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Abstract

In this chapter of the new book entitled, ”Extending the Theory of Composites
to Other Areas of Science” [edited by Graeme W. Milton, (2016), to appear] we give
a rigorous derivation of the field equation recursion method in the abstract theory
of composites to two-component composites with isotropic phases. This method is
of great interest since it has proven to be a powerful tool in developing sharp bounds
for the effective tensor of a composite material. The reason is that the effective
tensor L∗ can be interpreted in the general framework of the abstract theory of
composites as the Z-operator on a certain orthogonal Z(2) subspace collection.
The base case of the recursion starts with an orthogonal Z(2) subspace collection
on a Hilbert space H, the Z-problem, and the associated Y -problem. We provide
some new conditions for the solvability of both the Z-problem and the associated
Y -problem. We also give explicit representations of the associated Z-operator and
Y -operator and study their analytical properties. An iteration method is then
developed from a hierarchy of subspace collections and their associated operators
which leads to a continued fraction representation of the initial effective tensor L∗.

Key words: field recursion method, abstract theory of composites, effective tensors,
subspace collections, Z-operators, Y -operators, analytic properties

1 Introduction

In this chapter of Milton 2016 we give a rigorous derivation of the field equation recursion
method (Milton and Golden 1985; Milton 1987a, 1987b, 1991; Clark and Milton 1994;
Clark 1997 and Chapter 29 of (Milton 2002) in the abstract theory of composites as
described in Chapter 2 of Milton 2016). The field equation recursion method utilizes
information obtained from series expansions to derive bounds on the effective response.

1

ar
X

iv
:1

60
1.

01
37

8v
1 

 [
m

at
h-

ph
] 

 7
 J

an
 2

01
6



The series expansion information is encoded in a series of positive semidefinite weight
and normalization matrices. The response could be that of a composite material, resistor
network, spring network, or as shown in Chapter 3, that of a multicomponent body with
inclusions having a size comparable to that of the body. More generally, it is applicable
to any problem that can be phrased, in the abstract theory of composites, as a Y -problem
or Z-problem, involving subspace collections with orthogonal subspaces: see Chapter 2.
Thus it is applicable to the many equations discussed in Chapter 1, where the key identity
is used to establish orthogonality of subspaces see section 1.16 of Chapter 1, and Chapter
3 in Milton 2016. In particular, as follows from section 3.11 in Chapter 3 of Milton 2016,
it is applicable to the electromagnetism in multiphase bodies, and thus provides an
alternative to bounds based on variational principles or on the analyticity, established in
Chapter 3 and more rigorously in Chapter 4 of Milton 2016, of the Dirichlet-to-Neumann
map as functions of the frequency and component moduli. As shown in Chapter 4 of
Milton 2016, the bounds can be used in an inverse way to give information on the interior
structure inside the body.

For composite materials the n-th order series expansion terms, in the expansion of the
effective moduli and fields in powers of the contrast between the materials, can in theory
be derived from information derived from n-point correlation functions. These incorpo-
rate, for example in the case of two-component composites, the information contained in
the probability that a polyhedron lands with all vertices in phase 1 when dropped ran-
domly in the composite. The series expansions were first derived by Brown (1955) for two
phase conducting composites and were subsequently extended by others (Herring 1960;
Prager 1960; Beran and Molyneux 1963; Beran 1968; Beran and McCoy 1970); Fokin and
Shermergor 1969; Dederichs and Zeller 1973; Hori 1973; Zeller and Dederichs 1973; Gu-
bernatis and Krumhansl 1975; Kröner 1977; Willis 1981; Milton and Phan-Thien 1982;
Phan-Thien and Milton 1982; Sen and Torquato 1989; Torquato 1997; Tartar 1989, 1990;
and Bruno 1991). See also the book of Torquato (2002), Chapters 14 and 15 in (Milton
2002), and Chapter 10 in Milton 2016, where series expansions are derived for coupled
field problems. In practice these multipoint correlation functions are difficult to obtain:
only three-point correlations can be directly obtained from cross-sectional photographs
of three-dimensional materials, since in general four points have one point lying outside
the plane containing the other 3 points. A far more practical way of obtaining the series
expansion information, when the geometry is known is to use Fast Fourier Transform
methods (Moulinec and Suquet 1994, 1998; Eyre and Milton (1999) and Chapter 9 of
Milton 2016): when the composite is not periodic one can take a cubic representative
volume element of it, and periodically extend it. For the response of bodies, rather than
composites, as discussed in Chapter 3 of Milton 2016, the computation of the series ex-
pansion is more difficult, as computation of the action of the non-local operators Γ1 and
Γ2 requires one to know the Green’s function associated with the body, with appropriate
boundary conditions, and is not simply calculated through Fourier transforms.

For two-component composites the bounds calculated from the field expansion re-
cursion method can alternatively be obtained from variational principles (Milton and
McPhedran 1982), or via the analytic method (Bergman 1978; Milton 1981; Bergman
1993). In a wider context these bounds mostly correspond to bounds on Stieltjes func-
tions, and are related to Padé approximants (Gragg 1968; Baker, Jr. 1969; Field 1976;
Baker, Jr. and Graves-Morris 1981). The real power of the method lies in its application
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to multiphase composites, where it allows one to obtain bounds on complex effective
moduli that have not been obtained by any other method (see Milton 1987b and section
29.6 of Milton 2002). In fact many of the bounds are sharp in the context of the abstract
theory of composites: there is a subspace collection with an associated response function
that saturates the bounds. For real composite materials the differential constraints on
the fields typically impose further restrictons on the subspace collections which make
many bounds non-optimal in this context. For example, for two-dimensional isotropic
composites of two isotropic conducting phases, the differential constraints imply that
the normalization matrices are simply identity matrices (and using this fact the bounds
can be improved) while for other problems (even three dimensional conductivity, with
two isotropic phases) the complete set of constraints on the normalization matrices and
weight matrices is unknown.

The differential constraints are incorporated in the translation method for obtaining
bounds (Tartar 1979, particularly theorem 8; Murat and Tartar 1985; Tartar 1985; Lurie
and Cherkaev 1982, 1984 - see also the books of the books of Allaire 2002; Cherkaev 2000;
Milton 2002; Tartar 2009; and Torquato 2002 and references therein), which however
usually has the disadvantage that there are so many ”translations” to choose from that
it is hard to know which ones will produce the best bounds. The field equation recursion
method has the advantage of being applicable to any problem that can be formulated
in the abstract theory of composites, and the advantage that it produces bounds in a
systematic way.

We have in mind effective tensors L∗ = L∗(L1, . . . ,Ln) with tensors Lj as variables,
but for simplicity we will just consider in this chapter the case n = 2 in which the 2-
variables are just scalars. Then in the abstract setting an effective tensor is just the
Z-operator associated to a Z-problem on a Z(n) subspace collection (see Chapter 29
in Milton 2002 and Chapters 2 and 7 in Milton 2016) and provides a solution to the
Z-problem. The field recursion method is a way to systematically develop, via linear
fractional transformations as each level of the recursion, the continued fraction expan-
sions of the effective tensor L∗, i.e., the initial Z-operator in the recursion. This method
is powerful for developing sharp bounds on the effective tensor analogous to the sharp
bounds of Stieltjes functions via its continued fraction representation using Padé ap-
proximants (Gragg 1968; Baker, Jr. 1969; Field 1976; Baker, Jr. and Graves-Morris
1981).

The rest of this chapter is organized as follows. In section 2 we introduce, in the
Hilbert space setting for the abstract theory of composites, the effective tensor L∗(L1, L2)
and its properties as a function of the composite phases L1 and L2. This tensor is
defined as the Z-operator associated to an orthogonal Z(2) subspace collection in a
Hilbert space H. Next, in section 3.1 we generate the Y∗(L1, L2) tensor on the associated
orthogonal Y (2) subspace collection and develop its functional properties as well as prove
the important linear fractional transformations that connect L∗ and Y∗ together. We
then introduce a new effective tensor L∗

(1)(L1, L2) on a new orthogonal Z(2) subspace
collection in a Hilbert space H(1) which is a subspace of the initial Hilbert space H. The
base case of the recursion is then concluded by showing that these two tensors Y∗ and
L∗

(1) are congruent (i.e., there exists an invertible operator K such that Y∗ = KL∗
(1)K†).

Finally, in section 3.2 we prove via induction (under additional assumptions) that we can
repeat this process, in other words, we can define an effective tensor L∗

(i)(L1, L2) on
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some Z(2) subspace collection in a Hilbert space H(i) which is a subspace of H(i−1).
This method provides a continued fraction representation of the effective tensor L∗ in
terms of the L∗

(i) and Y∗
(i). Thus, if one can provide bounds at each level of this

representation then one can obtain very tight bounds on L∗, which is one of the most
important applications of this field recursion method (Milton 1987b; see also Chapter 9
of Milton 2016).

A major achievement in this chapter is the use of the theory of Fredholm operators
which allows us to significantly reduce, at each level of the induction, the necessary
assumptions required to define the operators L∗

(i) and Y∗
(i). And although our approach

here is abstract, which simplifies mathematically many aspects of the field equation
recursion method, we want to keep in mind that its development is motivated by its
applications in the theory of composites. As such, we use throughout this chapter the
quintessential example of the effective conductivity tensor for composite materials in
quasistatic electromagnetism [see, for instance, (Milton and Golden 1985; Milton 1991;
Clark and Milton 1994; Clark and Milton 1995; Clark 1997; Milton 2002)] in order to
illustrate the theory.

Before we proceed, let us introduce some notations and definitions:

• We denote by B(H) the Banach space of all bounded linear operators on a Hilbert
space H and endow this space with the operator norm.

• If T ∈ B(H), we denote respectively by Ran T, Ker T and T† its range, kernel (i.e.,
nullspace) and adjoint operator.

• If T ∈ B(H), Re T and Im T stands for the bounded operators:

Re T =
T + T†

2
and Im T =

T−T†

2i
.

• An operator T ∈ B(H) is said to be positive definite (i.e., T > 0) if

∀u ∈ H \ {0}, (u,Tu) > 0 (1.1)

and negative definite if −T is positive definite. If the inequality “>” in (1.1) is
instead replaced by “≥”, then one says that T is positive semidefinite.

• An operator T ∈ B(H) is said to be coercive (or uniformly positive), if

∃α > 0 | ∀u ∈ H, (u,Tu) ≥ α (u,u)

and in that case we write T ≥ αI. An operator is said uniformly negative if −T is
coercive.

• We denote by E⊥ the orthogonal complement of a subspace E of H,

• clS stands for the topological closure of a set S in a Hilbert space H in the metric
topology generated by the inner product norm.
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Definition 1. (multivariate analyticity) Let U be an open set of Cn and F a complex
Banach space. A function f : U → F is said to be analytic if it is differentiable on U . If
we denote by Z = (z1, · · · , zn) the points of U , then by the Hartog’s theorem (see Theorem
36.8 in chapter VIII, section 36, p. 271 of Mujica 1986), f is analytic in U if and only
if it is a differentiable function in each variable zi separately.

Definition 2. Let T ∈ B(H), we say that operator T is Fredholm if Ran T is a closed
subspace of H and if Ker T and Ker T† are finite dimensional spaces. In that case, the
index ind T of T is defined by

ind T = dim Ker T− dim Ker T†.

Remark 3. Using the well-known identity cl Ran T = (Ker T†)⊥, it follows that a Fred-
holm operator of index 0 is invertible if and only if Ker T = 0.

We will use the following propositions

Proposition 4. An operator T ∈ B(H) is a Fredholm operator of index 0 if and only if
can be written as T = A+K with A an invertible operator and K a finite-rank operator,
i.e., dim Ran K <∞.

The proof of this result can be found in chapter XV, section 15.2, p. 350, Corollary
2.4 in Gohberg, Goldberg, and Kaashoek 2003.

Proposition 5. Suppose H = H1⊕H2 is an orthogonal decomposition of a Hilbert space
H with dimH1 < ∞. Let T ∈ B(H) be written, with respect to this decomposition, as a
2× 2 block operator matrix form

T =

[
T11 T12

T21 T22

]
. (1.2)

If T is a Fredholm operator of index n then T22 ∈ B(H2) is Fredholm operator of index
n. In particular, if T is invertible then T22 has index 0.

Proof. Suppose that T is a Fredholm operator of index n then since dimH1 < ∞, the
operator [

T11 T12

T21 0

]
(1.3)

is a finite-rank operator in B(H) which implies by the Proposition 4 that[
0 0

0 T22

]
= T−

[
T11 T12

T21 0

]
(1.4)

is a Fredholm operator in B(H) of index n. Thus,

H1 ⊕Ker T22, H1 ⊕Ker T†22, (1.5)

are finite-dimensional, Ran T22 is closed, and

n = dim(H1 ⊕Ker T22)− dim(H1 ⊕Ker T†22) = dim(Ker T22)− dim(Ker T†22).

Therefore, T22 is a Fredholm operator of index n. In particular, if T is invertible then it
is a Fredholm operator of index 0 and so is T22. This completes the proof.
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2 Formulation of the problem for two-component com-

posites

The setting from Chapter 2 of Milton 2016 is a Hilbert space H which has an inner
product (P1,P2) defined for all P1,P2 ∈ H having the usual properties that

(P1,P2) = (P2,P1), (P1,P1) > 0 for all P1 6= 0, (2.6)

with the convention it is linear in the second component and antilinear in the first. This
Hilbert space is assumed to have the decomposition

H = U ⊕ E ⊕ J = P1 ⊕ P2, (2.7)

where the subspaces U , E , and J are mutually orthogonal with respect to this inner prod-
uct as are the subspaces P1, P2. Moreover, we assume U is a finite-dimensional subspace
and that P1 and P2 are non-zero subspaces. Under these assumptions, the decomposition
in (2.7) is referred to as an orthogonal Z(2) subspace collection (see Chapter 7 of Milton
2016).

We denote by Γ0, Γ1 and Γ2 the orthogonal projections on U , E , and J , respectively,
and denote by Λ1 and Λ2 the orthogonal projections onto P1 and P2, respectively. We
want to emphasize that we don’t assume that the operators Λa and Γi commute. In this
abstract setting, the Hilbert space H can be infinite-dimensional and as such it may not
be clear that the subspaces introduced above must all be closed subspaces so that their
corresponding orthogonal projections on each subspace exist. These facts though follow
immediately from the following classical proposition which we prove here so that this
chapter is self-contained.

Proposition 6. Let H be a Hilbert space with inner product (2.6). If M1 and M2 are
subspaces of H which are mutually orthogonal and H = M1 ⊕M2 then M1 and M2

are closed sets in the norm topology on H and, for i, j = 1, 2 with i 6= j, the projection
Qi : H → H onto Mi along Mj, which is uniquely defined by QiP = Pi if P = P1 + P2

for some vectors P1 ∈M1 and P2 ∈M2, is an orthogonal projection.

Proof. Suppose M1 and M2 are subspaces of H which are mutually orthogonal and
H = M1 ⊕M2. Then every P ∈ H can be written as P = P1 + P2 for some unique
P1 ∈ M1, P2 ∈ M2 and there exists unique linear operators Qi : H → H defined by
QiP = Pi, i = 1, 2. In particular, this implies that they are projections, i.e., Q2

i = Qi,
i = 1, 2, with the property that they sum to the identity operator, i.e., Q1 + Q2 = IH.
It now follows from the fact that the spaces M1,M2 are mutually orthogonal that for
any P ∈ H with P = P1 + P2 for some P1 ∈ M1, P2 ∈ M2 we have ||QiP|| = ||Pi|| ≤
||P1|| + ||P2|| = ||P|| and ||QiPi|| = ||Pi|| for i = 1, 2. Thus, since H = M1 ⊕M1,
this implies that in the operator norm ||Qi|| = 1 or Qi = 0 and hence Qi ∈ B(H) for
i = 1, 2. Thus, since B(H) is the space of all continuous linear operator from H into H
in the norm topology on H then this implies Q−1i ({0}) = Mi is a closed set. Finally,
since the spacesM1 andM2 are mutually orthogonal then for any Pi,Ri ∈Mi, i = 1, 2
we have (Qi(P1 + P2),R1 + R2) = (Pi,Ri) = (P1 + P2,Qi(R1 + R2)) which implies
that Q†i = Qi, i.e., the projection operator Qi is self-adjoint, that is, it is an orthogonal
projection. This completes the proof.
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We now define the bounded linear operator-valued function on H by

L = L(L1, L2) = L1Λ1 + L2Λ2. (2.8)

It is a function of a complex variables L1, L2 and L : C2 → B(H) is an analytic B(H)-
valued function in the sense of the Definition 1.

Remark 7. Defining this functional framework for the conductivity equation of a two-
component periodic composite defined by a unit cell D, which is an open simply connected
set with a Lipschitz continuous boundary, and composed of isotropic materials character-
ized by their complex conductivity σ1 and σ2 leads to:

• H = L2(D) = [L2(D)]d the space of square-integrable, d-dimensional, vector-field-
valued functions on the unit cells D endowed with the inner product

(E,E
′
) =

1

V ol(D)

∫
D

E>E′ dx, ∀E,E′ ∈Md,1(C),

where V ol(D) denotes the volume of D,

• U is the d-dimensional space defined by

U = {U ∈ H | U ≡ C, for some C ∈Md,1(C)} ,

• E =
{
E ∈ H | curl E = 0 in D and

∫
D E dx = 0 (zero average condition)

}
,

• J =
{
J ∈ H | div J = 0 in D and

∫
D J dx = 0

}
.

For a proof of the orthogonal decomposition L2(D) = U ⊕ E ⊕J , we refer to Chapter 12
of Milton (2002). Although the definition (2.8) of the operator L may seem abstract, one
sees it is natural in the theory of composites (see Milton 2002) where L is the conductivity
tensor

L(σ1, σ2) = σ1χ1I + σ2χ2I . (2.9)

In this context, χi is the characteristic function of the domain occupied by phase i and the
scalars L1 and L2 in (2.8) are respectively the complex conductivities σ1 and σ2. Thus,
Λ1 = χ1I and Λ2 = χ2I represent respectively the projections onto the spaces P1 and P2

of L2(D) fields which are nonzero only inside phase 1 or 2. Finally, it should emphasized
that the restriction of L on the subspace U ⊕ E represents the constitutive law of the
composite which links an electric field in U ⊕ E to a current density in U ⊕ J .

Following Chapter 7 of Milton 2016, associated to this Z(2) subspace collection (2.7)
is a linear operator-valued function L∗(L1, L2) (i.e., the associated Z-operator) acting on
the subspace U . To obtain this function we begin by solving the following problem: for
a given e ∈ U , find a unique triplet of vectors: j ∈ U , E ∈ E , and J ∈ J that satisfy

j + J = L(e + E), (2.10)
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also known as the Z-problem (see Chapter 7 of Milton 2016). The associated operator
L∗, by definition, governs the linear relation

j = L∗e. (2.11)

To obtain a representation of L∗ using L, we follow the approach of Chapter 12 of Milton
(2002) which consists of expressing L as a 3× 3 block operator matrix

L =

L00 L01 L02

L10 L11 L12

L20 L21 L22

 (2.12)

with respect to the decomposition H = U ⊕ E ⊕ J . Solving the Z-problem (2.10) for a
given e ∈ U is then equivalent to proving that the system

L00e + L01E = j,

L10e + L11E = 0,

L20e + L21E = J,

(2.13)

admits a unique solution (j,E,J) ∈ U × E × J . Under the assumption that the block
operator L11 (which represent the restriction of the operator Γ1LΓ1 on the subspace E)
is invertible, the solution of the system (2.13) is unique and given by

j = (L00 − L01L
−1
11 L10) e,

E = −L−111 L10 e,

J = L20 e + L21 E,

(2.14)

which defines the Z-operator L∗ via a Schur complement by:

L∗ = (L00 − L01L
−1
11 L10) = Γ0LΓ0 − Γ0LΓ1(Γ1LΓ1)

−1Γ1LΓ0, (2.15)

where the second equality in the last relation has to be restricted to the subspace U of
H.

Another representation formula of the operator L∗:

L∗ = Γ0[(Γ0 + Γ2)L
−1(Γ0 + Γ2)]

−1Γ0, (2.16)

is proved in Section 12.8 of Milton (2002), equation (12.59) (see also Section 7.4, equation
(7.59) of Milton 2016) under the assumption that the inverse of (Γ0 + Γ2)L

−1(Γ0 + Γ2)
exists on the subspace U ⊕ J (which requires in particular that L is invertible on H).

Remark 8. For instance, if Im L ≥ αI or Re L ≥ αI for some α > 0 then the inverse of
Γ1LΓ1 on E and the inverse of (Γ0 + Γ2)L

−1(Γ0 + Γ2) on U ⊕J exists and thus the Z−
problem (2.10) is well-defined and both representation formulas (2.15) and (2.16 ) of L∗
hold.

Our next proposition shows that these two representations of L∗ are both well-defined
together or neither is when L−1 exists.
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Proposition 9. If L(L1, L2) is invertible then the operator A := Γ1L(L1, L2)Γ1 : E → E
is a Fredholm operator of index n if and only if the operator B := (Γ0+Γ2)L(L1, L2)

−1(Γ0+
Γ2) : U ⊕ J → U ⊕ J is a Fredholm operator of index n. Furthermore, the operator A
is invertible if and only if B is invertible, and in that case

A−1 = Γ1L(L1, L2)
−1Γ1 − Γ1L(L1, L2)

−1(Γ0 + Γ2)B
−1(Γ0 + Γ2)L(L1, L2)

−1Γ1, (2.17)

B−1 = (Γ0 + Γ2)L(L1, L2)(Γ0 + Γ2)− (Γ0 + Γ2)L(L1, L2)Γ1A
−1Γ1L(L1, L2)(Γ0 + Γ2).

(2.18)

Proof. Suppose L(L1, L2) is invertible. Then with respect to the orthogonal decomposi-
tion of the Hilbert space H = E⊕(U⊕J ), with the corresponding orthogonal projections
Γ1 and Γ0 + Γ2, the operator L(L1, L2) and its inverse L(L1, L2)

−1 can be written as the
2× 2 block operator matrices

L(L1, L2) =

[
A A12

A21 A22

]
, L(L1, L2)

−1 =

[
B11 B12

B21 B

]
. (2.19)

This means that A and B are matricially coupled operators and therefore the proof of
this proposition now follows immediately from Corollary 4.3, pp. 46–47, section III.4 of
Gohberg, Goldberg, and Kaashoek 1990.

Remark 10. The invertibility condition of L(L1, L2) is straightforward to check. Indeed,
we have

L(L1, L2) is invertible if and only if L1 6= 0 and L2 6= 0.

Moreover, the operator L(L1, L2)
−1 is given by the following formula:

L(L1, L2)
−1 =

1

L1

Λ1 +
1

L2

Λ2.

Nevertheless, we emphasize that the invertibility of L on H does not imply in general the
invertibility of Γ1LΓ1 on the subspace E.

It follows from the formulas (2.15) or (2.16) that the analytic B(U)-valued function
L∗(L1, L2) (see Definition 1) satisfies the following homogeneity, normalization, and Her-
glotz properties:

The homogeneity property:

L∗(L1, L2) =
1

c
L∗(cL1, cL2) (2.20)

for all choices of constants c 6= 0.
The normalization property:

L∗(1, 1) = IH. (2.21)

The Herglotz property:

Im L∗(L1, L2) > 0, when Im(L1) > 0 and Im(L2) > 0. (2.22)

9



The Herglotz property of L∗ may not be obvious and so we provide two proofs. The first
one depends on the representation formula (2.16) of L∗. The second one is independent of
the representation formulas (2.15) or (2.16) (which may not exist) and just assumes that
L∗ is well-defined by the Z-problem (2.10). Nevertheless, as it mentioned in Remark
8, this coercivity assumption has the convenience to be a sufficient condition of the
well-posedness of the Z-problem and to justify the existence of the both representation
formulas (2.15) and (2.16) of L∗.

Proof. By the definition (2.8) of the operator L, it is straightforward that the conditions
Im(L1) > 0 and Im(L2) > 0 imply that Im(L) ≥ βI with β = min(Im(L1), Im(L2)) > 0.
Thus, by the Lax-Milgram Theorem one deduces immediately that L is invertible on H
and by virtue of the identities:

Im(T−1) = −(T−1)† Im(T)T−1, Im(M†AM) = M† Im(A)M, (2.23)

which hold for every invertible operator T of B(H) and every A,M ∈ B(H), we get
immediately that Im(Γ0 + Γ2)L

−1(Γ0 + Γ2) is a uniformly negative operator on the
subspace U ⊕ J and thus (by the Lax-Milgram Theorem) (Γ0 + Γ2)L

−1(Γ0 + Γ2) is
invertible on U ⊕J and hence the operator L∗ is well-defined by (2.16) if Im(L1) > 0 and
Im(L2) > 0. Moreover, by using again (2.23), one concludes that Im L∗ = Im Γ0[(Γ0 +
Γ2)L

−1(Γ0 + Γ2)]
−1Γ0 is coercive on U (in particular this implies that L∗ is invertible).

The second version of this proof is based on the definition (2.10) and (2.11) of the
Z-problem. Assume that the L∗(L1, L2) is well-defined by the Z-problem. Let e ∈ U
then there exists a E ∈ E , J ∈ J , and j ∈ U such that L∗(L1, L2)(e + E) = j + J. Hence,

((e + E), Im L(e + E)) = Im
(
e + E,L(e + E)

)
= Im(e + E, j + J)

= Im(e,L∗e)

= (e, Im L∗e). (2.24)

Thus, the positive definiteness of Im L(L1, L2) under this hypothesis Im(L1) > 0 and
Im(L2) > 0 implies immediately the coercivity of Im[L∗(L1, L2)] as U is finite-dimensional,
in particular, it also implies that L∗(L1, L2) is invertible.

3 Field equation recursion method for two-component

composites

3.1 The base case

In the field equation recursion method, the first step is to generate, from the orthogonal
Z(2) subspace collection (2.7), an orthogonal Y (2) subspace collection (see Chapter 9 of
Milton 2016) namely, the Hilbert space

K = E ⊕ J = V ⊕ P(1)
1 ⊕ P

(1)
2 , (3.25)

where K is the orthogonal complement of U in H, i.e.,

K = H	 U . (3.26)
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Then one generates another orthogonal Z(2) subspace collection, namely, the Hilbert
space

H(1) = U (1) ⊕ E (1) ⊕ J (1) = P(1)
1 ⊕ P

(1)
2 , (3.27)

with a suitable choice of the spaces, satisfying the inclusion relations

E (1) ⊆ E , J (1) ⊆ J , P(1)
1 ⊆ P1, P(1)

2 ⊆ P2. (3.28)

We have already defined K = E ⊕J , so our goal is to define the spaces P(1)
1 , P(1)

2 , V ,

E (1)1 , E (1)2 , J (1)
1 , J (1)

2 , H(1), and U (1). The spaces P(1)
1 and P(1)

2 are defined as

P(1)
1 = P1 ∩ K, P(1)

2 = P2 ∩ K. (3.29)

V is the orthogonal complement of H(1) = P(1)
1 ⊕ P

(1)
2 in K, i.e.,

V = K 	H(1), (3.30)

the spaces E (1) and J (1) are defined as

E (1) = E ∩ H(1), J (1) = J ∩H(1), (3.31)

and finally U (1) is defined as the orthogonal complement of E (1)⊕J (1) in the space H(1),
i.e.,

U (1) = H(1) 	 [E (1) ⊕ J (1)]. (3.32)

The following projections Γ1, Γ2, Π1, Π2, Λ
(1)
1 , and Λ

(1)
2 play a key role and are

respectively defined as the orthogonal projections onto E , J , V , H(1), P(1)
1 , and P(1)

2 .

Remark 11. By the subspace inclusion (3.28) we have

L = L1Λ1 + L2Λ2 = L1Λ
(1)
1 + L2Λ

(1)
2 on H(1) = P(1)

1 ⊕ P
(1)
2 (3.33)

L = L2Λ
(1)
2 on P(1)

2 , L = L2Λ
(1)
1 on P(1)

1 . (3.34)

Remark 12. The interpretation of the functional spaces which appear in the two subspace
collections Y (2) and Z(2) in (3.25) and (3.27) in the case of the conductivity equation
for a two-component composite are:

• P(1)
i = Pi ∩ K for i = 1, 2 is the subspace of L2(D) of all fields whose support is

included in the phase i and have zero average in the unit cell D,

• H(1) = P(1)
1 ⊕P

(1)
2 is the subspace of L2(D) of all fields which have zero average in

each phase,

• V is the subspace of L2(D) of all fields which are constant in each phase and have
zero average in the unit cell D,

• E (1) =
{
E ∈ H(1) | curl E = 0 in D

}
, J (1) =

{
J ∈ H(1) | div J = 0 in D

}
.
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The definition (3.32) of the space U (1) is more complicated to interpret, we will see in the
Corollary 19 that it can also be defined as

U (1) = Γ1V ⊕ Γ2V 	 V ,

in other words, as the orthogonal complement of V in Γ1V ⊕ Γ2V.

The Y -operator of the associated Y -problem in the Y (2) subspace collection (3.25)
will be the Y -tensor function Y∗(L1, L2) and the effective tensor function of the Z(2)-
subspace collection (3.27) will be L∗

(1)(L1, L2), i.e., the Z-operator of the associated
Z-problem in the Z(2) subspace collection (3.27). The purpose of this subsection is to
define these two operators and prove that they are congruent operators.

Following Section 7.2 of Chapter 7 of Milton 2016, associated to this Y (2) subspace
collection (3.25) is the Y -tensor function (i.e., the associated Y -operator) which is a linear
operator-valued function Y∗(L1, L2) acting on the space V . To obtain this function we
begin by solving the following problem: for a given E1 ∈ V , find a unique vector pair:
E ∈ E , J ∈ J that satisfy

J2 = LE2, E2 = Π2E, J2 = Π2J, E1 = Π1E, (3.35)

also known as the Y -problem for the Y (2) subspace collection (3.25) (see Chapter 7 of
Milton 2016). The associated operator Y∗, by definition, governs the linear relation

J1 = −Y∗E1, (3.36)

where J1 = Π1J. The formula for the operator Y∗, as given in equation (19.29) of Milton
(2002) (see also Section 7.4, equation (7.67) of Milton 2016) is

Y∗ = Π1Γ2(Γ2Π2L
−1Π2Γ2)

−1Γ2Π1, (3.37)

where the inverse (Γ2Π2L
−1Π2Γ2)

−1, if it exists, is to be taken on the subspace J . For
instance, if Im L ≥ αI or Re L ≥ αI for some α > 0 and Assumption 14 below then the
inverse of Γ2Π2L

−1Π2Γ2 on J exists.

Remark 13. It follows from Remark 11 that

Π2LΠ2 = Π2L = LΠ2 on K. (3.38)

which implies that if L−1 exists then

Π2L
−1Π2 = Π2L

−1 = L−1Π2on K. (3.39)

Assumption 14. We will assume that

Γ2Π2Γ2 ≥ βΓ2 for some β > 0. (3.40)

Proposition 15. A necessary and sufficient condition for Assumption 14 to be true is

V ∩ J = {0}. (3.41)
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Proof. For any P ∈ V ∩ J we have Γ2P = P and Π2P = 0 so that Γ2Π2Γ2P = 0.
This proves that a necessary condition for Assumption 14 to be true is V ∩ J = {0}.
We will now prove that it is also a sufficient condition. The key observations are that
IK = Γ1 + Γ2 = Π1 + Π2 which implies

0 ≤ Γ2Π2Γ2 = Γ2(IK −Π1)Γ2 = Γ2 − Γ2Π1Γ2 (3.42)

and Π1 is a finite-rank operator since its range is V which is a finite-dimensional subspace
by Proposition 18. This implies that

0 ≤ Γ2Π2Γ2|J = IJ − Γ2Π1Γ2|J (3.43)

where Γ2Π1Γ2|J is a finite-rank operator on J , the range of Γ2. This implies by
Proposition 4 that Γ2Π2Γ2|J is an index 0 Fredholm operator on J . Thus, either
Γ2Π2Γ2|JP = 0, P ∈ J has a nontrivial solution or Γ2Π2Γ2|J is invertible on J .
But Γ2Π2Γ2|JP = 0, P ∈ J if and only if P ∈ V ∩ J . This implies Γ2Π2Γ2|J is
invertible if and only if V ∩ J = {0}. This proves that Γ2Π2Γ2 > 0 on J if and only if
V ∩ J = {0}. We now want to prove that we actually have the stronger result, namely,
if V ∩J = {0} then Assumption 14 is true. This follows from immediately from the fact
Γ2Π2Γ2|J is a positive semidefinite self-adjoint bounded operator (its norm is bounded
by 1) which is invertible. Hence, the spectrum σ(Γ2Π2Γ2|J ) of Γ2Π2Γ2|J is contained
in the closure of its numerical range which is a real convex compact set:

[α, β] = cl {(Γ2Π2Γ2 u,u) | u ∈ J , ‖u‖ = 1},

and this interval [α, β] ⊆ [0, 1] has its endpoints α and β belonging to σ(Γ2Π2Γ2|J ).
Thus, as the operator Γ2Π2Γ2|J is invertible, α must be positive and therefore we get
by the definition of the numerical range that Γ2Π2Γ2|J ≥ α IJ .

Corollary 16. Define the operator-valued function on C2 by F(L1, L2) : J → J , where

F(L1, L2) := Γ2Π2L(L1, L2)
−1Π2Γ2.

If V ∩ J = {0} then Ker[F(L1, L2)] = Ker[F(L1, L2)
†] = {0} and the following three

statements are equivalent: (i) Y∗(L1, L2) is well-defined by the formula (3.37); (ii)
Ran[F(L1, L2)] = J ; (iii) F(L1, L2) is a Fredholm operator of index 0.

Proof. Suppose V ∩ J = {0}. We will now show that Ker[F(L1, L2)] = {0}. Let
J ∈ Ker[F(L1, L2)]. Then J ∈ J and 0 = F(L1, L2)J = Γ2Π2L(L1, L2)

−1Π2J implying
that 0 = Π2Γ2Π2L(L1, L2)

−1Π2J. But Γ2Π2Γ2 is invertible on J (as we showed in the
proof of Proposition 15) and Π2 commutes with L(L1, L2) and hence with L(L1, L2)

−1

implying 0 = Π2L(L1, L2)
−1Π2J = L(L1, L2)

−1Π2J. Therefore, we conclude that Π2J =
0 which implies J ∈ V ∩ J = {0} and hence Ker[F(L1, L2)] = {0}. As F(L1, L2)

† =
F(L1, L2), this implies Ker[F(L1, L2)

†] = {0}. The proof of the rest of the statement
now follows immediately from these facts and the fact that since J is a Hilbert space
then Ker[F(L1, L2)

†]⊥ = cl{Ran[F(L1, L2)]}.

Using this corollary we can now give in the next proposition a condition on L that
implies Y∗ is well-defined by the formula (3.36).
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Proposition 17. If (L1, L2) ∈ C2 is such that L(L1, L2) is invertible and the operator
G(L1, L2) := (Γ0 + Γ2)L(L1, L2)

−1(Γ0 + Γ2) : U ⊕J → U ⊕J is also invertible then the
operator F(L1, L2) : J → J (defined in Corollary 16) is a Fredholm operator of index 0.
Moreover, if V ∩ J = {0} then F(L1, L2) is invertible and Y∗(L1, L2) is well-defined by
formula (3.37).

Proof. Suppose that (L1, L2) ∈ C2 such that L(L1, L2) is invertible and the operator
G(L1, L2) : U ⊕ J → U ⊕ J defined above is also invertible. Then with respect to the
orthogonal decomposition of the Hilbert space U ⊕J , with the corresponding orthogonal
projections Γ0 and Γ2, we can write this bounded linear operator in the 2 × 2 block
matrix form

G(L1, L2) =

[
G11 G12

G21 G22

]
, (3.44)

where G22 : J → J is the operator

G22 = Γ2G(L1, L2)Γ2 = Γ2L(L1, L2)
−1Γ2. (3.45)

It follows immediately from Proposition 5 that G22 is a Fredholm operator of index 0.
Using the relation (3.39) and the decomposition Γ2 = Π1Γ2 + Π2Γ2, we can link G22

and F(L1, L2) by the following relation:

F(L1, L2) = Γ2Π2L(L1, L2)
−1Π2Γ2 (3.46)

= G22 − Γ2L(L1, L2)
−1Π1Γ2. (3.47)

Thus, as Ran Π1 = V is a finite-dimensional space (see Corollary 19), by the invariance
of the Fredholm index under perturbation by a compact operator (see Theorem 4.1, p.
355, section 15.4 of Gohberg, Goldberg, and Kaashoek 2003), we obtain that F(L1, L2)
is a Fredholm operator of index 0. The rest of the statements of this proposition now
follow immediately from these facts and Corollary 16. This completes the proof.

We will now show that just as L∗ satisfies the homogeneity and Herglotz property so
too does Y∗ under the Assumption 14, that is, we prove the following:

The homogeneity property:

Y∗(L1, L2) =
1

c
Y∗(cL1, cL2) (3.48)

for all choices of constants c 6= 0.
The Herglotz property:

Im Y∗(L1, L2) > 0, when Im(L1) > 0 and Im(L2) > 0. (3.49)

Proof. We will prove these two properties under Assumption 14. First, the homogeneity
property follows immediately from formula (3.37) and the homogeneity property of L∗.
Next, the Herglotz property of Y∗ will be proven in the same as for L∗ by using formula
(3.37) and the identities (2.23). First, we obtain that under the Herglotz conditions
Im(L1) > 0 and Im(L2) > 0, that Im(L−1) is uniformly negative. Then by Assumption
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14, it follows that the operator Im(Γ2Π2L
−1Π2Γ2) is uniformly negative on J and that

Im(Γ2(Γ2Π2L
−1Π2Γ2)

−1Γ2) is coercive on J . From these facts we conclude that

Im(Π1Γ2(Γ2Π2L
−1Π2Γ2)

−1Γ2Π1) > 0 on V .

The relationship between L∗ and Y∗, proven in Section 19.1 of Milton (2002) and for
two-component composites and in the abstract setting in Section 7.17 of Milton 2016 is
given by

L∗ = Γ0LΓ0 − Γ0LΠ1[Π1LΠ1 + Y∗]
−1Π1LΓ0. (3.50)

Proof. For every e ∈ U which has a solution to the Z-problem, there exists j ∈ U , E ∈ E ,
and J ∈ J such that

j + J = L(e + E), L∗e = j, (3.51)

the latter by definition of L∗. It follows from Remark 13 that E1 = Π1E ∈ V is a solution
to the Y -problem (3.35), i.e.,

J2 = LE2, E2 = Π2E, J2 = Π2J, E1 = Π1E, (3.52)

and, by definition

J1 = −Y∗E1, J1 = Π1J. (3.53)

Thus we can write

j + J1 + J2 = L(e + E1 + E2). (3.54)

We will now prove from these facts that the relationship (3.50) holds. First, we solve for
E1 in terms of e from the identity

−Y∗E1 = J1 = Π1L(e + E1) = Π1L(e + Π1E1) (3.55)

and we find that

E1 = −Π1(Π1LΠ1 + Y∗)
−1Π1Le, (3.56)

where the inverse is take on the subspace V . It then follows that

j + J1 = L(e + E1) = Le + LE1 = Le− LΠ1(Π1LΠ1 + Y∗)
−1Π1Le. (3.57)

Hence we have

L∗e = j = Γ0(j + J1) = [Γ0LΓ0 − Γ0LΠ1(Π1LΠ1 + Y∗)
−1Π1LΓ0]e. (3.58)

Therefore, it follows from this that the relationship (3.50) is true if L∗, Y∗, and (Π1LΠ1+
Y∗)

−1 are well-defined operators (which is true, for instance, when Im(L1) > 0, Im(L2) >
0, and Assumption 14 holds).
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Now consider the Hilbert space H(1), i.e., the orthogonal Z(2) subspace collection
(3.27). First, we emphasize here that the operator L commutes with the orthogonal
projection Π2 whose range is H(1) and hence by Remark 11

L = Π2LΠ2 = L1Λ
(1)
1 + L2Λ

(1)
2 on H(1), (3.59)

where now Λ
(1)
1 and Λ

(1)
2 on H(1) are the orthogonal projections onto P(1)

1 and P(1)
2 ,

respectively. Now associated with the operator L on H(1) and this orthogonal Z(2)
subspace collection is the linear operator-valued function L∗

(1)(L1, L2) (i.e., the associated
Z-operator) acting on the subspace U (1) which is the solution of the corresponding Z-
problem in this new Z(2) subspace collection. The results in section 2 now apply to
this operator L∗

(1)(L1, L2) which, just like L∗, satisfies the homogeneity, Herglotz, and
normalization properties [i.e., the normalization property in this case is L∗

(1)(1, 1) =
IU(1) ]. In particular, L∗

(1) admits the two following representation formulas (when they
are well-defined) similar to the formulas and (2.15) (2.16) but now on the orthogonal
Z(2) subspace collection (3.27):

L∗
(1) = Γ

(1)
0 LΓ

(1)
0 − Γ

(1)
0 LΓ

(1)
1 (Γ

(1)
1 LΓ

(1)
1 )−1Γ

(1)
1 LΓ

(1)
0 (3.60)

and

L∗
(1) = Γ

(1)
0 [(Γ

(1)
0 + Γ

(1)
2 )L−1(Γ

(1)
0 + Γ

(1)
2 )]−1Γ

(1)
0 , (3.61)

where Γ
(1)
0 ,Γ

(1)
1 and Γ

(2)
2 are respectively the orthogonal projections onto U (1), E (1), J (1),

which are related to the orthogonal projection Π2 onto H(1) by Π2 = Γ
(1)
0 + Γ

(2)
1 + Γ

(2)
2 .

Then, can one link the operators Y∗ associated with V and L∗
(1) associated with U (1)?

The answer is yes. The first step in the proof is to show that these two operators act on
finite-dimensional spaces of the same dimension, in other words that dimU (1) = dim(V).
This is a consequence of the following proposition and corollary.

Proposition 18. Let L be a Hilbert space with two orthogonal projections Q1, Q2 which
satisfy Q1 + Q2 = IL. Assume that L has an orthogonal decomposition

L =M⊕N . (3.62)

Define the subspaces N1,N2 by

N1 = (Q1L ∩N )⊕ (Q2L ∩N ), N2 = N 	N1, (3.63)

where the latter denotes the orthogonal complement of N1 in N . Then

M⊕N2 = Q1M⊕Q2M. (3.64)

In particular, if M is finite-dimensional then N2 is finite-dimensional with

dim(N2) = dim(Q1M) + dim(Q2M)− dim(M) ≤ dim(M) (3.65)

Moreover, dim(N2) = dim(M) if and only if Q1L ∩M = Q2L ∩M = {0}.
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Proof. First, N1 ⊆ (Q1M⊕Q2M)⊥ since Q1,Q2 are invariant on N1 andM is orthog-
onal to N which contains N1. This impliesM⊆Q1M⊕Q2M⊆ (Q1M⊕Q2M)⊥⊥ ⊆
N⊥1 = M⊕N2. Let P ∈ M⊕N2 	 (Q1M⊕Q2M). Then P ∈ (Q1M⊕Q2M)⊥ ⊆
M⊥ = N1 ⊕ N2 implying P ∈ N2. But by invariance of Q1,Q2 on Q1M ⊕ Q2M
we must also have Q1P,Q2P ∈ (Q1M⊕ Q2M)⊥ ⊆ N and thus Q1P,Q2P ∈ N1.
This implies P = Q1P + Q2P ∈ N1 ∩ N2 = {0} and hence P = 0. Therefore,
M⊕N2	(Q1M⊕Q2M) = {0} implying the relation (3.64): M⊕N2 = Q1M⊕Q2M,
as desired. Now assume thatM is a finite-dimensional space, then the relation (3.65) fol-
lows immediately from the decomposition (3.64). Next, the equality dim(N2) = dim(M)
is equivalent to dim(Q1M) = dim(Q2M) = dim(M) and, by the rank theorem, it is
equivalent to the injectivity of the restriction of Q1 and Q2 on M. Using the fact Q1

and Q2 are two projections which satisfy Q1 + Q2 = IL, one can easily show that this
injectivity condition is equivalent to Q1L ∩M = Q2L ∩M = {0}. This completes the
proof.

Corollary 19. The spaces V ,U (1) are finite-dimensional and orthogonal to U ,V, respec-
tively. Furthermore,

U ⊕ V = Λ1U ⊕Λ2U , (3.66)

V ⊕ U (1) = Γ1V ⊕ Γ2V , (3.67)

and

dim(V) = dim(Λ1U) + dim(Λ2U)− dim(U) ≤ dim(U), (3.68)

dim(U (1)) = dim(Γ1V) + dim(Γ2V)− dim(V) ≤ dim(V). (3.69)

Moreover, the following two statements are true: (i) dim(V) = dim(U) if and only if
P1 ∩ U = P2 ∩ U = {0}; (ii) dim(U (1)) = dim(V) if and only if E ∩ V = J ∩ V = {0}.

Proof. These results follow immediately from Proposition 18. Indeed, in the Hilbert space
H we have the orthogonal decomposition H = U ⊕ K and two orthogonal projections
Λ1,Λ2 satisfying Λ1 + Λ2 = IH. The spaces L,M,N ,N1,N2 in the above proposition
are H,U ,K,H(1) = P(1)

1 ⊕ P
(1)
2 ,V , respectively, since Λ1H = P1,Λ2H = P2. Similarly,

on the Hilbert space K we have K = V ⊕H(1) and there are two orthogonal projections
Γ1,Γ2 satisfying Γ1 + Γ2 = IK. The spaces L,M,N ,N1,N2 in the above proposition are
K,V ,H(1),H(1) 	 U (1),U (1), respectively, since Γ1K = E ,Γ2K = J . The corollary now
follows from these identifications by Proposition 18. This completes the proof.

Remark 20. In the case of the conductivity equation for the two-component composite,
the conditions P1 ∩ U = P2 ∩ U = {0} always hold. This is a direct consequence of
the definition of the spaces P1,P2 and U (see Remarks 7 and 12) and we deduce that
dimV = dimU = d. Concerning the conditions V ∩ J = {0} and V ∩ E = {0}, they are
nearly always satisfied. Indeed, it depends on the geometry shape of the interfaces between
the two phases. Suppose that the two phases of the composite are Lipschitz domains. A
current density J ∈ V ∩J is (by definition of V) a constant Ci in each phase. Moreover,
it belongs to Hdiv (D) = {U ∈ L2(D) | div U ∈ L2(D)}. Thus at each interface point
between the two phases, the normal component of J has to be continuous (see chapter I
of Monk 2003):

[J · n] = (C2 −C1) · n = 0,
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where n denotes the unit normal vector (oriented for instance from phase 1 to phase
2). Thus, if the set of unit normal of all interface points contains d linear independent
vectors, then J = C2 = C1 in D and the zero average condition on J then implies J = 0.
In the same way, if an electrical field E ∈ V ∩ E, it has to be a constant Ci in each
phase and it belongs to Hcurl (D) = {U ∈ L2(D) | curl U ∈ L2(D)} which implies that its
tangential component is continuous (see chapter I of Monk 2003). This leads to

[E ∧ n] = (C2 −C1) ∧ n = 0,

at each interface point between the two phases. Thus again, if the set of unit normal of
all interface points contains d linear independent vectors, then E = C2 = C1 in D and
the zero average condition on E implies that E = 0. Nevertheless, one can construct
easily for d ≥ 2 counterexamples (with for example linear interfaces) where V ∩J 6= {0}
or V ∩ E 6= {0}.

For instance, consider the example from Milton 2002, pp. 407–408, section 19.4 of a
laminate of two phases laminated in direction n: Let f1, f2 denote the volume fraction
occupied by phase i = 1, 2, then the piecewise constant average value zero fields

E = [f2χ1 − f1χ2]n, J = [f2χ1 − f1χ2]v, with n · v = 0, (3.70)

are curl free and divergence free, respectively, and therefore lie in V ∩ E 6= {0} and
V ∩ J 6= {0}, respectively.

Now, that we know under some assumptions that dimV = dimU (1), the second step
is to construct an invertible linear map K : U (1) → V to show that the operators Y∗ and
L∗

(1) are K congruent, in other words that:

Y∗(L1, L2) = KL∗
(1)(L1, L2)K

†.

This is the purpose of the following theorem.

Theorem 21. If P1 ∩ U = P2 ∩ U = {0}, E ∩ V = J ∩ V = {0} then Assumption
14 is true, dimU = dimV = dimU (1), and assuming the operators Y∗ = Y∗(L1, L2),
L∗

(1) = L∗
(1)(L1, L2) operators in (3.37) and (3.60), respectively, are well-defined (which

is the case, for instance, if L is coercive) we have

Y∗(L1, L2) = KL∗
(1)(L1, L2)K

† (3.71)

where K : U (1) → V is the invertible operator defined by

K = −(Π1Γ1Π1)
−1Π1Γ1Π2, (3.72)

with the inverse of Π1Γ1Π1 taken on V.

Proof. Suppose that P1∩U = P2∩U = {0}, E∩V = J ∩V = {0}. It then follows that by
Proposition 14 since J ∩ V = {0} we know that Assumption 14 is true, by Corollary 19
since P1∩U = P2∩U = {0} we know that dimU = dimV and since E ∩V = J ∩V = {0}
we know that dimV = dimU (1). Also, since J ∩ V = {0} and V is finite-dimensional
then Π1Γ1Π1 is invertible on V and hence the operator K : U (1) → V given by (3.72)
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is well-defined. We will now prove it is invertible. To do this we introduce the operator
K′ : U (1) → V defined by

K′ = −(Π1Γ2Π1)
−1Π1Γ2Π2, (3.73)

with the inverse of Π1Γ2Π1 taken on V , which exists since by assumption E ∩ V = {0}
and V is finite-dimensional. We will now prove that K is invertible by showing that
K† = −(K′)−1. This follows now from the fact that dimV = dimU (1) <∞ and on V ,

K′K† = (Π1Γ2Π1)
−1Π1Γ2Π2Π2Γ1Π1(Π1Γ1Π1)

−1

= (Π1Γ2Π1)
−1Π1Γ2(IK −Π1)Γ1Π1(Π1Γ1Π1)

−1

= −(Π1Γ2Π1)
−1Π1Γ2Π1Γ1Π1(Π1Γ1Π1)

−1 = −Π1Γ1Π1(Π1Γ1Π1)
−1 = −IV .

Now suppose the operators Y∗ = Y∗(L1, L2), L∗
(1) = L∗

(1)(L1, L2) in (3.37) and (3.61),
respectively, are well-defined. We will prove the identity (3.71). For any E1 ∈ V we have
J1 := −Y∗E1 ∈ V and we know that there exists a solution to the Y -problem, i.e., there
exists an E′ ∈ E and J′ ∈ J such that Π1E

′ = E1, Π1J
′ = J1 and J2 = LE2 where

J2 := Π2J
′ and E2 := Π2E

′. Moreover, we remark that

E2 = Π2E
′ ∈ Π2(E) ⊆ Π2(E1 ⊕ U1 ⊕ V) = E1 ⊕ U1

and in the same way that J2 ∈ J1 ⊕ U1.
But for this E

(1)
0 := Γ

(1)
0 E′ we construct a solution to the Z-problem on the Z(2)

subspace collection H(1) = U (1) ⊕ E (1) ⊕ J (1) = P(1)
1 ⊕ P

(1)
2 , namely, E

(1)
0 ∈ U (1) and

we have J
(1)
0 := Γ

(1)
0 J′ ∈ U (1), E := E2 − E

(1)
0 ∈ E (1), J := J2 − J

(1)
0 ∈ J (1) such that

J
(1)
0 +J = J2 = L(E2) = L(E

(1)
0 +E). But the Z-operator associated with the Z-problem

on this Z(2) subspace collection H(1) is L∗
(1) and hence

J
(1)
0 = L∗

(1)E
(1)
0 . (3.74)

We will now prove that J1 = KJ
(1)
0 and E1 = K′E

(1)
0 . First, since J2−J

(1)
0 = J ∈ J (1) ⊆

J , we have

0 = Γ1(J2 − J
(1)
0 ) = Γ1J2 − Γ1J

(1)
0 (3.75)

which leads to

Π1Γ1J2 = Π1Γ1Π2J
(1)
0 . (3.76)

Then, using the relation J2 = J′ − J1 with J′ ∈ J and J1 ∈ V , we get

Π1Γ1Π1J1 = −Π1Γ1Π2J
(1)
0 (3.77)

and it yields to

J1 = KJ
(1)
0 . (3.78)

Similarly, since E2 − E
(1)
0 = E ∈ E (1) ⊆ E then

0 = Γ2(E2 − E
(1)
0 ) = Γ2E2 − Γ2E

(1)
0 (3.79)

19



and we get that

Π1Γ2Π1E1 = −Π1Γ2Π2E
(1)
0 (3.80)

which leads to

E1 = K′E
(1)
0 . (3.81)

It follows from these facts that

−Y∗E1 = J1 = KJ
(1)
0 = KL∗

(1)E
(1)
0 = KL∗

(1)(K′)−1E(1) = −KL∗
(1)K†E1.

As this is true for every E1 ∈ V this implies the relation

Y∗ = KL∗
(1)K† (3.82)

as desired. This completes the proof.

We want now to give necessary conditions under which the operators L∗
(1) is well-

defined. This question is not as clear as for Y∗ (see Proposition 17) since the well-
posedness of the effective tensors L∗

(1) (as for the effective L∗ for the base case) is directly
linked to the properties of the operators L in the subspace decomposition H(1) = U (1) ⊕
E (1) ⊕J (1) and therefore is highly dependent on the physical problem and the structure
of the composite.

For instance, the representation formulas (3.60) and (3.61) of L∗
(1) are respectively

defined under the existence of the inverse Γ
(1)
1 LΓ

(1)
1 on E (i) and of the inverse of (Γ

(1)
0 +

Γ
(1)
2 )L−1(Γ

(1)
0 + Γ

(1)
2 ) on U (1) ⊕ J (1). We saw indeed that the existence of these both

inverses is equivalent as soon as L is invertible on H(1) (see Proposition 9). By the
Remarks 10 and 11, the invertibility of L on H(1) follows from the invertibility of L on
H which is equivalent to L1 6= 0 and L2 6= 0. Moreover, if L is coercive (see Remark
8) which is the case for example under the Herglotz hypothesis (3.49) then L∗

(1) is well-
defined by both formulas (3.60) and (3.61). But what can we say if we don’t suppose
this strong coercivity assumption?

As the field equation recursion method is an induction method, we want to establish
here some criterion of well-posedness for L∗

(1) that it inherits from the well-posedness of
L∗ in the base case. For this purpose, the representation formula (3.60) is more suitable
since the space E (1) is constructed as a subspace of E (which is not the case of the formula
(3.61) since U (1) ⊕ J (1) is not included in U ⊕ J ).

Proposition 22. Let W(1) be the subspace of E defined by

W(1) = E 	 E (1), (3.83)

in other words, the orthogonal complements of E (1) in E. ThenW(1) is a finite-dimensional
space and L11 (the restriction of the operator Γ1LΓ1 on E) can be represented as a 2× 2
block operator matrix

L11 =

[
A B

C L
(1)
11

]
, (3.84)
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with respect to the orthogonal decomposition (3.83), where L
(1)
11 is the restriction of

Γ
(1)
1 LΓ

(1)
1 on E (1). Furthermore, if L11 is invertible then L

(1)
11 is a index 0 Fredholm oper-

ator and the invertibilty of L
(1)
11 is equivalent to the injectivity condition: Ker L

(1)
11 = {0}.

Hence, if the representation formula (2.15) holds for L∗ and Ker L
(1)
11 = {0} then L∗

(1) is
well-defined by the formula (3.60).

Proof. We have simply to prove here that W(1) is a finite-dimensional space since all
the other conclusions follow immediately from Proposition 5. From the relations (3.25),
(3.27) and (3.28), we have that

K = E ⊕ J = V ⊕ U (1) ⊕ E (1) ⊕ J (1) with E (1) ⊆ E and J (1) ⊆ J .

Therefore, E = E (1)⊕W(1) ⊆ E (1)⊕V ⊕U (1) and, since V and U (1) are finite dimensional
spaces by Corollary 19, this implies that W(1) is finite dimensional.

3.2 The induction step

We now introduce a hierarchy of spaces

K(i−1) = E (i−1) ⊕ J (i−1) = V(i−1) ⊕ P(i)
1 ⊕ P

(i)
2 , (3.85)

H(i) = U (i) ⊕ E (i) ⊕ J (i) = P(i)
1 ⊕ P

(i)
2 , (3.86)

for i = 1, 2, 3, . . . , where

P(i)
1 = P1 ∩ K(i−1), P(i)

2 = P2 ∩ K(i−1), V(i−1) = K(i−1) 	 (P(i)
1 ⊕ P

(i)
2 ), (3.87)

E (i) = E ∩ H(i), J (i) = J ∩H(i), U (i) = H(i) 	 (E (i) ⊕ J (i)). (3.88)

For all positive integers i, we denote by Π
(i)
1 and Π

(i)
2 the orthogonal projections on V(i−1)

and H(i) = P(i)
1 ⊕P

(i)
2 associated with the orthogonal Y (2) subspace collection (3.85) and

by Γ
(i)
0 , Γ

(i)
1 , Γ

(i)
2 , Λ

(i)
1 and Λ

(i)
2 the orthogonal projections on U (i), E (i), J (i), P(i)

1 and

P(i)
2 associated with the orthogonal Z(2) subspace collection (3.86).

The following theorem defines and gives the properties of the Z- and Y -operators at
each level i of the induction argument. We take here as convention that in the indexing
of the spaces and operators, the index 0 refers to the base case developed in sections 2
and 3. Also, we denote by L

(i)
11 the restriction of the operator Γ

(i)
1 LΓ

(i)
1 on E (i).

Theorem 23. Assume that the operators L on H(0) and L
(0)
11 on E (0) are invertible and

let i ∈ N. If, for each k = 1, ...., i, we have Ker L
(k)
11 = {0} then for all k = 0, ...., i, the

Z-operator L∗
(k) : U (k) → U (k) is well-defined by both representation formulas:

L∗
(k) = Γ

(k)
0 LΓ

(k)
0 − Γ

(k)
0 LΓ

(k)
1 (Γ

(k)
1 LΓ

(k)
1 )−1Γ

(k)
1 LΓ

(k)
0 ] (3.89)

= Γ
(k)
0 [(Γ

(k)
0 + Γ

(k)
2 )L−1(Γ

(k)
0 + Γ

(k)
2 )]−1Γ

(k)
0 , (3.90)

and L∗
(k) satisfies the homogeneity, normalization, and Herglotz properties. Furthermore,

if V(k) ∩ J (k) = {0} for each k = 0, ...., i, then the Y -operator Y∗
(k) : V(k) → V(k) is also

well-defined by

Y∗
(k) = Π

(k)
1 Γ

(k)
2 (Γ

(k)
2 Π

(k)
2 L−1Π

(k)
2 Γ

(k)
2 )−1Γ

(k)
2 Π

(k)
1 , (3.91)
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and Y∗
(k) satisfies both the homogeneity and Herglotz properties. Moreover, if we also

suppose that

V(k) ∩ E (k) = 0 and P(k)
1 ∩ U (k) = P(k)

2 ∩ U (k) = {0}, for all k = 0, ..., i− 1

then for all k = 0, ..., i− 1:

dimU (0) = dimU (k) = dimV(k) = dimU (i), (3.92)

and there exists an invertible operator K(k) : U (k+1) → V(k) defined by

K(k) = −(Π
(k)
1 Γ

(k)
1 Π

(k)
1 )−1Π

(k)
1 Γ

(k)
1 Π

(k)
2 , (3.93)

such that Y∗
(k) and L∗

(k+1) are linked by the following relation:

Y∗
(k) = K(k)L∗

(k+1) (K(k))†. (3.94)

Proof. Suppose the operators L on H(0) and L
(0)
11 on E (0) are invertible and fix an integer

i ∈ N. First, by Proposition 9, in the case k = 0 the Z-operator L∗
(0) : U (0) → U (0)

is well-defined by both formulas (3.89) and (3.90) and hence satisfies the homogeneity,
normalization, and Herglotz properties.

Next, suppose that for each k = 1, ...., i, we have Ker L
(k)
11 = {0}. Hence, as L

(0)
11 is

invertible, we deduce by induction by using the Proposition 22 that all the operators
L

(1)
11 , . . . ,L

(i)
11 are invertible and that the Z-operator L∗

(k) : U (k) → U (k) is well-defined by
formula (3.89). Then, as L is assumed invertible on H, we have L1 6= 0 and L2 6= 0 (see
Remark 10) and this implies that L is invertible on H(k) too (see Remark 11). Hence, it
follows from Proposition 9 that the Z-operator L∗

(k) is also well-defined by the formula
(3.90) and thus satisfies the homogeneity, normalization, and Herglotz properties.

Suppose now that in addition, V(k) ∩J (k) = {0} for each k = 0, ...., i. Then it follows
immediately from Proposition 17 that the Y -operator Y∗

(k) : V(k) → V(k) is also well-
defined by the formula (3.91) and hence satisfies both the homogeneity and Herglotz
properties for all k = 0, ...., i.

Finally, suppose that in addition,

V(k) ∩ E (k) = 0 and P(k)
1 ∩ U (k) = P(k)

2 ∩ U (k) = {0}, for all k = 0, ..., i− 1.

Then the rest of the proof of this theorem now follows immediately from Theorem 21.
This completes the proof.
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1983, pp. 168–187. London: Pitman Publishing Ltd. ISBN 0-273-08680-4. LCCN
QA377 .E56 1983.

Tartar, L. 1989. H-measures and small amplitude homogenization. In R. V. Kohn and
G. W. Milton (eds.), Proceedings of the SIAM Workshop on Random Media and
Composites, Leesburg, Virginia, December 7–10, 1988, pp. 89–99. Philadelphia:
SIAM Press. ISBN 0-89871-246-7. LCCN TA401.3 .S53 1988.

Tartar, L. 1990. H-measures, a new approach for studying homogenization, oscillations
and concentration effects in partial differential equations. Proceedings of the Royal
Society of Edinburgh. Section A, Mathematical and Physical Sciences 115(3–4):
193–230.

Tartar, L. 2009. The General Theory of Homogenization: A Personalized Introduction.
Berlin / Heidelberg / London / etc.: Springer-Verlag. ISBN 978-3-642-05194-4.

Torquato, S. 1997. Effective stiffness tensor of composite media. I. Exact series expan-
sions. Journal of the Mechanics and Physics of Solids 45(9):1421–1448.

Torquato, S. 2002. Random Heterogeneous Materials: Microstructure and Macroscopic
Properties. Berlin / Heidelberg / London / etc.: Springer-Verlag. 703 pp. ISBN
978-0-387-95167-6.

Willis, J. R. 1981. Variational and related methods for the overall properties of com-
posites. Advances in Applied Mechanics 21:1–78.

Zeller, R. and P. H. Dederichs 1973. Elastic constants of polycrystals. Physica Status
Solidi. B, Basic Research 55:831–842.

26


	1 Introduction
	2 Formulation of the problem for two-component composites
	3 Field equation recursion method for two-component composites
	3.1 The base case
	3.2 The induction step


