped for

each BS, i.e., the potential gains of multi-antenna cannot be revealed. To take a step further, the

coverage probability and average data rate in Poisson distributed network with multi-antenna BSs

have been obtained in [17]. Based on the approach of equivalent-in-distribution approach, [18]

studied the error probability of Poisson distributed networks with different MIMO arrangements.

Due to the intractability of the expression for the Laplace function of the inter-cell interference,

it is difficult to study the relationship between network performance and system parameters (e.g.,

the number of antennas) in [17][18]. Hence, with the help of Toeplitz matrix, [19] derived a

more tractable expression for the coverage probability considering maximal ratio transmission

(MRT) beamforming. It is found that the benefit of adding moreantennas will become smaller
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with the increase of the number of antennas. Extension of [19] can be found in [20], in which

space-division multiple access (SDMA) was studied. Although [19][20] have provided some

interesting results, the limitation is that they only considered fixed-rate transmission. This may

be not very suitable for today’s cellular network, where adaptive modulation and coding (AMC)

is applied (i.e., average data rate may be more appropriate). In future networks, a large number

of antennas might be deployed, which is referred as massive MIMO. Assuming the number

of antennas is sufficiently large, [21][22] studied the performance of massive MIMO networks.

Furthermore, the system parameters were jointly optimizedto maximize the energy-efficiency

in [22].

In this paper, we aim at fully characterizing the propertiesof the network throughput and

energy consumption in Poisson distributed networks with multi-antenna BSs. We consider MU-

MIMO in this paper, i.e., more than one users will be scheduled in each slot each cell. Specifically,

zero-forcing (ZF) precoding is adopted to eliminate the intra-cell interference. Based on the

theory of stochastic geometry, we derive the expression anda lower-bound for the average data

rate of a typical user. Then, ASE of the network can be expressed with these two expressions.

Based on the analysis results, how ASE behaves with other system parameters (i.e., the BS

density, the number of antennas, and the number of active users) is discussed in detail. Thus, the

potential gains of more BSs and more antennas are characterized. Compared to previous work,

more interesting and insightful results have been obtained. Especially, the functional relationship

between ASE and system parameters (i.e., the number of antennas, the number of active users)

is fully quantified. Furthermore, to minimize the network energy consumption, we formulate an

optimization problem, where the BS density, the number of antennas, and the number of active

users are jointly optimized. This work provides system design insight for the deployment of

future energy-efficient network.

B. Contributions

In this paper, the functional relationship between ASE and other system parameters will be

studied theoretically. From the perspective of ASE and network energy consumption, the optimal

configurations of system parameters will be discussed. The main contributions of this paper are

summarized as follows:

• Using tools from stochastic geometry, we derive the expression and a lower-bound for the
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average data rate of a typical user. Numerical results show that the low-bound is quite tight

in most cases. Additionally, the lower-bound is quite useful in the analysis and optimization

of this paper. We discover that the average data rate mainly depends on the ratio between

the number of active users and the number of antennas.

• The functional relationships between ASE and other system parameters are discussed. It is

observed that ASE increases linearly with the BS density under the infinite user density

assumption. Another result that has never been reported in previous works is that, ASE is

a concave function with respect to the number of antennas andactive users when treating

them as continuous variables.

• For arbitrary number of antennas, we demonstrate that the optimal number of active users

to maximized ASE is approximately a fixed portion of the number of antennas. With the

number of active users set as the optimal number, we find that ASE increases linearly with

the number of antennas. We define GAPA as the gain on ASE per antenna to quantify the

performance gain by deploying one more antenna.

• Although the above results are mostly obtained from the moretractable lower-bound. These

properties of the original expression are validated through numerical results. Because of the

tightness of the lower-bound, we find the properties of the original expression are consistent

with those of the lower-bound.

• To pursue the energy optimal deployment strategy, we jointly optimized the system param-

eters to minimize the network energy consumption. We find that the optimal combination

of the number of antennas and number of active users is the solution that maximizes the

energy-efficiency. Besides the optimal algorithm, we also proposed a suboptimal algorithm

based on the lower-bound to solve the non-convex problem. Numerical results show that

the performance loss of the suboptimal algorithm is negligible. And we find that we should

equip more antennas and schedule more active users for the BSs which have higher transmit

power.

C. Paper Organization

The rest of this paper is organized as follows. Section II describes the system model and

performance metrics in this paper. Section III analyzes ASEof the whole network. In Section IV,

we discuss the relationship between ASE and other system parameters. The system parameters
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Fig. 1. Illustration of the network model.

are jointly optimized in Section V. Finally, Section VI summarizes and concludes this paper.

Notation: We use underline(·) to indicate the results obtained based on the lower-bound. We

use the subscripts(·)ASE and (·)EC to indicate the results related to ASE maximization and

energy consumption minimization, respectively.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. Network Model

We consider a downlink cellular network, which is depicted in Fig. 1. The BSs are located

according to a homogeneous PPPΦb = {x0, x1, ...} in the Euclidean plane. The intensity of

Φb is λb. We assume that each BS is equipped withM antennas. The single-antenna users are

arranged according to some stationary point process. The users’ point process is independent of

the base stations’ point process. Each user is associated with the nearest BS, i.e., each BS serves

the users which are located within its Voronoi cell. We applystandard path loss propagation

model with path loss exponentα > 2. Since cellular networks are typically interference limited

[23], we neglect the effect of the thermal noise in this paper. The small scale fading on each

link is i.i.d. Rayleigh fading. The correlations between different antennas are ignored. Due to the

limitation of frequency resource, we assume universal frequency reuse is applied in this paper.

At each time slot, each BS servesK users through SDMA, i.e., the number of active user

is K. We assume the user density is larger enough that there are atleastK users within each
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BS’s Voronoi cell, which is a common assumption in previous works [17][20]. Besides, this is a

reasonable assumption in 5G cellular network, since to provide service for dense crowds of users

is a typical scenario of METIS [2]. In this paper, we mainly focus on ZF precoding and assume

perfect channel state information at each BS, i.e., there isno intra-cell interference. Cooperation

between BSs is not considered in this paper. As a result, the number of active usersK should

not exceed the number of antennas, i.e.,K ≤ M . The total transmit power of each BS isP . We

consider equal power allocation for theK users in each cell.

Let the M × 1 vector hik ∼ CN (0, I) denote the small scale fading between thei-th BS

and itsk-th active user. Letwik denote the precoding vector at BSi for the k-th user. Con-

sidering ZF precoding, the unit-norm precoding vectorwik equals thek-th normalized column

of Hi

(
H†

iHi

)−1
, whereHi =

[
hi0,hi1, ...,hi(K−1)

]
. The transmitted signal of thei-th BS is

zi =
∑K−1

k=0 wiksik, wheresik is the data symbol destined for thek-th active user. Without loss

of generality, we assume the0-th active user of the0-th BS is located at the origin, which

is referred as the typical user [8]. Based on Slivnyaks Theorem [25], we mainly focus on the

analysis of the typical user. The small scale fading betweenthe interfering BSs and the typical

user is denoted asvi0 ∼ CN (0, I). The received signal of the typical user is

y0 =

√
P

K
‖x0‖

−α
2 h

†
00z0 +

∑

xi∈Φb\{x0}

√
P

K
‖xi‖

−α
2 v

†
i0zi (1)

From (1), the signal-to-interference-ratio (SIR) of the typical user can be expressed as

SIR0 =
g00 ‖x0‖

−α

∑
xi∈Φb\{x0} gi0 ‖xi‖

−α , (2)

whereg00 =
∥∥∥h†

00w00

∥∥∥
2

and gi0 =
∑K−1

k=0

∥∥∥v†
i0wik

∥∥∥
2

for i > 0. The desired channel powerg00

is the squared-norm of the projection of vectorh00 on Null
(
h01, ...,h0(K−1)

)
, which follows

Gamma(M+1−K, 1) [26]. For the interfering links, aswik is a unit-norm vector and indepen-

dent ofv†
i0,
∥∥∥v†

i0wik

∥∥∥
2

is the squared-norm of complex Gaussian, which is exponential distributed.

We follow the approximation in [17], i.e., neglect the correlation between
∥∥∥v†

i0wik

∥∥∥
2

for different

k. Therefore, the equivalent channel gaingi0 is the sum ofK independent exponential distributed

random variables, which followsGamma (K, 1) , i > 0. The accuracy of this approximation will

be demonstrated in our numerical results.
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B. Performance Metrics

Throughput and energy-efficiency are two key performance indicators of future cellular net-

works [2]. Therefore, we will focus on the performance metrics of ASE and network energy

consumption in this paper.

1) Area Spectral Efficiency:One of the major purpose of this paper is to study the relationship

between ASE and other system parameters (e.g.,P, λb,M,K). ASE is the performance metric

reflecting the network capacity, which is defined as the average throughput per HZ per unit area.

In accordance with [19][20][22], ASE is the product of BS density, the number of active users

served by each BS, and the average data rate of the typical user. To reveal the potential gains

via spatial densification, the functional relationship between ASE and other system parameters

is of crucial importance. Through the expressions of ASE, the theoretical gains of increasing

BS density and number of antennas will be characterized in this paper. Some interesting and

insightful observations will be obtained.

2) Network Energy Consumption:Future cellular networks should meet the explosive demand

of data rate at the cost of similar energy consumption with concurrent networks. Thus, network

energy consumption is another focus of this paper. Since theBSs consume the largest portion

of energy in cellular networks, we will mainly evaluate the overall BS energy consumption. For

each BS, we adopt the following energy consumption model [27]1

EC =
P

η
+MPc +K3Ppre + P0, (3)

where η denotes the power amplifier efficiency,Pc is the circuit power per antenna, which

indicates the energy consumption of the corresponding RF chains. K3Ppre accounts for the

energy consumption for precoding which is related to the number of active users.P0 is the

non-transmission power, which accounts for the energy consumption of baseband processing,

cooling, etc. Considering the BS energy consumption model,network energy consumption is

defined as the average energy consumption per unit area, i.e.,

NEC = λb

(
P

η
+MPc +K3Ppre + P0

)
. (4)

1We do not consider the energy consumption of backhaul in thispaper. Thus, the energy consumption model is slightly

different from [27]. However, the results in this paper can be applied to the scenario considering backhaul energy consumption

directly.
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In the following part of this paper, using stochastic geometry, we will discuss the relationship

between ASE and other system parameters. Furthermore, given an ASE target, how to design

an energy optimal network will also be studied.

III. A NALYSIS OF AREA SPECTRAL EFFICIENCY

In this section, we will first derive the expression for the average data rate of the typical

user. Then we will give the expression of ASE. Besides, to further study how ASE behaves

with different system parameters, a more tractable lower-bound will also be provided, which is

demonstrated to be quite tight through numerical results.

A. Area Spectral Efficiency

ASE is the product of BS densityλb, the number of active usersK and average data rate

of usersE [R]. Hence, we first need to deriveE [R] to get the expression of ASE. Similar to

[28], we derive the average data rate of the typical user directly without calculation of SIR

distribution. And more tractable expressions are provided. The tractability facilitates the analysis

of properties of ASE in the following section.

Theorem 1:The average data rate of the typical user is given by

E[R] =
∫ ∞

0

1
z

(
1−

(
1

1+z

)M+1−K
)

1
(1+z)K

+ z
2
αKB

(
z

1+z
, α−2

α
, K + 2

α

)dz, (5)

whereB (·, ·, ·) is the incomplete Beta function.

Proof: See Appendix A.

Theorem 1 provides an expression for the average data rate ofusers. An observation from

Theorem 1 is that, the average data rate of the typical user does not depend on the BS density

λb nor the transmit powerP . This phenomenon is similar to the single antenna case in [8].

Nevertheless, we consider a more general case, where multi-antenna and MU-MIMO are both

taken into account. It is important to point out that, the density and transmit power invariance

property does not hold when considering multi-tier network. It has been shown that the SIR

distribution depends on the BS density and transmit power ofdifferent tiers in [20]. However, the

emphasis of this paper is the analysis and optimization of single-tier network. Further extension
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on multi-tier network is left for future works. Based on Theorem 1, ASE of the network can be

expressed as

T = λbKE [R] . (6)

Although a tractable expression forE [R] is derived, we also find that it is cumbersome to

study the relationship betweenE [R] and the number of active usersK. Therefore, we also

derive a tight lower-bound forE [R], which will be presented in Theorem 2.

B. A Tight Lower-Bound

To shed more lights on the system design of future network, weobtain a tight lower-bound

E [R] for the average data rate of the typical user.

Theorem 2:A lower-bound for the average data rate of the typical user isgiven by

E [R] =
∫ ∞

0

1

z

1− e−zM−K
K

e−z + z
2
αγ
(
1− 2

α
, z
)dz, (7)

whereγ (·, ·) is the lower incomplete Gamma function.

Proof: See Appendix B

Similar to Theorem 1, the lower-bound in Theorem 2 does not depend onP nor λb. Fig. 2

compares the results of Monte Carlo simulations, Theorem 1 and Theorem 2. Firstly, we can
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find that the analytic results in Theorem 1 match the simulation results quite well.2 Secondly,

the lower-bound proposed in Theorem 2 is quite tight forK < M , especially when the number

of antennas is large. Besides, the average data rate decreases with the number of active users

K. The reason is that, if more users are scheduled in each cell,the degrees of freedom to boost

the received useful power will be reduced while the inter-cell interference will be stronger. In

fact, it is not difficult to show thatE [R] decreases withK from Theorem 2. However, it is

cumbersome to derive this property based on Theorem 1 theoretically. In other words, the tight

lower-boundE [R] can provide an efficient way to study the relationship between the network

performance and other system parameters theoretically.

From Theorem 2, we find that the lower-boundE [R] only depends on the ratio between

the number active users and the number of antennasu = K
M

. Fig. 3 illustrates the average

data rate of the typical user with differentu. It is worth noting that, even for the expression

in Theorem 1,E [R] is mainly related to the ratiou. The mismatch of considering different

M is relatively small. This phenomenon can be explained by averaging the equivalent channel

gains. Similar to the procedures in Appendix B, taking expectations of 1
g00

, gi0, we haveSIR0 ≈
(M−K)‖x0‖

−α

K
∑

xi∈Φb\{x0}
‖xi‖

−α =
(
M
K

− 1
)

‖x0‖
−α∑

xi∈Φb\{x0}
‖xi‖

−α . We can see that the approximate users’ SIR

only depends on the ratiou. Therefore, we observe the results on average data rate in Fig. 3.

From Theorem 2, the lower-bound of ASE is given by

T = λbKE [R]. (8)

Based on(6) and (8), more detailed discussions on the variation trends of ASE with different

system parameters will be provided in the next section, where Theorem 2 also plays a crucial

rule in theoretical analysis.

IV. I MPACT OF SYSTEM PARAMETERS ONASE

In the previous section, we have provided the expression anda lower-bound for ASE. In

this section, we will further discuss how ASE behaves with different system parameters. The

following analysis provides system design insight on how todesign an efficient network. We

2In order to validate the approximation for the channel powerof the interfering links, the values ofgi0 are calculated based

on the precoding matrices in simulations. From the numerical results, we find that Gamma approximation is quite accuratefor

the analysis of average data rate.
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mainly focus on three system parameters, i.e., the BS density λb, the number of antennasM

and the number of active usersK.

A. Relationship Between ASE and Other System Parameters

1) BS Density:As E [R] is only related toM andK, ASE T increase linearly with the BS

densityλb whenM,K are fixed. That is to say, deploying more BSs is an efficient wayto boost

the network capacity. It is worth noting that, this conclusion only holds under the assumption

that the user density is always sufficiently larger than the BS density, i.e., the user density is

infinite.If the user density is not so large (e.g., rural areas), the relationship between ASE and

BS density can be investigated similarly to [19]. Nevertheless, this is not the emphasis of this

paper, more detailed discussion on BS density when the user density is not sufficiently large

will be left for future works.

2) Number of BS Antennas:If the BS densityλb and the number of active users are fixed,

we have the following results on the number of antennas.

Proposition 1: If the BS densityλb and the number of active usersK are fixed, ASET is

an increasing concave function of the number of antennasM .3

Proof: We need to prove thatE [R] is an increasing concave function ofM . The only item

related toM in E [R] is −
(

1
1+z

)M+1−K
. It is not difficult to show that−

(
1

1+z

)M+1−K
is an

increasing and concave function ofM . Combining the fact that integration is a linear operation,

we know thatE [R] is also an increasing concave function ofM .

From Proposition 1, we know that deploying more antennas always improves the network

capacity. However, the benefit of more antennas will become smaller with the increase of the

number of antennas. Hence, it seems like that increasing thenumber of antennas is not such

attractive. Nevertheless, our following analysis shows that if the number of active users can be

adjusted adaptively toM , more gains on ASE can be achieved.

3) Number of active users:The number of active usersK affects both the power distribution

of desired signal and interfering signal. It is of vital important to study how the number of active

user affects the network capacity. However, the expressionof E [R] is complex with respect to

K. Therefore, the analysis is based on the lower-bound(8).

3In this section, we treatM,K as continuous variables to study the properties of ASE.
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Proposition 2: With the BS densityλb and the number of antennaM fixed, the low-bound

of ASE T is a concave function of the number of active usersK.

Proof: The low-bound is expressed as

T = λb

∫ ∞

0

1

z

K
(
1− e−zM−K

K

)

e−z + z
2
αγ
(
1− 2

α
, z
)dz. (9)

For the itemK
(
1− e−zM−K

K

)
, we first get the second order derivative with respect toK. We

have ∂2

∂K2

(
K
(
1− e−zM−K

K

))
= −z2M2

K3 e−zM
K

+z < 0. Combining the fact that integration is a

linear operation, we knowT is concave with respect toK.

Since the low-bound of ASET is a concave function ofK, there exists a unique optimal

K∗
ASE to maximize ASET . The optimal number of active users will be discussed in detail in

subsection B, in which some interesting results will be observed. Although the analysis is based

on the low-boundT , numerical results in subsection B demonstrate that the analysis is consistent

with the expressionT .

4) ASE with respect to(M,K): In the previous parts, we have discussed the functional

relationship between ASE andλb,M,K when the other two parameters are fixed. Herein, we

will discuss the functional property of ASE with respect to the pair (M,K). Although the

analysis is based onT , numerical results show that the conclusion also holds for the expression

T .

Theorem 3:The low-bound of ASET is concave with respect to(M,K).

Proof: See Appendix C.

Theorem 3 reveals the functional relationship between ASE and (M,K). To our best of

knowledge, similar results have never been reported. Fig. 4depictsT and T with respect to

(M,K). It is intuitive that,T is concave with respect to(M,K), which demonstrates our analysis.

Furthermore, we find the original expressionT can also be viewed as a concave function of

(M,K). That is to say the analysis based on the lower-boundT still holds for the expressionT .

Besides, the results of Proposition 1 and Proposition 2 can be viewed as corollaries of Theorem

3.

B. The Optimal Number of Active Users

As we have analyzed, if givenM , there exists an optimal active usersK∗
ASE to maximize ASE.

Therefore, we will study the optimalK∗
ASE in this part. The following analysis is also based
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on the lower-boundT . The optimal number of active users derived based on the lower-bound

is denoted asK∗
ASE. Numerical results demonstrate that the results still holdwhen considering

the expressionT .

1) ASE maximization problem:To deriveK∗
ASE, we formulate an optimization problem as

P1 : max
K

λbK
∫∞
0

1
z

1−e
−zM−K

K

e−z+z
2
α γ(1− 2

α
,z)

dz

s.t. K ∈ {1, 2, 3, ...,M}.
(10)

Substitutingu = K
M

into P0, and relaxingu to [0, 1], we have the following optimization

problem.

max
u

λbM u
∫ ∞

0

1

z

1− e−z 1
u
+z

e−z + z
2
αγ
(
1− 2

α
, z
)dz

︸ ︷︷ ︸
G(u)

s.t. u ∈ [0, 1].

(11)

Interestingly, from the optimization problem(11), we know that the optimalu∗
ASE is unrelated

to M . That is to say, the ratio between the optimal number of active users and the number of

antennas remains nearly the same for arbitraryM , i.e., the optimal number of active users is

approximatelyMu∗
ASE .4 Additionally, the lower-bound of ASET with optimalK∗

ASE is

T opt = λbMG(u∗
ASE). (12)

4In fact, Mu∗
ASE need to be rounded as the number of active users can only be integers.
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We can see that the lower-bound of ASE will increase linearlywith the number of antennas.

We defineG(u∗
ASE) as the gain on ASE per antenna (GAPA), which means the gain on ASE

by deploying one more antenna. The next procedure is to maximize G(u) to find the value of

u∗
ASE and GAPA. We have the following results.

Lemma 1:u∗
ASE is the solution of the equation

∫∞
0

1
z

1−e−z 1
u+z−z 1

u
e−z 1

u+z

e−z+z
2
α γ(1− 2

α
,z)

dz = 0. There is a

unique solution for this equation, which satisfiesu ∈ [0, 1] and can be derived through the

bisection method.

Proof: See Appendix D.

Based on Lemma 1, we can deriveu∗
ASE andG(u∗

ASE).

2) Numerical Illustrations:In simulations, we set the path loss exponentα = 4. Following

Lemma 1, we deriveu∗
ASE = 0.5913 and the GAPAG(u∗

ASE) = 0.8165 nats/s/Hz. Thus,

given the number of antennasM , the optimal number of active users to maximize the lower-

bound of ASE is approximately0.5913M .5 Fig. 5 depictsT and T with different K. Firstly,

we can find that bothT andT are concave with respect toK, which demonstrates Proposition

2. For M = 5, 10, 15, the optimal number of active users that maximizesT and T are both

K∗
ASE = K∗

ASE = 3, 6, 9. This demonstrates our analysis about the optimalK∗
ASE. Furthermore,

the conclusion based onT is also true for the expressionT . To further demonstrate this, we

obtain the optimalK∗
ASE that maximizesT for differentM by exhaustive search. The optimal

K∗
ASE with different M is provided in Fig. 6. AlthoughK∗

ASE = u∗
ASEM is derived based on

the lower-boundT , when considering the expressionT , we find that the optimalK∗
ASE is either

⌊u∗
ASEM⌋ or ⌈u∗

ASEM⌉. This demonstrates that our analysis based on the lower-bound can be

applied to the original expression directly.

Interestingly, in subsection A, we found that the lower-bound of ASE is a concave function

of M whenK is fixed. However, if the number of active usersK is set asu∗
ASEM , from (12),

we know that the lower-bound of ASE approximately increaseslinearly with the number of

antennas. WhenK set as the optimal number, Fig. 7 illustratesT andT with differentM . We

find that bothT andT increase linearly withM . 6 That is to say, with optimal configuration,

5This value needs to be rounded as the number of active users can only be integers.

6Part of similar phenomenons were observed via numerical results in [30]. However, the reasons behind these phenomenons

have not been discovered. Instead of simulations, we arriveat these results through rigorous theoretical analysis. Thus, the

reasons behind have been fully explained.
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increasing the number of antennas is as efficient as increasing the BS density, i.e., both of them

can boost the network capacity linearly. Actually, from Theorem 2, it is not difficult to find that,

if only the ratiou = K
M

remains fixed, ASE can increase linearly with the number of antennas.

The difference is that, if we setu = u∗
ASE, ASE will be maximized. The reasons are as follows.

Recalling Fig. 3 in Section III, the average data rate of eachactive user mainly depends on

u. That is to say, although we increaseM , if only u is fixed, the average data rate of each

active user nearly remains fixed, i.e., the increase in the desired power is counter-balanced by

the channel power of the interfering links. Furthermore, the number of active usersK = uM ,
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which increases linearly with the number of antennas. Therefore, we arrive at the conclusion

that ASE increases linearly with the number of antennas.

V. ENERGY OPTIMAL SYSTEM PARAMETERS

In this section, we pursue an energy optimal strategy to minimize network energy consumption

while guaranteeing the ASE design target. Specifically, we formulate an optimization problem

where the BS density, the number of antennas and active usersare jointly optimized. The optimal

algorithm and a suboptimal algorithm are proposed to solve the non-convex problem.

A. Problem Formulation

While guaranteeing the network ASE is above the targetT tar, we aim at minimizing the

average network energy consumption per unit area, i.e.,λb

(
P
η
+MPc +K3Ppre + P0

)
. We try

to answer the fundamental question how many BSs and antennasshould be deployed and how

many users should be scheduled in each slot. Therefore, three parameters(λb,M,K) will be

jointly optimized. We can formulate the energy minimization problem as

P2 : min
λb>0;M,K∈N+

λb

(
P

η
+MPc +K3Ppre + P0

)

s.t. λbKE [R] ≥ T tar, (13)

K ≤ M.

It is intuitive that, the inequality constraintλbKE [R] ≥ T tar can be replaced by the equality

constraintλbKE [R] = T tar. Thus, we have the relationship

λb =
T tar

KE [R]
. (14)

Plugging(14) into P2, we can arrive at the following equivalent optimization problem,

max
M,K∈N+

KE [R]
P
η
+MPc +K3Ppre + P0

s.t. K ≤ M. (15)
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In fact, the problem is energy-efficiency maximization problem. In most cases, energy con-

sumption minimization problem is not equivalent to the energy-efficiency maximization problem.

However, due to the equalityλb =
T tar

KE[R]
, the problem(13)(15) in this paper are equivalent. In

other words, the optimal combination of the number of antennas and active users that maximizes

the energy-efficiency is also the optimal solution that minimizes the network energy consumption.

Although the optimization problemP2 is non-convex, the optimal algorithm and a suboptimal

algorithm will be proposed to solveP2 in this section.

B. Optimal Algorithm

We first relaxM,K to (0,+∞) in optimization problem(15). Thus, we arrive at a fractional

programming problem. The major obstacle to solving this problem is the complicated expression

of E [R], especially the complex relationship betweenE [R] andK. This motivates us to study

the optimalM whenK is fixed, which is more tractable. From Proposition 1, we knowthat

E [R] is a concave function ofM . As the denominator is a linear function, the above optimization

problem is a concave fractional program, and the objective function is pseudoconcave. Due to the

generalized concavity of the objective function, we have the following results about the concave

fractional programs [31],

1) A local maximum is the global maximum;

2) It is possible to solve concave fractional programs with standard concave programming

algorithms.

Based on the first order derivative of the objective function, we obtain the optimalM∗
EC .

Theorem 4:WhenK is given, the optimal number of antennaM∗
EC = round

(
max

(
M̃,K

))
,7

whereM̃ is the solution of the equation

∂E [R]

∂M

(
P

η
+MPc +K3Ppre + P0

)
− E [R]Pc

︸ ︷︷ ︸
F (M)

= 0. (16)

The above equation has a unique solution, which is located in[K − 1,+∞) and can be derived

through the bisection method.

Proof: See Appendix E

7The operationround(·) chooses the integer which leads to a smaller network energy consumption from{⌊·⌋, ⌈·⌉}.
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From Theorem 4, we can find howM∗
EC varies with other system parameters. Based on the

method of implicit differentiation, we have ∂M∗
EC

∂

(
P/η+K3Ppre+P0

Pc

) = −
Pc

∂E[R]
∂M

∂2E[R]

∂M2 (P
η
+MPc+K3Ppre+P0)

> 0.

Thus,M∗
EC increases with the ratioP/η+K3Ppre+P0

Pc
. In other words, the smaller the circuit power

per antennaPc compared with other energy consumption is, the more antennas are preferred.

Based on Theorem 4, we have derived the optimal number of antennasM∗
EC when givenK.

Therefore, by comparing all possible results forK, we can derive the optimal algorithm forP2.

• First, obtain the optimal number of antennasM∗
EC for all possibleK ∈ {1, 2, 3, ...} based

on Theorem 4.

• Then, substituteM∗
EC into (14), we can deriveλ∗

bEC .

• Select the optimal solution(λ∗
bEC ,M

∗
EC, K

∗
EC) that minimizes the network energy consump-

tion.

C. Suboptimal Algorithm Based on The Lower-Bound

Although the optimal algorithm proposed in this subsectioncan derive the optimal solution of

P2, the exhaustive search forK∗
EC is time consuming. To reduce the computational complexity,

we also propose a suboptimal algorithm based the lower-bound in Theorem 2. ReplacingE [R]

with E [R] and relaxingM,K to (0,+∞) in (15), we arrive at the following related but not

equivalent problem.

max
M,K∈(0,∞)

KE [R]
P
η
+MPc +K3Ppre + P0

s.t. K ≤ M. (17)

In Section IV, we have demonstrated that the optimal number of active users that maximizes

KE[R] is u∗
ASEM . Based on this result, for the above problem, the optimalM ∗

EC and K∗
EC

satisfy the following properties.

Lemma 2:The optimal(M ∗
EC , K

∗
EC) for problem(17) must satisfyK∗

EC ≤ u∗
ASEM

∗
EC, i.e.,

the constraintK ≤ M can be removed.

Proof: From the analysis in Section III, we know thatKE [R] is maximized atu∗
ASEM

∗
EC

when givenM ∗
EC. Hence, for arbitraryK ′ > u∗

ASEM
∗
EC , we haveKE [R]

∣∣∣
K=K ′

< KE [R]
∣∣∣
K=u∗

ASEM∗
EC

.
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Besides, the denominatorP
η
+MPc +K3Ppre + P0

∣∣∣
K=K ′

> P
η
+MPc +K3Ppre + P0

∣∣∣
K=u∗

ASEM∗
EC

.

Above all, we have
KE[R]

P
η
+MPc+K3Ppre+P0

∣∣∣∣
K=K ′

<
KE[R]

P
η
+MPc+K3Ppre+P0

∣∣∣∣
K=u∗

ASEM∗
EC

. Therefore, the

optimal (M ∗
EC , K

∗
EC) must satisfyK∗

EC ≤ u∗
ASEM

∗
EC .

From Theorem 3, we know that the numeratorKE [R] is concave with respect to(M,K).

Besides, it is not difficult to show that the denominator is convex with respect to(M,K). Hence,

the above optimization problem is a concave fractional program, and the objective function is

pseudoconcave. We use alternating optimization to solve the optimization problem(17), i.e.,

M,K are optimized sequentially. About the optimalM ∗
EC, K

∗
EC , we have the following results.

Theorem 5:WhenM is fixed, the optimalK∗
EC for (17) satisfiesFK(M,K) = 0, where

FK(M,K) =
∂(KE[R])

∂K

(
P
η
+MPc +K3Ppre + P0

)
− 3K3E [R]Ppre. (18)

The unique solution for the above equation lies in(0, u∗
ASEM) and can be obtained through the

bisection method.

Proof: See Appendix F.

Also based on the method of implicit differentiation, we have

∂K∗
EC

∂
(
P/η+MPc+P0

Ppre

) = −
Ppre

∂(KE[R])
∂K

∂2(KE[R])
∂K2

(
P
η
+MPc +K3Ppre + P0

)
− 6K2E [R]Ppre

. (19)

From Lemma 2, we knowK∗
EC ≤ u∗M . Therefore, we have

∂(KE[R])
∂K

> 0 for K∗
EC . The

denominator of above equation is demonstrated be to negative in Appendix F. Above all,
∂K∗

EC

∂

(
P/η+MPc+P0

Ppre

) > 0, i.e., the optimalK∗
EC increases with the ratioP/η+MPc+P0

Ppre
. That is to say,

compared with other energy consumption, the smaller the energy consumption for precoding is,

the more active users are preferred.

Theorem 6:WhenK is fixed, the optimalM ∗
EC for (17) satisfies the following equation

∂E [R]

∂M

(
P

η
+MPc +K3Ppre + P0

)
−E [R]Pc

︸ ︷︷ ︸
FM (M,K)

= 0. (20)

There is a unique solution for this equation, which lies in(K,+∞). Additionally, the solution

can be derived through the bisection method.

Proof: See Appendix G.

Similar to the discussion for Theorem 4, we can arrive at the conclusion thatM ∗
EC increases

with the ratio P/η+K3Ppre+P0

Pc
, which means the property ofM ∗

EC is consistent withM∗
EC .
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In summary, the optimalM ∗
EC , K

∗
EC can be derived via Theorem 5, 6 when the other parameter

is fixed. Due to the generalized concavity of the objective function, the optimal solution for(17)

can be derived by alternating optimization. Above all, we get the suboptimal algorithm forP2

as follows.8

• OptimizeK by using Theorem 5;

• UpdateM by using Theorem 6;

• Repeat the above two procedures until convergence. Round the results, we obtain the

suboptimalM ∗
EC , K

∗
EC;

• SubstituteM ∗
EC , K

∗
EC into (14), we can obtain the suboptimalλ∗

bEC .

For complexity analysis, we denote the search region forK∗
EC,M

∗
EC , K

∗
EC,M

∗
EC as [1, L].

For the optimization ofM∗
EC , K

∗
EC,M

∗
EC based on Theorem 4,5,6, the complexity of bisection

method isO (log2 L). As the optimal algorithm needs exhaustive search forK∗
EC, the complexity

of the optimal algorithm isO (L log2 L). Additionally, the complexity of the suboptimal algorithm

is O (N log2 L), whereN is the number of iterations. Through the suboptimal algorithm, the

complexity can be reduced byL
N

times. Indeed,M is unbounded in the optimization problems.

We need to setL sufficiently large (e.g., 100) in simulations. On the other hand, our numerical

results will show that the suboptimal algorithm can converge to the stable point with small

number of iterations (N < 5). Therefore, the complexity can be reduced sufficiently.

D. Numerical Illustrations

In this subsection, we demonstrate the proposed algorithmsthrough numerical results. We set

the path loss exponentα = 4. The parameters of BS energy consumption model are consistent

with [27]. We consider three types of BSs, i.e., macro BSs, micro BSs, and pico BSs. For the

macro BSs,P = 54dBm, η = 0.388, Pc = 16.9W , Ppre = 1.74W P0 = 65.8. For the micro

BSs,P = 46dBm, η = 0.285, Pc = 13.3W , Ppre = 1.74W P0 = 65.8W . For the pico BSs,

P = 33dBm, η = 0.08, Pc = 6.8W , Ppre = 1.74W P0 = 1.5W . To study the potential gains

of MU-MIMO, we consider two compared scenarios: (i) SU-MIMO, this corresponds to the

8As the optimization in each phase is non-decreasing, alternating optimization can converge to local optimal point. Forthe

quasiconcave function, we can derive the global optimal point.
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Fig. 8. Network energy consumption for macro BSs.
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Fig. 9. Network energy consumption for micro BSs.
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Fig. 10. Network energy consumption for pico BSs.
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Fig. 11. Convergence of the suboptimal algorithm.

scenario only single-user MIMO is applied, i.e.,K = 1; (ii) Single Antenna, which means only

single antenna BSs are considered.9

Fig. 8-10 depict the network energy consumption considering the configurations of macro,

micro, and pico BSs. We can easily find that the suboptimal algorithm can achieve near-

optimal performance. Compared to the single-antenna scenario, if we only consider single-user

transmission, we find that deploying multi-antenna can save50%, 33%, 14% energy for macro,

9For the scenario SU-MIMO,K is set as 1 andM is optimized based on Theorem 4. For the scenario Single Antenna, we

setM = K = 1.
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micro, and pico networks, respectively. If MU-MIMO is considered, 28%, 27%, 10% more

energy can be further saved for the scenarios of macro, micro, and pico networks, respectively.

That is to say, equipping multi-antenna with larger BSs can save more energy. Additionally,

we find that the network energy consumption increases linearly with the ASE targetT tar. The

reason is that, the optimalM∗
EC , K

∗
EC is the solution that maximizes the energy-efficiency, which

is unrelated toT tar. Thus, the optimal network energy consumption can be expressed as

NEC = T tar

KE[R]|M=M∗
EC

,K=K∗
EC

(
P
η
+M∗

ECPc +K∗3
ECPpre + P0

)
. (21)

Therefore, we know that the network energy consumption increases linearly with theT tar.

Through simulation results, we find thatM∗
EC = 35, K∗

EC = 6 for macro BSs;M∗
EC = 11, K∗

EC =

3 for micro BSs, andM∗
EC = 5, K∗

EC = 2 for pico BSs. That is to say, it is preferable to equip

more antennas with larger BSs which have higher transmit power. And more users will be

scheduled for larger BSs. The reasons are as follows, recalling the discussion for the optimal

M∗
EC , K

∗
EC,M

∗
EC in Theorem 4,5,6, the smallerPc and Ppre compared with the total energy

consumption, the largerM∗
EC , K

∗
EC ,M

∗
EC is. For macro, micro, pico BSs, the ratio between

P
η
+ P0 and Pc is 39.03, 11.42, 3.88, respectively. And ratio betweenP

η
+ P0 and Ppre is

379.13, 87.3, 15.19. This meansPc andPpre occupy entirely different fractions of total energy

consumption for different type of BSs, i.e., the smallest for the macro BSs, the largest for pico

BSs. Thus, we observe the fact that more antennas and active users are preferred for larger BSs.

Fig. 11 depicts the convergence of the suboptimal algorithm. We find that the suboptimal

algorithm can converge to the stable point with small iteration number. For configurations of

macro, micro, and pico BSs, the iteration number is less than5. This demonstrates the efficiency

of the suboptimal algorithm. Moreover, we find the maximum energy-efficiency for macro, micro

and pico BSs are approximately 0.01, 0.02, and 0.05nats/s/Hz/W , respectively. This means

deploying small BSs is an efficient way to improve the networkenergy-efficiency.

VI. CONCLUSIONS

By modeling the positions of BSs as PPP, this paper has studied two fundamental questions.

The first one is the functional relationship between ASE and other system parameters. Based

on the expression and a tight lower-bound of the average datarate of the typical user, we have

found that average data rate of the typical user is mainly related to the ratio between the number
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of active users and the number of antennas. Additionally, ASE is jointly concave with respect

to the number of antennas and the number of active users. For the purpose of maximizing ASE,

we have demonstrated that the number of active users should be set as a fixed portion of the

number of antennas. Furthermore, with the number of active users set to optimal, we have found

that ASE increases linearly with the number of antennas.

Another fundamental question we try to answer is the optimalcombination of the BS density,

the number of antennas and active users to minimize the network energy consumption. We have

discovered that the optimal number of antennas and active users is the solution that maximizes

energy-efficiency. Numerical results have demonstrated that the proposed suboptimal algorithm

can achieve near optimal performance. Besides, we also found that it is preferable to equip more

antennas and schedule more active users for the BSs which have higher transmit power.

Using stochastic geometry, we have fully explored the performance of ASE and network

energy consumption of the cellular network with multi-antenna BSs. The insightful results in

this paper shed many lights on system design. Especially, wehave found that ASE increases

linearly with the number of antennas when considering optimal configuration. Besides, we have

obtained GAPA to accurately quantify of the gains by deploying more antennas. Furthermore,

the energy optimal deployment strategy has also been proposed. How to densify the network in

an energy-efficient way is studied. Further extension of this work is to consider the cooperation

between BSs, where more gains will be predicted since the inter-cell interference is handled.

APPENDIX A

Proof of Theorem 1: Denote the distance between the typical user and the servingBS

‖x0‖ asr0, and the distance between the typical user and the interfering BSs‖xi‖ asri, i > 0.

From the null probability of PPP, the distance between the typical user and the serving BS is

expressed asf(r0) = 2πλbr0e
−πλbr

2
0 . Following the law of total expectation, the average data of

the typical user can be calculated as

E [R] = Er0


EΦb,g


 log


1 + g00r

−α
0∑

xi∈Φb\{x0}

gi0r
−α
i




∣∣∣∣∣∣∣
r0





 . (22)
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On the basis of Lemma 1 in [29], the conditional expectation can be derived as follows.

EΦb,g

[
log

(
1 +

g00r
−α
0∑

xi∈Φb\{x0}
gi0r

−α
i

)∣∣∣∣∣ r0

]

=
∫∞
0

1−Eg00 [e−zg00 ]
z

EΦb,g

[
e
−z
∑

xi∈Φ\{x0}
gi0r

−α
i rα0

]
dz

(a)
=
∫∞
0

1−( 1
1+z )

M+1−K

z
EΦb

[
∏

xi∈Φb\{x0}
1

(1+zr−α
i rα0 )

K

]
dz

(b)
=
∫∞
0

1−( 1
1+z )

M+1−K

z
e
−2λbπ

∫∞

r0

(
1− 1

(1+zy−αrα
0 )

K

)
ydy

dz

=
∫∞
0

1−( 1
1+z)

M+1−K

z
e
−λbπz

2
α r20

∫∞

z
− 2

α

(
1−

(
1

1+u
−α

2

)K
)
du

dz,

(23)

where(a) follow from the fact thatg00, gi0 are Gamma distributed,(b) follows from the prob-

ability generating functional (PGFL) of PPP [25]. Substituting the conditional expectation, we

have the following results.

Er0

[
EΦb,g

[
log

(
1 +

g00r
−α
0∑

xi∈Φb\{x0}
gi0r

−α
i

)∣∣∣∣∣ r0

]]

=
∫∞
0

∫∞
0

(
1−( 1

1+z )
M+1−K

)

z
2πλbr0e

−πλbr
2
0e

−λbπz
2
α r20

∫∞

z
− 2

α

(
1− 1

(1+u−α/2)
K

)
du

dzdr0

=
∫∞
0

1
z

(
1−( 1

1+z)
M+1−K

)

(1+z)−K+z
2
αKB( z

1+z
,1− 2

α
,K+ 2

α)
dz.

(24)

Two major algebraic manipulations in the last step are: i) reversing the order of integration, ii)

integration by parts to simplify the expression.

APPENDIX B

Proof of Theorem 2: The lower-bound is the result by applying the Jensen’s inequality

E
[
log

(
1 + 1

x

)]
≥ log

(
1 + 1

E[x]

)
. Applying this inequality, we have the following results.

EΦb,g

[
log

(
1 +

g00r
−α
0∑

xi∈Φb\{x0}
gi0r

−α
i

)]

= EΦb,g

[
log

(
1 + 1∑

xi∈Φb\{x0}

gi0
g00

r−α
i rα0

)]

≥ EΦb


log


1 + 1

Eg

[∑
xi∈Φb\{x0}

gi0
g00

r−α
i rα0

]





(a)
= EΦb

[
log

(
1 +

M−K
K∑

xi∈Φb\{x0} r
−α
i rα0

)]

︸ ︷︷ ︸
E[R]

,

(25)
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where (a) following from gi0, i ≥ 0 are independent and Gamma distributed. Specifically,

Eg

[∑
xi∈Φb\{x0}

gi0
g00

r−α
i rα0

]
= E

[
1
g00

]∑
xi∈Φb\{x0}E [gi0]r

−α
i rα0 . As gi0 ∼ Gamma(K, 1) for i >

0, we haveE [gi0] = K. According to [24], 1
g00

follows the inverse gamma ditributionIG(M +

K − 1, 1). Furthermore, the expectationE
[

1
g00

]
= 1

M−K
. Hence, we arrive at above results.

The major procedures of the calculation forE [R] is similar to the proof of Theorem 1. Firstly,

we need to obtain the conditional expectation

EΦb

[
log

(
1 +

M−K
K∑

xi∈Φb\{x}
r−α
i rα0

)∣∣∣∣ r0
]

=
∫∞
0

1−e−z
M−K

K

z
E
[
e−z

∑
xi∈Φb\{x}

r−α
i rα0

]
dz

=
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0

1−e
−zM−K

K

z
e
−λbπz

2
α r20

∫∞

z
− 2

α

(
1−e−y

−α
2
)
dy
dz.

(26)

Then, following the law of total expectation, we have

EΦb


log


1 +

M−K
K∑
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x−α
i xα

0







=
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0
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0
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e
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2
α x2

0
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α

(
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−α
2
)
dy
2πλbr0 exp (−πλbr

2
0) dzdr0

=
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0

1
z

1−e
−zM−K

K

e−z+z
2
α γ(1− 2

α
,z)

dz.

(27)

APPENDIX C

Proof of Theorem 3:Based on(9), considering integration is a linear operation, we only

need to prove thatK
(
1− e−zM−K

K

)
is concave. The corresponding Hessian matrix is expressed

asH = z2

K
e−zM

K
+z



−1 M

K

M
K

−M2

K2


 . For arbitrary non-zero vectory = [y1, y2]

T ∈ R2, we have

yTHy = z2

K
e−zM

K
+z[y1, y2]



−1 M

K

M
K

−M2

K2






y1

y2




= −z2

K
e−zM

K
+z
(
y1 −

M
K
y2
)2

< 0.

(28)

Hence,H is negative-definite. Therefore, we arrive at Theorem 3.
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APPENDIX D

Proof of Lemma 1: The first and second order derivatives ofG(u) are as follows,

∂
∂t
G (u) =

∫∞
0

1
z

1−e−z 1
u+z−z 1

u
e−z 1

u+z

e−z+z
2
α γ(1− 2

α
,z)

dz, ∂2

∂t2
G (u) = −

∫∞
0

1
z

z2 1
u3

e−z 1
u+z

e−z+z
2
α γ(1− 2

α
,z)

dz. (29)

As ∂2

∂t2
G (u) < 0, G(u) is a concave function ofu. Thus, if ignoring the constraintu ∈ [0, 1],

the optimalu∗
ASE could be derive by setting the first order derivative as zero,i.e., ∂

∂t
G (u) =

0. As ∂2

∂t2
G (u) < 0, ∂

∂t
G (u) is a decreasing function ofu. For ∂

∂t
G (0) and ∂

∂t
G (1), we

have the following results. First, foru = 0, we have limu→0

(
1− e−z 1

u
+z − z 1

u
e−z 1

u
+z
)

=

limu→0

(
1− z ez

ez(1/u)

1/u

)
= limu→0

(
1− ez

ez(1/u)

)
= 1. Thus, ∂

∂t
G (0) =

∫∞
0

1
z

1

e−z+z
2
α γ(1− 2

α
,z)

dz > 0.

For u = 1, ∂
∂t
G (1) = −

∫∞
0

1

e−z+z
2
α γ(1− 2

α
,z)

dz < 0. Therefore, we know that there is a unique

solution for ∂
∂t
G (u) = 0 in [0, 1]. The solution can be derived via the bisection method.

APPENDIX E

Proof of Theorem 4:When ignoring the constraintK ≤ M , the local optimalM can be

obtained by setting the first order derivative of the objective function in(15) as zero. Therefore,

we arrive at(16). The first order derivative of the left item of the equation(16) is

∂F (M)

∂M
=

∂2E [R]

∂M2

(
P

η
+MPc +K3Ppre + P0

)
. (30)

From Proposition 1, we know that∂
2E[R]
∂M2 < 0. Thus, we have∂F (M)

∂M
< 0, i.e.,F (M) is a decreas-

ing function ofM . For K − 1, F (K − 1) = ∂E[R]
∂M

∣∣∣
M=K−1

(
P
η
+ (K − 1)Pc +K3Ppre + P0

)
>

0. If M → +∞, the first order derivativelimM→+∞
∂E[R]
∂M

= 0. Thus, limM→∞ F (M) =

− limM→+∞E [R]Pc < 0. Combining the fact thatF (M) is a decreasing function ofM , we

know that there is a unique solution for(16), which is located in[K−1,+∞). And the solution

can derived through the bisection method. Because the solution is unique, the solution is the

global optimal point. Above all, considering the constraint K ≤ M and the fact thatM is an

integer, we get Theorem 4.

APPENDIX F

Proof of Theorem 5:WhenM is fixed, we derive the optimalK∗
EC by setting the first order

derivative of the objective function in(17) as zero. By this, we have the equationFK(M,K) = 0.

The first order derivative∂
∂K

FK(M,K) =
∂2(KE[R])

∂K2

(
P
η
+MPc +K3Ppre + P0

)
−6K2E [R]Ppre.
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As KE [R] is concave with respect toK, we have ∂
∂K

FK(M,K) < 0. Therefore,FK(M,K) is

decreasing function ofK. For K = 0, FK(M,K) = ∂
∂K

(
KE [R]

)∣∣∣
K=0

(
P
η
+MPc + P0

)
> 0.

Combining Lemma 2, we know that the solution forFK(M,K) = 0 lies in (0, u∗
ASEM) and

can be obtained through the bisection method.

APPENDIX G

Proof of Theorem 6: Similar to Theorem 5, the optimalK∗
EC is obtained by setting the

first order derivative of the objective function in(17) as zero. Thus, we arrive at the equation

FM(M,K) = 0. The first order derivative∂
∂M

FM(M,K) =
∂2E[R]

∂M2

(
P
η
+MPc +K3Ppre + P0

)
<

0. For M = K, FM(M,K) =
∂E[R]

∂M

∣∣∣∣
M=K

(
P
η
+KPc +K3Ppre + P0

)
> 0. For M → +∞, we

know that limM→+∞ FM(M,K) = − limM→+∞E [R]Pc < 0. Thus, there is a unique solution

for FM(M,K) = 0, which lies in(K,+∞). Additionally, the solution can be derived through

the bisection method.
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