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We describe the full nonlinear development of the superradiant instability for a charged mass-
less scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner–
Nordström-AdS black hole. The presence of the negative cosmological constant provides a natural
context for considering perfectly reflecting boundary conditions and studying the dynamics as the
scalar field interacts repeateadly with the black hole. At early times, small superradiant pertur-
bations grow as expected from linearized studies. Backreaction then causes the black hole to lose
charge and mass until the perturbation becomes nonsuperradiant, with the final state described by
a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge
per unit mass, resulting in greater entropy increase. We discuss the implications of the observed
behavior for the general problem of superradiance in black hole spacetimes.

Introduction.—A bosonic field can extract energy
from a rotating black hole (BH) through superradiant
scattering [1, 2], resulting in an increase in field ampli-
tude. If, in addition, the field is reflected by a poten-
tial barrier sufficiently far away, then this amplification
process repeats, resulting in exponential growth. This
is known as the superradiant instability, or “black hole
bomb” [3]. Since in global anti–de Sitter (AdS) space-
time, naturally reflecting boundary conditions at I can
be defined, asymptotically AdS black holes with ergore-
gions are subject to the superradiant instability [4–6].

A similar process occurs for Reissner-Nordström (RN)
BHs [4, 7–9], with the charge playing the role of the angu-
lar momentum. There, a charged scalar field mode with
time dependence ψ ∼ e−iωt is superradiantly amplified
if ωrH < qQ (rH is the BH outer horizon radius, Q is
the BH charge, and q is the gauge coupling of the scalar
field). In the RN-AdS case [4, 10], the reflecting bound-
ary implies that there is a minimum mode frequency, so
the instability sets in when Q > 3

qL , where L is the AdS

scale (in the limit of small rH/L).

When perturbations are small, the description above is
valid and a linearized analysis is suitable; several studies
have determined the quasinormal mode spectra of, e.g.,
Kerr-AdS [5, 11] and RN-AdS [10]. As the perturbation
grows, however, the backreaction on the spacetime be-
comes significant, and this description breaks down.

Less is known about the final state of the instability,
although it is in general expected to be a “hairy” BH.
In the RN-AdS case, static BHs surrounded by a scalar
field condensate have been constructed, and have been
conjectured to be the end point of the instability [12,
13]. In the Kerr-AdS case, rotating BHs with a single
helical Killing vector field have been constructed [14], but
these BHs are unstable themselves and are, therefore, not
plausible end points. The final state might be a hairy BH
without any symmetries, or the instability may lead to a
violation of cosmic censorship [15]. Further complication
arises from the fact that gravitational interactions can

result in significant nonlinear mode-coupling in confined
geometries such as AdS, where dissipation is low [16, 17].

It is of wide interest to have a more complete pic-
ture of the dynamics and end point of the superradi-
ant instability. In astrophysics, the instability is used to
constrain dark matter models, and may lead to observ-
able gravitational wave emissions [18–20]. In holography
(AdS/CFT [21] and Kerr/CFT [22]) superradiance man-
ifests within the CFT [11, 23–26], and the nonlinear evo-
lution plays a role in determining the final thermal state.
Finally, questions of BH instabilities are of theoretical
interest in classical general relativity [6, 27, 28].

Fully analyzing the superradiant instability is compli-
cated by several factors: large differences in scale between
the BH and perturbation, long instability time scales,
fully nonlinear equations (Einstein and other fields), and
an intrinsically 3 + 1-dimensional problem. Thus, non-
linear simulations, while the obvious approach, are chal-
lenging [29, 30]; however, see [31]. In the charged case,
however, the instability is present even in spherical sym-
metry, and the instability time scale is shorter. By study-
ing this case, one could hope to draw general conclusions
that could be applied more broadly.

In this work we study the nonlinear evolution of the
superradiant instability of RN-AdS BHs in spherical sym-
metry. We verify the initial growth rates predicted from
the linear theory, and we confirm expectations that the
final state is a hairy BH1. At intermediate times, we track
the dynamics of individual modes as charge and mass are
nonlinearly extracted from the BH, and we arrive at an
intuitive picture of the behavior. In particular, within
this picture, the “bosenova” of [32] for large values of q
can be easily understood.

1 These results are consistent with very recent results of [32] for
the case of RN surrounded by an artificial mirror; however, work-
ing in AdS provides a more natural setting free of ambiguities
and potential sources of constraint violations. The paper [32]
appeared while we were completing our work.
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Model.—We follow the conventions of [33], and we
work in d = 4 dimensions. The Lagrangian density is

16πGNL = R+
6

L2
− 1

4
FabF

ab − |Daψ|2, (1)

where Da ≡ ∇a− iqAa is the gauge covariant derivative.
This gives rise to the Einstein equation

Gab −
3

L2
gab = 8πTψab + 8πTEM

ab , (2)

where the stress-energies tensors are

8πTEM
ab =

1

2

(
gcdFacFbd −

1

4
gabFcdF

cd

)
, (3)

8πTψab =
1

2
[(Daψ)∗(Dbψ) + c.c.]− 1

2
gab|Dcψ|2. (4)

The Maxwell and scalar field equations are

∇b (∇bAa −∇aAb) = iqψ∗Daψ − iqψ(Daψ)∗, (5)

DaDaψ = 0. (6)

The RN-AdS BH is a solution to the field equations
above, with metric ds2 = −fdt2 + f−1dr2 + r2dΩ2

2,

where f = 1 − 2M
r + Q2

4r2 + r2

L2 ; the Maxwell field Aµ =(
Q
r −

Q
rH

)
dv, and ψ = 0. The Q/rH term in the Maxwell

field is simply a choice of gauge designed to have the field
vanish at the horizon.

Numerical Method.—Our simulations follow the
general approach of [34]. We adopt ingoing Eddington-
Finkelstein coordinates and spherical symmetry2, so that
the metric takes the form

ds2 = −A(v, r)dv2 + 2dvdr + Σ(v, r)2dΩ2
2. (7)

For the Maxwell field, we work in a gauge where

Aµdx
µ = W (v, r)dv. (8)

With these choices, the equations of motion (2), (5), and

2 This differs from the analysis of [35], which imposed planar sym-
metry and studied the nonlinear evolution of a holographic su-
perconductor.

(6) take the form

Einstein:

0 = Σ(d+Σ)′ + (d+Σ)Σ′ − 3

2L2
Σ2 − 1

2
+

1

8
Σ2W ′, (9)

0 = A′′ − 4

Σ2
(d+Σ)Σ′ +

2

Σ2
+ (ψ′)∗d+ψ

+ (d+ψ)∗ψ′ − (W ′)2 + iqW [ψ∗ψ′ − (ψ′)∗ψ] , (10)

0 = d+d+Σ− 1

2
A′d+Σ +

1

2
Σ|d+ψ|2 +

1

2
q2W 2Σ|ψ|2

+
1

2
iqWΣ [ψ∗d+ψ − ψ(d+ψ)∗] , (11)

0 = Σ′′ +
1

2
Σ|ψ′|2, (12)

Maxwell:

0 = (d+W )′ − 1

2
A′W ′ + 2

d+Σ

Σ
W ′ − 2q2W |ψ|2

+ iq (ψ∗d+ψ − ψ(d+ψ)∗] , (13)

0 = W ′′ +
2

Σ
Σ′W ′ + iq [ψ∗ψ′ − ψ(ψ′)∗] , (14)

Scalar:

0 = 2(d+ψ)′ + 2
Σ′

Σ
d+ψ + 2

d+Σ

Σ
ψ′ − iqψW ′

− 2iq
Σ′

Σ
Wψ − 2iqWψ′. (15)

Here, we have denoted the spatial derivative f ′ ≡ ∂rf ,
and the derivative along the outgoing null direction,
d+f ≡ ∂vf + 1

2A∂rf .
The equations of motion must be solved subject to

reflecting boundary conditions at r → ∞. These take
the form

A =
r2

L2
+ λr +

(
1 +

L2λ2

4
− L2λ̇

)
− 2M

r

+

(
L2λM +

Q2

4

)
1

r2
+O(r−3), (16)

Σ = r + L2λ/2 +O(r−5), (17)

W = ν +Q/r +O(r−2), (18)

ψ = ϕ3/r
3 +O(r−4). (19)

The constants M and Q represent the ADM mass and
charge, respectively; these are prescribed as boundary
data. The functions λ(v) and ν(v) represent the remain-
ing gauge freedom after putting the metric and Maxwell
fields into the forms (7)–(8). We make the further gauge
choice that λ = ν = 0. Finally the function ϕ3(v) is an
unknown function that is determined by the solution.

The procedure to integrate the equations is as follows:
On an initial time slice v = v0 we prescribe the function
ψ(v0, r). We then integrate, radially inwards in r [and
subject to the asymptotic conditions (16)–(19)], eqs. (9),
(10), (12), (14), and (15), to obtain d+Σ, A, Σ, W , and
d+ψ, respectively, at time v = v0. From d+ψ, ψ, and A,
we obtain ∂vψ at time v = v0. By integrating in time, we
obtain ψ at the next time step. The procedure may then
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be iterated. Equations (11) and (13) are redundant, and
we use these as independent residuals to test our code.

We use a finite differencing scheme, using a second
order radial, and fourth order in time Runge-Kutta
method. We take the spatial domain to extend from an
inner radius r0—several grid points within the BH—to
infinity. In fact, we compactify this domain by introduc-
ing a new spatial coordinate ρ = 1/r. This gives rise to
a compact domain 0 ≤ ρ ≤ 1/r0, which we discretize in
a uniform grid.

For initial data, we take the scalar field to be compactly
supported, with ψ = (r−1 − r−11 )3(r−1 − r−12 )3/r2[κ1 +
κ2 sin(10/r)] if r ∈ [r1, r2] (and zero otherwise). For pro-
duction runs we typically use {κ1, κ2} = 10−4, so the
scalar field is initially negligible compared to the BH. We
checked by varying {κ1, κ2} that different initial data do
not affect the features of the final solution, provided the
amplitude is small. We set L = 1, and take ADM pa-
rameters M = 0.1, Q = −0.18115; this corresponds to a
BH small compared to the AdS scale (rH = 0.138), with
charge 63.9% of the critical value. Excellent accuracy is
obtained with grid sizes of N = 1600n + 1 points (with
n = 1 for low q and n = 2, 3 for higher ones), and we
have thoroughly tested our implementation (see Supple-
mentary Material).

Results.—Having fixed M and Q, we varied the gauge
coupling q of the scalar field. At early times, simula-
tions reveal that for sufficiently small q . 3

QL , all scalar
field quasinormal modes decay, resulting in rapid ring-
down to RN-AdS. For slightly larger q, a growing mode
is present, and the instability ensues. We checked that
the initial growth rate—while the perturbation remains
small—matches the prediction of [10] in the linearized
case. At later times, the perturbation becomes nonlin-
ear, as backreaction on the BH becomes significant, with
the spacetime eventually settling into a stationary hairy
BH.

The superradiant cases display the following charac-
teristics: (i) The scalar field eventually saturates in am-
plitude and has harmonic time dependence3, resulting in
a time-independent stress-energy tensor and metric; (ii)
Significant amounts of charge –as measured at the ap-
parent horizon (AH)– are extracted from the BH by the
scalar field, with more extracted at larger q; (iii) The ir-
reducible mass of the BH (the square root of the area)4

approaches that of a Schwarzschild-AdS BH of mass M ,
with closer approach for larger q (implying less mass ex-
traction for larger q); (iv) The scalar hair is distributed

3 Previously constructed hairy black holes[12, 13] have static ψ,
but this is simply a result of a different choice of gauge for the
Maxwell field.

4 As the stationary stage is reached, the AH location coincides
with the event horizon.

further away5. from the BH for larger q; and (v) The
approach to the final state is less smooth for larger q, in
a sense that will be described below.

In Figure 1, we show the irreducible mass and charge
of the BH as functions of time, for various choices of
q. In the left figure, we compare the irreducible mass
Mirr of the AH of our dynamical BH with that of a (un-
charged) Schwarzschild-AdS BH with massM (we denote
this quantity M0). As expected from the area theorem,
the irreducible mass never decreases. For small q, Mirr

displays very smooth approach to its final value, while for
large q, it displays some step-like behavior. Moreover, for
large q, the ratio Mirr/M0 → 1, as depicted in Figure 4.

The right side of Figure 1 shows the charge, both of the
AH, and the integrated charge of the scalar field (by con-
servation of charge, these must sum to the ADM charge
Q). The charge displays much more interesting behavior
than the irreducible mass, including some up-and-down
oscillations. As with Mirr, the low-q case is smoothest.
We find that for large q, nearly all of the charge can be
extracted from the BH. This contrast between the mass
and charge extracted arises because the charge to mass
ratio of the final state scalar field mode is larger for larger
q.

The less smooth behavior of the instability at larger-
q can be understood by studying the mode content. In
Figure 2 we show a spectrogram of an evolution, where
we plot the frequency content of ϕ3(v) as a function
of time. This plot enables us to identify the individ-
ual modes present in the solution, and to observe their
growth or decay as a function of time. The initial data
contain a large number of modes, with real frequencies
Re(ωn) ≈ (2n + 3)/L + C in the small BH limit. Most
of these do not satisfy the superradiance condition, and
they decay rapidly [10]. The lower frequency modes, how-
ever, with (2n+ 3) < qQL, are unstable, and are visibly
growing exponentially in the spectrogram [lower-Re(ωn)
modes grow more rapidly]. (In Figure 2 there are 8 such
modes.) Over time, these modes extract charge and mass
from the BH, and one by one (starting at large n) they
begin to decay, and are re-absorbed by the BH. In the
end, the BH is discharged to the point where the funda-
mental (n = 0) mode has zero growth rate, and it remains
as the condensate.

The oscillations of Figure 1 are now understood as an
effect of having a mixture of modes, some of which are
extracting, and others depositing, charge and mass into
the BH. In the end, the BH reaches the hairy state, with
all the higher modes having decayed. The “bosenova”
of [32] for larger-q evolutions is simply a result of this
process. Indeed, for q just above the instability threshold,

5 This observation highlights the difference between placing an ar-
tificial boundary at some location with respect to the BH versus
at the boundary of AdS.
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FIG. 1. (Left) (Normalized) Irreducible mass versus time for
representative values of q. As q is increased the growth rate
increases as well. (Right) Charge within the apparent hori-
zon (dashed), and the charge of the scalar field outside on a
constant-v slice (solid), as a function of time. As the value
of q is increased, the dynamical timescale shortens. For even
smaller q (not shown), curves are very smooth, with no steps
or oscillations. (Note that for the initial data emplyed, for the
largest-q case, most of the scalar field energy falls immediately
into the black hole as it backscatters off itself, resulting in a
smaller effective initial perturbation.)

there is only a single mode, and evolution displays a very
smooth approach to the stationary end state.

Radial profiles of the final state are illustrated in Fig-
ure 3. On the left, we plot the Misner-Sharp mass
MMS(r) (suitably defined so as to take into account the
contribution of the AdS curvature [36]) as a function of
radius. As q is increased, MMS increases in value at the
AH, again confirming that less mass is extracted. As I
is approached, MMS → M . Moreover, for large q, MMS

is constant in r near the BH, while for small q it grows.
This, together with the right figure, shows that the scalar
field condensate and the electric field are localized further
away from the BH for larger q.

Finally, Figure 4 shows the normalized irreducible
mass of the final state BH as a function of q. As q is
increased, Mirr/M0 → 1. (For q = 5000, Mirr/M0 ≈
99.5%.) This, together with the radial profile informa-
tion, indicates that at late times and large q, the BH
region approaches Schwarzschild-AdS, surrounded by a
distant low-mass/highly-charged condensate.

Final words.—We have described the full dynami-
cal behavior of the charged superradiant instability in
AdS. Initially superradiant modes extract charge and
mass from the BH and grow exponentially. As this pro-
cess unfolds, the higher-frequency modes cease to be su-
perradiant, and fall back into the BH, returning energy
and charge and resulting in nontrivial dynamics that
may be thought of as a “bosenova” [32]. Eventually,
the fundamental mode remains as a condensate, with
zero growth. While nonlinear couplings between modes
(via gravity and electromagnetism) can generate higher-
frequency modes in AdS [16, 17], any such processes are
overwhelmed by the fact that in the end, all modes be-
yond the fundamental are decaying. The ultimate fate is
a stable hairy BH, with the scalar condensate distributed

FIG. 2. Spectrogram showing logarithm of amplitude of
Fourier transform of ϕ3(v) as a function of time. This is com-
puted by partitioning the time axis into intervals of length
∆v = 4π, and performing discrete Fourier transforms on these
intervals. The intervals are overlapping, with starting points
offset by δv = π/8. The case here has q = 12, r+ = 0.2, and
Q set to 80% of the extremal value. At early times, the lowest
8 modes grow exponentially, with faster growth for lower fre-
quencies. As charge and mass is extracted, all modes (aside
from the fundamental) start to decay, with higher frequen-
cies decaying first. The growth rate of the fundamental ap-
proaches zero, leaving a final static BH with a harmonically-
oscillating scalar condensate.
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FIG. 3. (Left) Misner-Sharp mass versus radius for represen-
tative values of q, measured for the late-time static spacetime.
For large values of q, MMS is constant to relatively large radial
distance, indicating that black hole is essentially uncharged
and the scalar field hair lies far away from this region. At
larger radii, a radial dependence arises because of the pres-
ence of both the electromagnetic and scalar fields. (Right)
Norm (squared and rescaled by r−4) of the scalar field, also
at late times. The field is localized far from the black hole for
large values of q.

far away from the BH for large q.

Among the scalar modes, the final mode that remains
maximizes the charge to mass ratio q/ω, and its growth
corresponds to maximizing the entropy increase of the
BH. This observation may elucidate possible behavior of
the superradiant instability in the rotating case. For
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FIG. 4. Normalized irreducible mass versus q. As q is
increased, Mirr/M0 → 1. This is consistent with the claim
that the final BH state for sufficiently large values of q is a
Schwarzschild-AdS black hole of mass M (the ADM mass),
surrounded by a distant high charge, low mass scalar field
condensate.

a Kerr-AdS BH, the stability criterion for a mode is
ωrH < mΩ, where Ω is the angular frequency of the
BH, and m the azimuthal number of the perturbation [4].
This is comparable with the condition ωrH < qQ in the
charged case, but with the key difference that m can
take any integer value, whereas q is a fixed parameter
of the system. In the rotating case, a given perturba-

tion may be expected to spin down the black hole to the
point where only the most superradiant mode remains
(i.e., that which causes the black hole to maximize its
entropy), but now just marginally stable. It would be in-
teresting to examine the superradiant mode frequencies
in Kerr-AdS presented in [11] from this point of view; it
is plausible that the final (i.e., most superradiant) mode
has m→∞, consistent with speculation of [15].

Finally, in astrophysical applications, the outer poten-
tial barrier is no longer infinite (as in AdS), and is instead
typically provided by a mass term for the field. Such a
case provides a cutoff in mode energy, and on the effi-
ciency of energy extraction.

Acknowledgments.—We would like to thank
A. Buchel, S. L. Liebling, O. Sarbach and J. Winicour
for discussions and comments throughout this project.
This work was supported in part by NSERC through
a Discovery Grant (to L.L.), by CIFAR (to L.L.), by
CONACyT-Mexico (to P.B) and by Perimeter Institute
for Theoretical Physics. Research at Perimeter Institute
is supported by the Government of Canada through
Industry Canada and by the Province of Ontario through
the Ministry of Research and Innovation.

Supplementary Material

CONTENTS

Numerical method 5

Code validation 7

References 7

Numerical method

Here we provide additional details of our numerical approach. Our implementation is similar to that of [34], but with
several modifications: (1) We include Maxwell and complex scalar fields, (2) Our black hole has spherical (as opposed
to planar) topology, (3) We excise the black hole from the computational domain and (4) instead of pseudospectral
methods we employ finite differences with derivatives satisfying summation by parts [37, 38].

As noted in the main text, in order to discretize the spacetime, we adopt a compact spatial domain so as to include
the AdS boundary (I ) in our computational grid and ensure the full equations are consistently implemented. Hence,
we introduce ρ = 1/r as our spatial coordinate and define new variables,

A(v, r) = α(v, 1/r) = α(v, ρ), (20)

Σ(v, r) = σ(v, 1/r) = σ(v, ρ), (21)

d+Σ(v, r) = s(v, 1/r) = s(v, ρ), (22)

W (v, r) = ν(v, 1/r) = ν(v, ρ), (23)

ψ(v, r) = ϕ(v, 1/r) = ϕ(v, ρ), (24)

d+ψ(v, r) = Π(v, 1/r) = Π(v, ρ). (25)
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f f |ρ=0 ∂ρf |ρ=0

α̂ −L2λ̇ −2M
σ̂ 1

2
L2λ 0

ŝ 0 −M
ŵ ν Q
ϕ̂ 0 ϕ3

Π̂ 0 − 3
2L2ϕ3

β̂ −2M 2L2λM + Q2

2

ẑ Q −L2λQ

TABLE I. Boundary conditions for the evolved fields.

From the asymptotic forms (16)–(19), we see that some of these fields diverge at I , so it is more convenient to evolve
“hatted” fields that have better asymptotic behavior. We define

α̂ = α− 1

L2
σ2 − 1, (26)

σ̂ = σ − 1

ρ
, (27)

ŝ = s− 1

2L2
σ2 − 1

2
, (28)

ν̂ = ν, (29)

ϕ̂ =
1

ρ2
ϕ, (30)

Π̂ =
1

ρ
Π. (31)

In order to integrate a first order system [(10) and (12) have second order space derivatives], we also introduce β̂ = ∂ρα̂
and ẑ = ∂ρŵ. With the compact domain, the asymptotic conditions are simply imposed as boundary conditions at
ρ = 0 (see Table I).

The equations of motion for the hatted fields are obtained by substitution into the equations already written in the
main text. We omit the resulting (lengthy) expressions. Given ϕ̂ at time v = v0 (more specifically, we keep track of

its real and imaginary parts), we integrate eqs. (9), (10), (12), (14), and (15), together with β̂ = ∂ρα̂ and ẑ = ∂ρŵ,
to obtain all of the remaining hatted fields at time v = v0. These equations are all first order in space, so we impose
the initial value for each field at ρ = 0, as listed in the middle column of Table I. To evolve forward in time, we make
use of the definition

d+ψ = ∂vψ +
1

2
A∂rψ (32)

(again, re-written in terms of hatted fields), to obtain ∂vϕ̂ at time v = v0. Knowing this, we evolve forward one step
in time, and repeat the procedure.

The boundary conditions in Table I contain two free functions, λ and ν, which correspond to the remaining freedom
in the choice of radial coordinate and the vector potential after imposing (7) and (8), respectively. We set these
quantities to zero, so the only remaining boundary conditions are the (constant) ADM mass and charge (Q and M),
which we are free to choose. The final function, ϕ3(v), shown in the table, is not set in advance, but rather is an
output of the evolution, which may be read off.

The full equations are discretized by adopting a uniform grid ρi = (i − 1)dρ with dρ = ρinner/(N − 1) (with
ρinner < ρAH the location of the AH; see below). Null hypersurfaces are discretized in time separated by dv = γdρ
with γ chosen typically = 0.4 to ensure satisfying the CFL condition. Radial integrations are performed using a
4th order Runge-Kutta, being mindful of a few subtleties. Some of the equations of motion involve 0/0-type terms
at ρ = 0, in these cases we impose the radial derivative explicitly at the boundary (and where needed regularize
the equations via the L’Hôpital rule). (For this reason, we provide the third column of Table I.) Additionally, the
equation of motion for ŝ is of the form ∂ρŝ ∼ ŝ/ρ+ . . ., which is problematic as its regularization leaves no equation.
We instead use a 2nd order implicit scheme for this equation, making the spatial integration 2nd order as a whole.
Time integrations are performed with RK4, and spatial derivatives satisfy the summation by parts property and are
2nd order accurate at boundary points while 4th order accurate at interior ones [37].
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As mentioned, we do not exploit the freedom in λ to fix the position of the AH at a constant radial coordinate
as in [34]. Rather, we find the AH at each incoming null surface and excising a number of grids points inside of it
(typically 10 points; see, e.g., [38, 39]).

Code validation

We have confirmed the validity of our implementation through extensive tests summarized below:

• By choosing small values of q and a configuration for the scalar field not satisfying the superradiance condition
we have confirmed the decay of the perturbations and with a rate in agreement with those presented in [10]. Our
extracted values for both real and imaginary parts of ω agrees with those obtained in linearized perturbations
to better than 0.01% even with relatively modest resolutions N = 801.

• Choosing instead larger values of q we obtained the onset of the superradiance instability and confirmed our
extracted values agree with those in [10] with high accuracy.

• An even more stringent test is provided by evaluating independent residuals—furnished by the equations (11)
and (13). That is, we independently evaluate these equations, discretized in a straightforward second order
approximation, employing fields at two sequential time slices, and confimed the equations are satisfied to this
order throughout our evolutions.

• All results presented here have been validated by employing several distinct resolutions. Typical resolutions of
N = 1601 points suffice for excellent accuracy for low to mid values of q while we adopt higher ones N = 3201
or N = 4801 for q > 1000.

• We performed self-convergence tests showing that our numerical solutions converge at least to second order.
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[31] W. E. East, F. M. Ramazanoǧlu, and F. Pretorius, Phys. Rev. D 89, 061503 (2014), arXiv:1312.4529 [gr-qc].
[32] N. Sanchis-Gual, J. C. Degollado, P. J. Montero, J. A. Font, and C. Herdeiro, (2015), arXiv:1512.05358 [gr-qc].
[33] S. S. Gubser, Phys. Rev. D78, 065034 (2008), arXiv:0801.2977 [hep-th].
[34] P. M. Chesler and L. G. Yaffe, JHEP 07, 086 (2014), arXiv:1309.1439 [hep-th].
[35] K. Murata, S. Kinoshita, and N. Tanahashi, JHEP 07, 050 (2010), arXiv:1005.0633 [hep-th].
[36] H. Maeda, Phys. Rev. D86, 044016 (2012), arXiv:1204.4472 [gr-qc].
[37] G. Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. Sarbach, and M. Tiglio, Class. Quant. Grav. 20, L245 (2003),

arXiv:gr-qc/0302072 [gr-qc].
[38] A. Buchel, L. Lehner, and R. C. Myers, JHEP 08, 049 (2012), arXiv:1206.6785 [hep-th].
[39] R. Gomez, L. Lehner, R. L. Marsa, and J. Winicour, Phys. Rev. D57, 4778 (1998), arXiv:gr-qc/9710138 [gr-qc].

http://dx.doi.org/10.1103/PhysRevD.77.064018
http://arxiv.org/abs/0712.0791
http://dx.doi.org/10.1143/PTP.121.1099
http://arxiv.org/abs/0812.0718
http://dx.doi.org/ 10.1007/JHEP04(2010)019
http://arxiv.org/abs/0907.3477
http://arxiv.org/abs/1203.3561
http://arxiv.org/abs/1010.5132
http://arxiv.org/abs/1402.7034
http://dx.doi.org/10.1088/0264-9381/18/17/202
http://arxiv.org/abs/gr-qc/0106072
http://arxiv.org/abs/1502.06853
http://dx.doi.org/ 10.1103/PhysRevD.89.061503
http://arxiv.org/abs/1312.4529
http://arxiv.org/abs/1512.05358
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://arxiv.org/abs/0801.2977
http://dx.doi.org/10.1007/JHEP07(2014)086
http://arxiv.org/abs/1309.1439
http://dx.doi.org/10.1007/JHEP07(2010)050
http://arxiv.org/abs/1005.0633
http://dx.doi.org/10.1103/PhysRevD.86.044016
http://arxiv.org/abs/1204.4472
http://dx.doi.org/10.1088/0264-9381/20/20/102
http://arxiv.org/abs/gr-qc/0302072
http://dx.doi.org/10.1007/JHEP08(2012)049
http://arxiv.org/abs/1206.6785
http://dx.doi.org/10.1103/PhysRevD.57.4778
http://arxiv.org/abs/gr-qc/9710138

