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COMBINATORIAL ASPECTS OF THE QUANTIZED

UNIVERSAL ENVELOPING ALGEBRA OF sln+1(C)

RAYMOND CHENG⋄, DAVID M. R. JACKSON∗, AND GEOFFREY STANLEY†

Abstract. There is increasing interest on the part of algebraic combinatori-
alists in the ideas behind the study of operator invariants of knots and in the
associated algebras. A primary purpose of this article is explain how to con-

struct certain crucial elements in this theory and how to work with expressions
that arise in Uh(sl2(C)).

A ribbon Hopf algebra was introduced by Drinfel’d in his construction of
solutions to the Yang-Baxter Equation in his study of operator invariants of
knots. This algebra is built upon the quantized universal enveloping algebra
of the Lie algebra sl2. In this paper, we use constructive, rather than induc-
tive, methods to derive the necessary straightening formulae for Uh(sl2(C))
and then construct Drinfeld’s well-known solution to this equation from first
principles. We then use these methods to explicitly present the ribbon Hopf
algebra structure of Uh(sl2(C)). Finally, we extend these techniques to the
higher dimensional algebras Uh(sln(C)), n ≥ 2.

The results contained in this paper are largely known. However, all pre-
vious works have relied on the Quantum Double method in performing the
constructions we undertake here. Our methods, based on straightening, are
different from the Quantum Double method and perhaps elucidates some of
the rich algebra structure nestled within the objects constructed here.
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1. Introduction

The material presented here comes ultimately from the study of operator invari-
ants of knots. We include information on the background to this area which we trust
will provide sufficient motivation for the questions studied, without overburdening
the Reader with detail.

1.1. Background.

1.1.1. Knots. A knot is an embedding of the unit circle into R3 and two knots a

and b are (ambient) isotopic or, more briefly, equivalent if one may be transformed
into the other by a smooth family of homeomorphisms ht : R

3 → R3 indexed by a
parameter t ∈ [0, 1] such that h0 = idR3 and h1(a) = b. This notion of equivalence
makes precise the informal notion that two knots are equivalent if one may be
transformed into the other smoothly: that is, without cutting and re-attaching the
ends.
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The study of knots has a long history. They attracted the interest of Gauss and
Vandermonde, who compiled drawings of them, and later the interest of Kelvin in
his efforts to explain certain physical phenomena. There was a resurgence of interest
in the 1990’s because of an indirect connexion to them through the Yang-Baxter
Equation in mathematical physics. The same equation arises in knot theory because
a knot may be represented as the closure of a braid, and one of the relations for the
associated braid group underlies this equation. This period in the development of
knot theory marked the beginning of what is now commonly termed Modern Knot
Theory.

An essential question in knot theory is to construct a map θ : K → S, from the
set K of all knots to a set S such that if a and b are knots, then θ(a) 6= θ(b) implies
that a and b are inequivalent knots. The map θ is called a knot invariant. The set
S is to be selected so that testing inequality of elements in it is “easier” than testing
inequivalence of knots. For example, S may be selected to be a ring of polynomials,
which clearly satisfies this criterion.

An oriented knot may be represented in the plane by its regular projection as
a four regular graph, together with marks attached to each vertex to indicate a
positive or negative crossing. Such an object is called a knot diagram, and two
knot diagrams represent equivalent knots if and only if the diagrams are related by
a finite sequence of Reidemeister Moves. A result of Alexander shows that a knot
diagram may be viewed as the closure of a braid. This is done by selecting a base
point in the plane of a knot diagram, and using the Reidemeister Moves in such a
way that each segment of the diagram between successive vertices is directed in the
anti-clockwise sense around the base point. The braid, in turn, can be expressed
as a product of the braid generators s1, . . . , sn−1, for an n-stranded braid, where
si is the transposition (i, i + 1), together with the braid relations, of which one is
sisi+1si = si+1sisi+1 for i = 1, . . . , n − 1. This accounts for the appearance of
(matrix) representations of the braid group. The Yang-Baxter Equation

(1) (M⊗ I)(I ⊗M)(M⊗ I) = (I⊗M)(M ⊗ I)(I⊗M)

is the image of this relation in the matrix representation. Such a matrix M is called
an R-morphism.

1.1.2. Solutions of the Yang-Baxter Equation. Solutions of the Yang-Baxter equa-
tion may be obtained through Ribbon Hopf Algebras. The remarkable work of
Drinfeld and Jimbo in the late 1980’s showed that every semisimple Lie algebra
over C gives rise to such an algebra; throughout this article, all our algebras, unless
otherwise mentioned, will be over the field C of complex numbers.

Let (A,m,∆, ε, η, S) be a Hopf algebra with product m, co-product ∆, unit η,
co-unit (augmentation map) ε, and anti-homomorphism (antipode) S. Let R be a
universal R-morphism, so (A,R) is a quasi-triangular Hopf algebra. Let v be an
element (see Definition 6.1 and Definition 6.3) constructed from

(2) v2 ··= S(u) · u where u ··=
∑

i≥0

S(βi) · αi and R ··=
∑

i≥0

αi ⊗ βi.

Then (A,m,∆, ε, η, S,R,v) is a Ribbon Hopf Algebra provided four further condi-
tions on v stated in Definition 6.3 are also satisfied.
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1.2. Historical comments. The quantized universal enveloping algebra Uh(sl2)
was found by Kulish and Reshetikhin [KR81]. It may be regarded as the algebra
U(sl2)[[h]] of formal power series in h with coefficients in U(sl2).

A Hopf structure on Uh(sl2) was discovered by Skylanin [Skl85]. This algebraic
structure is desirable because the additional structure gracefully handles tensor
products and duals of representations of Uh(sl2).

The Hopf Uh(sl2) has the additional structure of a quasi-triangular Hopf alge-
bra. The first instance of an invertible element R required for this was found in
Uh(sl2) by Drinfel’d [Dri85]. Independently, Jimbo[Jim85] constructed one in Uq.
Several R-morphisms have been found in Uh(sl2): see, for example, Reshetikhin and
Turaev [RT91].

1.3. Organization of the paper. We begin in Section 2 with general comments
on the quantized universal enveloping algebra Uh(sl2) of sl2. After a brief algebraic
review, we discuss straightening in Uh(sl2) and establish a few technical Lemmas
which will be crucial to all that follows. Section 3 will apply these technical results
to straighten the monomial xayb in Uh(sl2) so that it is a sum of monomials of the
form ycxd.

As a slight change of pace, Section 4 will discuss some q-identities in the con-
text of inversions in permutations. There, we collect some identities and prove an
extension (Lemma 4.5) of a classic identity by Cauchy; this identity will be crucial
in our construction of the ribbon Hopf structure on Uh(sl2).

We return in Section 5 to the structure of Uh(sl2). This section discusses the
notion of a quasi-triangular Hopf algebra and then proceed to constructively derive
an R-morphism for this algebra. Following this, Section 6 explicitly constructs the
associated ribbon Hopf structure on Uh(sl2).

Having completed a basic study of Uh(sl2), we generalize the techniques of Sec-
tion 5 to derive an R-morphism for Uh(sl3) in Section 7 and for Uh(sln+1), n ≥ 2, in
Section 8. These higher dimensional studies further clarifies the essential features of
our technique. Although the resulting R-morphism is not new, the methods appear
to be somewhat different from the standard techniques for constructing R.

We close this article in Section 9 with a few comments on how our method is
related to the Quantum Double method and how this method might be extended
to other Lie algebras.

2. Quantized Universal Enveloping Algebra of sl2

In this section, we define the Drinfel’d-Jimbo quantized universal enveloping
algebra Uh(sl2) for the Lie algebra sl2. For the convenience of the reader, we begin
our discussion by recalling a few standard definitions.

Definition 2.1. A (complex) Lie algebra is a vector space g over C together with
a bilinear map

[ , ] : g× g→ g,

called the Lie bracket, such that for all x, y, z ∈ g

(i) [x, y] = − [y, x],
(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
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Condition (ii) in the Definition is called the Jacobi identity and is to be thought
of as a weakened form of associativity for the “product” given by the Lie bracket.
In general, if the Lie bracket were to be viewed as a multiplication on g, then g

would be a non-associative algebra. For many purposes, it is convenient to work
with an associative algebra and that is the role of the universal enveloping algebra
U(g). We give a concrete description of the universal enveloping algebra in the case
that g is a finite-dimensional Lie algebra with a basis x1, . . . , xn. Suppose also that,
for each 1 ≤ i < j ≤ n,

[xi, xj ] =

n
∑

k=1

ckijxk,

where the ckij ∈ C are the structure constants of the Lie algebra g.

Definition 2.2. Let g be a finite-dimensional Lie algebra as above. The universal
enveloping algebra U(g) of g is the associative algebra generated by the xi, subject
to the relations

(3) xixj − xjxi =
n
∑

k=1

ckijxk.

2.1. Poincaré-Birkhoff-Witt Bases. An algebra, in particular U(g), has an un-
derlying vector space structure and thus concrete calculations can be done with a
choice of basis. Although there is no canonical choice of basis in an arbitrary alge-
bra, universal enveloping algebras admit a distinguished basis once an ordered basis
for the associated Lie algebra is chosen (for instance, once an ordering is chosen
on the generators of the Lie algebra). Suppose the generators of the Lie algebra g

are ordered x1 ≺ · · · ≺ xn. Now, a linear generating set for U(g) is, by definition,
the set of monomials {xi1 · · ·xim : 1 ≤ i1, . . . , im ≤ n,m ∈ Z}. However, using
the commutation relation (3), arbitrary monomials in the xi can be straightened,
which is to say that such monomials are expressed as a sum of terms in the form
xe1
1 · · ·x

en
n . This shows that the set

B ··= { x
e1
1 · · ·x

en
n : e1, . . . , en ∈ Z≥0 }

is spanning. Linear independence is rather tedious to show, but can be done.
This fact, that B is a basis for U(g), is the content of the Poincaré-Birkhoff-Witt
Theorem; unsurprisingly, B is therefore referred to as a Poincaré-Birkhoff-Witt
basis, PBW basis for short, of U(g) with respect to the ordering x1 ≺ · · · ≺ xn.

2.2. The Lie algebra sl2. The simplest Lie algebra is the special linear algebra
sl2. This Lie algebra abstractly consists of a three-dimensional complex vector
space generated by elements x, y and h, and a Lie bracket structure given by

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

An explicit realization of sl2 is obtained by considering the vector space of 2 × 2
traceless matrices over C equipped with the commutator as the Lie bracket. In
terms of the abstract generators of sl2, this matrix manifestation can be effected
by mapping

x 7→

[

0 1
0 0

]

, y 7→

[

0 0
1 0

]

, h 7→

[

1 0
0 −1

]

.
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The universal enveloping algebra U(sl2) of sl2 is the associative algebra with
generators by x, y and h, subject to the relations

hx− xh = 2x, hy − yh = −2y, xy − yx = h.

Imposing the ordering h ≺ y ≺ x on the linear generators, a PBW basis of U(sl2) is
the set of monomials {haybxc : a, b, c,∈ Z≥0}.

2.3. The Quantized Universal Enveloping Algebra Uh(sl2). A quantized uni-
versal enveloping algebra for a Lie algebra g can be thought of as an associative
algebra over the ring C[[h]] of formal power series in an indeterminate h such that
the usual universal enveloping algebra is recovered when h = 0. In the case of sl2,
the Drinfel’d-Jimbo quantized universal enveloping algebra Uh(sl2) is the C[[h]]-
algebra generated by x, y and h, subject to the relations

(4) hx− xh = 2x, hy − yh = −2y, xy − yx =
e

h
2
h − e−

h
2
h

e
h
2 − e−

h
2

.

Infinite linear combinations are permitted in Uh(sl2), provided that they are graded
in h and each coefficient in h is a finite linear combination of elements in U(sl2).
This can be made precise by introducing an appropriate topology from C[[h]] and
taking a certain completion to form Uh(sl2). For our purposes, it will be sufficient
to think of Uh(sl2) ∼= U(sl2)[[h]].

2.3.1. Notation. In preparation for performing computations in this algebra, we
introduce the notation

(5) q ··= e
h
2 , k ··= e

h
4
h, q ··= q−1, k ··= k−1, [h+ n] ··=

qnk2 − qnk
2

q − q
.

With this notation, the commutation relation for x and y is simply expressed as

(6) [x, y] ··= xy − yx =
k2 − k

2

q − q
= [h].

2.4. Straightening in Uh(sl2). As alluded to earlier, explicit computations in
Uh(sl2) are greatly simplified with the choice of a convention, such as h ≺ y ≺ x,
for the precedence of the generators h, x, y. The order is arbitrary and its choice
is governed by the dictates of the question in hand. Having chosen a convention, a
basis similar similar to the PBW bases of Section 2.1 can be constructed, conretely
meaning that any formal series in the generators of Uh(sl2) may be expressed as
a sum of monomials of the form hrysxt, with r, s, t ∈ Z≥0. This process shall be
referred to as straightening.

Note that our current situation is slightly different from that considered in
Section 2.1 as we are working with the quantized universal enveloping algebra
Uh(sl2) as opposed to the usual universal enveloping algebra U(sl2). Nonethe-
less, either by using the PBW Theorem for U(sl2) together with the isomorphism
Uh(sl2) ∼= U(sl2)[[h]], or else directly, an analogue of the PBW Theorem holds for
Uh(sl2).

Theorem 2.3. [CP94, p.199] The set {hrysxt : a, b, c ∈ Z≥0} is a basis for Uh(sl2).
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As in the definition of Uh(sl2), the term ‘basis’ here is to be interpreted so that
infinite linear combinations are permitted, subject to the restrictions mentioned
before.

This Theorem provides the theoretical justification for much of what will follow.
Specifically, as straightened monomials form a basis, equality of two elements in
Uh(sl2) may be determined by first straightening then by comparing coefficients
of corresponding terms. Straightening, while not necessarily the shortest route in
demonstrating that two expressions are equal, has the signal advantage of being
routine.

A main technical question that presents itself in this algebra is to express xayb,
where a, b ∈ Z≥0, as a formal sum of monomials of the form hrysxt where r, s, t ∈
Z≥0; the precedence order established is chosen to expedite subsequent computa-
tions. Were a straightened expression for xayb known, it would be a comparatively
easy task to establish it by an inductive argument and, indeed, this we shall do later.
However, the more general question we address here, for which the above is simply
an example, is how to obtain a putative expansion in the first place. We therefore
seek an approach, or a formalism, for deducing the straightened expansions.

2.4.1. Further Notation. It will be necessary to carry out explicit calculations in
this algebra and to do so succinctly and, where possible, expeditiously. Together
with the notation (5) earlier introduced, we shall also use the notation

(7) [n]q ··=
qn − qn

q − q
, [n]!q ··= [1]q · [2]q · · · [n]q,

[

n
k

]

q

··=
[n]!q

[k]!q [n− k]!q

for a quantum integer, the quantum factorial function and the quantum binomial
function, where k is a non-negative integer. Here, the subscript q in each notation
is to be thought of as the argument in its definition. That is, for any function f(q)
of q, we write

[n]f(q) ··=
f(q)n − f(q)n

f(q)− f(q)
, [n]!f(q) ··= [1]f(q) · [2]f(q) · · · [n]f(q),

and similarly for the quantum binomial. It is convenient to adopt the convention
that when an explicit subscript is omitted, it is to be understood that f(q) = q.

The quantum lower factorial is defined by

[n]q,i ··= [n]q · [n− 1]q · · · · · [n− i+ 1]q.

Note that another collection of quantum analogues, led by (n)q, will be encountered
later and it is important to distinguish between these quantities.

A further item of notation extending [h+ n] from (5) is the following:

(8) [h+ n](i) ··=

i−1
∏

r=0

[h+ n− r], and

[

h+ n
i

]

··=
1

[i]!
[h+ n](i)

where i ∈ Z≥0.

2.4.2. Basic straightening rules. First we establish some useful identities for quan-
tum integers.

Lemma 2.4 (Separation Lemma). Let x, y, a be indeterminates. Then

(i) [−x] = −[x],
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(ii) [x] [y]− [x− a] [y + a] = [a] [y − x+ a],
(iii) [x] [y] + [a] [x+ y + a] = [x+ a] [y + a].

Proof. Identity (i) is immediate from definitions. For (ii), note that (q−q)2 [x] [y] =
(

qx+y + qx+y
)

−
(

qy−x + qy−x
)

. Applying this twice,

(q − q)2 ([x] [y]− [x− a] [y + a]) = qy−x
(

q2a − 1
)

+ qy−x
(

q2a − 1
)

.

Finally, (iii) follows from (ii) upon replacing x by −x. �

Tracing through the proof, these identities are valid when either:

(a) both x and y are integers; or
(b) one of x or y is an integer and the other is an expression involving h.

Part (ii) of Lemma 2.4 may be viewed as a device for isolating the occurrences of
x and y in [x+ y − a] into different quantum brackets.

The next lemma contains a collection of technical results that assist the straight-
ening process and which will be used often.

Lemma 2.5 (Straightening). Let a be an integer, b and c be a non-negative integers
and f(x) be a formal power series in x. Then the following hold in Uh(sl2).

(i) [a+ 1] [h+ a] = [h] + [a] [h+ a+ 1]

f(h)xb = xb f(h+ 2b), f(h)yb = yb f(h− 2b)(ii)

kaxb = qabxbka, kayb = qabybka(iii)

(kx)b = q
1
2
b(b−1)kbxb, (ky)b = q

1
2
b(b−1)kbyb(iv)

(kx)b = q
1
2
b(b−1)k

b
xb, (ky)b = q

1
2
b(b−1)k

b
yb

x yb = ybx+ [b] [h+ b − 1] yb−1, xby = y xb + [b] [h− b+ 1] xb−1(v)

(kx)bf(h) = f(h− 2b) (kx)b, (ky)bf(h) = f(h+ 2b) (ky)b(vi)

xb(kx)c = q
1
2
(c2+2bc−c)kcxb+c, yb(ky)c = q

1
2
(c2+2bc−c)kcyb+c(vii)

Proof. If a result is one of a pair, only the first is proved since the second follows
by a similar argument.

Item (i) follows immediately by first setting a = 1 in (ii) of Lemma 2.4 and then
setting x = a+ 1 and y = h+ a.

Identity (ii) follows from the defining relations relations (4). Indeed, rearranging
the commutator gives hx = x(h + 2). Iterating this gives hax = x(h + 2)a so, by
linearity, f(h)x = xf(h + 2), which when iterated for X , gives the result. Setting

f(x) ··= e
h
4
ax and recalling the definition of k in (5), (iii) follows from Result (ii).

We now prove (iv). Let r > 0 be an integer. Using Result (iii) with a = b = 1,
(kx)r = k(xk)r−1x = qr−1k(kx)r−1x. The result follows by iterating this recursion
for (kx)r. The three other results are proved similarly.

For (v), let Ab ··= xyb. Then, from (6) and part (ii),

(9) Ab = (xy)yb−1 = yAb−1 + [h]yb−1 = yAb−1 + [h]yb−1.

Iterating this gives

(10) Ab = ybx+ fb(h)y
b−1 where f0(h) = 0
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which, when substituted into (9) and Result (ii) is applied, gives fb(h) = fb−1(h+
2) + [h]. Thus

fb(h) =

b−1
∑

i=0

[h+ 2i] = fb−1(h) + [h+ 2b− 2].

But, from (iii) of Lemma 2.4 with a = 1, x = b − 2, and y = h + b − 2, we have
[h+ 2b− 2] = [b] [h+ b− 1]− [b− 1] [h+ b− 2] so

fb(h)− [b] [h+ b− 1] = fb−1(h)− [b− 1] [h+ b− 2] = c

where c is therefore independent of b. Setting b = 0 in the left hand side gives
c = f0(h) = 0, so fb(h) = [b] [h+ b− 1] and the result follows from (10).

To see (vi), apply Results (iv) and (ii) to obtain

(kx)bh = q
1
2
b(b−1)kbxbh = q

1
2
b(b−1)kb(h− 2b)xb.

By Result (iv), this is equal to (h− 2b)(kx)b since k and h commute. Iterating this,
we have (kx)bhn = (h− 2b)n(kx)b for n ≥ 0, and the result follows by linearity.

Finally, (vii) follows immediately from Results (iii) and (iv). �

When constructing an R-morphism in Section 5.2, a term e
h
4
h⊗h will come into

play. The following result will be useful for commuting terms past this exponential.

Lemma 2.6. Let f(x) be a formal power series in x. Then, for any integer m,

(i) f(1⊗ kmx) · e
h
4
h⊗h = e

h
4
h⊗h · f(k

2
⊗ kmx);

(ii) f(1⊗ kmy) · e
h
4
h⊗h = e

h
4
h⊗h · f(k2 ⊗ kmy).

Proof. Let f =
∑

n≥0 fnx
n. For Part (i), we have by (ii) of Lemma (2.5),

f(1⊗ kmx) · e
h
4
h⊗h =

∑

n≥0

fn(1⊗ (kmx)n) · e
h
4
h⊗h =

∑

n≥0

fne
h
4
h⊗(h−2n) · (1⊗ (kmx)n).

But e
h
4
h⊗(h−2n) = e

h
4
h⊗he−

nh
2

h⊗1 and e−
nh
2

h⊗1(1 ⊗ (kmx)n) = (k
2
⊗ kmx)n, from

which the result follows. Part (ii) can be proved similarly. Alternatively, (ii) can be
obtained from (i) by applying the algebra automorphism defined on the generators
of Uh(sl2) by h 7→ −h, x 7→ y and y 7→ x. �

3. Straightening of xayb

We propose to straighten xayb, a, b ∈ Z≥0, with respect to the precedence order
≺ by a constructive method.

From (v) of Lemma (2.5), the straightening of the premultiplication of yb by x

x yb = ybx+ [b] [h+ b− 1] yb−1.

Iterating this a times, and noting that x may be moved through quantum brackets
containing only h by means of Lemma (2.5) (ii),

(11) xayb =
∑

0≤i,j≤min(a,b)

Fa,b,i,j(h) y
ixj .

But eh xayb = xayb eh−2a+2b by Lemma (2.5) (ii) and so, applying this to (11), gives

xaybeh−2a+2b =
∑

0≤i,j≤min(a,b)

Fa,b,i,j(h) y
ixjeh−2j+2i.
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Inverting the right-hand exponential,

xayb =
∑

0≤i,j≤min(a,b)

Fa,b,i,j(h) y
ixje2(a−j)−2(b−i).

Equating coefficients of yixj on the right hand side of this and (11), we have i = b−k
and j = a− k for some non-negative integer k, whence we conclude that

(12) xayb =
∑

0≤k≤min(a,b)

Ga,b,k(h) y
b−kxa−k

where Ga,b,k(h) ··= Fa,b,a−k,b−k(h). Since commuting x from the left of yb yields a
single term of top degree with coefficient 1, the boundary condition is

(13) Ga,b,0(h) = 1.

A recursion for Ga,b,k is obtained from the identity xayb = xa−1
(

x yb
)

. First,
from Lemma (2.5) (ii) and (v),

xayb =
(

xa−1yb−1
)

(yx) + [b] [h+ b− 2a+ 1]
(

xa−1yb−1
)

.

Then, substituting (12) into this,
∑

k≥0

Ga,b,ky
b−kxa−k =

∑

k≥0

Ga−1,b−1,k

(

yb−k−1xa−k−1(xy) + [b] [h+ b− 2a+ 1]yb−k−1xa−k−1
)

.

But, from Part (v) of Lemma (2.5),

xa−k−1y = y xa−k−1 + [a− k − 1] [h− a+ k + 2] xa−k−2.

Substituting this into the above, and then equating the coefficients of yb−kxa−k

gives the recurrence equation

Ga,b,k = Ga−1,b−1,k +
(

[a− k] [h+2b− a− k+1]+ [b] [h+ b− 2a+1]
)

Ga−1,b−1,k−1.

Then from (ii) of Lemma 2.4, with x 7→ b, y 7→ h+ b− 2a+ 1 and a 7→ a− k,

(14) Ga,b,k = Ga−1,b−1,k + [a+ b − k] [h+ b− a− k + 1]Ga−1,b−1,k−1

Each instance of Gi,j,· in this recurrence equation satisfies i−j = a−b. The only
term that does not contain a− b is [a+ b− k]. This suggests using [k] [a+ b− k] =
[a] [b] − [a − k] [b − k] from the Separation Lemma 2.4 to separate a and b in this
quantum bracket and then transforming Ga,b,k to form a new recurrence equation
in which a− b is an invariant. Let

(15) Ga,b,k

··=[a]k [b]k
[k]!

Ba,b,k.

Then, substituting (15) into (14) gives

(16) [a] [b]Ba,b,k − [a− k] [b− k]Ba−1,b−1,k

=
(

[a] [b]− [a− k] [b− k]
)

[h+ b− a− k + 1]Ba−1,b−1,k−1.

Suppose now that the Ba,b,k depend only on the difference b − a. Then Ba,b,k =
Ba−1,b−1,k and (16) becomes

Ba,b,k = [h+ b − a− k + 1]Ba,b,k−1
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for k ≥ 1 and Ba,b,0 = 1 from (13). This suggests the solution Ba,b,k = [h+ b− a]k.
Indeed, it is readily checked that this does indeed satisfy (16), from which we have

Ga,b,k = [a]k [b]k

[

h+ b− a
k

]

.

So, from (12), we have therefore (both derived and) proved the following lemma.

Lemma 3.1. Let a and b be non-negative integers. Then

xa

[a]!

yb

[b]!
=
∑

i≥0

[

h+ b− a
i

]

yb−i

[b− i]!

xa−i

[a− i]!
.

An important special case of Lemma 3.1 is when the powers of x and y coincide.

Lemma 3.2. Let n be a non-negative integer. Then

xnyn =

n
∑

i=0

[n]2i

[

h

i

]

yn−ixn−i.

We remark that Lemma 3.1 may be rewritten immediately in the following form,
as a straightening result for the commutator [xa, yb].

Corollary 3.3. Let a and b be non-negative integers. Then

[xa, yb] =
∑

i≥1

[a]i [b]i

[

h+ b− a
i

]

yb−ixa−i.

4. Inversions in permutations

A discussion of the universal R-morphism and certain elements (conventionally
denoted by u and v) of the Ribbon Hopf Algebra may be made more natural by
using properties of certain q-series. The properties that will be needed may be
obtained succinctly by considering combinatorial properties of inversions in permu-
tations.

4.1. The q-factorial function. The q-factorial function (n)!q and the q-binomial
coefficient

(

n
k

)

q
in an indeterminate q are defined by

(n)q ··=
1− qn

1− q
, (n)!q ··= (1)q · (2)q · · · (n)q ,

(

n

k

)

q

··=
(n)!q

(k)!q (n− k)!q
.

The q-factorial function is also known as the Gaussian coefficient. These are func-
tions encountered in the theory of basic hypergeometric series, and also in enumer-
ative combinatorics. The q-exponential series is defined by

expq(x) ··=
∑

n≥0

xn

(n)!q
∈ Q(q) [[x]]

as a formal power series in x with coefficients that are rational functions of q. The
next result gives a multiplicative property of this series and is stated in terms of
two indeterminats a and b that satisfy the quantum commutation condition

ab = q ba.

The proof uses the observation that q is associated with a combinatorial property
of sets, as follows. An ordered bipartition {1, . . . , n} of type (r, n − r) is (α, β),
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where α and β are disjoint subsets of {1, . . . , n} of size r and n− r, respectively. A
between-set inversion of (α, β) is a pair (i, j) ∈ α×β such that i > j. An inversion
in a permutation π ∈ Sn is a pair (i, j) with 1 ≤ i < j ≤ n such that π(i) > j.

Lemma 4.1. Let a, b be such that ab = q ba. Then

expq (a+ b) = expq(a) · expq(b).

Proof. There is clearly an expression for (a+ b)n of the form

(17) (a+ b)n =

n
∑

r=0

fr,n−r(q)a
rbn−r

where fr,n−r(q) is a polynomial in q. Then [qk]fr,n−r(q) is immediately identified
as the number of ordered bi-partitions of {1, . . . , n} of type (r, n− r) with precisely
k between-set inversions.

We determine the generating series gn(q), where [qk]gn(q) is the number of in-
versions in π ∈ Sn, in two different ways. First, by considering the contribution to
inversions by the symbol n in π, we have the recursion

gn(q) = gn−1(q) (1 + q + · · ·+ qn−1) for n ≥ 1

with g0(q) = 1, so gn(q) = n!q. On the other hand, by considering a fixed bi-
partition (α, β) of type (r, n− r), we have (n!)q = gr(q)gn−r(q)fr,n−r(q) since each
inversion of π occurs within α, or within β, or between α and β. Then fr,n−r(q) =
n!q/(r!q (n− r)!q) and the result then follows immediately from (17). �

Theorem 4.2 (Bimodal Permutation [GJ83]). Let q, w, x, y, z be indeterminates,

let n be a non-negative integer and let Qn(x, y) ··=
∏n−1

i=0

(

y + xqi
)

. Then

n
∑

k=0

(

n

k

)

q

Qk(x, y)Qn−k(w, z) =

n
∑

k=0

(

n

k

)

q

Qk(w, y)Qn−k(x, z).

The q-analogue of the Binomial Theorem along with several classical q-identities
are now easily obtained. For more, see, for example, [GJ04].

Corollary 4.3 (q-analogue of the Binomial Theorem). Let q, x, y, z be indetermi-
nates and let n be a non-negative integer. Then

Qn(−x, z) =

n
∑

k=0

(

n

k

)

q

Qk(−x, y)Qn−k(−y, z).

An immediate consequence of this is a finite product identity due to Cauchy [Cau09],
and its inverse.

Lemma 4.4. Let z and q be indeterminates. Then

(i) zn =

n
∑

k=0

(

n

k

)

q

k−1
∏

i=0

(

z − qi
)

,

(ii)

n−1
∏

i=0

(

z − qi
)

=

n
∑

k=0

(−1)k
(

n

k

)

q

q
1
2
k(k−1) zn−k.

Proof. Part (i) follows from Corollary 4.3 by setting y = 1 and x = 0; for part (ii),
set x = 1 and y = 0. �
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Taking z to be an exponential related to q, Cauchy’s finite product identity can
be extended to an identity of certain formal power series.

Lemma 4.5. Let h, t and x be indeterminates such that q = e
h
2 . Then, in

Q[x, t][[h]],

(18) exht =

∞
∑

k=0

(

x

k

)

q2

k−1
∏

i=0

(eht − q2i).

Proof. It is clear that the coefficient of hm is a polynomial in t and x on the left
hand side. For the right hand side, first note that

valh

(

k−1
∏

i=0

(eht − q2i)

)

= valh

(

k−1
∏

i=0

(t− i)h

)

= k,

where the h-valuation valh of an element p(h) ∈ R[[h]], R some coefficient ring, is

valh p(h) ··= min{ℓ ∈ Z : [hℓ] p(h) 6= 0}.

Thus nonzero contributions to the coefficient of hm come from the finitely many
indices 0 ≤ k ≤ m. Next, the power series expansion of

(

x
k

)

q2
in h also has coeffi-

cients which are polynomial in x. Combining these contributions, we conclude that
each coefficient of hm on the right hand side of (18) is polynomial in t and x.

In particular, it follows that the coefficient of hmtn is a polynomial in x on both
sides. By ((i)) of Lemma 4.4, these polynomials in x agree for each positive integer
and thus they must be equal as polynomials. �

4.2. The quantum exponential function. It is readily seen that the functions
defined in (7) and the q-factorial and the q-binomial functions are related through

(19) [n]q = qn−1(n)q2 , [n]!q = q
1
2
n(n−1)(n)!q2 ,

[

n
k

]

q

= qk(n−k)
(

n

k

)

q2
.

The quantum exponential function defined by

(20) Expq(x) ··=
∑

n≥0

q
1
2
n(n−1)

[n]!q
xn

enjoys the same multiplicative property as the q-exponential series under quantum
commutation.

Lemma 4.6. Let a and b be such that ab = q2 ba. Then

Expq(a+ b) = Expq(a) Expq(b).

Proof. Since [n]! is unchanged by replacing q by q, so from (19), [n]! = q
1
2
n(n−1)(n)!q2 .

Then Expq(x) = expq2(x). Thus, from Lemma 4.1, Expq(a + b) = expq2(a + b) =
expq2(a) expq2(b), and the result follows. �

5. An R-morphism

Quasi-triangular Hopf algebras are Hopf algebras A equipped with an element
R ∈ A⊗2, called an R-morphism. This structure provides a systematic means to
producing solutions to the Yang-Baxter equation (1).
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5.1. Quasi-Triangular Hopf Algebras. Hopf algebras are algebras with the ad-
ditional structure of a coproduct and an antipode. Quasi-triangular Hopf algebras
are those which posses an element, typically denoted R, satisfying properties akin
to the Yang-Baxter equation. Indeed, as was mentioned in the Introduction, the
element R can be used to systematically construct solutions to the Yang-Baxter
equation. We begin by recalling some algebraic definitions.

5.1.1. Hopf structure. Let A be a vector space over C and let A ··= (A,m,∆, η, ε, S)
be a bi-algebra with product m, a co-product ∆, a unit η, a co-unit (augmentation
map) ε and an anti-homomorphism S : A→ A (so S(ab) = S(b) · S(a) for a, b ∈ A).
Thus ∆ and ε are algebra morphisms, and m and η are co-algebra morphisms.

To show that A is a Hopf algebra with antipode S, it is necessary to check that
the following hold:

Product m : A⊗ A→ A: The product is associative:

m ◦ (id⊗m) = (m⊗ id) ◦m,

and possesses a unit, i.e. a map η : K→ A such that

m(a⊗ η(1K)) = a = m(η(1K)⊗ a) for all a ∈ A.

The element η(1K) ∈ A will be denoted 1A and will be referred to as the multiplica-
tive unit.

Co-product ∆: A→ A⊗ A: The co-product is co-associative:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆,

and possesses a co-unit, i.e. a map ε : A→ K such that

(ε⊗ id) ◦∆(a) = 1K ⊗ a and (id⊗ ε) ◦∆(a) = a⊗ 1K for all a ∈ A

Compatibility relations : The coproduct ∆ and co-unit ε need to be algebra mor-
phisms, that is:

∆ ◦m = (m13 ⊗m24) ◦ (∆⊗∆), ε ◦m = mK ◦ (ε⊗ ε)

where m13 ⊗m24 : (A⊗A)⊗ (A⊗ A)→ A⊗A acts on a pure tensor by a1 ⊗ a2 ⊗
a3⊗a4 7→ a1a3⊗a2a4, and mK : K⊗K→ K is the product on the underlying field.
Note that, consequently, the product and unit are coalgebra morphisms.

Finally, the antipode S must be an algebra antihomomorphism, i.e., for all a, b ∈
A, (S ◦m)(a⊗ b) = m(S(b)⊗ S(a)), and it must satisfy

m ◦ (S⊗ id) ◦∆ = η ◦ ε = m ◦ (S⊗ id) ◦∆.

5.1.2. Hopf Structure on Uh(sl2). The next result, which is due to Sklyanin [Skl85],
shows how Uh(sl2) may be endowed with Hopf structure.

Theorem 5.1. The quantized universal enveloping algebra Uh(sl2) is a Hopf algebra
with unit ǫ given by ǫ(1) = 1 and co-multiplication ∆, antipode S, co-unit ε defined
on generators by

∆ : Uh(sl2)→ Uh(sl2)⊗ Uh(sl2), S : Uh(sl2)→ Uh(sl2), ε : Uh(sl2)→ C,

x 7→ x⊗ k+ k⊗ x, x 7→ −qx, x 7→ 0,

y 7→ y ⊗ k+ k⊗ y, y 7→ −qy, y 7→ 0,

h 7→ h⊗ 1 + 1⊗ h, h 7→ −h, h 7→ 0.
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where ∆ and ε are extended as algebra morphisms, and m and η are extended as
co-algebra morphisms.

5.1.3. Action on k. We determine the action of ∆, S and ε on k. For ∆(k), we
have, by routine calculation using the fact that ∆ is an algebra morphism,

∆(k) = e
h
4
∆(h) = e

h
4
(h⊗1+1⊗h) =

(

e
h
4
(h⊗1)

)(

e
h
4
(1⊗h)

)

=
(

e
h
4
h ⊗ 1

)(

1⊗ e
h
4
h

)

= e
h
4
h ⊗ e

h
4
h = k⊗ k

since h⊗ 1 and 1⊗ h commute. For S(k), we have

S(k) = S
(

e
h
4
h

)

= e
h
4
S(h) = e−

h
4
h = k

using the definition of k from (5) and since S is an algebra morphism. For ε(k), we
have

ε(k) = ε
(

e
h
4
h

)

= e
h
4
ε(h) = e0 = 1.

Collecting these evaluations:

(21) ∆(k) = k⊗ k, S(k) = k, ε(k) = 1.

5.1.4. Quasi-triangular Hopf algebras.

Definition 5.2 (Quasi-triangular Hopf algebra). A quasi-triangular Hopf algebra
is a pair (A,R) where (A,m,∆, ε, η, S) is a Hopf algebra, with an invertible antipode
S, and R ∈ A⊗ A is an invertible element satisfying the conditions

(i) (τ ◦∆)(a) = R ·∆(a) · R−1 for every a ∈ A,
(ii) (∆⊗ idA)(R) = R13 · R23,
(iii) (idA ⊗∆)(R) = R13 · R12,

where τ is the twist map, τ(a ⊗ b) ··= b ⊗ a, and in which R12, R23 and R13 are
defined in terms of R by

(iv) R ··=
∑

i

αi ⊗ βi for αi, βi ∈ A,

(v) R12 ··=
∑

i

αi ⊗ βi ⊗ 1A = R⊗ 1A,

(vi) R13 ··=
∑

i

αi ⊗ 1A ⊗ βi = (idA ⊗ τ) ◦ (R⊗ 1A),

(vii) R23 ··=
∑

i

1A ⊗ αi ⊗ βi = 1A ⊗ R.

The element R is called a universal R-morphism or an R-morphism.

Condition (i) of this Definition is related to co-commutativity: if, for instance,
R = 1A ⊗ 1A then this would be precisely expressing co-commutativity of A. Con-
ditions (ii) and (iii) of the Definition can be explicitly written using the notation
of (iv), (v), (vi), (vii) as:

(ii)’
∑

i

∑

(αi)

α′i ⊗ α′′i ⊗ βi =
∑

i

∑

j

αi ⊗ αj ⊗ βiβj ,

(iii)’
∑

i

∑

(βi)

αi ⊗ β′i ⊗ β′′i =
∑

i

∑

j

αiαj ⊗ βj ⊗ βi.
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These conditions are induced from the desire that R induces solutions to the Yang-
Baxter equation on modules ofA [Dri87]. More precisely, suppose V is a vector space
carrying a representation ρ : A→ End(V) of A. Then the element τ ◦ (ρ⊗ ρ)(R) ∈
End(V ⊗ V) is a solution of the Yang-Baxter equation (1). In this way, we may
regard these conditions, as a universal Yang-Baxter equation, and the Definition as
a purely algebraic context in which to work with it.

5.2. Constructing an R-morphism. We now propose to construct a universal R-
morphism for Uh(sl2), thereby endowing the Hopf algebra with a quasi-triangular
structure. This will be done by first considering the general form of dependency
of R on x, y and h in order to come up with a skeletal form for the R-morphism,
with coefficients and parameters to be determined. Conditions (i), (ii) and (iii) of
Definition 5.2 will then be used to determine the parameters.

5.2.1. An ansatz for R. We suppose that R is a sum of terms, whose general term
is to be denoted by T . Since T ∈ A ⊗ A, the dependency of T on x and y after
straightening in each tensor component is therefore xmyt⊗ xuyn, where m, t, u and
n are non-negative integers. As a byproduct of straightening the x and y terms,
Lemma 3.1 shows that factors of h are introduced into T through powers of k and

k. This suggests that the h dependence in T is through powers of k⊗1 = e
h
4
h⊗1 and

1 ⊗ k = e
h
4
1⊗h. Indeed, this suggestion is further supported by the conditions (ii)

and (iii) of Definition 5.2, as the action of ∆ on x and y, from Theorem 5.1, and on
k, from (21), further introduces dependency on h through powers of k on a single
tensor component.

Preliminary calculations suggest that the ansatz for R constructed thus far is in-
adequate. Indeed, both calculations and inspection of Condition (i) in Definition 5.2

suggest the presence of powers of e
h
4
h⊗h in T . To see this, rewrite Condition (i) as

(τ ◦∆)(a) · R = R ·∆(a)

and note that it suffices to check this condition for the generators of Uh(sl2). Check-
ing this condition on x (or y), the asymmetry of the co-product ∆(x) = x⊗k+k⊗x in

powers of k and k affects powers of k⊗1 and 1⊗k in T in significantly different ways
in each of the two sides of the relation. This suggests the need for a device which can
introduce additional powers of k⊗1 and 1⊗k via straightening. A natural solution

for this is to include powers of e
h
4
h⊗h, as straightening with expressions involving

x and y creates terms of the form e
h
4
(h+a)⊗(h+b) through (ii) of Lemma 2.5. Thus,

we argue that the dependence of T on h is through e
h
4
(k h⊗h+r h⊗1+s 1⊗h) where k,

r and s are integers.

The above argument leads to

(22) R =
∑

k,m,n,r,s,t,u

ak,r,s,m,n,t,u(q) e
h
4
(k h⊗h+r h⊗1+s 1⊗h)xmyt ⊗ xuyn.

as a conjectural form for R, where ak,r,s,m,n,t,u(q) is a function of q.

Finally, to simplify further, observe that Conditions (ii)’ and (iii)’ of Defini-
tion 5.2 suggest the two tensor components R are essentially independent of one
another. We therefore begin by considering the simpler form in which not both
x and y appear in each of the tensor components. We confine the occurrence of x
and y exclusively to the first and second tensor components, respectively, by setting



COMBINATORIAL ASPECTS OF Uh(sln+1) 17

t = 0 and u = 0 and, with minor abuse of notation, denoting ak,r,s,m,n,0,0(q) by
ak,r,s,m,n(q), to obtain

R =
∑

k,m,n,r,s

ak,r,s,m,n(q) e
h
4
(k h⊗h+r h⊗1+s 1⊗h)xm ⊗ yn.

Thus the proposed ansatz for R is

(23) R =
∑

k,m,n,r,s

ak,r,s,m,n(q) e
h
4
k(h⊗h)krxm ⊗ ksyn.

For brevity, explicit mention of the dependence of ak,r,s,m,n(q) on q will henceforth
be suppressed.

5.2.2. Condition (i) of Definition 5.2. Since ∆ is an algebra morphism it is sufficient
to show that this condition holds for the generators h, x and y.

For the generator h: The condition asserts that (τ ◦∆)(h) · R = R ·∆(h), so

(τ ◦∆)(h) · R− R ·∆(h) = (h⊗ 1 + 1⊗ h) · R− R · (h⊗ 1 + 1⊗ h) = 0.

Since e
h
4
(k h⊗h+r h⊗1+s 1⊗h) commutes with h⊗ 1+1⊗ h, the condition is equivalent

to (h ⊗ 1 + 1 ⊗ h)(krxm ⊗ ksyn) = (krxm ⊗ ksyn)(h ⊗ 1 + 1 ⊗ h). But, by (ii) of
Lemma 2.5, the left hand side is equal to

(krxm ⊗ ksyn)(h⊗ 1 + 1⊗ h) + 2(m− n)(krxm ⊗ ksyn)

so the condition implies that m = n. Let ak,r,s,n denote ak,r,s,n,n. Then

(24) R =
∑

k,n,r,s

ak,r,s,n e
h
4
k(h⊗h)(krxn ⊗ ksyn).

For the generator x: For this generator, Condition (i) of Definition 5.2 asserts that
(τ ◦∆)(x) · R = R ·∆(x). By (ii) of Lemma 2.5,

(τ ◦∆)(x) · R =
∑

k,n,r,s

ak,r,s,ne
h
4
k(h⊗h)(k

2k−1−r
xn ⊗ xksyn + xkrxn ⊗ k

2k+1−s
yn),

R ·∆(x) =
∑

k,n,r,s

ak,r,s,n e
h
4
k(h⊗h)(krxn+1 ⊗ ksynk+ krxnk⊗ ksynx).

The condition (τ ◦∆)(x) · R = R ·∆(x) may be rewritten so that terms containing
an x in the second tensor factor are gathered on the left in a series A, and the
remaining are gathered on the right in a series B. Then condition is equivalent to

(25) A = B

where

A ··=
∑

k,n,r,s

ak,r,s,n e
h
4
k(h⊗h)

((

k
2k−1−r

xn ⊗ xksyn
)

−
(

krxnk⊗ ksynx
)

)

,

B ··=
∑

k,n,r,s

ak,r,s,n e
h
4
k(h⊗h)

(

(

krxn+1 ⊗ ksynk
)

−
(

xkrxn ⊗ k
2k+1−s

yn
))

.

To simplify A, note that x ks = qsksx and xnk = qnkxn from (iv) of Lemma (2.5),
so

A =
∑

k,n,r,s

ak,r,s,n e
h
4
k(h⊗h)

(

qs
(

k
2k−1−r

xn ⊗ ksxyn
)

− qn
(

kr−1xn ⊗ ksynx
)

)

.
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The commutator [x, yn] appears from the second tensor factors of this expression,
if we set s = −n and k = 1. Replacing a1,r,−n,n(q) by ar,n(q), then using (v) of
Lemma (2.5) to calculate the commutator, and replacing n by n+ 1 gives

(26) A = e
h
4
h⊗h

∑

n,r

ar,n+1[n+ 1] qn+1kr−1xn+1 ⊗ [h+ n]k
n+1

yn.

To simplify B, we use the values of s and k determined above and the observa-
tions that ynk = qnkyn and xkr = qrkrx from (iv) of Lemma (2.5) to obtain

B = e
h
4
h⊗h

∑

n,r

ar,n(q)k
rxn+1 ⊗

(

qnk
n−1

yn − qrk
n+3

yn
)

.

which, on setting r = n and denoting an,n by an, gives

B = e
h
4
h⊗h

∑

n≥0

an (q − q)knxn+1 ⊗ [h+ n] k
n+1

yn.

With this setting of r, the expression for A given in (26) becomes

A = e
h
4
h⊗h

∑

n≥0

an+1[n+ 1] qn+1knxn+1 ⊗ [h+ n]k
n+1

yn.

Since A = B from (25), it follows that an(q) must satisfy the two-term recurrence
equation an+1[n + 1]qn+1 = an (q − q) with initial condition a0(q) = 1, whence

an = (q−q)n

[n]! q
1
2
n(n+1). It follows from (24) that

R = e
h
4
h⊗h

∑

n≥0

(q − q)n

[n]!
q

1
2
n(n+1) (knxn ⊗ k

n
yn).

But knxn = q
1
2
n(n−1)(kx)n and k

n
yn = q

1
2
n(n−1)(ky)n from (iv) of Lemma 2.5, so

(27) R = e
h
4
h⊗h

∑

n≥0

(q − q)n

[n]!
q

1
2
n(n−3) (kx)n ⊗ (ky)n.

For the generator y: It is readily shown that this condition is satisfied by the ex-
pression for R given in (27).

5.2.3. Condition (ii) of Definition 5.2. It is immediate from the definition of the
quantum exponential function in (20) and the expression for R given in (27) that

(28) R = e
h
4
h⊗h Expq

(

λqkx⊗ ky
)

where λq ··= q(q − q).

Condition (ii) of Definition 5.2 requires that (∆⊗ idA)(R) = R13 ·R23. It is readily
seen that

(29) (∆⊗ idA)(R) = e
h
4
((h⊗1+1⊗h)⊗h) Expq

(

λq(kx⊗ k2 + 1⊗ kx)⊗ ky
)

since ∆ is an algebra morphism, and ∆(k) = k⊗ k from (21).

On the other hand, setting h1 ··= e
h
4
1⊗h⊗h and h2 ··= e

h
4
h⊗1⊗h in Definition 5.2,

gives

R13 = h2 Expq
(

λq(kx⊗ 1⊗ ky)
)

and R23 = h1 Expq
(

λq(1⊗ kx⊗ ky)
)

so

R13 · R23 = h2 Expq
(

λq(kx⊗ 1⊗ ky)
)

h1 Expq
(

λq(1⊗ kx⊗ ky)
)

.
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Now, by Lemma 2.6, Expq
(

λq(kx⊗ 1⊗ ky)
)

h1 = h1Expq
(

λq(kx⊗ k2 ⊗ ky)
)

and
since h1 and h2 commute, it therefore follows that

R13 · R23 = e
h
4
(h⊗1⊗h+1⊗h⊗h) · Expq

(

λq(kx⊗ k2 ⊗ ky)
)

· Expq
(

λq(1⊗ kx⊗ ky)
)

.

Let C ··= kx⊗ k2⊗ ky and D ··= 1⊗ kx⊗ ky. Then, from (iv) of Lemma 2.5, we have

CD =
(

kx⊗ k3x⊗ (ky)2
)

and DC = q2
(

kx⊗ k3x⊗ (ky)2
)

whence CD = q2DC.
Then, from Lemma 4.6,

R13 · R23 = e
h
4
(h⊗1⊗h+1⊗h⊗h) · Expq

(

λq(kx⊗ k2 ⊗ ky + 1⊗ kx⊗ ky)
)

.

It follows from (29) that this is equal to (∆⊗ idA)(R), so the Condition is satisfied.

5.2.4. Condition (iii) of Definition 5.2. It may be shown similarly that this condi-
tion is also satisfied.

We have therefore proved the following:

Theorem 5.3 (An R-morphism). A universal R-morphism for Uh(sl2) is

R = e
h
4
h⊗h

∑

n≥0

(q − q)n

[n]!
q

1
2
n(n−3) (kx)n ⊗ (ky)n.

Remark 5.4. We make three comments on the derivation of R.

(A) Condition (i) of Definition 5.2 was required only for the generators h and x

to fully define the unknown series ak,r,s,m,n(q), in Ansatz (23) and thence R.
It was then confirmed that this Condition also held for the other generator y,
and that Conditions (ii) and (iii) also held. This suggests that Ansatz (23)
is a particularly restrictive one, in that Conditions (ii) and (iii) were forced.

(B) The salient aspects of the derivation of R are (i) the appearance of the com-
mutator [x, yn] in (26), (ii) the fact that R may be expressed succinctly in
terms of the quantum exponential function in (28). The factorization prop-
erty given in Lemma 4.6 for the quantum exponental is crucial in showing
that Conditions (ii) and (iii) of Definition 5.2 hold.

(C) The above argument may be used to show that if the form for R proposed
in (22) is an R-morphism then it is the one given in Theorem 5.3.

6. Ribbon Hopf algebra structure on Uh(sl2)

Ribbon Hopf algebras were introduced by [RT90] in order to construct a poly-
nomial invariant for any framed link. Briefly, ribbon Hopf algebras are quasi-
triangular Hopf algebras in which a square root of a special element exists and
satisfies some desirable properties. In the context of constructing link invariants,
the existence of this square root allows one to untangle an even number of trivial
twists.

6.1. Ribbon Hopf Algebras. Not only does the existence of a universal R-morphism
in a quasi-triangular Hopf algebra A yield solutions to the Yang-Baxter equation,
but it also endows A with rich structure. Indeed, one important consequence of hav-
ing an R-morphism is that the action of S2 the square of the antipode is completely
determined by an element, conventionally denoted by u, related to R.
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Definition 6.1 (The element u). The element u is defined by

u ··=
∑

i

S(βi) · αi

where the αi ⊗ βi the summands in R, as in (iv) of Definition 5.2.

The following three properties were first discovered and proved by Drinfel’d
in [Dri89]. Detailed proofs of these can be found in [Kas95, pp.180–184].

Lemma 6.2. Let (A,R) be a quasi-triangular Hopf algebra. Then the element u
has the following properties:

(i) For all x ∈ A, the square of the antipode S2 : A → A acts by conjugation
S2(x) = uxu−1;

(ii) ∆(u) = (τ(R) · R)−1(u⊗ u) = (u⊗ u)(τ(R) · R)−1.
(iii) u is invertible, with

u−1 =
∑

S−1(βi)αi, where R−1 =
∑

i

αi ⊗ βi.

Definition 6.3 (Ribbon Hopf Algebra). A Ribbon Hopf Algebra is a pair (A,R,v)
where (A,R) is a quasi-triangular Hopf algebra and v ∈ A satisfies:

(i) v is central and invertible.
(ii) v2 = S(u) · u,
(iii) S(v) = v,
(iv) ε(v) = 1A,
(v) ∆(v) = (τ(R) · R)−1 · (v ⊗ v).

Lemma 6.4. If (A,R,v) is a ribbon Hopf algebra, then v is central and invertible.

Proof. From Property (iii) of Lemma 6.2, u is invertible and, since A is a quasi-
triangular Hopf algebra, S is invertible from Definition 5.2. Thus v2 is invertible
by (ii) of Definition 6.3. Let w ··= (v2)−1. Then v(vw) = 1A. But v is central by
Part (i), so (vw)v = 1A. Thus v is invertible. �

6.2. Constructing the element v. We shall now construct an explicit element
v so that (Uh(sl2),R,v), where R given by Theorem 5.3, is a Ribbon Hopf algebra.
The element u is given in terms of R by the second and third expressions in (2). An
explicit expression for u will be obtained first through these. The first expression
in (2), which we shall take to be the defining property of v, will then be used to
obtain an expression for v, and it will then be confirmed that this satisfies the
appropriate conditions.

6.2.1. The element u. The following is an explicit expression for u.

Lemma 6.5. u = e−
h
4
h
2
∑

n≥0

(−1)n
(q − q)n

[n]!
q

1
2
n(n+3) k

2n
ynxn.

Proof. From Theorem 5.3 and (iii) of Lemma 2.5,

R =
∑

m,n≥0

hm

4mm!
cn q

n(n−1) (hmknxn)⊗
(

hmk
n
yn
)
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where

(30) cn ··=
(q − q)n

[n]!
q

1
2
n(n−3)

and so, from (2),

u =
∑

m,n≥0

hm

4mm!
cn q

n(n−1)
(

S(hmk
n
yn)
)

· (hmknxn) .

To straighten the summand, we note that S(k) = k from (21), and that h and k

commute. Using the action of S defined in Theorem 5.1, we have
(

S(hmk
n
yn)
)

· (hmknxn) = (−1)m+nqnynh2mk2nxn

= (−1)m+nqnq2n
2

(h+ 2n)2mk2nynxn

from (vi) and (vii) of Lemma (2.5), so

u =
∑

n≥0

(−1)ncn q
n2

e−
h
4
(h+2n)2k2nynxn.

The result then follows by observing that e−
h
4
(h+2n)2 = q2n

2

e−
h
4
h
2

· k
4n
. �

6.2.2. The antipode acting on u. To construct an expression for v from (2), we will
need an explicit expression for S(u). Happily, S acts quite simply on u in Uh(sl2).

Lemma 6.6. S(u) = k
4
u.

Proof. Let

dn ··= (−1)n
(q − q)n

[n]!
q

1
2
n(n+3).

Then

k
4
u = e−

h
4
h
2
∑

n≥0

dn k
2(n+2)

ynxn

since, from Lemma 6.5, u = e−
h
4
h
2 ∑

n≥0 dn k
2n
ynxn. From the definition of S in

Theorem 5.1 and from its action on k given in (21),

S(u) =
∑

n≥0

dn xnynk2ne−
h
4
h
2

.

This may be straightened by noting that k2n and e−
h
4
h
2

commute and that, by (ii)
of Lemma 2.5, both of these commute with xnyn, to obtain

S(u) = e−
h
4
h
2
∑

n≥0

dn k
2nxnyn.

Using Theorem 2.3, we can establish the equality of k
4
u and S(u) by comparing

coefficients. First we compare the coefficients of ynxn with the aid of Lemma 3.2.
Doing so, the assertion of the Lemma is therefore equivalent to the identity

dn k
2(n+2)

=
∑

m≥n

dm
[m]!2

[n]!2
k2m

[

h

m− n

]
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and so, by changing the index of summation to s ··= m− n, to showing that

k
4(n+1)

= An where An ··=
∑

s≥0

dn+s

dn

[n+ s]!2

[n]!2
k2s

[

h

s

]

.

It is in this form that we shall prove the lemma.

From (5) and (8),
[

h

s

]

=
1

[s]!

s−1
∏

r=0

qrk2 − qrk
2

q − q
=

1

[s]!

q
1
2
s(s−1)

(q − q)s
k
2s

s−1
∏

r=0

(

k4 − q2r
)

so

An =
∑

s≥0

(−1)s qs(n+s+1)

[

n+ s
s

] s−1
∏

r=0

(

k4 − q2r
)

.

We shall now transform the quantum binomial coefficient into a q-binomial coeffi-
cient through (19) to obtain

An =
∑

s≥0

(−1)sqs(2n+s+1)

(

n+ s

s

)

q2

s−1
∏

r=0

(

k4 − q2r
)

.

The q-binomial coefficient may be expressed as a negative q-binomial coefficient
through

(

n+ s

s

)

q2
= (−1)s

(

−(n+ 1)

s

)

q2
qs(2n+s+1).

Then

An =
∑

s≥0

(

−(n+ 1)

s

)

q2

s−1
∏

r=0

(

k4 − q2r
)

.

Using the expressions q2 = eh and k4 = ehh for these elements in Uh(sl2), we have

An = e−(n+1)hh = k
4(n+1)

via Lemma 4.5. This completes the proof. �

6.2.3. Construction of v. We begin by constructing a putative expression for v

from (2). Lemma 6.6, we know that v2 = k
4
u2. But, by Lemma 6.2, u is almost-

central so, in particular, uk = S2(k)u. But, by (21), S(k) = k and S(k) = k so
uk = ku. Thus

(i) u and k commute; (ii) v = k
2
u.

Therefore, from Lemma 6.5, we have the putative expression

e−
h
4
h
2

·
∑

n≥0

(q − q)n

[n]!
q

1
2
n(n+3)k

2(n+1)
ynxn

for v. We show next that this expression satisfies the appropriate conditions.

Theorem 6.7. (Uh(sl2),R,v) is a Ribbon Hopf algebra, where

v ··= e−
h
4
h
2

·
∑

n≥0

(q − q)n

[n]!
q

1
2
n(n+3)k

2(n+1)
ynxn,

R ··= e
h
4
h⊗h ·

∑

n≥0

(q − q)n

[n]!
q

1
2
n(n−3) (kx)n ⊗ (ky)n.
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Proof. We have already shown that (Uh(sl2),R) is a quasi-triangular Hopf algebra.
To show that (Uh(sl2),R,v) is a Ribbon Hopf algebra, it remains only to check that
each of the following conditions from Definition 6.3 are satisfied:







1) v is central and invertible, 2) v2 = S(u) · u,
3) S(v) = v, 4) ε(v) = 1A,
5) ∆(v) = (τ(R) · R)−1 · (v ⊗ v).

For Condition 1 : That v is invertible was established in Lemma 6.4. To show
centrality of v, it is sufficient to show v commutes with the generators h, x and y.

The generator h: From (ii) of Lemma 2.5, it is clear that h and ynxn commute

(and k commutes with h), so h commutes with v.

The generator x: Let Tn denote the term e−
h
4
h
2

k
2(n+1)

ynxn that appears as the
contribution of the generators to the general term of v. We consider xTn. From (ii)

of Lemma 2.5, xe−
h
4
h
2

= q2e−
h
4
h
2

k4x. Thus,

xTn = e−
h
4
h
2

q2nk
2(n−1)

(x yn)xn ((iii) of Lemma 2.5)

= e−
h
4
h
2

q2nk
2(n−1) (

ynxn+1 + [n] [h+ n− 1] yn−1xn
)

((v) of Lemma 2.5)

and then, using the notation from (30),

xv = e−
h
4
h
2
∑

n≥0

cn q
2nk

2(n−1) (
ynxn+1 + [n] [h+ n− 1] yn−1xn

)

= e−
h
4
h
2
∑

n≥1

q2n−2k
2(n−2)

(

cn−1 + cn q
2k

2
[n] [h+ n− 1]

)

yn−1xn

by shifting the summation index for the term containing ynxn+1 by one. The

bracketed term is equal to (q−q)n−1

[n−1]! qn−1k
4
q

1
2
(n2+3n−4). Therefore

xv = e−
h
4
h
2
∑

n≥1

q
1
2
(n2+n−2) (q − q)n−1

[n− 1]!
k
2n
yn−1xn.

The right hand side is readily seen to be equal to vx by shifting the summation
index for the expression for v to start at 0.

The generator y: This is proved similarly.

For Condition 2 : This was used to construct the expression for v, and therefore
holds.

For Conditions 3 and 4 : These are immediate from the actions of S and ε stated
Theorem 5.1.

For Condition 5 : Using the expression for v in terms of u and multiplying both
sides by τ(R) · R, the required identity is equivalent to

(τ(R) · R) · (k
2
⊗ k

2
) ·∆(u) = (k

2
⊗ k

2
) · (u⊗ u).

Since each term of R (and thus τ(R)) commutes with k
2
⊗k

2
, it is sufficient to show

(τ(R) · R) ·∆(u) = u⊗ u.

This is (ii) of Lemma 6.2. �
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6.3. Knot Invariants and the q-analogue Uq(sl2) of Uh(sl2). Given a Ribbon
Hopf algebra A, an isotopy A-valued invariant of (framed) links can be constructed.
Recall that links are embeddings of a disjoint union of circles S1 into R3. Such
invariant can be transformed into a more familiar object, say a scalar quantity or
a polynomial, by taking a representation of A and taking a trace of the resulting
operator in the representation. For example, the Jones polynomial of a knot may be
recovered by taking the 2-dimensional irreducible representation for Uh(sl2). Taking
higher dimensional representations will yield the HOMFLY polynomial. For more,
see [CP94, Oht02].

As representations of our algebra give rise to invariants of links, it is desirable
that our algebras have a rich representation theory. Unfortunately, the ribbon Hopf
algebra Uh(sl2), though more complicated overall in comparison to U(sl2), has an
algebra structure essentially equivalent to that of the usual universal enveloping
algebra. More precisely, recall that Uh(sl2) ∼= U(sl2)[[h]]. Thus, as algebras, Uh(sl2)
can be obtained from U(sl2) by extending scalars from C to C[[h]]. Consequently,
the representation theory of Uh(sl2) is not as useful for our purposes as it could be.

Representations of Uh(sl2) would be more subtle if h could be specialized to par-
ticular complex numbers. Being a formal parameter, however, h cannot generally
be set to anything other than 0. The issue is that Uh(sl2) is too “big”: the algebra
contains many elements which would yield divergent sums if h were set to a nonzero
quantity. Thus a “smaller” algebra, Uq(sl2), in which the parameter q is an element
of the underlying field of definition, is often considered.

Intuitively, Uh(sl2) is the “subalgebra” of Uh(sl2) generated by the elements x,
y, k and k, over the ring of convergent power series in h, where k is to be regarded
as an entirely new symbol. That is, in this algebra k is not determined by h, for
the latter is not in this algebra. Since the inverse of k will be needed, it has to be
added as a generator. More precisely, we have the following.

Definition 6.8. The q-analogue algebra Uq(sl2) of U(sl2) is the algebra over the

field C(q) of rational functions in q generated by elements x, y, k and k, subject to
the relations:

(31) kk = 1 = kk, kx = qxk, ky = qyk, [x, y] ··=
k2 − k

2

q − q
.

Remark 6.9. Note that we have not introduced any topology on Uq(sl2). Indeed, we
take Uq(sl2) to be a usual algebra over C(q) and thus we only consider finite sums of
elements in Uq(sl2). In particular, the expressions in Uh(sl2) for R in Theorem 5.3,
for u in Lemma 6.5 and for v Lemma 6.7 do not a priori make sense in Uq(sl2).
With some care, one can reconcile each structure with Uq(sl2), thereby equipping
this algebra with a Ribbon Hopf algebra structure similar to that of Uh(sl2). As we
shall see, however, a different Ribbon Hopf algebra structure, which makes sense
within Uq(sl2), can be constructed when q is taken to be a root of unity,

6.3.1. Relating Uh(sl2) and Uq(sl2). Let us first make precise what we mean by
the statement that Uq(sl2) can be viewed as a subalgebra of Uh(sl2). For further
discussion, see, for example, [Kas95, p.413].

Lemma 6.10. There exists an embedding ι : Uq(sl2)→ Uh(sl2) of algebras over C

such that
ι(x) = x, ι(y) = y, ι(q) = e

h
2 , ι(k) = e

h
4
h.
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The only thing that needs to be checked for the existence statement is whether
the relation kx = qxk (and the analogous relation for y) holds in Uh(sl2). But these
hold from (iii) of Lemma 2.5, thereby yielding ι.

6.3.2. Hopf Structure on Uq(sl2). A Hopf structure on Uq(sl2) can be deduced from
the structure on Uh(sl2) given in Theorem 5.1, together with the embedding from
Lemma 6.10.

Theorem 6.11. The q-analogue Uq(sl2) of the algebra U(sl2) is a Hopf algebra
with unit η(1) ··= 1, co-multiplication ∆, antipode S, co-unit ε and unit defined on
generators by

∆ : x 7→ x⊗ k+ k⊗ x, S : x 7→ −qx, ε : x 7→ 0,

y 7→ y ⊗ k+ k⊗ y, y 7→ −qy, y 7→ 0,

k 7→ k⊗ k, k 7→ k, k 7→ 1,

k 7→ k⊗ k, k 7→ k, k 7→ 1,

where ∆ and ε are extended as algebra morphisms, and m and η are extend as
co-algebra morphisms.

6.3.3. Ribbon Structure of Uq(sl2) For q a Root of Unity. Suppose now that the
parameter q in Uq(sl2) is taken to be a root of unity, say q ··= exp(1

ℓ
πi). Then,

because of a factorization property of the q-binomial coefficient, Uq(sl2) essentially
factorizes into the product of a finite-dimensional quotient Uq and a subalgebra.
The quotient Uq is obtained from Uq(sl2) by imposing the additional relations

k4ℓ = 1, and xℓ = yℓ = 0.

A quasi-triangular structure on Uq is induced from that of Uq(sl2). Explicitly, the
R-morphism can be written

R ··=
1

4ℓ

4ℓ−1
∑

p=0

ℓ−1
∑

n=0

(q − q)n

[n]!
q

1
2
n(n−3)+ 1

2
p







4ℓ−1
∏

r=0
r 6=p

(k− q
1
2
r)






(kx)n ⊗ kp(ky)n.

With this R-morphism, the element u can be written as

u ··=
1

4ℓ

4ℓ−1
∑

p=0

ℓ−1
∑

n=0

(−1)n
(q − q)n

[n]!
q

1
2
n(n+3)+ 1

2
p(p−1)k

2n







4ℓ−1
∏

r=0
r 6=p

(qnk− q
1
2
r)






ynxn.

A ribbon structure is now induced on Uq by taking v = k
2
u, very much as in

Theorem 6.7.

Not only is the algebra Uq finite-dimensional, it has a very rich representation
theory. By considering a special family of representations of Uq, Reshetikhin and
Turaev were able to obtain in [RT91] a new class of invariants for 3-manifolds. By
associating to a link its complement, these can be viewed as invariants of links.
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7. Extension to Uh(sl3)

The definition of quantized universal enveloping algebras can be applied in great
generality. Indeed, the definition of Uh(sl2) presented in Section 2.3 can be modified
to define a quantized universal enveloping algebra Uh(g) for any complex semisimple
Lie algebra g. For general definitions, see, for example [Ram98].

In the next two sections, we will discuss how the techniques developed in the
Uh(sl2) setting may be applied to derive an R-morphism for the quantized universal
enveloping algebras of sln+1, n ≥ 2. Here, we shall first consider the case of Uh(sl3)
in detail, as it serves as a model for all higher dimensional cases. In the following
section, we will carry out the construction of R for Uh(sln+1) for general n.

The results in this section are not new. To our knowledge, the first explicit
description of an R-morphism for Uh(sln+1) was given by [Ros89]. See also [Bur90].
An explicit R-morphism for Uh(g), g a general complex semisimple Lie algebra,
was given in [LS91, KR90]. Our discussion here differs from these past works in
the methods and techniques used, and in the perspective with which we view the
objects in hand. Indeed, our methods are much more direct in comparison to
previous accounts.

7.1. Quantized Universal Enveloping Algebra Uh(sl3). The definition of Uh(sl3)
is very similar to that of Uh(sl2) in Section 2.3, except that crucially, a new type of
relation needs is now present.

Definition 7.1. The quantized universal enveloping algebra Uh(sl3) for sl3 is the
associative C[[h]]-algebra generated by two sets of sl2 triples, (xi, hi, yi), i = 1, 2,
subject to the commutator relations [hi, hj ] = 0,

[hi, xj ] =

{

2xi i = j,

−xj i 6= j,
[hi, yj ] =

{

−2yi i = j,

yj i 6= j,
[xi, yj ] = δij

ki − ki

q − q
,

where ki ··= e
h
4
hi , and the q-Serre relations,

x21x2 − (q + q)x1x2x1 + x2x
2
1 = 0, x22x1 − (q + q)x2x1x2 + x1x

2
2 = 0,(32)

with corresponding equations for the yi.

A Hopf algebra structure on Uh(sl3) can be defined on the generators (xi, hi, yi)
by taking the structure maps as given in Theorem 5.1 for Uh(sl2) for each triple.

7.1.1. Simplifying the q-Serre Relations. When attempting to apply straightening
techniques, the q-Serre relations, which are cubic relations amongst generators, are
difficult to handle. Indeed, the straightening formalism relies on being able to swap
pairs of generators via a quadratic relation. From this perspective, it is natural to
hope that (32) may be replaced by some set commutation relations. Rearranging
the first equation in (32), we have that

0 = x21x2 − (q + q)x1x2x1 + x2x
2
1

= x1(x1x2 − qx2x1)− (qx1x2 − x2x1)x1

= q
1
2 x1(q

1
2 x1x2 − q

1
2 x2x1)− q

1
2 (q

1
2 x1x2 − q

1
2 x2x1)x1.(33)

Similarly, manipulating the second equation, we find

(34) q
1
2 (q

1
2 x1x2 − q

1
2 x2x1)x2 − q

1
2 x2(q

1
2 x1x2 − q

1
2 x2x1) = 0.
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Comparing (33) and (34) suggests that we should define a new generator

(35) x12 ··= q
1
2 x1x2 − q

1
2 x2x1.

In terms of x12, the q-Serre relations (32) may be re-expressed through (33) and (34)
as q-commutation relations

q
1
2 x1x12 − q

1
2 x12x1 = 0, q

1
2 x12x2 − q

1
2 x2x12 = 0.(36)

Thus we see that, by introducing an additional algebra generator, Uh(sl3) can be
presented completely in terms of commutation and q-commutation relations. To be
explicit, we record the commutation relations derived from (35) and (36) with the
precedence order x1 ≻ x12 ≻ x2:

x2x1 = q x1x2 − q
1
2 x12, x12x1 = qx1x12, x2x12 = qx12x2.(37)

The analogous construction for the y generators give relations among the yi of the
same form.

7.1.2. A PBW Basis. As before, using the commutation relations, like (35) and (36),
in Uh(sl3), arbitrary monomials in the generators hi, xi and yi can be straightened
to be expressed as a sum of terms in the set

B ··=
{

hr11 hr22 ys11 ys1212 ys22 xt11 xt1212 x
t2
2 : ri, si, ti ∈ Z≥0

}

.

It is clear that B linearly spans Uh(sl3); linear independence is more tedious to see
and can be established either directly through methods in in [Ros89] or via the
general theory in [Lus93, Chapter 40]. The relevant fact for us is that B is an
analogue of a PBW basis for Uh(sl3), with respect to the ordering

h1 ≻ h2 ≻ y1 ≻ y12 ≻ y2 ≻ x1 ≻ x12 ≻ x2.

7.1.3. Notation. As is evident with the statement of the basis above, notation be-
comes quite cumbersome in higher dimensional sln. To simplify calculations, we
introduce the following shorthands:

X(n1, n12, n2) ··= xn1

1 xn12

12 xn2

2 , K(m1,m2) ··= km1

1 km2

2 ,

Y(n1, n12, n2) ··= yn1

1 yn12

12 yn2

2 , K(m1,m2) ··= k
m1

1 k
m2

2 .

Moreover, set n ··= (n1, n12, n2), m ··= (m1,m2) and write X(n) ··= X(n1, n12, n2),
K(m) ··= K(m1,m2) and so on. Finally, we shall write things like

X(n1 − 1;n) ··= X(n1 − 1, n12, n2)

to indicate changes in the exponent of one of the monomials. If no confusion can
arise, we will sometimes omit the reference to n and simply indicate the exponents
that have changed.

As in the Uh(sl2) case, we will also need to handle an exponential of the hi. For
each pair of i, j, write

ǫij ··= e
h
4
hi⊗hj .

Also, set

ǫK ··= ǫκ11

11 ǫκ12

12 ǫκ21

21 ǫκ22

22

= exp

(

h

4
(κ11 h1 ⊗ h1 + κ12 h1 ⊗ h2 + κ21 h2 ⊗ h1 + κ22 h2 ⊗ h2)

)

.
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where

K ··=

(

κ11 κ12

κ21 κ22

)

,

is a matrix conveniently packaging the exponents κij .

7.1.4. Straightening in Uh(sl3). We are almost in position to calculate an R-morphism
for Uh(sl3). It remains to develop a armamentarium of straightening laws, extending
the Uh(sl2) relations developed in Section 2.4. Since commutation relations among
individual sl2 triples in Uh(sl3)—i.e. generators with the same subscript—are the
same as those in (4), the calculations done in Uh(sl2) may be applied when straight-
ening expressions involving generators with the same lower index. Thus we need
only derive new straightening laws for expressions involving generators with differ-
ent subscripts. The following result collects a few of these “mixed” straightening
laws. Proofs of these are straightforward calculations.

Lemma 7.2. Let a be a nonnegative integer, b any integer, i, j ∈ {1, 2} distinct,
l ∈ {1, 2}, and f(x) a formal power series in x. Then the following identities hold
in Uh(sl3):

xif(hj) = f(hj + 1)xi, yif(hj) = f(hj − 1)yi,(i)

x12f(hj) = f(hj − 1)x12, y12f(hj) = f(hj + 1)y12,(ii)

xai k
b
j = q

1
2
abkjxi, yai k

b
j = q

1
2
abkbjy

a
i ,(iii)

xa12k
b
j = q

1
2
abkbjx12, ya12k

b
j = q

1
2
abkbjy12,(iv)

xa12x
b
1 = qabxb1x

a
12, xb2x

a
12 = qabxa12x

b
2.(v)

From the defining relations, xi and yj commute for i 6= j. However, as y12
contains both y1 and y2 in its definition, this monomial commutes with neither
x1 nor x2. Rather, what we shall call a shortening process takes place: when
commuting, say, x1 past a power of y12, the x1 pairs with one the y1 in a y12,
resulting in a left over y2. More precisely, we have the following calculation.

Lemma 7.3 (Shortening). Let n12 be a positive integer. Then the following hold
in Uh(sl3).

yn12

12 x1 = x1y
n12

12 − q
1
2 [n12]k

2
1y

n12−1
12 y2,(i)

x2y
n12

12 = yn12

12 x2 − q
1
2 qn12−1[n12]k

2

2y1y
n12−1
12 .(ii)

Proof. We calculate the relation (i) when n12 = 1, from which the general case
can be established using the methods of Lemma 2.5. Using the definition of
y12 from (35), the straightening relations between x1 and y1 from (4), and (i) of
Lemma 7.2,

y12x1 = (q
1
2 y1y2 − q

1
2 y2y1)x1

= q
1
2 (x1y1 − [h1])y2 − q

1
2 y2(x1y1 − [h1])

= x1y12 − (q
1
2 [h1]− q

1
2 [h1 − 1])y2

= x1y12 −

(

q
1
2 k21 − q

1
2 k

2

1

)

−
(

q
3
2 k21 + q

1
2 k

2

1

)

q − q
y2

= x1y12 − q
1
2 k21y2.
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The calculations for (ii) are analogous. �

Inverse to shortening, a lengthening takes place when commuting x1 past x2.
The proofs involve the same techniques as the Shortening relations.

Lemma 7.4 (Lengthening). Let n1 and n2 be positive integers. Then the following
hold in Uh(sl3).

xn2

2 x1 = qn2x1x
n2

2 − q
1
2 [n2]x12x

n2−1
2 ,(i)

x2x
n1

1 = qn1xn1

1 x2 − q
1
2 [n1]x

n1−1
1 x12.(ii)

Finally, we have the following analogue of Lemma 2.6 for moving generators past
the exponential factor in the R-morphism.

Lemma 7.5. Let f(x) be a formal power series in x, n a positive integer, κ any
integer and i, j, l ∈ {1, 2} with i 6= j. Then the following hold in Uh(sl3):

(1⊗ xni )ǫ
κ
li = ǫκli(k

2nκ

l ⊗ xni ), (1⊗ yni )ǫ
κ
li = ǫκli(k

2nκ
l ⊗ yni ),(i)

(1 ⊗ xni )ǫ
κ
lj = ǫκlj(k

nκ
l ⊗ xni ), (1⊗ yni )ǫ

κ
lj = ǫκlj(k

nκ

l ⊗ yni ).(ii)

7.2. Constructing an R-morphism for Uh(sl3). We now carry out the program
of Section 5 to construct an R-morphism for Uh(sl3). An ansatz for R can be
constructed from first principles through general reasoning about straightening re-
lations, as was done for Uh(sl2). Alternatively, and more efficiently, we use the
general principle that objects in semisimple Lie algebras can be built by appro-
priately combining ingredients from the constituent sl2 to obtain an ansatz for R

here. This principle, together with the form of R given in Theorem 5.3, leads us to
propose the following form for R in Uh(sl3):

(38) R ··= ǫK
∑

m,n

α(m,n)K(m)X(n) ⊗ K(m)Y(n)

for some coefficients α(m,n), which are rational functions in q. We have used the
notation introduced in Subsection 7.1.3. Denote by Tm,n the summand in R indexed
by m and n.

As with Section 5.2, the coefficients and the exponents in (38) will be determined
by imposing Conditions (i), (ii) and (iii) of Definition 5.2.

7.2.1. Condition (i) of Definition 5.2. As with Uh(sl2), it suffices to impose Con-
dition (i) for the algebra generators xi, hi and yi, i = 1, 2, in Uh(sl3); in particular,
it is unnecessary to carry out these calculations for x12 and y12.

For the generators hi: Since the hi commute with k1 and k2, we need only consider
the xj and yj components of each general term in (38). Disregard, for the moment,
our knowledge of R in Uh(sl2) and suppose that we write the xj and yj dependence

of general term in R as xn1

1 xn12

12 xn2

2 ⊗ y
n′1
1 y

n′12
12 y

n′2
2 . Using (i) and (ii) of Lemma 7.2,

Condition (i) for h1 and h2 is equivalent to the pair of equations

2(n1 − n′1) + (n12 − n′12)− (n2 − n′2) = 0,

−(n1 − n′1) + (n12 − n′12) + 2(n2 − n′2) = 0.

These conditions provide further support to the assumption that n′i = ni in (38).
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For the generators xi: Recall that ∆(xi) = xi ⊗ ki + ki ⊗ xi. Thus this condition
requires that

(39) (ki ⊗ xi + xi ⊗ ki) · R = R · (xi ⊗ ki + ki ⊗ xi).

For i = 1, 2 and for each n = (n1, n12, n2), m = (m1,m2), set

(40)

A+
i (m,n) ··= (ki ⊗ xi) · ǫ

K K(m)X(n)⊗ K(m)Y(n),

B−i (m,n) ··= (xi ⊗ ki) · ǫ
K K(m)X(n)⊗ K(m)Y(n),

B+
i (m,n) ··= ǫK K(m)X(n)⊗ K(m)Y(n)(xi ⊗ ki),

A−i (m,n) ··= ǫK K(m)X(n)⊗ K(m)Y(n)(ki ⊗ xi).

Using relations (iii) and (iv) of Lemma 7.2 together with (i) and (ii) of Lemma 7.5,
we can straighten the individual terms in (39). First, for the left hand side when
i = 1,

A+
1 (m,n) = qm1−

1
2
m2 ǫK K(mA

+

1

)X(n) ⊗ K(m) (x1y
n1

1 ) yn12

12 yn2

2

B−1 (m,n) = qm1−
1
2
m2 ǫK K(m)X(n1 + 1)⊗ K(mB

−

1

)Y(n).

where

mA
+

1

··= (m1 + 1− 2κ11 + κ22,m2 − 2κ21 + κ12)

mB
−

1

··= (m1 − 1− 2κ11 + κ21,m2 − 2κ12 + κ22)

The right hand side of (39) needs to be straightened before we can compare it with
the left. First, using the Lengthening Lemma and (v) of Lemma 7.2,

B+
1 (n,m) = qn1−

1
2
n12+

1
2
n2 ǫK K(m)X(n1 + 1)⊗ K(m1 − 1)Y(n)

− qn1+
1
2
n12−

1
2
n2+

1
2 [n2] ǫ

K K(n)X(n12 + 1, n2 − 1)⊗ K(m1 − 1)Y(n)

Next, using the Shortening Lemma,

A−1 (n,m) = qn1+
1
2
n12−

1
2
n2 ǫK K(m1 − 1)X(n)⊗ K(m) (yn1

1 x1) y
n12

12 yn2

2

− q3n1+
1
2
n12−

1
2
n2−

1
2 [n12] ǫ

K K(m1 − 1)X(n)⊗ K(m1 − 2)Y(n12 − 1, n2 + 1).

As observed in (B) of Remark 5.4, the commutator of x and y played an essential
role in deriving R in Uh(sl2). Thus we are led to rearrange (39) to yield an equation
A1 = B1, where

A1 ··=
∑

m,n

A+
1 (m,n)−A−1 (m,n), B1 ··=

∑

m,n

B+
1 (m,n)−B−1 (m,n).

In order to combine the terms in A1 to yield a commutator [x1, y
n1

1 ], we need
to combine the term in A+

1 with the first term of A−1 . For that, we must set
mA

+

1

= (m1− 1,m2) and also set the exponent of the prefactor q to be equal. This

yields the systems of equations

m1 −
1
2m2 = n1 +

1
2n12 −

1
2n2,

m1 + 1− 2κ11 + κ12 = m1 − 1,

m2 − 2κ21 + κ22 = m2.
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Performing the same calculations for i = 2, we obtain another system of equations

− 1
2m1 +m2 = − 1

2n1 +
1
2n12 + n2,

m1 + κ11 − 2κ12 = m1,

m2 + 1 + κ21 − 2κ22 = m2 − 1.

These equations together imply that

K ··=

(

κ11 κ12

κ21 κ22

)

=
2

3

(

2 1
1 2

)

,

and that

m1 +m2 = n1 + 2n12 + n2, m1 −m2 = n1 − n2.

Solving for m1 and m2 gives

m1 = n1 + n12, m2 = n2 + n12(41)

In fact, setting k12 ··= k1k2, this suggests that we write the general term of R in the
form

kn1

1 kn12

12 kn2

2 xn1

1 xn12

12 xn2

2 ⊗ k
n1

1 k
n12

12 k
n2

2 yn1

1 yn12

12 yn2

2 .

Substituting these findings into the expressions for A1 and computing the commu-
tator [x1, y

n1

1 ] with (v) of Lemma 2.5, we have

A1 = ǫK
∑

n

α(n)
(

qn1+
1
2
n12−

1
2
n2 [n1]K(n1 − 1)X(n)⊗ [h1 + n1 − 1]K(n)Y(n1 − 1)

+ q3n1+
1
2
n12−

1
2
n2−

1
2 [n12]K(n1 − 1)X(n) ⊗ K(n1 − 2)Y(n12 − 1, n2 + 1)

)

.

Similarly, for B1, we have

B1 = ǫK
∑

n

α(n)
(

q
1
2
n2−

1
2
n12K(n)X(n1 + 1)⊗

(

qn1k
n1−1

1 − qn1k
n1+3

1

)

k
n12

12 k
n2

2 Y(n)

− qn1+
1
2
n12−

1
2
n2+

1
2 [n2]K(n)X(n12 + 1, n2 − 1)⊗ K(n1 − 1)Y(n)

)

= ǫK
∑

n

α(n)
(

q
1
2
n2−

1
2
n12(q − q)K(n)X(n1 + 1)⊗ [h1 + n1]K(n1 + 1)Y(n)

− qn1+
1
2
n12−

1
2
n2+

1
2 [n2]K(n)X(n12 + 1, n2 − 1)⊗ K(n1 − 1)Y(n)

)

.

Comparing the first term of A1 the first term of B1—after making an index shift
n1 7→ n1 − 1—we obtain a recursion relation for α(n) with respect to n1:

(42) α(n) = α(n1 − 1;n)
(q − q)

[n1]
qn1+n12−n2 .

Comparing the second term of A1 with the second term of B1, after making index
shifts n2 7→ n2 − 1 and n12 7→ n12 − 1 respectively, we obtain a relation for α(n)
with respect to n12 and n2:

(43) α(n12 − 1;n) = −α(n2 − 1;n)
[n12]

[n2]
q2n1 .

Performing the analogous manipulations for A2 and B2 yields recurrences for α(n)
with respect to n2:

(44) α(n) = α(n2 − 1;n)
(q − q)

[n2]
qn2+n12−n1 ,
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and with respect to n12 and n1:

(45) α(n12 − 1;n) = −α(n1 − 1;n)
[n12]

[n1]
q2n2 .

Now, by combining either (43) with (44) or (45) with (42), a recurrence for αn with
respect to n12 is found:

(46) α(n) = −α(n12 − 1;n)
(q − q)

[n12]
qn1+n12+n2 .

The recurrences for α(n) for each individual index can be solved individually, all
assuming the initial condition α(0) = 1, and combined together to yield

α(n) = (−1)n12
(q − q)|n|

[n]!
q

1
2
n1(n1+1)+ 1

2
n12(n12+1)+ 1

2
n2(n2+1)+2n1n12−2n1n2+2n12n2 ,

where we have used the notation |n| ··= n1 + n12 + n2 and [n]! ··= [n1]![n12]![n2]!.

Finally, like in the Uh(sl2) case, the general term of R can be rearranged to the
form

(k1x1)
n1(k12x12)

n12(k2x2)
n2 ⊗ (k1y1)

n1(k12y12)
n12(k2y2)

n2 .

Doing so would eliminate the cross terms in the exponent of q in α(n) and would

also transform the terms q
1
2
n(n+1) to q

1
2
n(n−3) as in (27). With this form, we see

that the R-morphism factors into a product

(47) R = ǫKExpq(λqk1x1 ⊗ k1y1)Expq(−λqk12x12 ⊗ k12y12)Expq(λqk2x2 ⊗ k2y2)

where λq is as in (28).

For the generators yi: It is readily checked that with the quantities found above,
Condition (i) of Definition 5.2 is satisfied for the yi. In fact, it is easy to see that
the relevant calculations for the yi completely mirror those done when considering
the xi, with only some differences in signs. The entire program above can therefore
be carried out with the yi in lieu of the xi.

7.2.2. Conditions (ii) and (iii) of Definition 5.2. These conditions can be checked
by using the techniques from the Uh(sl2) case together the presentation (47) of R
as a product of q-exponential functions.

8. Extensions to Uh(sln+1)

Generally, an R-morphism for Uh(sln+1) can be constructed by comparing the
coefficients of the equation A = B from Condition (i) of Definition 5.2 corresponding
terms. The method is essentially the same as in the Uh(sl3) case, except more
notationally cumbersome. This section will complete this construction for general
Uh(sln+1), n ≥ 2.

Definition 8.1. Let n ≥ 1. The quantized universal enveloping algebra Uh(sln+1)
is the C[[h]] algebra generated by n sl2 triples (xi, hi, yi), i = 1, . . . , n, subject to the
relations [hi, hj] = 0,

[hi, xj ] =











2xi j = i,

−xj j = i± 1,

0 otherwise,

[hi, yj ] =











−2yi j = i,

yj j = i± 1,

0 otherwise,

[xi, yj ] = δij
ki − ki

q − q
,

(48)
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where ki ··= e
h
4
hi , and for |i− j| = 1,

x2i xj − (q + q)xixjxi + xjx
2
i = 0, y2i yj − (q + q)yiyjyi + yjy

2
i = 0,

8.1. q-Serre Relations and PBW Bases. As in Uh(sl3), the q-Serre relations
can be simplified to commutation relations by introducing additional generators.
However, because of the increase in number of sl2 triples, more generators will be
necessary. For instance, in Uh(sl4), x12, defined as in (35), is related to x3 through
a cubic relation since x3 is related to x2. In fact, reasoning like this shows that we
must introduce a generator

xi,j ··= xi,i+1,...,j

for each pair 1 ≤ i ≤ j ≤ n. In other words, we will need a generator for each
interval of integers in {1, . . . , n}. As per the comments in Section 7.1.2, these
generators together with a fixed ordering of the indices will give a PBW basis for
Uh(sln+1). Throughout, we will fix the following ordering on the indices:

(49) 1 ≻ 12 ≻ · · · ≻ 12 . . . n ≻ 2 ≻ 23 ≻ · · · ≻ n− 1, n ≻ n.

After introducing these higher degree generators, we will establish some basic
straightening relations for these generators and then calculate an R-morphism for
Uh(sln+1). We shall carry through with this below.

Remark 8.2. Those knowledgeable about semisimple Lie algebras will immediately
note that, upon identifying the 1, . . . , n with labels for a choice of simple roots for
sln+1, the consecutive strings used to index the basis elements correspond to the
set of positive roots for sln+1.

8.2. Higher Degree Generators in Uh(sln+1). To define xi,j , set xi,i ··= xi and
for i < j, inductively define

(50) xi,j ··= q
1
2 xixi+1,j − q

1
2 xi+1,jxi.

In fact, there is a much more symmetric description of xi,j .

Lemma 8.3 (Splitting). Let 1 ≤ i < j ≤ n and consider a splitting of the interval
of integers {i, i+ 1, . . . , j} into {i, . . . , s} and {s+ 1, . . . , j}. Then

xi,j = q
1
2 xi,sxs+1,j − q

1
2 xs+1,jxi,s.

To establish this Lemma, we give a combinatorial description of xi,j in terms of
the degree one generators xi, . . . , xj . In short, xi,j will be a sum of terms indexed
by orientations on a path of length j − i.

Let Pn denote the Dynkin diagram for sln+1, i.e. a path consisting of n vertices
labelled left to right by the integers 1 to n. For 1 ≤ i < j ≤ n, let Pi,j denote the
induced subgraph of P obtained by taking the vertices labelled i, i + 1, . . . , j. Let
Di,j denote the set of orientations on Pi,j . For each D ∈ Di,j , let

D→ ··= #{ℓ→ ℓ+ 1 ∈ D}, D← ··= #{ℓ← ℓ+ 1 ∈ D}

be the number of right- and left-pointing arrows in the orientation D. Set

qD ··= (−1)D←q
1
2
(D→−D←).

For each D ∈ Di,j , we also construct a monomial xD in xi, . . . , xj as follows. Begin
by writing xj . Next, if the edge from j − 1 to j is right-point, that is if j − 1 →
j ∈ D, then place xj−1 to the left of xj ; otherwise, place it on the right. Next, if
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j − 2→ j + 1 ∈ D, then place xj−2 at the leftmost end; otherwise, place it on the
rightmost. At each step, think of a right-pointing arrow ℓ − 1 → ℓ as indicating
that xℓ−1 and xℓ are to be positioned “in order”, so that xℓ−1 appears before xℓ;
similarly, a left-pointing arrow ℓ− 1← ℓ indicates that xℓ−1 and xℓ appear “out of
order”. Continue this process until all of xj to xi have been placed, resulting in xD.

Example 8.4. Suppose n = 8, i = 2 and j = 6. Then

P7 =
1 2 3 4 5 6 7

, and P2,6 =
2 3 4 5 6

.

The set D2,6 has 24 = 16 elements, one being

D =
2 3 4 5 6

.

Then D→ = 3, D← = 1, qD = −q. The construction of xD proceeds through the
following steps: x6, x5x6, x4x5x6, x4x5x6x3, and finally xD = x2x4x3x5x6.

A combinatorial description of xi,j can now be given.

Lemma 8.5. Let 1 ≤ i < j ≤ n. Then

xi,j =
∑

D∈Di,j

qDxD.

Proof. We use induction on the difference j − i. When j = i + 1, this formula
reduces to the definition of xi,i+1 in (50). In general,

xi,j = q
1
2 xixi+1,j − q

1
2 xi+1,jxi

=
∑

D∈Di+1,j

(−1)D←q
1
2
((D→+1)−D←)xixD + (−1)D←+1q

1
2
(D→−(D←+1))xDxi.

Since i is the smallest index and by the construction of xD′ with D′ ∈ Di,j , the
first terms in the sum correspond to orientations D′ with right-pointing arrow
i→ i+ 1. Similarly the second terms correspond to orientations with left-pointing
i← i+ 1. �

It is important to note that the xD constructed are convenient representatives
of commutation equivalence class of monomials in the xi—recall that xixj = xjxi
whenever |i − j| > 1. The important data encoded in the orientation D ∈ Di,j is
the relative position of adjacent generators. It is clear that any product of xi, . . . , xj
satisfying xi+1 is right of xi if and only if i→ i+ 1 in D is equivalent to xD.

Proof of Lemma 8.3. This follows immediately from Lemma 8.5 and the discussion
above after the observation that an orientation on Pi,j consists of orientations on

Pi,s and Ps+1,j and an orientation on the edge (s, s + 1). The term q
1
2 xi,sxs+1,j

accounts for all orientations with s → s + 1 where as −q
1
2 xs+1,jxi,s accounts for

orientations with s← s+ 1. �
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8.3. Commutation Relations in Uh(sln+1). Although the number of generators
has increased in number, the commutation relations in Uh(sln+1) are largely of
the same type as those in Uh(sl3). Indeed, rather than complicate matters, the
increase in number of generators clarifies the rigid structure of Uh(sln+1). As with
the Uh(sl3) case, Shortening and Lengthening phenomena take place and play an
important role in the construction of the R-morphism. We collect the relevant
relations in the next two Lemmas.

Lemma 8.6 (Lengthening). Let 1 ≤ i < j ≤ n. Then the following hold in
Uh(sln+1).

x
ni+1,j

i+1,j xi = qni+1,jxixi+1,j − q
1
2 [ni+1,j ] xi,jx

ni+1,j−1
i+1,j ,(i)

xjx
ni,j−1

i,j−1 = qni,j−1x
ni,j−1

i,j−1 xj − q
1
2 [ni,j−1] x

ni,j−1−1
i,j−1 xi,j .(ii)

Lemma 8.7 (Shortening). Let 1 ≤ i < j ≤ n. Then the following hold in
Uh(sln+1).

y
ni,j

i,j xi = xiy
ni,j

i,j − q
1
2 [ni,j ] k

2
i y

ni,j−1
i,j yi+1,j ,(i)

xjy
ni,j

i,j = y
ni,j

i,j xj − q
1
2 qni,j−1[ni,j ] k

2

jyi,j−1y
ni,j−1
i,j .(ii)

The proofs of these Lemmas involve using the Splitting Lemma 8.3 to show the
case when the exponent is 1, and then the techniques from Lemma 2.5 are used to
establish the general case.

One last type of commutation we will need in Uh(sln+1) is when the indexing
interval of a some generator is completely contained in that of another. In these
cases, all relations end up being commutation relations, possibly with some scalar
factor. The proofs use the Splitting Lemma 8.3 to reduce the statement to a
computation in Uh(sl4).

Lemma 8.8 (Passing). Let 1 ≤ i < j ≤ n. Then the following hold in Uh(sln+1).

x
ni,j

i,j xni

i = qnini,jxni

i x
ni,j

i,j , x
nj

j x
ni,j

i,j = qni,jnjx
ni,j

i,j x
nj

j .(i)

Moreover, for any i < s < j,

xns
s x

ni,j

i,j = x
ni,j

i,j xns
s , xns

s y
ni,j

i,j = y
ni,j

i,j xns
s .(ii)

With our choice of ordering on the generators, we need not compute any other
commutation relations.

8.4. Exponential Prefactor of R. We are now ready to derive an R-morphism
for Uh(sln+1). First, either from our experience in Uh(sl2) and Uh(sl3) or, again,
by general reasoning about how straightening should contribute terms, we propose
that a R-morphism takes the form

R = ǫK
∑

n

α(n)K(n)X(n) ⊗ K(n)Y(n),

where the coefficient α(n) is a rational function in q, K, K, X and Y are products
of the generators in Uh(sln+1) ordered with respect to the fixed precedence order,
and

ǫK ··= exp





n
∑

i,j=1

κi,jhi ⊗ hj




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for some matrix of coefficients K ··= (κij). Our first task will be to determine this
matrix K. This is done by observing that, in the Uh(sl3) case, the equations which
we used to solve for K came from equating the exponents of powers of k and k in
the terms which can Condition (i) of Definition 5.2. These terms will come from

A+
i (n) ··= (ki ⊗ xi) ·

(

ǫK K(n)X(n) ⊗ K(n)Y(n)
)

,

A−i (n) ··=
(

ǫK K(n)X(n) ⊗ K(n)Y(n)
)

· (ki ⊗ xi).

From the Shortening Lemma 8.7, we see that we will obtain a single term with
· · · xiy

ni

i · · · in A+
i and a single term with · · · yni

i xi · · · in A−i . We would like to com-
bine these terms. Using the defining relations together with slight generalizations
of (iii) of Lemma 7.2 and Lemma 7.5, for each j = 1, . . . , n, we obtain n linear
equations:

κi,j−1 − 2κij + κi,j+1 = −2δij, j = 1, . . . , n,

where κi,−1 ··= 0 and κi,n+1 ··= 0. In matrix form,

KAn ··= K ·



















2 −1 0 · · · · · · 0
−1 2 −1 0
0 −1 2 0
...

. . .
...

0 2 −1
0 · · · · · · · · · −1 2



















= 2In

where In is the n × n identity matrix. It is readily seen that An is invertible, so
K = 2A−1n . The inverse can be explicitly calculated, yielding

(51) κij =

{

2
n+1 i(n− j + 1) if j ≤ i,
2

n+1j(n− i+ 1) if i ≤ j.

Remark 8.9. The matrix An is the Cartan matrix of the Lie algebra sln+1.

8.5. Calculating the Coefficient. We now proceed to calculate the coefficients
α(n) of R. The technique is essentially the same as the Uh(sl3) case, except more
cumbersome notationally which makes the situation seem more technical than it is.
The main steps are as follows: for each i = 1, . . . , n,

(1) Impose Condition (i) of Definition 5.2 for xi;
(2) Rearrange the resulting equation to obtain series Ai and Bi;
(3) Compare coefficients of the like terms in Ai and Bi, resulting in recur-

rence relations for the coefficients α(n) with respect the various summation
indices;

(4) Simultaneously solve the system of recurrences.

In between steps (2) and (3), the summands of Ai and Bi may need to straight-
ened. Due to Shortening and Lengthening phenomena, each summand of Ai and
Bi will itself be a sum of different terms and the crux of the entire procedure is to
systematically track the coefficients of each summand. In the sections that follow,
we will carry out the steps above.
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8.5.1. Individual Terms of A±i and B±i . For each tuple of exponents n ··= (n1, n12, . . . , nn),
denote by R(n) the summand in R indexed by n. Then, similar to (40), define for
each i = 1, . . . , n and n

A+
i (n) ··= (ki ⊗ xi) · R(n), B+

i (n) ··= R(n) · (xi ⊗ ki),

A−i (n) ··= R(n) · (ki ⊗ xi), B−i (n) ··= (xi ⊗ ki) · R(n)

and then set

Ai ··=
∑

n

A+
i (n)−A−i (n), Bi ··=

∑

n

B+
i (n)−B−i (n).(52)

As usual, Condition (i) of Definition 5.2 is equivalent to the equality Ai = Bi.
This equality can be used to deduce properties of α(n) by understanding the terms
appearing after straightening A±i (n) and B±i (n). To be clear, straightening the
term xiY means that we need to move xi through the y until it is immediately
left of yi; similarly, straightening Yxi means that xi needs to be moved until it is
immediately right of yi.

From the Shortening and Lengthening Lemmas, straightening xi through Y or X
will cause Shortening and Lengthening, respectively, to occur. As a consequence,
the A±i and B±i are generally sums of various terms resulting from these transforma-
tions. We shall see that these terms are indexed by certain segments of {1, . . . , n}.

Terms of A+
i = (ki ⊗ xi) · R: When straightening A+

i , xi needs to be moved past

the K in front of the Y. From the defining relations (48), commuting xi past ka,b
will yield a nontrivial contribution to the coefficient of A+

i whenever the segment
{a, a+1, . . . , b} contains either one or two of {i−1, i, i+1}. Precisely, the coefficient

contribution when xi is moved past a ka,b indexed by a segment

– {a, . . . , i− 1} for 1 ≤ a < i is q
1
2
na,i−1 ;

– {a, . . . , i} for 1 ≤ a < i is q
1
2
na,i ;

– {i} is qni ;

– {i, . . . , b} for i < b ≤ n is q
1
2
ni,b ; and

– {i+ 1, . . . , b} for i < b ≤ n is q
1
2
ni+1,b .

This leads to an overall coefficient contribution of

(53)

(

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

)

qni

(

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

)

to the terms of A+
i .

Since xi is being straightened starting from the left of A+
i , Shortening occurs for

each interval {s, . . . , i}, where s = 1, . . . , i; denote by A+
s,i the term where y

ns,i

s,i is

shortened by xi. For s < i, (ii) of the Shortening Lemma 8.7 shows that the Y term
in A+

s,i looks like

(

· · · y
ns,i−1

s,i−1 y
ns,i

s,i · · ·
)

7→
(

· · · y
ns,i−1

s,i−1

(

−q
1
2 qns,i−1[ns,i] k

2

i ys,i−1y
ns,i

s,i

)

· · ·
)

.

The k
2

i must now be moved left through the Y. Powers of q coming from this
straightening are indexed by segments

– {a, . . . , i− 1} for 1 ≤ a ≤ s with contribution qna,i−1 ;
– {a, . . . , i} for 1 ≤ a < s with contribution qna,i .
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In total, the coefficient of A+
s,i(n), 1 ≤ s < i, is

(54) −α(n)[ns,i]q
3
2
+ni

s
∏

a=1

q
1
2
na,i−

1
2
na,i−1

i−1
∏

a=s+1

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b .

Moreover, the exponents of the generators in A+
s,i(n) change as

(55) X(n)⊗ Y(n) 7→ X(n) ⊗ Y(ns,i−1 + 1, ns,i − 1;n).

Finally, the term A+
i,i arises from commuting xi through the Y until it is to

the left of yi, i.e. this comes from from repeatedly taking the first term in (ii) of
Lemma 8.7. The coefficient of A+

i,i does not acquire any additional factors and thus

is simply equal to (53).

Terms of A−i = R · (ki ⊗ xi): The overall exponent in A−i comes from straightening

a ki through X from the right. It is easy to see the total number of q factors arising
from this straightening is again given by (53). When moving the xi through the
Y from the right, Shortening occurs for segments {i, . . . , t}, i ≤ t ≤ n; notate this
term by A−i,t.

When i < t, (i) of the Shortening Lemma shows that the Y part of A−i,t is now

(

· · · y
ni,t

i,t y
ni,t+1

i,t+1 · · ·
)

7→
(

· · ·
(

−q
1
2 [ni,t] k

2
i y

ni,t

i,t yi+1,t

)

y
ni,t+1

i,t+1 · · ·
)

.

The k2i needs to be moved through the Y to the left and the yi+1,t needs to be
straightened to the right. From the Passing Lemma 8.8 and a calculation like the
A+

i case, we find the coefficient of A−i,t(n), i < t ≤ n, to be

(56) − α(n)[ni,t]q
3ni−

1
2

i−1
∏

a=1

q
3
2
na,i−

3
2
na,i−1

t−1
∏

b=i+1

q
3
2
ni,b−

3
2
ni+1,b

n
∏

b=t

q
1
2
ni,b−

1
2
ni+1,b

and that the exponents in A−i,t(n) change as

(57) X(n) ⊗ Y(n) 7→ X(n)⊗ Y(ni,t − 1, ni+1,t + 1;n).

As with before, when t = i, no additional powers of q are accrued while com-
muting xi through the y until it is right of yi. Thus A

−
i,i has coefficient (53).

Terms of B+
i = (R · (xi ⊗ ki)): Straightening ki through the Y from the right leads

to an overall coefficient for the terms of B+
i given, yet again, by (53). Terms in B+

i

come from Lengthening of monomials xi+1,t, i ≤ t ≤ n denote the resulting term
by B+

i,t. For i < t, (i) of the Lengthening Lemma 8.6 shows B+
i,t looks like

(

· · · x
ni+1,t−1

i+1,t−1 x
ni+1,t

i+1,t · · ·
)

7→
(

· · · x
ni+1,t−1

i+1,t−1

(

−q
1
2 [ni+1,j ] xi,tx

ni+1,t−1
i+1,t

)

· · ·
)

.

Straightening this form means commuting xi,t to the left through some xi+1,t′ ,
t′ < t, and then through xi,t′′ , t < t′′. By (ii) of the Passing Lemma 8.8, there are
no additional factors of q when moving past the xi+1,b terms; by (i) of the Passing

Lemma, a factor of qni,b is obtained when moving past x
ni,b

i,b . The coefficient of B+
i,t

is thus

(58) − α(n)[ni,t]q
ni+

1
2

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

t
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

n
∏

b=t+1

q
1
2
ni,b+

1
2
ni+1,b
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and the exponents in B+
i,t(n) will change as

(59) X(n) ⊗ Y(n) 7→ X(ni,t + 1, ni+1,t − 1;n)⊗ Y(n).

When t = i, additional contributions of q will come from the first summand in
the Lengthening Lemma 8.6 and from the relations (i) of the Passing Lemma 8.8.
Thus the coefficient of B+

i,i(n) is

(60) α(n)qni

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b .

Terms of B−i = (xi ⊗ ki) · R: Commuting xi through K from the left yields an over-

all coefficient of the inverse of (53) to all terms of B−i . When straightening xi from
the left through X, Lengthening occurs for every segment {s, . . . , i−1}, 1 ≤ s ≤ i−1;
the resulting term will be denoted by B−s,i. Note that this does not include the term

B−i,i arising from moving the new xi to the xi term in X.

To determine the coefficient of B−s,i when 1 ≤ s < i, note that, by the Passing
Lemma, moving xi through the X to xs,i−1 picks up powers of q whenever xi passes
x
na,i−1

a,i−1 , contributing qna,i−1 , and x
na,i

a,i , contributing qna,i . From part (ii) of the
Lengthening Lemma 8.6, the change from Lengthening is

(

· · · x
ns,i−1

s,i−1 x
ns,i

s,i · · ·
)

7→
(

· · ·
(

−q
1
2 [ns,i−1] x

ns,i−1−1
s,i−1 xs,i

)

x
ns,i

s,i · · ·
)

.

No further straightening needs to take place. Thus the coefficient of B−s,i is

(61) − αn[ns,i−1]q
ni−

1
2

s−1
∏

i=1

q
3
2
na,i−

3
2
na,i−1

i−1
∏

a=s

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

and the exponent in B−s,i(n) changes as

(62) X(n)⊗ Y(n) 7→ X(ns,i−1 − 1, ns,i + 1;n)⊗ Y(n).

For s = i, considerations similar to those for B+
i,i show that the coefficient of

B−i,i(n) is

(63) α(n)qni

i−1
∏

a=1

q
3
2
na,i−

3
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b .

8.6. Combining Diagonal Terms. The diagonal A terms A+
i,i(n) and A−i,i(n)

differ only in the Y component as

A+
i,i = KX⊗ K(· · · xiy

ni

i · · · ), A−i,i = KX⊗ K(· · · yni

i xi · · · ).

These terms may be combined in Ai to obtain a commutator [xi, y
ni

i ], which can
be simplified using (v) of Lemma 2.5; denote the resulting term by Ai,i. This term
has coefficient

(64) α(n)[ni] q
ni

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

and exponent change of

(65) X(n)⊗ Y(n) 7→ X(n) ⊗ Y(ni − 1;n).
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Similarly, B+
i,i(n) and B−i,i(n) can be combined, in a manner analogous to how B1

was simplified in the Uh(sl3) case. Specifically, factor out

(q − q)

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

from each of B±i,i(n). This allows us to combine the generators in B±i,i(n), with the
difference

1

q − q

((

i−1
∏

a=1

qna,i−na,i−1

)

qnik
ni−1

i −

(

i−1
∏

a=1

qna,i−na,i−1

)

qnik
ni+1

i

)

in place of the ki in K. After factoring out k
ni+1

i , this can be simplified to the
quantum number

[

hi + ni +

i−1
∑

a=1

na,i − na,i−1

]

.

After straightening, this will contribute the same quantum number as obtain from
simplifying the commutator in Ai,i. Overall, the coefficient of Bi,i is

(66) α(n)(q − q)

i−1
∏

a=1

q
1
2
na,i−

1
2
na,i−1

n
∏

b=i+1

q
1
2
ni,b−

1
2
ni+1,b

and the change in exponent is due only to the additional xi term on the right

(67) X(n)⊗ Y(n) 7→ X(ni + 1;n)⊗ Y(n).

8.6.1. Comparing Terms. Finally, we can construct recurrence relations for the
coefficient α(n) by comparing coefficients of like terms in the equation Ai = Bi.
First, from (65) and (67), we see that the terms of Ai,i agree in shape with those of
Bi,i and their coefficients can be compared after making the index shift ni 7→ ni−1
in Bi,i. From (64) and (66), we obtain a recursion relation for α(n) with respect
to the index ni:

(68) α(n) = α(ni − 1;n)
(q − q)

[ni]
qni

i−1
∏

a=1

qna,i−na,i−1

n
∏

b=i+1

qni,b−ni+1,b .

From (55) and (62), we see that we can compare the coefficient of A+
s,i with that

of B−s,i after shifting the exponents ns,i−1 7→ ns,i−1 for A+
s,i and ns,i 7→ ns,i − 1 for

Bs,i. From (54) and (61), we obtain a recursion relation of the form

(69) α(ns,i − 1;n) =

− α(ns,i−1 − 1;n)
[ns,i]

[ns,i−1]
q2ni−ns,i+ns,i−1

i−1
∏

a=1

qna,i−na,i−1

n
∏

b=i+1

qni,b−ni+1,b .

Comparing (57) and (59) shows that the coefficients of A−i,t and B+
i,t can be com-

pared, after making an appropriate exponent shift, and similar type of recursion
relation can be constructed using (56) and (58). However, the two sets of rela-
tions (68) and (69) are sufficient to solve for α(n).
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8.6.2. Solving Recurrences. The recursion (68) can be solved directly. For (69),
notice that the relation expresses the changes in α(n) with respect to ns,i in terms
of changes with respect to ns,i−1, an exponent indexed by a shorter interval. Thus,
by iterating (69), the relation can be transformed into on expressing the change with
respect to ns,i in terms of the change with respect to ns, at which point (68) can be
used to set up a true recursion relation for α(n) with respect to ns,i. Carrying out
this calculation, marvellous telescoping occurs and the resulting recursion relation
is

(70) α(n) =

(−1)i−sα(ns,i − 1;n)
(q − q)

[ns,i]
qns,i

i
∏

a=1

qna,i

n
∏

b=i+1

qni+1,b

s−1
∏

a=1

qna,s−1

n
∏

b=s

qns,b .

To obtain an expression for α(n), we solve the recursions (68) and (70) individually
and put the resulting expressions together.

Before writing down an expression for R, observe that the cross terms






i
∏

a=1
a 6=s

qns,ina,i

n
∏

b=i+1

qns,ini+1,b













s−1
∏

a=1

qna,s−1ns,i

n
∏

b=s
b6=i

qns,bns,i







in α(n) will be cancelled by factors of q arising from straightening

K(n)X(n) ⊗ K(n)Y(n) 7→ ((k1x1)
n1(k12x12)

n12 · · · )⊗
(

(k1y1)
n1(k12y12)

n12 · · ·
)

the monomials so that powers of ka,b, xa,b and ka,b, ya,b occur together. The result-
ing coefficient α′(n) is then of the form

α′(n) =
n
∏

a=1

n
∏

b=1

(−1)b−a
(q − q)na,b

[na,b]!
q

1
2
na,b(na,b−3).

From this, we deduce the following.

Theorem 8.10. A universal R-morphism for Uh(sln+1), n ≥ 1, is

R = exp





h

4

n
∑

i,j=1

κijhi ⊗ hj





≺
∏

1≤a,b≤n

Expq
(

(−1)b−aλq ka,bxa,b ⊗ ka,bya,b
)

Here, the κij are as in (51), λq is as in (28) and the ≺ on the product signifies
that terms in the product in accordance to the precedence order (49).

8.6.3. Comment on the Other Conditions. The construction above ensures that R
verifies Condition (i) of Definition 5.2. Using q-Exponential form of R, the two
other Conditions can be established in the same way as the Uh(sl2) case.

9. Concluding Remarks

In this final section, we collect some observations about our straightening method
for constructing R-morphisms.
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9.1. Relation With the Quantum Double. Although different, our method
and the Quantum Double method of [Dri87] do appear to be somewhat related.
Computing a R-morphism using the Quantum Double amounts to pairing the sub-
algebra of Uh(sln+1) generated by the xi and hi with its dual, finding dual bases for
these algebras and then identifying the dual with the subalgebra generated by the
yi and the hi. The coefficients of R are then computed by pairing, in an appropriate
sense, the xi with the yi.

An essential feature of our method is the appearance of the commutator [xi, y
ni

i ].
From the straightening formulae involving commutators, we do see that [xi, · ] be-
haves like a derivation on yi and thus may be seen as a sort of pairing between xi
and yi. Upon identifying this, one may perhaps be naturally led to the Quantum
Double. Thus we have achieved one of the goals we set out in the beginning: we
are able to see how certain remarkable algebraic results could have been obtained
to begin with.

9.2. Extensions to Other Lie Algebras. Quantized universal enveloping alge-
bras of other complex semisimple Lie algebras g are defined in a way analogous to
that of sln+1, except that the q-Serre relations change based on the structure of
the Dynkin diagram of g. Nonetheless, constructions similar to the ones made can
be used to simplify these higher order relations to commutation relations, at which
point straightening can be used to calculate a R-morphism.
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Birkhäuser Boston, Inc., Boston, MA, 1993.

[Oht02] Tomotada Ohtsuki. Quantum invariants, volume 29 of Series on Knots and Every-
thing. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. A study of knots,
3-manifolds, and their sets.

[Ram98] Arun Ram. Quantum groups: a survey of definitions, motivations, and results. In Geo-
metric analysis and Lie theory in mathematics and physics, volume 11 of Austral. Math.
Soc. Lect. Ser., pages 20–104. Cambridge Univ. Press, Cambridge, 1998.

[Ros89] Marc Rosso. An analogue of P.B.W. theorem and the universal R-matrix for Uhsl(N+1).
Comm. Math. Phys., 124(2):307–318, 1989.

[RT90] N. Yu. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from
quantum groups. Comm. Math. Phys., 127(1):1–26, 1990.

[RT91] N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and
quantum groups. Invent. Math., 103(3):547–597, 1991.

[Skl85] E. K. Sklyanin. On an algebra generated by quadratic relations. Usp. Mat. Nauk, 40:214,
1985.


	1. Introduction
	1.1. Background
	1.2. Historical comments
	1.3. Organization of the paper

	2. Quantized Universal Enveloping Algebra of sl2
	2.1. Poincaré-Birkhoff-Witt Bases
	2.2. The Lie algebra sl2
	2.3. The Quantized Universal Enveloping Algebra Uhsl2
	2.4. Straightening in Uhsl2

	3. Straightening of XaYb
	4. Inversions in permutations
	4.1. The q-factorial function
	4.2. The quantum exponential function

	5. An R-morphism
	5.1. Quasi-Triangular Hopf Algebras
	5.2. Constructing an R-morphism

	6. Ribbon Hopf algebra structure on Uhsl2
	6.1. Ribbon Hopf Algebras
	6.2. Constructing the element v
	6.3. Knot Invariants and the q-analogue Uqsl2 of Uhsl2

	7. Extension to Uhsl3
	7.1. Quantized Universal Enveloping Algebra Uhsl3
	7.2. Constructing an R-morphism for Uhsl3

	8. Extensions to Uhsln+1
	8.1. q-Serre Relations and PBW Bases
	8.2. Higher Degree Generators in Uhsln+1
	8.3. Commutation Relations in Uhsln+1
	8.4. Exponential Prefactor of R
	8.5. Calculating the Coefficient
	8.6. Combining Diagonal Terms

	9. Concluding Remarks
	9.1. Relation With the Quantum Double
	9.2. Extensions to Other Lie Algebras

	References

