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Abstract

Heterogeneous networks (HetNets) are subject to strong interference due to spectrum reuse. This

affects the signal-to-interference ratio (SIR) of each user, and hence is one of the limiting factors of

network performance. However, in previous works, interference management approaches in HetNets are

mainly based on signal or interference level, and thus cannot effectively improve network performance. In

this paper, we propose a user-centric interference nulling(IN) scheme in downlink large-scale HetNets to

improve network performance by improving each user’s SIR. This scheme has three design parameters:

the maximum degree of freedom for IN (i.e., maximum IN DoF), and the IN thresholds for macro and

pico users, respectively. Using tools from stochastic geometry, we first obtain a tractable expression of the

coverage (equivalently outage) probability. Then, we obtain the asymptotic expressions of the outage

and coverage probabilities in the low and high SIR thresholdregimes, respectively. The asymptotic

expressions indicate that the maximum IN DoF and the IN thresholds affect the asymptotic outage

(coverage) probability in dramatically different ways. Moreover, we characterize the optimal maximum

IN DoF which optimizes the asymptotic outage (coverage) probability. The optimization results reveal

that the IN scheme can linearly improve the performance in the low SIR threshold regime, but cannot

improve the performance in the high SIR threshold regime. Finally, numerical results show that the

user-centric IN scheme can achieve good performance gains over existing schemes.
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I. INTRODUCTION

The modern wireless networks have seen a significant growth of high data rate applications.

The conventional cellular solution, which comprises of high power base stations (BSs), cannot

scale with the increasing data rate demand. One solution is the deployment of low power small

cell BSs overlaid with conventional large power macro-BSs,so called heterogeneous networks

(HetNets) [1, 2]. HetNets are capable of aggressively reusing existing spectrum assets to support

high data rate applications. However, spectrum reuse in HetNets causes strong interference. This

affects the signal-to-interference ratio (SIR) of each user, and hence is one of the limiting factors

of network performance. Interference management techniques are thus desirable in HetNets [3].

One such technique is interference cooperation. For example, in [4–6], different interference

cooperation strategies are considered and their performances are analyzed for large-scale HetNets

under random models using tools from stochastic geometry [7, 8]. Specifically, [4] proposes an

interference cooperation strategy among a fixed number of BSs from different tiers of a HetNet

which jointly provide the strongest average receive power for the typical user. Reference [5]

proposes an interference cooperation strategy among BSs from different tiers of a HetNet which

provide long-term average received powers for the typical user above thresholds of different

tiers. Reference [6] proposes an interference cooperationstrategy among BSs from different

tiers of a HetNet where the typical user is either served by its nearest (single) BS or nearest

marco and pico BSs jointly. However, in [4–6], the cooperation clusters are formed to favor the

typical user only, and hence, the analytical performance ofthe typical user is better than the

actual network performance (of all the users). In addition,[4–6] only consider single-antenna

BSs. Orthogonalizing the time or frequency resource allocated to macro cells and small cells

can also mitigate interference in HetNets. One such technique is almost blank subframes (ABS)

in 3GPP LTE [9]. In ABS, the time or frequency resource is partitioned, whereby offloaded

users and the other users are served using different portions of the resource. The performance

of ABS in large-scale HetNets with offloading is analyzed in [9] using tools from stochastic

geometry. Note that ABS mitigates the interference of offloaded users, and [9] only considers

single-antenna BSs.

Deploying multiple antennas at each BS in HetNets can further improve network performance.

With multiple antennas, besides boosting the desired signal to each user, more effective inter-
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ference management techniques can be implemented. For example, interference coordination

strategies are proposed and analyzed in [10–14]. In [10–12], the authors consider a HetNet with

a single multi-antenna macro-BS and multiple small-BSs, where the multiple antennas at the

macro-BS are used for serving its scheduled users as well as mitigating the interference to the

small cell users using different interference coordination schemes. These schemes are analyzed

and shown to improve the performance of the HetNet. However,since only one macro-BS is

considered, the analytical results obtained in [10–12] cannot reflect the macro-tier interference,

and thus may not offer accurate insights for practical HetNets. Reference [14] proposes an

interference nulling scheme where some degree of freedom ateach macro-BS can be used

for avoiding its interference to some of its offloaded users.The amount of degree of freedom

for interference nulling is an adjustable parameter and is optimized to improve the network

performance. However, the interference nulling scheme proposed in [14] only improves the

performance of offloaded users, and hence may not effectively improve the overall network

performance. In [13], a fixed number of BSs which provide the strongest average received

power for the typical user form a cluster, and adopt an interference coordination scheme in a

large-scale multi-antenna HetNet, where the BSs in each cluster mitigate interference to users

in this cluster. Bounds of the coverage probability are derived based on the assumption that the

BSs in each cluster are the strongest BSs of all the users in this cluster.

The investigation of interference management techniques in large-scale single-tier multi-antenna

cellular networks is less involved than that in large-scalemulti-antenna HetNets, and hence has

been more extensively conducted (see [15, 16] [17] [18] and the references therein). In [17]

[15] [18], all the BSs are grouped into disjoint clusters. Coordination [17] [15] and cooperation

[18] are performed among the BSs within each cluster to mitigate intra-cluster interference.

Specifically, [17] and [15] design disjoint BS clustering from a transmitter’s point of view and

fail to consider each user’s interference situation. The dynamic clustering proposed in [18]

considers all the users’ signal and interference situations to optimize the network performance.

However, it requires centralized control and may not be suitable for large networks. Recently,

a novel distributed user-centric IN scheme, which takes account of each user’s desired signal

strength and interference level, is proposed and analyzed for single-tier multi-antenna cellular

networks in [16]. However, in [16], the maximum degree of freedom for IN (i.e., maximum IN

DoF) at each BS is not adjustable, and thus cannot properly exploit limited resource in single-
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tier cellular networks. Moreover, directly applying the scheme in [16] to HetNets cannot fully

exploit different properties of macro and pico users in HetNets.

In this paper, we consider the downlink large-scale two-tier multi-antenna HetNets and propose

a user-centric IN scheme to improve network performance by improving each user’s SIR. In this

scheme, each scheduled macro (pico) user first sends an IN request to a macro-BS1 if the power

ratio of its desired signal and the interference from the macro-BS, referred to as the signal-

to-individual-interference ratio (SIIR), is below an IN threshold for macro (pico) users. Then,

each macro-BS utilizes zero-forcing beamforming (ZFBF) precoder to avoid interference to at

mostU scheduled users which send IN requests to it as well as boost the desired signal to its

scheduled user. This scheme has three design parameters: the maximum IN DoFU , and the

IN thresholds for macro and pico users, respectively. In general, the performance analysis and

optimization of interference management techniques in large-scale multi-antenna HetNets are

very challenging, mainly due to i) the statistical dependence among macro-BSs and pico-BSs

[10], ii) the complex distribution of desired signal using multi-antenna communication schemes,

and iii) the complicated interference distribution causedby interference management techniques

(e.g., beamforming). Our main contributions are summarized below. The analytical and numerical

results obtained in this paper provide valuable design insights for practical HetNets.

• We obtain a tractable expression of the coverage (equivalently outage) probability, by

adopting appropriate approximations and utilizing tools from stochastic geometry.

• We obtain the asymptotic expressions of the outage and coverage probabilities in the low

and high SIR threshold regimes, respectively, using seriesexpansions of special functions.

The asymptotic expressions indicate that the maximum IN DoFand the IN thresholds affect

the asymptotic outage (coverage) probability in dramatically different ways.

• We consider the optimizations of the maximum IN DoF for givenIN thresholds in the

two asymptotic regimes, which are challenging integer programming problems with very

complicated objective functions. By exploiting the structure of each objective function, we

characterize the optimal maximum IN DoF. The optimization results reveal that the IN

1Note that, compared to a pico-BS, a macro-BS usually causes stronger interference due to larger transmit power, and has a

better capability of performing spatial cancellation due to a larger number of transmit antennas. Thus, it is more advisable to

perform IN at macro-BSs.
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scheme can linearly improve the performance in the low SIR threshold regime, but cannot

improve the performance in the high SIR threshold regime.

• We show that the IN scheme can achieve good performance gainsover existing schemes,

using numerical results.

II. NETWORK MODEL

We consider a two-tier HetNet where a macro-cell tier is overlaid with a pico-cell tier, as

shown in Fig. 1. The locations of the macro-BSs and the pico-BSs are spatially distributed as

two independent homogeneous Poisson point processes (PPPs) Φ1 andΦ2 with densitiesλ1 and

λ2, respectively. The locations of the users are also distributed as an independent homogeneous

PPPΦu with densityλu. Without loss of generality, denote the macro-cell tier as the1st tier and

the pico-cell tier as the2nd tier. We focus on the downlink scenario. Each macro-BS hasN1

antennas with total transmission powerP1, each pico-BS hasN2 antennas with total transmission

powerP2, and each user has a single antenna. AssumeN1 > N2. We consider both large-scale

fading and small-scale fading. Specifically, due to large-scale fading, transmitted signals from

thejth tier with distancer are attenuated by a factor1
r
αj , whereαj > 2 is the path loss exponent

of the jth tier andj = 1, 2. For small-scale fading, we assume Rayleigh fading channels.

A. User Association

We assume open access [4]. Useri (denoted asui) is associated with the BS which provides

the maximumlong-term averagereceived power among all the macro-BSs and pico-BSs. This

associated BS is called theserving BSof useri. Note that within each tier, the nearest BS to user

i provides the strongest long-term average received power inthis tier. Useri is thus associated

with (the nearest BS in) thej∗i th tier, if2 j∗i = arg maxj∈{1,2}PjZ
−αj

i,j , whereZi,j is the distance

between useri and its nearest BS in thejth tier. We refer to the users associated with the macro-

cell tier as themacro-users, denoted asU1 ,
{

ui|P1Z
−α1
i,1 ≥ P2Z

−α2
i,2

}

, and the users associated

with the pico-cell tier as thepico-users, denoted asU2 ,
{

ui|P2Z
−α2
i,2 > P1Z

−α1
i,1

}

. All the users

can be partitioned into two disjoint user sets:U1 andU2. After the user association, each BS

2In the user association procedure, the first antenna is normally used to transmit signal (using the total transmission power of

each BS) for received power determination according to LTE standards.
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Fig. 1. System Model (U = 1).

schedules its associated users according to TDMA, i.e., scheduling one user in each time slot.

Hence, there is no intra-cell interference.

B. Performance Metric

In this paper, we study the performance of the typical user denoted asu0, which is a scheduled

user located at the origin [19]. Since HetNets are interference-limited, we ignore the thermal

noise in the analysis of this paper. Note that the analyticalresults with thermal noise can be

calculated in a similar way [20]. We investigate thecoverage probabilityof u0, which is defined

as the probability that the SIR ofu0 is larger than a threshold [4], i.e.,

S(β)
∆
= Pr (SIR0 > β) (1)

whereβ is the SIR threshold.

III. U SER-CENTRIC INTERFERENCENULLING SCHEME

In this section, we first elaborate on a user-centric IN scheme. Then, we obtain some distri-

butions related to this scheme.

A. Scheme Description

First, we refer to an interfering macro-BS which causes the SIIR at a scheduled useri in the

jth tier (ui ∈ Uj) below thresholdTj ≥ 1 as apotential IN macro-BSof ui, wherej = 1, 2.

We refer toTj as theIN thresholdfor the jth tier. Mathematically, interfering macro-BSℓ is a

potential IN macro-BS of scheduled userui ∈ Uj if
PjZ

−αj
i,j

P1D
−α1
1,ℓi

< Tj , whereD1,ℓi is the distance
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from macro-BSℓ to ui. Note thatT1 andT2 are two design parameters of the IN scheme. In

each time slot, each scheduled user sends IN requests to all of its potential IN macro-BSs. We

refer to the scheduled users which send IN requests to interfering macro-BSℓ as thepotential

IN usersof interfering macro-BSℓ (in this time slot). We introduce another design parameter

U ∈ {0, 1, · · · , N1 − 1} of this IN scheme, referred to as themaximum IN DoF. Consider a

particular time slot. LetKℓ denote the number of the potential IN users of interfering macro-BS

ℓ.3 Consider two cases in the following. i) IfKℓ > 0 andU > 0, macro-BSℓ makes use of

at mostU DoF to perform IN to some of its potential IN users. In particular, if 0 < Kℓ ≤ U ,

macro-BSℓ can perform IN to all of itsKℓ potential IN users usingKℓ DoF; if Kℓ > U , macro-

BS ℓ randomly selectsU out of itsKℓ potential IN users according to the uniform distribution,

and perform IN to the selectedU users usingU DoF. Hence, in this case, macro-BSℓ performs

IN to uIN,ℓ
∆
= min (U,Kℓ) potential IN users (referred to as theIN usersof macro-BSℓ) using

uIN,ℓ DoF (referred to as theIN DoF of macro-BSℓ). ii) If Kℓ = 0 or U = 0, macro-BSℓ does

not perform IN. In this case, we letuIN,ℓ = 0. In both cases,N1 − uIN,ℓ DoF at macro-BSℓ is

used for boosting the desired signal to its scheduled user.

Now, we introduce the precoding vectors at macro-BSs in the IN scheme. Consider two cases in

the following. i) If Kℓ > 0 andU > 0, macro-BSℓ utilizes the low-complexity ZFBF precoder to

serve its scheduled user and simultaneously perform IN to its uIN,ℓ IN users. Specifically, denote

H1,ℓ =
[

h1,ℓ g1,ℓ1 . . . g1,ℓuIN,ℓ

]†
, where4 h1,ℓ

d
∼ CNN1,1 (0N1×1, IN1) denotes the channel vector

between macro-BSℓ and its scheduled user, andg1,ℓi
d
∼ CNN1,1 (0N1×1, IN1) denotes the channel

vector between macro-BSℓ and itsith IN user(i = 1, . . . , uIN,ℓ). The ZFBF precoding matrix at

macro-BSℓ is designed to beW1,ℓ = H
†
1,ℓ

(

H1,ℓH
†
1,ℓ

)−1

and the ZFBF vector at macro-BSℓ is

designed to bef1,ℓ =
w1,ℓ

‖w1,ℓ‖
, wherew1,ℓ is the first column ofW1,ℓ. ii) If Kℓ = 0 orU = 0, macro-

BS ℓ uses the maximal ratio transmission (MRT) precoder to serveits scheduled user, which

is a special case of the ZFBF precoder introduced forKℓ > 0 andU > 0, and can be readily

obtained from it by lettinguIN,ℓ = 0, i.e.,H1,ℓ = h
†
1,ℓ. Next, we introduce the precoding vectors

at pico-BSs. Each pico-BS utilizes the MRT precoder to serveits scheduled user. Specifically,

the beamforming vector at pico-BSℓ is f2,ℓ =
h2,ℓ

‖h2,ℓ‖
, whereh2,ℓ

d
∼ CNN2,1 (0N2×1, IN2) denotes

3Note thatT1 = T2 = 1 impliesKℓ = 0.

4The notationX
d
∼ Y means thatX is distributed asY .
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the channel vector between pico-BSℓ and its scheduled user. Note that the simple beamforming

scheme (without interference management) can be included in the IN scheme as a special case

by letting T1 = T2 = 1 and/orU = 0.5

Let hj,00 denote the channel vector betweenu0 ∈ Uj and its serving BSBj,0, Dj,ℓ0 denote the

distance betweenu0 and BSℓ in the jth tier, Yj denote the distance betweenu0 andBj,0, and

fj,0 denote the beamforming vector atBj,0, with
∣

∣

∣
h
†
j,00fj,0

∣

∣

∣

2
d
∼ Gamma (Mj , 1), M1 = N1−uIN,0

andM2 = N2. Let hj,ℓ0 denote the channel vector betweenu0 and BSℓ in the jth tier, andfj,ℓ

denote the beamforming vector at BSℓ in the jth tier, with
∣

∣

∣
h
†
j,ℓ0fj,ℓ

∣

∣

∣

2
d
∼ Gamma(1, 1). Let xj,ℓ

denote the symbol sent from BSℓ in thejth tier to its scheduled user satisfyingE
[

xj,ℓx
∗
j,ℓ

]

= Pj.

Let Φj,1C denote the potential IN macro-BSs ofu0 ∈ Uj which do not select it for IN. LetΦj,1O

denote the interfering macro-BSs ofu0 ∈ Uj which are not its potential IN macro-BSs. LetΦj,2

denote the interfering pico-BSs ofu0 ∈ Uj . We now discuss the received signal ofu0.

1) Macro-User: The received signal of the typical useru0 ∈ U1 is6

y1,0 =
1

Y
α1
2

1

h
†
1,00f1,0x1,0 +

∑

ℓ∈Φ1,1C

1

D
α1
2

1,ℓ0

h
†
1,ℓ0f1,ℓx1,ℓ +

∑

ℓ∈Φ1,1O

1

D
α1
2

1,ℓ0

h
†
1,ℓ0f1,ℓx1,ℓ

+
∑

ℓ∈Φ1,2

1

D
α2
2

2,ℓ0

h
†
2,ℓ0f2,ℓx2,ℓ. (2)

Note thatΦ1,1C ∪ Φ1,1O ∪ {B1,0} ⊆ Φ1 andΦ1,2 = Φ2.

2) Pico-User: The received signal of the typical useru0 ∈ U2 is

y2,0 =
1

Y
α2
2

2

h
†
2,00f2,0x2,0 +

∑

ℓ∈Φ2,1C

1

D
α1
2

1,ℓ0

h
†
1,ℓ0f1,ℓx1,ℓ +

∑

ℓ∈Φ2,1O

1

D
α1
2

1,ℓ0

h
†
1,ℓ0f1,ℓx1,ℓ

+
∑

ℓ∈Φ2,2

1

D
α2
2

2,ℓ0

h
†
2,ℓ0f2,ℓx2,ℓ. (3)

Note thatΦ2,1C ∪ Φ2,1O ⊆ Φ1 andΦ2,2 ∪ {B2,0} = Φ2.

We now obtain the SIR of the typical user. Under the above IN scheme,u0 ∈ Uj experiences

three types of interference: 1) residual aggregated interferenceIj,1C from its potential IN macro-

BSs Φj,1C which do not selectu0 for IN, 2) aggregated interferenceIj,1O from interfering

5All the analytical results in this paper hold forT1 = T2 = 1 and/orU = 0.

6In this paper, all macro-BSs and pico-BSs are assumed to be active. The same assumption can also be seen in the existing

papers (see e.g., [7, 9]). The index of the typical user and its serving BS is0.
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macro-BSsΦj,1O which are not its potential IN macro-BSs, and 3) aggregated interferenceIj,2

from all interfering pico-BSsΦj,2. Specifically, the SIR of the typical useru0 ∈ Uj is given by

SIRj,0 =

Pj

Y
αj
j

∣

∣

∣
h
†
j,00fj,0

∣

∣

∣

2

P1Ij,1C + P1Ij,1O + P2Ij,2
(4)

where

Ij,1C =
∑

ℓ∈Φj,1C

D−α1
1,ℓ0

∣

∣

∣
h
†
1,ℓ0f1,ℓ

∣

∣

∣

2

, Ij,1O =
∑

ℓ∈Φj,1O

D−α1
1,ℓ0

∣

∣

∣
h
†
1,ℓ0f1,ℓ

∣

∣

∣

2

, Ij,2 =
∑

ℓ∈Φj,2

D−α2
2,ℓ0

∣

∣

∣
h
†
2,ℓ0f2,ℓ

∣

∣

∣

2

.

B. Preliminary Results

In this part, we evaluate some distributions related to the IN scheme, which will be used to

calculate the coverage probability in (1). Some of these distributions are based on approximations,

the accuracy of which will be verified in Section IV. We first calculate the probability mass

function (p.m.f.) of the number of the potential IN users ofu0’s serving macro-BS (whenu0 ∈

U1), denoted asK0. The p.m.f. ofK0 depends on the point processes formed by the scheduled

macro and pico users, which are related to but not PPPs [21]. For analytical tractability, we

approximate the scheduled macro and pico users as two independent PPPs with densitiesλ1 and

λ2, respectively.7 Then, we have the p.m.f. ofK0 as follows.

Lemma 1:The p.m.f. ofK0 is given by

Pr (K0 = k) ≈
L̄(T1, T2)

k

k!
exp

(

−L̄(T1, T2)
)

(5)

whereL̄(T1, T2) = L̄1(T1) + L̄2(T2) with

L̄j(Tj) =2πλj

∫ ∞

0

r

∫

(

Pj

P1

)
1
αj r

α1
αj

(

Pj

P1Tj

) 1
αj

r

α1
αj

fYj
(y)dydr , j = 1, 2. (6)

Here,fYj
(y) (j = 1, 2) are given as follows:

fY1(y) =
2πλ1

A1

y exp

(

−π

(

λ1y
2 + λ2

(

P2

P1

)
2
α2

y
2α1
α2

))

(7)

fY2(y) =
2πλ2

A2
y exp

(

−π

(

λ1

(

P1

P2

)
2
α1

y
2α2
α1 + λ2y

2

))

(8)

7Note that approximating the scheduled users as a homogeneous PPP has been considered in existing papers (see e.g., [21]).
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whereAj
∆
= Pr (u0 ∈ Uj) (j = 1, 2) are given by

A1 = 2πλ1

∫ ∞

0

z exp
(

−πλ1z
2
)

exp

(

−πλ2

(

P2

P1

)
2
α2

z
2α1
α2

)

dz (9)

A2 = 2πλ2

∫ ∞

0

z exp
(

−πλ2z
2
)

exp

(

−πλ1

(

P1

P2

)
2
α1

z
2α2
α1

)

dz. (10)

Proof: See Appendix A.

Note that L̄(T1, T2) represents the average number of IN requests of the scheduled users

received by the serving BS ofu0, and L̄j(Tj) represents the average number of IN requests of

the scheduled users in thejth tier received by the serving BS ofu0.

Next, we calculate the p.m.f. of the number of the IN users ofu0’s serving macro-BS (when

u0 ∈ U1) uIN,0 = min (U,K0) based onLemma 1, which is shown as follows.

Lemma 2:The p.m.f. ofuIN,0 is given by

Pr (uIN,0 = u) =











Pr (K0 = u) , for 0 ≤ u < U

∑∞
k=U Pr (K0 = k) , for u = U

.

Let pc (U, T1, T2) denote the probability that an arbitrary (according to the uniform distribution)

potential IN macro-BS ofu0 selectsu0 for IN, referred to as theIN probabilty. Note that the

event thatu0 sends IN requests and the event that all the other scheduled users send IN requests

are dependent. For analytical tractability, we approximate these two events as independent events.

Then, we havepc (U, T1, T2) ≈ E
[

min
{

U
K0+1

, 1
}]

, which can be calculated as follows.

Lemma 3:The IN probability is given by

pc (U, T1, T2) ≈ exp
(

−L̄(T1, T2)
)

(

U−1
∑

k=0

L̄(T1, T2)
k

k!
+ U

∞
∑

k=U

L̄(T1, T2)
k

(k + 1)!

)

.

Proof: See Appendix B

Note that different potential IN macro-BSs ofu0 selectsu0 for IN dependently (as the numbers

of the potential IN users of these macro-BSs are dependent).For analytical tractability, we assume

that different potential IN macro-BSs ofu0 selectu0 for IN independently. Usingindependent

thinning, u0’s potential IN marcro-BSs can beapproximatedby a homogeneous PPP with density

pc̄ (U, T1, T2)λ1, wherepc̄ (U, T1, T2)
∆
= 1− pc (U, T1, T2).

IV. COVERAGE PROBABILITY–GENERAL SIR THRESHOLD REGIME

In this section, we investigate the coverage probability inthe general SIR threshold regime.

By total probability theorem and the preliminary results obtained in Section III-B, we have:
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S1(β, U, T1, T2) =
U
∑

u=0

Pr (uIN,0 = u)

∫ ∞

0

N1−u−1
∑

n=0

1

n!

∑

(na)
3
a=1∈Nn

(

n

n1, n2, n3

)

L̃(n1)
I1,1C

(

βyα1, y, T
1
α1 y
)

× L̃(n2)
I1,1O

(

βyα1, T
1
α1
1 y

)

L̃(n3)
I1,2

(

β
P2

P1
yα1,

(

P2

P1

)
1
α2

y
α1
α2

)

fY1(y)dy

(11)

S2(β, U, T1, T2) =

∫ ∞

0

N2−1
∑

n=0

1

n!

∑

(na)3a=1∈Nn

(

n

n1, n2, n3

)

L̃(n1)
I2,1C

(

β
P1

P2

yα2,

(

P1

P2

)
1
α1

y
α2
α1 ,

(

P1T2

P2

)
1
α1

y
α2
α1

)

× L̃(n2)
I2,1O

(

β
P1

P2
yα2,

(

P1T2

P2

)
1
α1

y
α2
α1

)

L̃(n3)
I2,2

(βyα2, y) fY2(y)dy

(12)

L̃(n)
Ij,1C

(U, s, rj,1C, rj,1O) = LIj,1C (U, s, rj,1C, rj,1O)
∑

(ma)na=1∈Mn

n!
∏n

a=1 ma!

n
∏

a=1

(

2π

α1
pc̄ (U, T1, T2)λ1s

2
α1

×

(

B
′

(

1 +
2

α1

, a−
2

α1

,
1

1 + sr−α1
j,1C

)

−B
′

(

1 +
2

α1

, a−
2

α1

,
1

1 + sr−α1
j,1O

)))ma

(13)

L̃(n)
Ij,k

(s, rj,k) = LIj,k(s, rj,k)
∑

(ma)na=1∈Mn

n!
∏n

a=1ma!

n
∏

a=1

(

B
′

(

1 +
2

αJ(k)

, a−
2

αJ(k)

,
1

1 + s

r
αJ(k)
j,k

)

×
2πλJ(k)

αJ(k)

s
2

αJ(k)

)ma

(14)

LIj,1C (U, s, rj,1C, rj,1O) = exp

(

−

(

B
′

(

2

α1
, 1−

2

α1
,

1

1 + sr−α1
j,1C

)

− B
′

(

2

α1
, 1−

2

α1
,

1

1 + sr−α1
j,1O

))

×
2π

α1

pc̄ (U, T1, T2) λ1s
2
α1

)

(15)

LIj,k(s, rj,k) = exp



−
2πλJ(k)

αJ(k)

s
2

αJ(k)B
′





2

αJ(k)

, 1−
2

αJ(k)

,
1

1 + s

r
αJ(k)
j,k







 (16)

Theorem 1 (Coverage Probability):Under design parametersU , T1 andT2, we have: 1) cov-

erage probability of a macro-user:S1 (β, U, T1, T2)
∆
= Pr (SIR0 > β|u0 ∈ U1), given in (11); 2)

January 8, 2016 DRAFT



11

Maximum IN DoF U
0 1 2 3 4 5 6 7 8 9

C
o

ve
ra

g
e 

P
ro

b
ab

ili
ty

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Monte Carlo (T
1
=T

2
=3)

Analytical (T
1
= T

2
=3)

Monte Carlo (T
1
=6,T

2
=3)

Analytical (T
1
=6,T

2
=3)

Monte Carlo (T
1
=6,T

2
=8)

Analytical (T
1
=6,T

2
=8)

Fig. 2. Coverage probability versus maximum IN DoF.N1 = 10, N2 = 8, β = 10 dB, α1 = 4.5, α2 = 4.7,
P1

P2

= 15 dB, λ1 = 0.0005 nodes/m2, andλ2 = 0.001 nodes/m2. Note that whenT1 andT2 are small, the coverage

probability increases withT1 andT2, as the number of potential IN users benefiting from IN increases; whenT1

andT2 are large, the coverage probability decreases withT1 andT2, as the chance for worse potential IN users

being selected for IN decreases.

coverage probability of a pico-user:S2 (β, U, T1, T2)
∆
= Pr (SIR0 > β|u0 ∈ U2), given in (12);

3) overall coverage probabilityS (β, U, T1, T2) = A1S1(β, U, T1, T2)+A2S2(β, U, T1, T2), where

Aj
∆
= Pr (u0 ∈ Uj) (j = 1, 2) are given in (9) and (10). Here,̃L(n)

Ij,1C
(U, s, rj,1C, rj,1O) and

L̃(n)
Ij,k

(s, rj,k) (k ∈ {1O, 2}) are given in (13) and (14), respectively, where8 LIj,1C (U, s, rj,1C, rj,1O)

and LIj,k(s, rj,k) are given in (15) and (16) (withJ(1O) = 1 and J(2) = 2), respectively.

Moreover,B
′

(a, b, z)
∆
=
∫ 1

z
ua−1(1− u)b−1du (0 < z < 1), Nn

∆
= {(na)

3
a=1|na ∈ N

0,
∑3

a=1 na =

n}, andMn
∆
= {(ma)

n
a=1|ma ∈ N

0,
∑3

a=1 a ·ma = n}, whereN0 denotes the set of nonnegative

integers.

Proof: See Appendix C.

Theorem 1allows us to easily evaluate the coverage probability. Fig.2 plots the coverage

probability versus the IN DoFU . We see from Fig. 2 that the “Analytical” curves, which are

plotted usingS (β, U, T1, T2) in Theorem 1, are reasonably close to the “Monte Carlo” curves (the

error is no larger than2.03%), althoughTheorem 1is obtained based on some approximations

(cf. Section III-B). Later, we shall consider the optimization of U for given T1 andT2.9

8LI denotes the Laplace transform of the aggregated interference I .

9The coverage probability can be further improved by jointlyadjustingT1 andT2. We shall consider the optimization ofT1

andT2 in the future work.

January 8, 2016 DRAFT



12

V. ASYMPTOTIC COVERAGE PROBABILITY ANALYSIS–LOW SIR THRESHOLD REGIME

In this section, we investigate the complement of the coverage probability, i.e., outage prob-

ability of the IN scheme in the low SIR threshold regime, i.e., β → 0.

A. Asymptotic Outage Probability Analysis

In this part, we analyze the asymptotic outage probabilityPr (SIR0 < β) of the IN scheme

whenβ → 0. First, we define theorder gainof the outage probability [22]:

d
∆
= lim

β→0

log Pr (SIR0 < β)

log β
. (17)

Then, we define thecoefficientof the asymptotic outage probability:limβ→0
Pr(SIR0<β)

βd . Recently,

a tractable approach has been proposed in [23] to characterize the order gain for a class of

communication schemes in wireless networks which satisfy certain conditions. However, this

approach does not provide tractable analytical expressions for the coefficient of the asymptotic

outage probability for most of the schemes using multiple antennas in this class. By utilizing

series expansion of some special functions and dominated convergence theorem, we characterize

both the order gain and the coefficient of the asymptotic outage probability of the IN scheme in

multi-antenna HetNets, which are presented as follows:

Theorem 2 (Asymptotic Outage Probability):Under design parametersU , T1 and T2, when

β → 0, we have:10 1) outage probability of a macro-user:1−S1(β, U, T1, T2)
β→0
∼ b1 (U, T1, T2) β

N1−U ;

2) outage probability of a pico-user:1−S2(β, U, T1, T2)
β→0
∼ b2 (U, T1, T2)β

N2 ; 3) overall outage

probability: 1− S (β, U, T1, T2)
β→0
∼ b (U, T1, T2) β

min{N1−U,N2}, where

b (U, T1, T2) =























b2 (U, T1, T2) , U < N1 −N2

b1 (U, T1, T2) + b2 (U, T1, T2) , U = N1 −N2

b1 (U, T1, T2) , U > N1 −N2

.

Here, bj (U, T1, T2) is given in (18) withUj = U and Pj = Pr (uIN,0 = U) if j = 1 and

T1, T2 > 1; Uj = 0 andPj = 1, otherwise. Moreover,b2 (U, T1, T2) decreases withU .

Proof: See Appendix D.

10f(β)
β→0
∼ g(β) meanslimβ→0

f(β)
g(β)

= 1.
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bj (U, T1, T2)

=
∑

(na)3a=1∈NNj−Uj

∑

(ma)
n1
a=1∈Mn1

∑

(pa)
n2
a=1∈Mn2

∑

(qa)
n3
a=1∈Mn3

(
∫ ∞

0

y
2αj

α1
(
∑n1

a=1 ma+
∑n2

a=1 pa)+
2αj

α2

∑n2
a=1 qafYj

(y)dy

)

×

(

n2
∏

a=1

(

(

1

Tj

)a− 2
α1

)pa)( n1
∏

a=1

1

ma!

(

2
α1
πλ1

a− 2
α1

(

P1

Pj

)
2
α1

)ma
)(

n2
∏

a=1

1

pa!

(

2
α1
πλ1

a− 2
α1

(

P1

Pj

)
2
α1

)pa)

×

(

n3
∏

a=1

1

qa!

(

2
α2
πλ2

a− 2
α2

(

P2

Pj

)
2
α2

)qa)( n1
∏

a=1

(

pc̄ (U, T1, T2)

(

1−

(

1

Tj

)a− 2
α1

))ma
)

Pj (18)
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Fig. 3. Outage probability versus SIR threshold in the low SIR threshold regime.N1 = 10, N2 = 8, α1 = 4.5,

α2 = 4.7, P1

P2

= 15 dB, λ1 = 0.0005 nodes/m2, andλ2 = 0.001 nodes/m2.

Note that the IN scheme has three design parameters: the maximum IN DoF (i.e.,U) and

the IN thresholds (i.e.,T1 andT2). From Theorem 2, we clearly see that the maximum IN DoF

and the IN thresholds affect the asymptotic behavior of the outage probability in dramatically

different ways. Specifically, the maximum IN DoFU can affect the order gain, while the IN

thresholds can only affect the coefficient. In addition, we see thatU affects the order gain of

the asymptotic outage probability through affecting the order gain of the asymptotic macro-user

outage probability. On the other hand, in this paper, IN is only performed at macro-BSs, and

U is the upper bound of the actual DoF for IN in the ZFBF precoder(which is randomdue to

the randomness of the network topology). Therefore, the result of the order gain inTheorem 2

extends the existing order gain result insingle-tier cellular networks where the DoF for IN in

the ZFBF precoder isdeterministic[15].
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Fig. 3 plots the outage probability versus the SIR thresholdin the low SIR threshold regime.

We see from Fig. 3 that when the SIR threshold is small, the “Analytical” curves, which are

plotted usingTheorem 1, are reasonably close to the “Asymptotic” curves, which areplotted

using Theorem 2. In addition, from Fig. 3, we clearly see that the outage probability curves

with the same maximum IN DoFU have the same slope (indicating the same order gain), and

there is a shift between two outage probability curves with the sameU but different (T1, T2)

(indicating different coefficients). Therefore, Fig. 3 verifies Theorem 2.

B. Asymptotic Outage Probability Optimization

From Theorem 2, we know thatU has a larger impact on the asymptotic outage probability

than the IN thresholds. In this part, we characterize the optimal maximum IN DoFU∗(β, T1, T2)

which minimizes the asymptotic outage probability given inTheorem 2(i.e., maximizes the

asymptotic coverage probability) for given thresholdsT1 andT2, i.e.,

U∗(β, T1, T2)
∆
= arg min

U∈{0,1,...,N1−1}
b (U, T1, T2)β

min{N1−U,N2} . (19)

Lemma 4 (Optimality Property ofU∗(β, T1, T2)): ∃β̄ > 0 such that for allβ < β̄, we have11

U∗(β, T1, T2) =























N1 −N2 − 1, if b2 (N1 −N2 − 1, T1, T2) <

b1 (N1 −N2, T1, T2) + b2 (N1 −N2, T1, T2)

N1 −N2, otherwise

.

Proof: See Appendix E.

Lemma 4indicates that in the low threshold regime, the IN scheme achieves the optimal

asymptotic outage probability when reservingN2 or N2 +1 DoF at each macro-BS to boost the

desired signal to its scheduled user, which is comparable totheN2 DoF used at each pico-BS

to boost the desired signal to its scheduled user. The reasonis that in the low threshold regime,

the network performance is mainly limited by the worst users. Balancing the DoF for boosting

signals to all the users effectively improves the performance of the worst users. Fig. 4 plots the

outage probability versus the maximum IN DoF in the small SIRthreshold regime. From Fig. 4,

we can see thatU∗(β, T1, T2) = N1 −N2 − 1 or N1 −N2 at smallβ. This verifiesLemma 4.

11Lemma4 is similar toTheorem 3of our previous work [14]. The reason is that the two interference management schemes

in this paper and [14] are both based on IN. One difference is that the proposed scheme in this paper aims to improve the

performance of all users with low SIIR, while the scheme in [14] only improves the performance of offloaded users.
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Fig. 4. Outage probability versus maximum IN DoF in the small SIR threshold regime.N1 = 6, N2 = 4,

T1 = T2 = 1.8 P1

P2

= 15 dB, λ1 = 0.0005 nodes/m2, andλ2 = 0.001 nodes/m2.

VI. A SYMPTOTIC COVERAGE PROBABILITY ANALYSIS–HIGH SIR THRESHOLD REGIME

In this section, we investigate the coverage probability ofthe IN scheme in the high SIR

threshold regime, i.e.,β → ∞.

A. Asymptotic Coverage Probability Analysis

In this part, we analyze the asymptotic coverage probability of the IN scheme whenβ → ∞.

First, we define theorder gainof the coverage probability as follows:

dc
∆
= lim

β→∞

Pr (SIR0 > β)

log β
. (20)

Then, we define thecoefficientof the asymptotic coverage probability:limβ→∞
Pr(SIR0>β)

βdc
. In the

following, we analyze the asymptotic coverage probabilityin two scenarios, i.e.,α1 6= α2 and

α1 = α2.

Whenα1 6= α2, it turns out to be difficult to obtain the expression of the asymptotic coverage

probability. Thus, we derive lower and upper bounds of the asymptotic coverage probability,

which are given in the following theorem.

Theorem 3 (Asymptotic Coverage Probability Whenα1 6= α2): Under design parametersU ,

T1 and T2, whenα1 6= α2 and β → ∞, we have:12 1) coverage probability of a macro-user:

S1 (β, U, T1, T2)
β→∞
∼ S̃1 (β, U, T1, T2), whereξ1β

− 2
α1

αmax
αmin < S̃1 (β, U, T1, T2) < η1 (U, T1, T2) β

− 2
α1 ;

12f(β)
β→∞

∼ g(β) meanslimβ→∞

f(β)
g(β)

= 1.
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η1 (U, T1, T2) =
πλ1

A1

U
∑

u=0

Pr (uIN,0 = u)
N1−u−1
∑

n=0

1

n!

n
∑

n2=0

(

n

n2

)

∑

(pa)
n2
a=1∈Mn2

∑

(qa)
n−n2
a=1 ∈Mn−n2

n2!
∏n2

a=1 pa!

×
n2
∏

a=1

(

2π

α1

λ1B

(

1 +
2

α1

, a−
2

α1

))pa (n− n2)!
∏n−n2

a=1 qa!

n−n2
∏

a=1

(

2π

α2

λ2

(

P2

P1

)
2
α2

B

(

1 +
2

α2

, a−
2

α2

)

)qa

×

(

2πλ1

α1
B

(

2

α1
, 1−

2

α1

))−
∑n2

a=1 pa−
α1
α2

∑n−n2
a=1 qa−1

Γ

(

n2
∑

a=1

pa +
α1

α2

n−n2
∑

a=1

qa + 1

)

(21)

η2 =
πλ2

A2

N2−1
∑

n=0

1

n!

n
∑

n2=0

(

n

n2

)

∑

(pa)
n2
a=1∈Mn2

∑

(qa)
n−n2
a=1 ∈Mn−n2

n2!
∏n2

a=1 pa!

(n− n2)!
∏n−n2

a=1 qa!

×
n2
∏

a=1

(

2π

α1

λ1

(

P1

P2

)
2
α1

B

(

1 +
2

α1

, a−
2

α1

)

)pa n−n2
∏

a=1

(

2π

α2

λ2B

(

1 +
2

α2

, a−
2

α2

))qa

×

(

2πλ1

α2
B

(

2

α2
, 1−

2

α2

))−
α2
α1

∑n2
a=1 pa−

∑n−n2
a=1 qa−1

Γ

(

α2

α1

n2
∑

a=1

pa +

n−n2
∑

a=1

qa + 1

)

(22)

ξ1 =
πλ1αmax

A1α1

(

2πλ1

α1
B

(

2

α1
, 1−

2

α1

)

+
2πλ2

α2

(

P2

P1

)
2
α2

B

(

2

α2
, 1−

2

α2

)

)−αmax
α1

Γ

(

αmax

α1

)

(23)

ξ2 =
πλ2αmax

A2α2

(

2πλ1

α1

(

P1

P2

) 2
α1

B

(

2

α1
, 1−

2

α1

)

+
2πλ2

α2
B

(

2

α2
, 1−

2

α2

)

)−αmax
α2

Γ

(

αmax

α2

)

(24)

2) coverage probability of a pico-user:S2 (β, U, T1, T2)
β→∞
∼ S̃2 (β, U, T1, T2), whereξ2β

− 2
α2

αmax
αmin <

S̃2 (β, U, T1, T2) < η2β
− 2

α2 ; 3) overall coverage probability:S (β, U, T1, T2)
β→∞
∼ S̃ (β, U, T1, T2),

whereclbβ− 2
αmin < S̃ (β, U, T1, T2) < cub (U, T1, T2)β

− 2
αmax . Here,αmin = min {α1, α2}, αmax =

max {α1, α2}, B(a, b) ,
∫ 1

0
ta−1(1− t)b−1dt is the beta function,η1 (U, T1, T2) andη2 are given

in (21) and (22), respectively,ξj (j = 1, 2) are given in (23) and (24), respectively, and

cub (U, T1, T2) =











η1 (U, T1, T2) , α1 > α2

η2, α1 < α2

, clb =











ξ1, α1 > α2

ξ2, α1 < α2

.

Proof: See Appendix F.

January 8, 2016 DRAFT



17

SIR Threshold β (dB)
25 30 35 40 45 50

C
o

ve
ra

g
e 

P
ro

b
ab

ili
ty

10-3

10-2

10-1

100

101

Analytical (T
1
=T

2
=2,U=3)

Analytical (T
1
=T

2
=6,U=3)

Analytical (T
1
=T

2
=6,U=6)

Asymp UB(T
1
=T

2
=2,U=3)

Asymp UB(T
1
=T

2
=6,U=3)

Asymp UB(T
1
=T

2
=6,U=6)

Asymp LB

(a) α1 = 4, α2 = 3.5

SIR Threshold β (dB)
25 30 35 40

 C
o

ve
ra

g
e 

P
ro

b
ab

ili
ty

0.02

0.03

0.04

0.05

0.06

0.07

0.08
0.09

0.1
0.11

Analytical (T
1
=T

2
=6, U=3)

Analytical (T
1
=T

2
=6, U=6)

Analytical (T
1
=T

2
=8, U=6)

Asymptotic (T
1
=T

2
=6, U=3)

Asymptotic (T
1
=T

2
=6, U=6)

Asymptotic (T
1
=T

2
=8, U=6)

(b) α1 = α2 = 4

Fig. 5. Coverage probability versus SIR threshold in the high SIR threshold regime.N1 = 10, N2 = 8, P1
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= 15

dB, λ1 = 0.0005 nodes/m2, andλ2 = 0.001 nodes/m2.

Whenα1 = α2, we derive the asymptotic coverage probability, which is given below.

Theorem 4 (Asymptotic Coverage Probability Whenα1 = α2): Under design parametersU ,

T1 and T2, whenα1 = α2 = α and β → ∞, we have: 1) coverage probability of a macro-

user:S1 (β, U, T1, T2)
β→∞
∼ c1 (U, T1, T2) β

− 2
α , wherec1 (U, T1, T2) is given in (25); 2) coverage

probability of a pico-user:S2 (β, U, T1, T2)
β→∞
∼ c2 (T1, T2) β

− 2
α , wherec2 (T1, T2) is given in

(26); 3) overall coverage probability:S(β, T1, T2)
β→∞
∼ (A1c1 (U, T1, T2) +A2c2 (T1, T2))β

− 2
α .

Proof: See Appendix G.

From Theorem 3and Theorem 4, we clearly see that whenα1 6= α2, the order gains of the

lower and upper bounds on the asymptotic coverage probability do not depend onU , T1 andT2;

whenα1 = α2, the order gain of the asymptotic coverage probability doesnot depend onU , T1

andT2. Hence, for arbitraryα1 andα2, the design parametersU , T1 andT2 do not affect the order

gain of the asymptotic coverage probability in both scenarios. In other words, the IN scheme

does not provide order-wise performance improvement compared to the simple beamforming

scheme whenβ → ∞. In addition,T1 andT2 affect the coefficient of the upper bound on the

asymptotic coverage probability whenα1 6= α2 and the coefficient of the asymptotic coverage

probability whenα1 = α2. While,U affects the coefficient of the upper bound on the asymptotic

coverage probability whenα1 6= α2 and the coefficient the asymptotic coverage probability when

α1 = α2, through affecting the upper bound on the asymptotic coverage probability of a macro-

user whenα1 6= α2 and the asymptotic coverage probability of a macro-user when α1 = α2,

respectively.
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c1 (U, T1, T2) =
πλ1

A1

U
∑

u=0

Pr (uIN,0 = u)
N1−u−1
∑

n=0

1

n!

n
∑

n2=0

(

n

n2

)

∑

(pa)
n2
a=1∈Mn2

∑

(qa)
n−n2
a=1 ∈Mn−n2

n2!
∏n2

a=1 pa!

×
n2
∏

a=1

(

2π

α
λ1B

(

1 +
2

α
, a−

2

α

))pa (n− n2)!
∏n−n2

a=1 qa!

n−n2
∏

a=1

(

2π

α
λ2

(

P2

P1

)
2
α

B

(

1 +
2

α
, a−

2

α

)

)qa

×

(

2π

α
λ1B

(

2

α
, 1−

2

α

)

+
2π

α
λ2

(

P2

P1

)
2
α

B

(

2

α
, 1−

2

α

)

)−α
α

∑n2
a=1 pa−

α
α

∑n−n2
a=1 qa−

α
α

× Γ

(

n2
∑

a=1

pa +

n−n2
∑

a=1

qa + 1

)

(25)

c2 (T1, T2) =
πλ2

A2

N2−1
∑

n=0

1

n!

n
∑

n2=0

(

n

n2

)

∑

(pa)
n2
a=1∈Mn2

∑

(qa)
n−n2
a=1 ∈Mn−n2

n2!
∏n2

a=1 pa!

(n− n2)!
∏n−n2

a=1 qa!

×
n2
∏

a=1

(

2π

α
λ1

(

P1

P2

)
2
α

B

(

1 +
2

α
, a−

2

α

)

)pa n−n2
∏

a=1

(

2π

α
λ2B

(

1 +
2

α
, a−

2

α

))qa

×

(

2π

α
λ1

(

P1

P2

)
2
α

B

(

2

α
, 1−

2

α

)

+
2π

α
λ2B

(

2

α
, 1−

2

α

)

)−α
α

∑n2
a=1 pa−

α
α

∑n−n2
a=1 qa−

α
α

× Γ

(

n2
∑

a=1

pa +

n−n2
∑

a=1

qa + 1

)

(26)

Fig. 5 plots the coverage probability versus the SIR threshold in the high SIR threshold regime

for α1 6= α2 andα1 = α2, respectively. We see from Fig. 5(a) that whenα1 6= α2, the “Analytical”

curves, which are plotted usingTheorem 1, are bounded by the corresponding “Asymptotic” upper

bound curves and lower bound curve, which are plotted usingTheorem 3. Note that there is only

one “Asymptotic” lower bound curve, as the asymptotic lowerbound is independent ofU and

(T1, T2). In addition, from Fig. 5(a), we clearly see that the coverage probability curves with

different maximum IN DoFU or (T1, T2) have slightly different slopes (indicating different order

gains), and there is a small shift between any two coverage probability curves with the different

U or (T1, T2) (indicating different coefficients). On the other hand, we see from Fig. 5(b) that

whenα1 = α2, the “Analytical” curves, which are plotted usingS (β, U, T1, T2) in Theorem 1,

are reasonably close to the “Asymptotic” curves, which are plotted usingTheorem 4. In addition,
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Fig. 6. Coverage probability versus maximum IN DoF in the high SIR threshold regime.N1 = 6, N2 = 4,

T1 = T2 = 4 P1

P2

= 15 dB, λ1 = 0.0005 nodes/m2, andλ2 = 0.001 nodes/m2.

from Fig. 5(b), we clearly see that the coverage probabilitycurves with different maximum IN

DoF U or (T1, T2) have the same slope (indicating the same order gain), and there is a shift

between any two coverage probability curves with the differentU or (T1, T2) (indicating different

coefficients). Therefore, Fig. 5 verifiesTheorem 3andTheorem 4.

B. Asymptotic Coverage Probability Optimization

In this part, we characterize the optimal maximum IN DoFU∗(β, T1, T2) which maximizes

the upper bound13 of the asymptotic coverage probability given inTheorem 3whenα1 6= α2 and

the asymptotic coverage probability given inTheorem 4whenα1 = α2, for given thresholdsT1

andT2, i.e.,

U∗(β, T1, T2)
∆
=











argmaxU∈{0,1,...,N1−1} c
ub (U, T1, T2)β

− 2
αmax , α1 6= α2

argmaxU∈{0,1,...,N1−1} (c1 (U, T1, T2) + c2 (T1, T2))β
− 2

α , α1 = α2

=











argmaxU∈{0,1,...,N1−1} c
ub (U, T1, T2) , α1 6= α2

argmaxU∈{0,1,...,N1−1} c1 (U, T1, T2) , α1 = α2

. (27)

Lemma 5 (Optimality Property ofU∗(β, T1, T2)): There existsβ < ∞ such that for allβ > β,

we haveU∗(β, T1, T2) = 0 for arbitraryα1 andα2.

Proof: See Appendix H.

13Note thatU does not affect the lower bound of the asymptotic coverage probability given inTheorem3.
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Lemma 5indicates that performing IN will not improve the asymptotic coverage probability

in the high SIR threshold regime. The reason is that in the high SIR threshold regime, the

overall coverage probability is mainly contributed by cellcenter users, which have much better

performance than cell edge users. Using allN1 DoF at each macro-BS to boost the desired signal

to its scheduled user can effectively improve the coverage probability of a cell center macro-

user, and hence improve the overall coverage probability. Fig. 7 plots the coverage probability

versus the maximum IN DoF in the high SIR threshold regime. From Fig. 7, we can see

that U∗(β, T1, T2) = 0. This verifiesLemma 5. In addition, we can observe that the coverage

probability decreases with the maximum IN DoF.

VII. N UMERICAL EXPERIMENTS

In this section, we compare the proposed user-centric IN scheme with two baseline schemes.

One is the simple beamforming scheme (without interferencemanagement), which can be treated

as a special case of our IN scheme by settingU = 0 and/orT1 = T2 = 1. The other is a modified

version of the existing ABS scheme in 3GPP-LTE, referred to as the user-centric ABS scheme.

The user-centric ABS scheme has three design parameters, i.e., a resource partition parameterη

and two thresholdsT1 andT2, whereTj (j = 1, 2) is the threshold for thej-th tier. We define

a potential ABS macro-BS of a scheduled user in a similar way to a potential IN macro-BS of

a scheduled user in the user-centric IN scheme. In each slot,each scheduled user sends ABS

requests to all of its potential ABS macro-BSs. We define the potential ABS users of a macro-BS

in a similar way to the potential IN users of a marco-BS in the user-centric IN scheme.1 − η

fraction of (time or frequency) resource is allocated to allthe potential ABS macro-BSs to serve

their scheduled users, whileη fraction of resource is allocated to the remaining BSs to serve

their own scheduled users.14 Then, for givenT1 andT2, we choose the optimalη to maximize

the coverage probability of the user-centric IN scheme.

Note that the benefit of the proposed user-centric IN scheme compared to the simple beam-

forming scheme is that it can optimally allocate DoF in boosting desired signals and managing

interference. Thus, the performance of the proposed user-centric IN scheme is always better than

14Under this user-centric ABS scheme, each scheduled potential ABS pico-user or macro-user whose serving macro-BS is

not a potential ABS macro-BS can avoid the interference fromall its potential ABS macro-BSs via resource partition in ABS.
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that of the simple beamforming scheme. The benefit of the proposed user-centric IN scheme

compared to the user-centric ABS is that it does not have (time or frequency) resource sacrifice.

On the other hand, one loss of the proposed user-centric IN scheme compared to the user-centric

ABS is due to the DoF reduction for boosting desired signals to macro-users. The other loss

of the proposed user-centric IN scheme compared to the user-centric ABS is caused by the

remaining macro-interference, as the IN scheme only avoidsthe strong macro-interference to

the potential IN users, while ABS avoids all the macro interference to the potential ABS users.

Fig. 7 illustrates the coverage probability versus the number of antennas at each macro-BS

N1. From Fig. 7, we can observe that the proposed user-centric IN scheme and the user-centric

ABS outperform the simple beamforming scheme, demonstrating the importance of interference

management in the parameter region considered in this figure. In addition, the proposed user-

centric IN scheme outperforms the user-centric ABS whenN1 is relatively large. The reason is

as follows. WhenN1 is relatively large, for serving macro-users, the loss of the user-centric ABS

caused by (time or frequency) resource sacrifice (due to resource partition) is large, while the loss

of the proposed user-centric IN scheme caused by the DoF reduction (due to performing IN) is

small. Fig. 8 illustrates the coverage probability versus the path loss exponent in the marco-cell

tier α1. From Fig. 8, we can observe that the proposed user-centric IN scheme outperforms the

user-centric ABS whenα1 is relatively large. The reason is as follows. Whenα1 is large, the

loss of the user-centric ABS caused by (time or frequency) resource sacrifice is large, while the

loss of the proposed user-centric IN scheme due to the remaining macro-interference is small.15

VIII. C ONCLUSIONS

In this paper, we proposed a user-centric IN scheme in downlink two-tier multi-antenna

HetNets. Using tools from stochastic geometry, we first obtained a tractable expression of the

coverage probability. Then, we obtained the asymptotic expressions of the outage and coverage

probabilities in the low and high SIR threshold regimes, respectively. The asymptotic expressions

indicate that the maximum IN DoF and the IN thresholds affectthe asymptotic outage (coverage)

probability in dramatically different ways. Moreover, we characterized the optimal maximum IN

15The observation that the proposed scheme outperforms ABS whenN1 or α1 is relatively large is similar to the observation

made in [14]. The reason can be found in Footnote11.
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DoF which optimizes the outage (coverage) probability. Theoptimization results reveal that the

IN scheme can linearly improve the performance in the low SIRthreshold regime, but cannot

improve the performance in the high SIR threshold regime. Finally, numerical results showed

that the user-centric IN scheme can achieve good performance gains over existing schemes.

APPENDIX

A. Proof of Lemma 1

According to Slivnyak’s theorem [24], we focus on a macro-BSlocated at origin, referred

to as macro-BS0. Note that both scheduled macro-users and scheduled pico-users may send

IN requests to macro-BS0. We first characterize the probability that a scheduled macro-user

sends an IN request to macro-BS0. DenoteR1i as the distance between macro-BS0 and a
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randomly selected (according to the uniform distribution)scheduled macro-user, referred to as

scheduled macro-useri. Hence, Scheduled macro-useri sends an IN request to macro-BS0 with

probabilityp1i(T1) = Pr

(

T
− 1

α1
1 R1i < Y1 < R1i

)

. Assume that the scheduled macro-users form

a homogeneous PPP with densityλ1. Conditioned onR1i = r, we have

p1i,R1i
(r, T1) = Pr

(

T
− 1

α1

1 r < Y1 < r

)

=

∫ r

T
−

1

α1

1
r

fY1
(y)dy (28)

wherefY1(y) is the probability density function (p.d.f.) ofY1 given by (7). Then, the scheduled

macro-user density at distancer away from macro-BS0 is p1i,R1i
(r, T1)λ1. This indicates that

the scheduled macro-users at distancer away from macro-BS0 which send IN requests to

macro-BS0 form an inhomogeneous PPP with densityp1i,R1i
(r, T1)λ1. Next, we characterize

the probability that a scheduled pico-user sends an IN request to macro-BS0. DenoteR2i as the

distance between macro-BS0 and a randomly selected (according to the uniform distribution)

scheduled pico-user, referred to as scheduled pico-useri. Similarly, we assume that the scheduled

pico-users form a homogeneous PPP with densityλ2, and it is independent of the PPP formed

by the scheduled macro-users. Then, we can show that the scheduled pico-users at distancer

away from macro-BS0 which send IN requests to macro-BS0 form an inhomogeneous PPP

with densityp2i,R2i
(r, T2)λ2, where

p2i,R2i
(r, T2) = Pr

(

(

P2

P1T2

)
1

α2

r
α1

α2 < Y2 <

(

P2

P1

)
1

α2

r
α1

α2

)

=

∫

(

P2

P1

) 1

α2 r

α1

α2

(

P2

P1T2

) 1

α2 r

α1

α2

fY2
(y)dy. (29)

Note thatfY2(y) is the p.d.f. ofY2 given by (8).

According to the superposition property of PPPs [24], the scheduled macro-users and the

scheduled pico-users at distancer away from macro-BS0 which send IN requests to macro-BS

0, i.e., the potential IN users of macro-BS0, still form a PPP with densityp1i,R1i
(r, T1)λ1 +

p2i,R2i
(r, T2)λ2. Therefore, the number of the potential IN users of macro-BS0 is Poisson dis-

tributed with parameter (i.e., mean)L̄(T1, T2) = 2π
∫∞

0
r (p1i,R1i

(r, T1)λ1 + p2i,R2i
(r, T2)λ2) dr =

L̄1(T1) + L̄2(T2).

B. Proof of Lemma 3

From Section III-A, we know that whether a scheduled user sends an IN request to a macro-

BS or not depends on its location relative to this macro-BS. Hence, the event thatu0 sends an IN

request to one of its potential IN macro-BSs and the event that any other scheduled user sends

an IN request to the same macro-BS are dependent. For analytical tractability, we approximate
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TABLE I

PARAMETER VALUES

j Rj,1C Rj,1O Rj,2

1 Y1 T
1

α1

1 Y1

(

P2

P1

) 1

α2 Y

α1

α2

1

2
(

P1

P2

) 1

α1 Y

α2

α1

2

(

P1

P2

T2

) 1

α1 Y

α2

α1

2 Y2

these two events as independent events. Then, we have

pc (U, T1, T2) ≈ E

[

min

{

U

K0 + 1
, 1

}]

=

U−1
∑

k=0

Pr (K0 = k) +

∞
∑

k=U

U

k + 1
Pr (K0 = k) . (30)

Substituting (5) into (30), we have the final result.

C. Proof of Theorem 1

Let Rj,1C andRj,1O denote the minimum and maximum possible distances betweenu0 ∈ Uj

and its nearest and furthest macro-interferers (amongu0’s potential IN macro-BSs which do not

selectu0 for IN), respectively. LetRj,2 denote the minimum possible distance betweenu0 ∈ U2

and its nearest pico-interferer. The relationships between Rj,1C , Rj,1O, Rj,2, andYj, respectively,

are shown in Table I. Based on (4) and conditioned onYj = y, we have

Pr (SIR0 > β|u0 ∈ Uj , Yj = y)

=Pr

(

∣

∣

∣h
†
j,00fj,0

∣

∣

∣

2

> βyαj

(

P1

Pj

Ij,1C +
P1

Pj

Ij,1O +
P2

Pj

Ij,2

))

=

Mj−1
∑

n=0

(βyαj )
n

n!

∑

(na)
3

a=1
∈Nn

(

n

n1, n2, n3

)(

P1

Pj

)n1+n2
(

P2

Pj

)n3

EIj,1C

[

In1

j,1C exp

(

−βyαj
P1

Pj

Ij,1C

)]

× EIj,1O

[

In2

j,1O exp

(

−βyαj
P1

Pj

Ij,1O

)]

EIj,2

[

In3

j,2 exp

(

−βyαj
P2

Pj

Ij,2

)]

=

Mj−1
∑

n=0

(−βyαj )
n

n!

∑

(na)
3

a=1
∈Nn

(

n

n1, n2, n3

)(

P1

Pj

)n1+n2
(

P2

Pj

)n3

L
(n1)
Ij,1C

(U, s, rj,1C , rj,1O) |s=βy
αj P1

Pj

× L
(n2)
Ij,1O

(s, rj,1O) |s=βy
αj P1

Pj

L
(n3)
Ij,2

(s, rj,2)|s=βy
αj P2

Pj

(31)

whereL(n)
I (s, r) denotes thenth-order derivative of the Laplace transformLI(s, r).

Now, we calculateLI(s, r) andL(n)
I (s, r), respectively. First,LIj,1C(U, s, rj,1C, rj,1O) can be
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calculated as follows:

LIj,1C (U, s, rj,1C , rj,1O) = EΦj,1C ,{g1,ℓ}



exp(−s
∑

ℓ∈Φj,1C

D−α1

1,ℓ0 g1,ℓ





(a)
=EΦj,1C





∏

ℓ∈Φj,1C

E{g1,ℓ}

[

exp(−sD−α1

1,ℓ0 g1,ℓ

]



 = EΦj,1C





∏

ℓ∈Φj,1C

1

1 + sD−α1

1,ℓ0





(b)
= exp

(

−2πpc̄ (U, T1, T2)λ1

∫ rj,1O

rj,1C

(

1−
1

1 + s
rα1

)

rdr

)

(32)

whereg1,ℓ =
∣

∣

∣
h
†
1,ℓ0f1,ℓ

∣

∣

∣

2

, (a) is obtained by noting thatg1,ℓ (ℓ ∈ Φj,1C) are mutually independent,

and (b) is obtained by using the probability generating functional of a PPP [24]. Further, by first

letting s
− 1

α1 r = t and then 1
1+t−α1

= w, we obtain the result in (15).

Next, based on (32) and utilizing Faà di Bruno’s formula [25],L(n1)
Ij,1C

(U, s, rj,1C, rj,1O) can be

calculated as follows:

L
(n1)
Ij,1C

(U, s, rj,1C , rj,1O) =LIj,1C (U, s, rj,1C , rj,1O)
∑

(ma)na=1
∈Mn1

n1!
∏n1

a=1(a!)
mama!

×
n1
∏

a=1

(

2πpc̄ (U, T1, T2)λ1

∫ rj,1O

rj,1C

da

dsa

(

1

1 + s
rα1

)

rdr

)ma

=LIj,1C (U, s, rj,1C , rj,1O)
∑

(ma)na=1
∈Mn1

n1!(−1)n1

∏n1

a=1(a!)
mama!

×
n1
∏

a=1

(

2πpc̄ (U, T1, T2)λ1Γ (a+ 1)

∫ rj,1O

rj,1C

r1−aα1

(

1 + s
rα1

)a+1 dr

)ma

(33)

where the integral can be solved using a similar method. Similarly, we can calculateLIj,1O (s, rj,1O),

L(n2)
Ij,1O

(s, rj,1O), LIj,2(s, rj,2) andL(n3)
Ij,2

(s, rj,2). Finally, removing the conditions onYj = y and

after some algebraic manipulations, we can obtain the final result.

D. Proof of Theorem 2

Conditioned onYj = y, we have

1− Pr (SIR0 > β|u0 ∈ Uj , Yj = y)

=Pr

(

∣

∣

∣h
†
j,00fj,0

∣

∣

∣

2

≤ βyαj

(

P1

Pj

Ij,1C +
P1

Pj

Ij,1O +
P2

Pj

Ij,2

))

=exp

(

−βyαj

(

P1

Pj

Ij,1C +
P1

Pj

Ij,1O +
P2

Pj

Ij,2

)) ∞
∑

n=Mj

(βyαj )
n

n!

(

P1

Pj

Ij,1C +
P1

Pj

Ij,1O +
P2

Pj

Ij,2

)n
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=
∞
∑

n=Mj

(−βyαj )
n

n!

∑

(na)
3

a=1
∈Nn

(

n

n1, n2, n3

)(

P1

Pj

)n1+n2

L
(n1)
Ij,1C

(U, s, rj,1C , rj,1O) |s=βy
αj P1

Pj

× L
(n2)
Ij,1O

(s, rj,1O) |s=βy
αj P1

Pj

(

P2

Pj

)n3

L
(n3)
Ij,2

(s, rj,2)|s=βy
αj P2

Pj

. (34)

Similar to the calculations in Appendix C, after some algebraic manipulations and removing

the condition onYj = y, we have

1− Sj (U, T1, T2, β) =

∫ ∞

0

∞
∑

n=Mj

Tj,Yj
(n, y, U, T1, T2, β) fYj

(y)dy (35)

where

Tj,Yj
(n, y, U, T1, T2, β) =

1

n!

∑

(na)3a=1
∈Nn

(

n

n1, n2, n3

)

L̃
(n1)
Ij,1C

(U, s, y) |
s=βy

αj P1

Pj

L̃
(n2)
Ij,1O

(s, y) |
s=βyαh

P1

Pj

× L̃
(n3)
Ij,2

(s, y) |
s=βy

αj P2

Pj

. (36)

Now, we calculatelimβ→0

∫∞

0

∑∞
n=Mj

Tj,Yj
(n, y, U, T1, T2, β) fYj

(y)dy, i.e., the asymptotic out-

age probability whenβ → 0. We note thatB
′

(a, b, z) = (1−z)b

b
+ o

(

(1− z)b
)

as z → 1. Then,

we have

B
′

(

2

α
, 1−

2

α
,

1

1 + cβ

)

=
(cβ)

1− 2

α

1− 2
α

+ o
(

β1− 2

α

)

, (37)

B
′

(

1 +
2

α
, a−

2

α
,

1

1 + cβ

)

=
(cβ)a−

2

α

a− 2
α

+ o
(

βa− 2

α

)

, (38)

wherec ∈ R
+. Based on these two asymptotic expressions, we can obtain16

L̃
(n1)
Ij,1C

(U, s, y) = βn1

∑

(ma)
n1

a=1
∈Mn1

n1!
∏n1

a=1 ma!

n1
∏

a=1

(

2π
α1

pc̄ (U, T1, T2)λ1

a− 2
α1

(

1−

(

1

Tj

)a− 2

α1

)

(

P1y
αj

Pj

)
2

α1

)ma

+ o (βn1) ,

(39)

L̃
(n2)
Ij,1O

(s, y) = βn2

∑

(pa)
n2

a=1
∈Mn2

n2!
∏n2

a=1 pa!

n2
∏

a=1

(

2π
α1

λ1

a− 2
α1

(

P1

Pj

)
2

α1

y
2αj

α1

(

1

Tj

)a− 2

α1

)pa

+ o (βn2) , (40)

L̃
(n3)
Ij,2

(s, y) = βn3

∑

(qa)
n3

a=1
∈Mn3

n3!
∏n2

a=1 qa!

n3
∏

a=1

(

2π
α2

λ2

a− 2
α2

(

P2

Pj

)
2

α2

y
2αj
α2

)qa

+ o (βn3) . (41)

Moreover, utilizing dominated convergence theorem, we canshow that

lim
β→0

∫ ∞

0

∞
∑

n=Mj

Tj,Yj
(n, y, U, T1, T2, β) fYj

(y)dy =

∫ ∞

0

∞
∑

n=Mj

lim
β→0

Tj,Yj
(n, y, U, T1, T2, β) fYj

(y)dy .

Hence, substituting (39), (40) and (41) into (35), and aftersome algebraic manipulations, we

obtain Results 1), 2) and 3) inTheorem 2. To complete the proof, we now show thatb2 (U, T1, T2)

decreases withU . This can be proved by noting that i)b2 (U, T1, T2) is an increasing function

of pc̄ (U, T1, T2), and ii) pc̄ (U, T1, T2) decreases withU (which can be easily shown using (30)).

16f(x) = o (g(x)) meanslimx→0
f(x)
g(x)

= 0.
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E. Proof of Lemma 4

First, we characterize the maximum order gain. WhenU ∈ {0, 1, . . . , N1 − N2}, we have

N1−U ≥ N2, implyingmin{N1−U,N2} = N2. WhenU ∈ {N1−N2+1, . . . , N1−1}, we have

N1−U < N2, implyingmin{N1−U,N2} = N1−U < N2. Thus, we can show that the maximum

order gain ismaxU∈{0,1,··· ,N1−1}min{N1 − U,N2} = N2, achieved atU ∈ {0, 1, . . . , N1 − N2}.

Next, we compare the coefficients ofβN2 achieved at differentU ∈ {0, 1, . . . , N1 − N2}. We

consider two cases. i) WhenU < N1 − N2, asb2 (U, T1, T2) decreases withU , the coefficients

satisfy b2 (N1 −N2 − 1, T1, T2) < b2 (N1 −N2 − 2, T1, T2) < . . . < b2 (0, T1, T2). ii) When

U = N1 − N2, the coefficient ofβN2 is b1 (N1 −N2, T1, T2) + b2 (N1 −N2, T1, T2). Therefore,

we can complete the proof.

F. Proof of Theorem 3

1) Upper Bound:Let Sj,Yj
(y, β, U, T1, T2)

∆
= Pr (SIR0 > β|u0 ∈ Uj , Yj = y) denote the con-

ditional SIR coverage probability. Then,Sj (β, U, T1, T2) can be written as

Sj (β, U, T1, T2) =

∫ ∞

0

Sj,Yj
(y, β, U, T1, T2) fYj

(y)dy (42)

whereSj,Yj
(y, β, U, T1, T2) = µj (β, U, T1, T2) gj (y, β, U, T1, T2) and fYj

(y) is the p.d.f. of

Yj given in Lemma 1. Here,gj (y, β, U, T1, T2) = exp

(

−c1β
2
α1 y

2αj

α1 − c2β
2
α2 y

2αj

α2

)

with c1 =
(

pc̄ (U, T1, T2)

(

B
′

(

2
α1
, 1− 2

α1
, 1
1+β

)

− B
′

(

2
α1
, 1− 2

α1
, 1

1+ β

Tj

))

+B
′

(

2
α1
, 1− 2

α1
, 1

1+ β

Tj

))

×2πλ1

α1

(

P1

Pj

)
2
α1 and c2 =

2πλ2

α2

(

P2

Pj

)
2
α2

B
′

(

2
α2
, 1− 2

α2
, 1
1+β

)

, andµj (β, U, T1, T2) = c(β)

×y
2αj

α1
(
∑n1

a=1 ma+
∑n2

a=1 pa)+
2αj

α2

∑n3
a=1 qa, where

c(β) =

Mj−1
∑

n=0

1

n!

∑

(na)3a=1
∈Nn

∑

(ma)
n1

a=1
∈Mn1

∑

(pa)
n2

a=1
∈Mn2

∑

(qa)
n3

a=1
∈Mn3

(

n

n1, n2, n3

)

n1!
∏n1

a=1 ma!

×
n1
∏

a=1

(

2πλ1

α1
pc̄ (U, T1, T2)

(

βP1

Pj

)
2

α1

)ma n2
∏

a=1

(

2πλ1

α1

(

βP1

Pj

)
2

α1

B
′

(

1 +
2

α1
, a−

2

α1
,

1

1 + β
Tj

))pa

×
n1
∏

a=1

(

B
′

(

1 +
2

α1
, a−

2

α1
,

1

1 + β

)

−B
′

(

1 +
2

α1
, a−

2

α1
,

1

1 + β
Tj

))ma

n2!
∏n2

a=1 pa!

n3!
∏n3

a=1 qa!

×
n3
∏

a=1

(

2πλ2

α2

(

βP2

Pj

)
2

α2

B
′

(

1 +
2

α2
, a−

2

α2
,

1

1 + β

)

)qa

. (43)
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Let S̃j,Yj
(y, β, U, T1, T2) = µj (β, U, T1, T2) g̃j (y, β, U, T1, T2) with g̃j (y, β, U, T1, T2) = exp

(

−cjβ
2
αj y2

)

.

Let f̃Yj
(y) =

2πλj

Aj
y exp (−a1y

2). Then, we have
∫ ∞

0

Sj,Yj
(y, β, U, T1, T2) fYj

(y)dy <

∫ ∞

0

S̃j,Yj
(y, β, U, T1, T2) f̃Yj

(y)dy

=
c(β)πλj

Aj

(

cjβ
2

αj + a1

)−
αj

α1
(
∑n1

a=1
ma+

∑n2

a=1
pa)−

αj

α2

∑n3

a=1
qa−1

× Γ

(

αj

α1

(

n1
∑

a=1

ma +

n2
∑

a=1

pa

)

+
αj

α2

n3
∑

a=1

qa + 1

)

. (44)

Based on (38), we can obtain the order ofβ asβ → ∞: β
−
(

1+ 2
α1

)

∑n1
a=1 ma−

2
αj , which can be

maximized whenn1 = 0. Hence, we obtain the order of the upper bound:β
− 2

αj . Moreover,

based on (37) and after some algebraic manipulation, we obtain the expression ofη1(U, T1, T2)

andη2.

2) Lower Bound:First, we note thatSj (β, U, T1, T2) can be rewritten as

Sj (β, U, T1, T2) =

∫ 1

0

Sj,Yj
(y, β, U, T1, T2) fYj

(y)dy +

∫ ∞

1

Sj,Yj
(y, β, U, T1, T2) fYj

(y)dy

>

∫ 1

0

Sj,Yj
(y, β, U, T1, T2) fYj

(y)dy >

∫ 1

0

Ŝj,Yj
(y, β, U, T1, T2) f̂Yj

(y)dy

=c(β)
πλj

Aj

αmax

αj

(

a1 + a2 + c1β
2

α1 + c2β
2

α2

)−αmax

α1
(
∑n1

a=1
ma+

∑n2

a=1
pa)−αmax

α2

∑n3

a=1
qa−

αmax

αj

× γ

(

αmax

α1

(

n1
∑

a=1

ma +

n2
∑

a=1

pa

)

+
αmax

α2

n3
∑

a=1

qa +
αmax

αj

, a1 + a2 + c1β
2

α1 + c2β
2

α2

)

(45)

whereŜj,Yj
(y, β, U, T1, T2) = µj(β, U, T1, T2)ĝj(y, β, U, T1, T2) with ĝj(y, β, U, T1, T2)

= exp
(

−c1β
2
α1 y

2αj

αmax − c2β
2
α2 y

2αj

αmax

)

, and f̂Yj
(y) =

2πλj

Aj
y exp

(

−a1y
2αj

αmax − a2y
2αj

αmax

)

. Similar

to the method in calculating the order of the upper bound, when β → ∞, we can obtain the order

of the lower bound asβ
−
∑n1

a=1 ma+
2
α1

∑n2
a=1 pa+

2
α2

∑n3
a=1 qa−

2αmax
αminα1

(
∑n1

a=1 ma+
∑n2

a=1 pa)−
2αmax
αminα2

∑n3
a=1 qa−

2
αj

αmax
αj ,

which can be maximized whenn1 = n2 = n3 = 0, i.e., n = 0. Hence, we obtain the order of

the lower bound asβ
− 2

αj

αmax
αmin . Moreover, based on (37) and after some algebraic manipulation,

we obtain the expression ofξj.

G. Proof of Theorem 4

When β → ∞ and α1 = α2 = α, based on (37) and (38) and after some algebraic

manipulation, we have

Pr (SIRj,0 > β) =

Mj−1
∑

n=0

1

n!

∑

n1+n2+n3=n

(

n

n1, n2, n3

)

∑

(ma)
n1

a=1
∈Mn1

∑

(pa)
n2

a=1
∈Mn2

∑

(qa)
n3

a=1
∈Mn3

n1!
∏n1

a=1 ma!
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× β−
∑n1

a=1
ma+

2

α

∑n2

a=1
pa+

2

α

∑n3

a=1
qa

n1
∏

a=1

(

2
α
π

1 + 2
α

pc̄(U, T1, T2)λ1

(

P1

Pj

)
2

α (

T
1+ 2

α

j − 1
)

)ma

×
n2!

∏n2

a=1 pa!

n2
∏

a=1

(

2π

α
λ1

(

P1

Pj

)

B

(

1 +
2

α
, a−

2

α

))pa n3!
∏n3

a=1 qa!

πλj

Aj

×
n3
∏

a=1

(

2π

α
λ2

(

P2

Pj

)
2

α

B

(

1 +
2

α
, a−

2

α

)

)qa

Γ

(

n1
∑

a=1

ma +

n2
∑

a=1

pa +

n3
∑

a=1

qa + 1

)

×
β− 2

α (
∑n1

a=1
ma+

∑n2

a=1
pa+

∑n3

a=1
qa+1)

2π
α
B

(

2
α
, 1− 2

α

(

λ1

(

P1

Pj

)
2

α

+ λ2

(

P2

Pj

)
2

α

))

∑n1

a=1
ma+

∑n2

a=1
pa+

∑n3

a=1
qa+1

. (46)

From (46), we see that the order isβ−(1+ 2
α)

∑n1
a=1 ma−

2
α , which can be maximised whenn1 =

0. Hence, the order isβ− 2
α . Moreover, after some algebraic manipulation, we can obtain the

expression of the coefficient.

H. Proof of Lemma 4

We solve the optimization problem forα1 = α2. Whenα1 6= α2, the optimization problem

can be solved in a similar way and is omitted due to page limit.First, we rewritec1 (U, T1, T2) in

(25) asc1 (U, T1, T2) =
πλ1

A1

∑U

u=0 Pr (uIN,0 = u) f(u), wheref(u) denotes the expression after

Pr (uIN,0 = u) in (25). It can be easily verified thatf(u) is a decreasing function ofu. By Lemma

2, we havec1 (U, T1, T2) =
πλ1

A1

(

∑U

u=0 Pr (K0 = u) f(u) +
∑∞

k=U+1Pr (K0 = k) f(U)
)

. Thus,

we havec1 (U + 1, T1, T2)− c1 (U, T1, T2) =
πλ1

A1
(f(U + 1)− f(U))

∑∞
k=U+1Pr (K0 = k) < 0.

Therefore, we can showU∗(β, T1, T2) = 0.
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