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Abstract

We introduce and study the new concepts of cosilting complexes, cosilting modules and
AIR-cotilting modules. We prove that the three concepts AIR-cotilting modules, cosilting
modules and quasi-cotilting modules coincide with each other, in contrast with the dual fact
that AIR-tilting modules, silting modules and quasi-tilting modules are different. Further,
we show that there are bijections between the following four classes (1) equivalent classes
of AIR-cotilting (resp., cosilting, quasi-cotilting) modules, (2) equivalent classes of 2-term
cosilting complexes, p3q torsion-free cover classes and p4q torsion-free special precover classes.
We also extend a classical result of Auslander and Reiten on the correspondence between
certain contravariantly finite subcategories and cotilting modules to the case of cosilting
complexes.

MSC2010: Primary 16D90 Secondary 16E05 16E35 16G10
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1 Introduction

The tilting theory is well known, and plays an important role in the representation theory

of Artin algebra. The classical notion of tilting and cotilting modules was first considered in the

case of finite dimensional algebras by Brenner and Butler [10] and by Happel and Ringel [17].

Cotilting theory (for arbitrary modules over arbitrary unital rings) extends Morita duality in

analogy to the way tilting theory extends Morita equivalence. In particular, cotilting modules

generalize injective cogenerators similarly as tilting modules generalize progenerators. Later,

many scholars have done a lot of research on the tilting theory and cotilting theory, for instance

[3, 5, 6, 7, 13, 14, 22, 26, 29] and so on.

The silting theory seems to be the tilting theory in the level of derived categories (while

the tilting complexes play the role of progenerators). Silting complexes were first introduced by

Keller and Vossieck [19] to study t-structures in the bounded derived category of representations

of Dynkin quivers. Beginning with [2], such objects were recently shown to have various nice

properties [20, 21]. The results in [27] show that silting complexes (i.e., semi-tilting complexes

in [27]) have similar properties as that tilting modules have in the module categories. The recent

paper by Buan and Zhou [12] also shows that it is reasonable to see the silting theory as the

tilting theory in the level of derived categories.
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The τ -tilting theory recently introduced by Adachi, Iyama and Reiten [1] is an important

generalization of the classical tilting theory. In particular, it was shown that support τ -tilting

modules have close relations with 2-term silting complexes and cluster-tilting objects [1]. In

[4], the authors introduce silting modules as a generalization of support τ -tilting modules over

arbitrary rings and modules. We note that there is also another little different generalization

of support τ -tilting modules over arbitrary rings, called large support τ -tilting modules, which

was introduced by the second author [28].

In this paper, we concentre on the dual case, i.e., the correspondent cotilting parts to the

above achievements. In the level of finitely generated modules over artin algebras, such dual

cases proceed very well. So we only consider the dual over arbitrary rings and modules. As one

will see, there are many interesting properties in such case.

Let us briefly introduce the contents and main results of this paper in the following.

After the introduction in Section 1, Section 2 is devoted to studying cosilting complexes.

Namely, a complex T over a ring R is cosilting if it satisfies the following three conditions:

(1) T P KbpInjRq,

(2) T is prod-semi-selforthogonal and,

(3) KbpInjRq is just the smallest triangulated subcategory containing xAdpDT y, where AdpDT

denotes the class of complexes isomorphic in the derived category DpModRq to a direct

summand of some direct products of copies of T .

It is clear that a cotilting complex [11] is cosilting. We show that an R-module is a cotilting

module if and only if it is isomorphic in the derived category to a cosilting complex. Some

characterizations of cosilting complexes are obtained. In particular, we extend a simple char-

acterization of cotilting modules [7] to cosilting complexes (Theorem 2.14). In [6], Auslander

and Reiten showed that, over an artin algebra, there is a one-one correspondence between cer-

tain contravariantly finite subcategories and basic cotilting modules. The result was extended

to the derived category of artin algebras by Buan [11], where the author proved that there is

a one-one correspondence between basic cotilting complexes and certain contravariantly finite

subcategories of the derived category. Here, we further extend the result to cosilting complexes

and to arbitrary rings (Theorem 2.17).

In Section 3, we study quasi-cotilting modules and cosilting modules. In the tilting case, it

is known that a silting module is always a finendo quasi-tilting module but the converse is not

true in general [25]. However, in the dual case, we see that quasi-cotilting modules are always

cofinendo and that they are also pure-injective [30]. We show that cosilting modules are always

quasi-cotilting modules, and consequently, cosilting modules are pure injective and cofinendo.

Interesting properties and characterizations of cosilting modules are also given in this section.

In Section 4, we introduce and study AIR-cotilting modules. We call an R-module M AIR-

tilting if it is large support τ -tilting in sense of [28], i.e., it satisfies the following two conditions:

(1) there is an exact sequence P1 Ñf P0 Ñ M Ñ 0 with P1, P0 projective such that

Hompf,M pXqq is surjective for any set X and,

(2) there is an exact sequence R Ñg M0 Ñ M1 Ñ 0 with M0,M1 P AddM such that

Hompg,M pXqq is surjective for any set X.

Dually, we call an R-module M AIR-cotilting if it satisfies the following two conditions:

(1) there is an exact sequence 0 Ñ T Ñ I0 Ñf I1 with I0, I1 injective such that HompTX , fq

is surjective for any set X and,

(2) there is an exact sequence 0 Ñ T1 Ñ T0 Ñg Q with T0, T1 P AdpT and Q an injective

cogenerator such that HompTX , gq is surjective for any set X.
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Clearly, 1-tilting modules are AIR-tilting modules and 1-cotilting modules are AIR-cotilting

modules. In the tilting case, a silting module is always AIR-tilting and an AIR-tilting module

can be completed to a silting module [4, 28]. But it is a question if these two notions are the same

in general (they are the same in the scope of finitely generated modules over artin algebras).

It is also known that AIR-tilting modules are finendo quasi-tilting. But the converse is not

true in general [25]. However, in the dual case, we prove that AIR-cotilting modules coincide

with cosilting modules, as well as quasi-cotilting modules (Theorem 4.18). Moreover, we also

show that there is a 1-1 correspondence between equivalent classes of AIR-cotilting modules and

2-term cosilting complexes (Theorem 4.12).

Summarized, we obtain the following main results.

Theorem 1.1 There is a one-one correspondence, given by u : T ÞÑ Kią0T , between equivalent

classes of cosilting complexes in Dě and subcategories T Ď Dě which is specially contravariantly

finite in D`, resolving and closed under products such that pT “ D`.

Theorem 1.2 Let R be a ring and M be an R-module. The following statements are equivalent:

p1q M is AIR-cotilting;

p2q M is quasi-cotilting.

p3q M is cosilting.

Theorem 1.3 There are bijections between

p1q equivalent classes of AIR-cotilting (resp., cosilting, quasi-cotilting) modules;

p2q equivalent classes of 2-term cosilting complexes;

p3q torsion-free cover classes and,

p4q torsion-free special precover classes.

Throughout this paper, R will denote an associative ring with identity and we mainly work

on the category of left R-modules which is denoted by ModR. We denote by InjR (resp.,

ProjR) the class of all injective (resp., projective) R-modules. The notations KbpInjRq (resp.,

KbpProjRq) denotes the homotopy category of bounded (always cochain) complexes of injective

(resp., projective) modules. The unbounded derived category of ModR will be denoted by DpRq,

or simply D, with [1] shift functor. We denoted by Dě the subcategory of complexes whose

homologies are concentrated on non-negative terms. We use D` to denote the subcategory of

D consists of bounded-below complexes.

Note that D is a triangulated category and KbpInjRq, KbpProjRq, D` are all full triangulated

subcategories of D. We refer to Happel’s paper [16] for more details on derived categories and

triangulated categories.

2 Subcategories of the derived category and cosilting complexes

In this section we study the dual of silting complexes and give various characterizations

of cosilting complexes. In particular, we extend a result of Bazzoni [7] and establish a one-

one correspondence between certain subcategories of the derived category D and the equivalent

classes of cotilting complexes stemming from Auslander and Reiten [6].

We begin with some basic notations and some useful facts in general triangulated categories.
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Let C be a triangulated category with [1] the shift functor. Assume that B is a full subcategory

of C. Recall that B is closed under extension if for any triangle X Ñ Y Ñ Z Ñ in C with

X,Z P C, we have V P C. The subcategory B is resolving (resp., coresolving) if it is closed under

extension and under the functor r´1s (resp., r1s). It is easy to prove that B is resolving (resp.,

coresolving) if and only if for any triangle X Ñ Y Ñ Z Ñ (resp., Z Ñ Y Ñ X Ñ) in B with

Z P B, one has that ‘ X P B ô Y P B ’.

We say that an object M P C has a B-resolution (resp., B-coresolution) with the length at

most m (m ě 0), if there are triangles Mi`1 Ñ Xi Ñ Mi Ñ (resp., Mi Ñ Xi Ñ Mi`1 Ñ)

with 0 ď i ď m such that M0 “ M , Mm`1 “ 0 and each Xi P B. In the case, we denoted by

B-res.dimpLq ď m (resp., B-cores.dimpLq ď m). One may compare such notions with the usual

finite resolutions and coresolutions respectively in the module category.

Associated with a subcategory B, we have the following notations which are widely used in

the tilting theory (see for instance [6]), where n ě 0 and m is an integer.

p pBqn “ tL P C | B-res.dimpLq ď nu.

p qBqn “ tL P C | B-cores.dimpLq ď nu.
pB “ tL P C | L P p pBqn for some nu.
qB “ tL P C | L P p qBqn for some nu.

BKi‰0 “ tN P C | HompM,N risq “ 0 for all M P B and all i ‰ 0u.
Ki‰0B “ tN P C | HompN,M risq “ 0 for all M P B and all i ‰ 0u.

BKiąm “ tN P C | HompM,N risq “ 0 for all M P B and all i ą mu.
KiąmB “ tN P C | HompN,M risq “ 0 for all M P B and all i ą mu.

BKi"0 “ tN P C | N P BKiąm for some mu.

Note that BKiąm (resp., KiąmB) is coresolving (resp., resolving) and closed under direct

summands and that BKi"0 is a triangulated subcategory of C.

The subcategory B is said to be semi-selforthogonal (resp., selforthogonal) if B Ď BKiąm

(resp., B Ď BKi‰0). For instance, both subcategories ProjR and InjR are selforthogonal.

In the following results of this section, we always assume that B is semi-selforthogonal and

that B is additively closed (i.e., B “ addCB where addCB denotes the subcategory of all objects

in C which are isomorphic to a direct summand of finite direct sums of copies of objects in B).

Associated with the subcategory B, we also have the following two useful subcategories which

are again widely used in the tilting theory (see for instance [6]).

XB “ tN P Kią0B | there are triangles Ni Ñ Bi Ñ Ni`1 Ñ such that N0 “ N ,

Ni P Kią0B and Bi P B for all i ě 0u.

BX “ tN P BKią0 | there are triangles Ni`1 Ñ Bi Ñ Ni Ñ such that N0 “ N ,

Ni P BKią0 and Bi P B for all i ě 0u.

We summarize some results on subcategories associated with B in the following, where xBy

denotes the smallest triangulated subcategory containing B. We refer to [27] for their proofs.

Proposition 2.1 Let B be a semi-selforthogonal subcategory of a triangulated category C such

that B is additively closed. Then

p1q The three subcategories qB Ď XB Ď Kią0B is resolving and closed under direct summands.

p2q The three subcategories pB Ď BX Ď BKią0 is coresolving and closed under direct summands.

p3q B “ qB Ş
BKią0= pB Ş

Kią0B.
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p4q p qBqn “ XB

Ş
pXBqKiąn “ XB

Ş
pKią0BqKiąn. In particular, it is closed under extensions

and direct summands.

p5q p pBqn “ BX
Ş

KiąnpBX q “ BX
Ş

KiąnpBKią0q. In particular, it is closed under extensions

and direct summands.

p6q The following three subcategories coincide with each other.

piq xBy: the smallest triangulated subcategory containing B;

piiq p pBq´ “ tX P C| there exists some Y P pB and some i ď 0 such that X “ Y risu;

piiiq p qBq` “ tX P C| there exists some Y P qB and some i ě 0 such that X “ Y risu.

p7q pB “ BKią0

Ş
xBy.

p8q qB “ Kią0B
Ş

xBy.

We also need the following results.

Lemma 2.2 Suppose that n ě 1 and there are triangles Li Ñ Mi Ñ Li`1 Ñ with each Mi P XB,

where 0 ď i ď n ´ 1. Then there exist Xn, Yn P C such that

p1q Yn P XB,

p2q there is a triangle Ln Ñ Xn Ñ Yn Ñ, and

p3q there are triangles Xi´1 Ñ Bi´1 Ñ Xi Ñ with each Bi´1 P B, for all 1 ď i ď n, where

X0 “ L0.

Proof. We use induction on n to prove this conclusion.

For n “ 1, there is a triangle M0 Ñ B0 Ñ Y1 Ñ with B0 P B and Y1 P XB since M0 P XB.

Then we can get the following triangle commutative diagram:

❄ ❄ ❄

0 ✲ Y1
✲ Y1

✲
❄ ❄ ❄

L0
✲ B0

✲ X1
✲

❄ ❄ ❄

L0
✲ M0

✲ L1
✲

Obviously, X1 and Y1 in diagram above are just the objects we look for.

We suppose that the result holds for n ´ 1. Next, we will verify that the result holds for n.

According to the known condition, we have the triangle Ln´1 Ñ Mn´1 Ñ Ln Ñ withMn´1 P XB.

Using the induction on Ln´1, one can obtain some triangles Ln´1 Ñ Xn´1 Ñ Yn´1 Ñ with

Yn´1 P XB and Xi´1 Ñ Bi´1 Ñ Xi Ñ with Bi P B, for all 1 ď i ď n´ 1, where X0 “ L0. Hence

we have the following triangle commutative diagram:

❄ ❄ ❄

Yn´1
✲ Yn´1

✲ 0 ✲
❄ ❄ ❄

Xn´1
✲ H ✲ Ln

✲
❄ ❄ ❄

Ln´1
✲ Mn´1

✲ Ln
✲

5



From the second column in diagram above, we can obtain that H P XB by Proposition 2.1.

So one have a triangle H Ñ Bn´1 Ñ Xn Ñ with Bn´1 P B, Xn P XB. Consequently, one have

the following triangle commutative diagram:

❄ ❄ ❄

0 ✲ Yn
✲ Yn

✲
❄ ❄ ❄

Xn´1
✲ Bn´1

✲ Xn
✲

❄ ❄ ❄

Xn´1
✲ H ✲ Ln

✲

It is easy to see that Xn and Yn from diagram above are just the objects we want. l

Corollary 2.3 For any L P p xXBqn, then there are two triangles L Ñ X Ñ Y Ñ with X P p pBqn,

Y P XB and U Ñ V Ñ L Ñ with U P p pBqn´1 and V P Kią0B.

Proof. For any L P p xXBqn, we have triangles Li Ñ Mi Ñ Li`1 Ñ with Mi P XB, where

0 ď i ď n, L0 “ 0, Ln`1 “ L. By Lemma 2.2, we obtain the triangle L Ñ X Ñ Y Ñ with

X P p pBqn, Y P XB. Since X P p pBqn, one can get a triangle U Ñ B0 Ñ X Ñ with T0 P B and

U P p pBqn´1. Then we have the following triangles commutative diagram:

❄ ❄ ❄

L ✲ X ✲ Y ✲
❄ ❄ ❄

V ✲ B0
✲ Y ✲

❄ ❄ ❄

U ✲ U ✲ 0 ✲

From the second row in diagram above, one can easy see that V P Kią0B since Y, T0 P Kią0B.

Hence the triangle U Ñ V Ñ L Ñ is just what we want. l

Now let R be a ring and T be a complex. Recall that AdpDT denotes the class of complexes

isomorphic in the derived category D to a direct summand of some direct products of T . We

say that T is prod-semi-selforthogonal if AdpDT is semi-selforthogonal. It is easy to see that

AdpDT is additively closed in this case. So the results above applies when we set B “ AdpDT .

We introduce the following definition.

Definition 2.4 A complex T is said to cosilting if it satisfies the following conditions:

p1q T P KbpInjRq,

p2q T is prod-semi-selforthogonal, and

p3q KbpInjRq “ xAdpDT y, i.e., KbpInjRq coincides with the smallest triangulated subcategory

containing AdpDT .

Now let Q be an injective cogenerator for ModR. Recall that D` is the triangulated sub-

category of the derived category D consists of bounded-below complexes, KbpInjRq is homotopy

category of bounded complexes of injective modules. Also, recall that Dě is the subcategory of
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the complexes whose homologies are concentrated on non-negative terms. It is not difficult to

verify that Dě “ Kią0Q and D` “ Ki"0Q.

The following result gives a characterization of cosilting complexes.

Theorem 2.5 Let T be a complex and Q be an injective cogenerator of ModR. Up to shifts,

we may assume that T P Dě. Then T is cosilting if and only if it satisfies the following three

conditions:

piq T P ­AdpDQ,

piiq T is prod-semi-selforthogonal, and

piiiq Q P {AdpDT .

Proof. ð Since T P ­AdpDQ, there are triangles Ti Ñ Qi Ñ Ti`1 Ñ with Qi P AdpDQ

for all 0 ď i ď n, where T0 “ T, Tn`1 “ 0. It is easy to see that each Ti P KbpInjRq, for

i “ n, n ´ 1, ¨ ¨ ¨ , 0, since AdpDQ “Inj R Ď KbpInjRq. In particular, T P KbpInjRq. Now we

need only prove that KbpInjRq “ xAdpDT y. Note that AdpDQ Ď {AdpDT by Proposition 2.1,

since Q P {AdpDT . and that T P KbpInjRq, so we have

KbpInjRq “ xAdpDQy Ď x {AdpDT y “ xAdpDT y Ď KbpInjRq.

Thus, T is cosilting.

ñ Since T P Dě “ Kią0Q and T P xAdpDT y “ KbpInjRq “ xAdpDQy, one can get that

T P ­AdpDQ by Proposition 2.1. Note that AdpDT Ď Kią0Q, since T P Dě “ Kią0Q, so

Q P pAdpDT qKią0 . Combining with the fact that Q P KbpInjRq “ xAdpDT y, we have that

Q P {AdpDT by Proposition 2.1. l

Recall that an R-module T is (n-)cotilting (see for instance [7]) if it satisfies the following

three conditions (1) idT ď n, i.e., the injective dimension of T is finite, (2) ExtiRpTX , T q “ 0

for any X and, (3) there is an exact sequence 0 Ñ Tn Ñ ¨ ¨ ¨ Ñ T0 Ñ Q Ñ 0, where Ti P AdpRT

and Q is an injective cogenerator of ModR.

Proposition 2.6 Assume that T is an R-module. Then T is a cotilting module if and only if

T is isomorphic in the derived category to a cosilting complex.

Proof. ñ Since short exact sequences give triangles in the derive category, it is easy to see

that every cotilting module is cosilting in the derived category by Theorem 2.5.

ð Note that there is a faithful embedding from ModR into D. i.e., for any two

modules M,N P ModR, we have that HomDpM,Nq – HomRpM,Nq. Moreover, we have

HomDpM,N risq – ExtiRpM,Nq for all i ą 0 and for any two modules M,N . So the condi-

tion (2) in the definition of cotilting modules is satisfied.

As to the condition (1) in the definition of cotilting modules, since T is isomorphic in the

derived category to a cosilting complex and T P Dě, by Theorem 2.5, we have that T P ­AdpDQ.

i.e., there are triangles Ti Ñαi Qi Ñ Ti`1 Ñ with Qi P AdpDQ for all 0 ď i ď n, where T0 “ T ,

Tn`1 “ 0. We will show that these triangles are in ModR and hence give short exact sequences

in ModR.

Consider firstly the triangle T0 Ñα0 Q0 Ñ T1 Ñ, where T0 “ T is already an R-module.

Then α0 P HomDpT0, Q0q » HomRpT0, Q0q shows that α0 is homomorphism between modules.

We claim that α0 is injective. To see this, taking any momomorphism β: T0 Ñ Q1 with

Q1 an injective module. Since T P ­AdpDQ, it is easy to see that all Ti P Kią0Q. Hence

7



HomRpα0, Q
1q – HomDpα0, Q

1q is surjective. Then we have the following commutative diagram

in ModR for some homomorphisms β1.

Q1

0 ✲kerpα0q ✲✲i

β

α0
T0

✲

❄ β1�
�

��✠

Q0

From the diagram above, we have that βα0 “ β1α0i “ 0. Note that β is injective, so

we obtain that i “ 0 and consequently, α0 is injective. Then we have an exact sequence

0 Ñ T0 Ñ Q0 Ñ Cokerpα0q Ñ 0 which induces a triangle T0 Ñ Q0 Ñ Cokerpα0q Ñ. It follows

that T1 – Cokerpα0q is (quasi-isomorphic to) an R-module. Repeating discussion above for all

i, we can get that each αi is injective and each Ti is (quasi-isomorphic to) an R-module.

Note that Tn “ Qn. By discussion above, we can get a long exact sequence 0 Ñ T Ñ Q0 Ñ

Q1 Ñ ¨ ¨ ¨ Ñ Qn Ñ 0. So idT ď n, i.e., the condition (1) in the definition of cotilting modules is

satisfied.

Finally, still by Theorem 2.5, we have that Q P {AdpDT . Similarly to the above process, we

can get a long exact sequence 0 Ñ Tn Ñ ¨ ¨ ¨ Ñ T1 Ñ T0 Ñ Q Ñ 0 with Ti P AdpT , i.e., the

condition (3) in the definition of cotilting modules is satisfied. l

Proposition 2.7 Suppose that T P Dě is a cosilting complex.

p1q If S
À

T is also a cosilting complex for some S, then S P AdpDT .

p2q If there are triangles Ti Ñ Qi Ñ Ti`1 Ñ with Qi P AdpDQ for all 0 ď i ď n, where

T0 “ T , Tn`1 “ 0, then AdpDp
Àn

i“0 Qiq “ AdpDQ.

p3q If there are triangles Qi`1 Ñ Ti Ñ Qi Ñ with Ti P AdpDT for all 0 ď i ď m, where

Q0 “ Q, Qm`1 “ 0, then
Àm

i“0 Ti is a cosilting complex. Moreover, AdpDp
Àm

i“0 Tiq “

AdpDT .

Proof. (1) Since S
À

T is a cosilting complex, we have that xAdpDpS
À

T qy “ KbpInjRq “

xAdpDT y. It is easy to verify that S P Kią0T and S P pAdpDT qKią0 since S
À

T is prod-semi-

selforthogonal. It follows from Proposition 2.1 that

S P Kią0T
Ş

xAdpDpS
À

T qy “ Kią0T
Ş

xAdpDT y “ ­AdpDT .
Hence S P ­AdpDT

Ş
pAdpDT qKią0 “ AdpDT by Proposition 2.1.

(2) Obviously,
Àn

i“0Qi P AdpDQ is prod-semi-selforthogonal. It is not difficult to see that

AdpDT Ď x
Àn

i“0Qiy by Proposition 2.1. It follows that

xAdpDQy “ KbpInjRq “ xAdpDT y Ď xAdpDp
nà

i“0

Qiqy Ď xAdpDQy.

Hence xAdpDp
Àn

i“0 Qiqy “ xAdpDQy. Clearly, p
Àn

i“0 Qiq
À

Q is cosilting. It follows from (1)

that AdpDp
Àn

i“0 Qiq “ AdpDQ.

(3) It is easy to verify that both p
Àm

i“0 Tiq ‘ T and
Àm

i“0 Ti are cosilting by Theorem 2.5.

Consequently, we have that AdpDp
Àm

i“0 Tiq “ AdpDT by (1). l

Proposition 2.8 Let T P Dě be a cosilting complex and n ě 0. Then T P p ­AdpDQqn if and

only if Q P p {AdpDT qn.

Proof. ñ We have that Q P p {AdpDT qm for some m, by Theorem 2.5. If m ď n, then the

conclusion holds clearly. Suppose that m ą n. There are triangles Qi`1 Ñ Ti Ñ Qi Ñ with
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Ti P AdpDT for 0 ď i ď m, where Q0 “ Q, Qm`1 “ 0. Applying the functor HomDp´, Qmq to

these triangles, we can obtain that

HomDpQm´1, Qmr1sq » HomDpQm´2, Qmr2sq

» ¨ ¨ ¨ » HomDpQ0, Qmrmsq “ HomDpQ,Qmrmsq.

It is not difficult to verify that AdpDT Ď pKią0QqKiąn since T P p ­AdpDQqn. Then we have

that HomDpQ,Qmrtsq “ 0 for t ą n since Q P Kią0Q and Qm “ Tm P AdpDT . Consequently,

HomDpQm´1, Qmr1sq “ 0 and the triangle Tm “ Qm Ñ Tm´1 Ñ Qm´1 Ñ is split. Hence

Qm´1 P AdpDT and Q P p {AdpDT qm´1. By continuing this process, we can finally obtain that

Q P p {AdpDT qn.

ð The proof is just the dual of above statement. l

The following is an easy observation.

Lemma 2.9 Suppose that T P D is prod-semi-selforthogonal, then Kią0T “ XAdpDT .

Proof. Clearly, XAdpDT Ď Kią0T .

Take any M P Kią0T and consider the triangle M Ñα TX Ñ M1 Ñ, where α is the

canonical evaluation map. Applying the functor HomDp´, T q to this triangle, we can obtain

that HomDpM1, T risq “ 0 for all i ą 0. i.e., M1 P Kią0T . Continuing this process, we get

triangles Mj Ñ Tj Ñ Mj`1 with Tj P AdpDT and Mj P Kią0T for all j ě 0, where M0 “ M .

Consequently, M P XAdpDT by the definition. So Kią0T Ď XAdpDT and the conclusion holds. l

We say a complex is partial cosilting, if it satisfies the first two conditions in Definition 2.4.

Proposition 2.10 If T P Dě is partial cosilting. Then T is cosilting if and only if Kią0T Ď Dě.

Proof. ñ By Theorem 2.5 (3), there are triangles Qi`1 Ñ Ti Ñ Qi Ñ with Ti P AdpDT for

all 0 ď i ď n, where Q0 “ Q,Qn`1 “ 0. Applying the functor HomDpM,´q to these triangles,

where M P Kią0T , we can get that M P Kią0Q. Hence Kią0T Ď Kią0Q “ Dě.

ð It is not difficult to verify that Q P KiąnT for some n, so Qr´ns P Kią0T . Then there are

triangles Qr´i´ 1s Ñ 0 Ñ Qr´is Ñ for all 0 ď i ď n´ 1. Hence Q P p{Kią0T qn. We can obtain a

triangle Q Ñ X Ñ Y Ñ with X P p {AdpDT qn, Y P Kią0T by Corollary 2.3 and Lemma 2.9. Note

that Kią0T Ď Dě. So Y P Kią0Q and the triangle Q Ñ X Ñ Y Ñ is split. Hence Q P p {AdpDT qn
since p {AdpDT qn is closed under direct summands. Consequently, T is a cosilting complex. l

We say that a complex T P Dě is n-cosilting if it is a cosilting complex such that Q P

p {AdpDT qn. A characterization of n-cotilting modules says that an R-module T is n-cotilting

if and only if CogennT “ KerExtią0
R p´, T q, see [7] for more details. We will present a similar

characterization of n-cosilting complexes in the following.

We need the following subcategory of D. Let T P D and n ą 0, we denote

Copresn
DěpAdpDT q “ tM P D | there exist some triangles Mi Ñ Ti Ñ Mi`1 Ñ with

Ti P AdpDT for all 0 ď i ă n, where Mn P Dě and M0 “ M u.

It is not difficult to verify that Copresn
DěpAdpDT q is closed under products. The following

result gives more properties about this subcategory.
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Lemma 2.11 p1q Děr´ns Ď Copresn
DěpAdpDT q.

p2q If T P Dě, then Copresn
DěpAdpDT q Ď Dě.

Proof. Since 0 P AdpDT and Dě is resolving, it is easy to verify the conclusions by the

definitions. l

Proposition 2.12 Assume that T P Dě is n-cosilting. Then Kią0T “ Copresn
DěpAdpDT q.

Proof. By Proposition 2.10 and Lemma 2.9, we get that Kią0T Ď Kią0Q “ Dě and Kią0T “

XAdpDT . In particular, Kią0T Ď Copresn
DěpAdpDT q.

Now we prove that Copresn
DěpAdpDT q Ď Kią0T . For any M P Dě “ Kią0Q, it is not

difficult to verify that M P KiąnT . Take any N P Copresn
DěpAdpDT q, then there are triangles

Ni Ñ Ti Ñ Ni`1 Ñ with Ti P AdpDT for all 0 ď i ă n, where Nn P Dě and N0 “ N . Applying

the functor HomDpT,´q to these triangles, we have that

HomDpN0, T risq – HomDpN1, T ri ` 1sq – ¨ ¨ ¨ – HomDpNn, T ri ` nsq “ 0, i ą 0.

Hence HomDpN,T risq “ HomDpN0, T risq “ 0, i ą 0 and N P Kią0T . i.e., Copresn
DěpAdpDT q Ď

Kią0T . The proof is then completed. l

It is well known that T P KbpInjRq if and only if D` Ď Ki"0T .

Proposition 2.13 Assume that T P Dě. If Kią0T “ Copresn
DěpAdpDT q, then T is n-cosilting.

Proof. Note that T P Copresn
DěpAdpDT q “Kią0T . Since Copresn

DěpAdpDT q is closed under

products, we have that AdpDT Ď Kią0T . Hence T is prod-semi-selforthogonal.

From Lemma 2.11, we know that Děr´ns Ď Copresn
DěpAdpDT q “ Kią0T . So Dě Ď KiąnT .

In particular, D` Ď Ki"0T . Consequently, T P KbpInjRq. It follows that T P p ­AdpDQqm for

some m from the argument above and Proposition 2.1.

We note that Kią0T “ Copresn
DěpAdpDT q Ď Dě by Lemma 2.11 (2). Hence, by Proposition

2.10, T is m-cosilting complex, where m is the integer given in the last paragraph. Since

T P ­AdpDQ. then there are triangles Ti Ñ Qi Ñ Ti`1 Ñ with Qi P AdpDQ for all 0 ď i ď m,

where Tm`1 “ 0 and T0 “ T . Applying the functor HompQm,´q to these triangles, we can

obtain that

HomDpQm, Tm´1r1sq – HomDpQm, Tm´2r2sq – ¨ ¨ ¨ – HomDpQm, T0rmsq “ HomDpQm, T rmsq.

Noted that Qr´ns P Copresn
DěpAdpDT q “Kią0T since 0 P AdpDT . Hence HomDpQ,T ri `

nsq “ 0, for any i ą 0. If m ď n, then T is clearly n-cosilting. If m ą n, it follows from the

discussion above that Tm´1 Ñ Qm´1 Ñ Qm Ñ is split. i.e., T P p ­AdpDQqm´1. Repeating this

process, we finally get that T P p ­AdpDQqn. Consequently, T is n-cosilting. l

Combining Proposition 2.12 and Proposition 2.13, we obtain the following characterization

of n-cosilting complexes.

Theorem 2.14 Assume that T P Dě. Then the following are equivalent:

p1q T is n-cosilting,

p2q Kią0T “ Copresn
DěpAdpDT q.
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In [6], Auslander and Reiten showed that there is a one-one correspondence between isomor-

phism classes of basic cotilting modules and certain contravariantly finite resolving subcategories.

Extending this result, Buan [11] showed that there is a one-to-one correspondence between ba-

sic cotilting complexes and certain contravariantly finite subcategories of the bounded derived

category of an artin algebra. In the following, we aim to extend such a result to cosilting

complexes.

We need the following definitions. Let X Ď Y be two subcategories of D. X is said to be

contravariantly finite in Y, if for any Y P Y, there is a homomorphism f : X Ñ Y for some

X P X such that HomDpX 1, fq is surjective for any X 1 P X . Moreover, X is said to be specially

contravariantly finite in Y, if for any Y P Y, there is triangle U Ñ X Ñ Y Ñ with some

X P X such that HomDpX 1, U r1sq “ 0 for any X 1 P X . Note that in the later case, one has that

U P XKią0 if X is closed under r´1s.

Proposition 2.15 Assume that T P Dě is cosilting. Then {Kią0T “ D` and Kią0T Ď Dě is

specially contravariantly finite in D`.

Proof. We have proved that Kią0T Ď Dě in Proposition 2.10, so we get that {Kią0T Ď D`.

Now we take any X P D`. It is easy to see that X P KiąmT for some m since T P KbpInjRq.

Consequently, Xr´ms P Kią0T . Note that 0 P AdpDT , so we have X P {Kią0T by the definition.

Hence {Kią0T “ D`.

By Lemma 2.9, we have that Kią0T “ XAdpDT . Taking any X P D` “ {Kią0T “ {XAdpDT , by

Corollary 2.3, we obtain a triangle U Ñ V Ñ X Ñ with U P {AdpDT and V P Kią0T . Note that
{AdpDT Ď pKią0T qKią0 , so particularly we get that HomDpM,U r1sq “ 0 for any M P Kią0T . It

follows that Kią0T is specially contravariantly finite in D`. l

Proposition 2.16 Assume that T Ď Dě is specially contravariantly finite in D` and is resolv-

ing such that pT “ D`. If T
Ş

T Kią0 is closed under products, then there is a cosilting complex

T such that T “ Kią0T .

Proof. It is not difficult to verify that D` “ pT Ď Ki"0pT Kią0q. Hence we can obtain that

T Kią0 Ď KbpInjRq.

Taking any M P D`, since T is specially contravariantly finite in D` and is resolving,

there are triangles Mj`1 Ñ Tj Ñ Mj Ñ with Tj P T for all j ě 0, where M0 :“ M and

each Mj P T Kią0 for j ě 1. It follows that Tj P T
Ş

T Kią0 for all j ě 1. Since T Kią0 Ď

KbpInjRq and M P D`, it is easy to see that M P KiąnpT Kią0q for some n depending on M .

Applying HomDp´,Mn`1q to the triangles above, we obtain that HomDpMn,Mn`1r1sq » ¨ ¨ ¨ »

HomDpM,Mn`1rn ` 1sq “ 0. Thus, the triangle Mn`1 Ñ Tn Ñ Mn Ñ is split and so Mn

is a direct summand of Tn. Note that the conditions T
Ş

T Kią0 is closed under products and

T is resolving imply that T
Ş

T Kią0 is closed under direct summands, so we have that Mn P

T
Ş

T Kią0 .

Recall that Q is an injective cogenerator in ModR. Note that Q P T Kią0 since T Ď Dě “
Kią0Q. Specially the object M in the above to be Q, we obtain triangles Qj`1 Ñ T 1

j Ñ Qj Ñ

with Qj P T Kią0 and T 1
j P T

Ş
T Kią0 for all 0 ď j ď n, where Q0 “ Q and Qn`1 “ 0. Taking

T “
Àn

j“0 T
1
j. We will show that T is cosilting. It is easy to see that T is precosilting since

T Kią0 Ď KbpInjRq and T
Ş

T Kią0 is closed under products. Moreover, the argument above

shows that Q P {AdpDT too. Hence T is cosilting.
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Now we need only prove that T “ Kią0T . Obviously, we have that T Ď Kią0T since T “Àn
j“0 T

1
j and T 1

j P T
Ş

T Kią0 for all 0 ď j ď n. Taking any N P Kią0T . Similar to the discussion

above, there are triangle Nj`1 Ñ T 2
j Ñ Nj Ñ with Nj P T Kią0 , T 2

0 P T and T 2
j P T

Ş
T Kią0

for all 1 ď j ď m, where N0 “ N and Nm`1 “ 0. Note that all objects in these triangles

are in Kią0T . For any L P T
Ş

T Kią0 , it is easy to verify that T
À

L is also cosilting, hence

L P AdpDT by Proposition 2.7 (1). It follows that T
Ş

T Kią0 Ď AdpDT . Now it is easy to see

that T
Ş

T Kią0 “ AdpDT . So the above triangles imply that N1 P {AdpDT and consequently,

N1 P Kią0T
Ş {AdpDT “ AdpDT . Thus, the triangle N1 Ñ T0 Ñ N Ñ is split. It follows that

N P T from the facts that T0, N1 P T and that T is resolving. So we obtain that
Kią0T Ď T .

The proof is then completed. l

By Propositions 2.15 and 2.16, we obtain the following desired result. Here, we say two

complexes M and N are equivalent if AdpDM “ AdpDN .

Theorem 2.17 There is a one-one correspondence, given by u : T ÞÑ Kią0T , between equivalent

class of cosilting complexes in Dě and subcategories T Ď Dě which is specially contravariantly

finite in D`, resolving and closed under products such that pT “ D`.

Proof. It follows from Propositions 2.15 and 2.16 that the correspondence is well-defined.

Moreover, u is surjective by Proposition 2.16. If both T1 and T2 are cosilting with Kią0T1 “
Kią0T2, it is easy to varify that T1

À
T2 is also cosilting by the definition. So we have that

AdpDT1 “ AdpDT2 by Proposition 2.7, i.e., T1 and T2 are equivalent. Hence, u is bijective. l

3 Quasi-cotilting modules and cosilting modules

In this section, we introduce cosilting modules which is the dual of silting modules introduced

in [4]. We study their relationship with quasi-cotilting modules and provide some characteriza-

tions of cosilting modules. In particular, we obtain that all cosilting modules are pure-injective

and cofinendo and that every presilting module has a Bongartz complement.

Let R be a ring and U be a class of R-modules. Following [7], we denote by GennU the

class of all modules M such that there is an exact sequence Un Ñ ¨ ¨ ¨ Ñ U1 Ñ M Ñ 0 with

each Ui P U . Note that Gen1U and Gen2U are often denoted by GenU and PresU respectively.

Dually, we denote by CogennU the class of all modules M such that there is an exact sequence

0 Ñ M Ñ U1 Ñ ¨ ¨ ¨ Ñ Un with each Ui P U . Also we have CogenU “ Cogen1U and CopresU “

Cogen2U .

We simply denote GennU with GennT in case that U “ AddT for some R-module T , where

AddT denotes the class of modules which is a direct summand of some direct sums of copies of

T . Dually, we simply denote CogennU with CogennT in case that U “ AdpT for some R-module

T , where AdpT denotes the class of modules which is a direct summand of some direct products

of copies of T . We have similar simple notations GenT , PresT , CogenT , CopresT .

Now let T be an R-module. Recall that T is an n-star module if GennT “ Genn`1T and

HomRpT,´q preserve the exactness of exact sequences in GennT [26]. Dually, one call that T is

an n-costar module if CogennT “ Cogenn`1T and HomRp´, T q preserve the exactness of exact

sequences in CogennT [18].
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Let U be a class of R-modules. We denote by KerExt1RpU ,´q the class of all R-modules M

such that Ext1RpU,Mq “ 0 for all U P U . We have similar notations such as KerExt1Rp´,Uq.

Recall that an R-module E is Ext-injective in U if E P U
Ş

KerExt1RpU ,´q, and dually, an

R-module E is Ext-projective in U if E P U
Ş

KerExt1Rp´,Uq.

We have the following definitions [4, 13, 30].

Definition 3.1 p1q An R-module M is called a quasi-tilting module, if it is a 1-star module and

is Ext-projective in GenM .

p2q An R-module M is called a quasi-cotilting module, if it is a 1-costar module and is

Ext-injective in CogenM .

We will say that two quasi-cotilting modules M,N are equivalent if AdpM “ AdpN .

Let Q be an injective cogenerator of ModR. Following [5], an R-module M is called Q-

cofinendo if there exist a cardinal γ and a map f : Mγ Ñ Q such that for any cardinal α,

all maps Mα Ñ Q factor through f . An R-module M is cofinendo if there is some injective

cogenerator Q of ModR such that M is Q-cofinendo.

A short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 is called pure exact if the induced sequence

0 Ñ N bR A Ñ N bR B Ñ N bR C Ñ 0 is still exact for any right R-module N . An R-module

M is called pure injective if HomRp´,Mq preserves the exactness of all pure exact sequences.

We note that a remarkable properties of cotilting modules is that they are pure-injective [8, 24].

Let U be a class of R-modules and N be an R-module. Recall that a homomorphism

f : U Ñ N is called a precover, or a right U -approximation, of N if U P U and HomRpU 1, fq

is surjective for any U 1 P U . A U -precover f : U Ñ N of N is called a U -cover, or a minimal

right U -approximation, of M if any g : U Ñ U such that f “ fg must be an isomorphism.

A U -precover f : U Ñ N of N is called special if Kerf P KerExt1RpU ,´q. A class U of R-

modules is said to be a precover class, or contrvariantly finite, provided that every R-module

has a U -precover. Cover classes and special precover classes are defined similarly.

Recall that a class U of R-modules is torsion-free if U is closed under direct products,

submodules and extensions, see [15].

We collect some import results on quasi-cotilting modules from [30] in the following propo-

sition.

Proposition 3.2 Let M be an R-module and Q be an injective cogenerator of ModR.

p1q If CogenM Ď KerExt1Rp´,Mq, then pKerHomRp´,Mq,CogenMq is a torsion pair.

p2q All quasi-cotilting modules are pure-injective and cofinendo;

p3q M is quasi-cotilting module if and only if M is Ext-injective in CogenM and there is an

exact sequence 0 Ñ M1 Ñ M0 Ñα Q with M0,M1 P AdpM such that α is a CogenM -

precover.

p4q M is 1-cotilting if and only if M is quasi-cotilting and Q P GenpCogenMq.

p5q There are one-one correspondences between the following three classes

(i) equivalent classes of quasi-cotilting modules,

(ii) torsionfree cover classes and,

(iii) torsionfree specially precover classes.

We now turn to cosilting modules.

Firstly, let us recall the definition of silting modules given in [4]. Let σ : P1 Ñ P0 be in

ProjR and Dσ be the class of all R-modules N such that HomRpσ,Nq is surjective. Then an
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R-module M is said to be presilting if there is some σ in ProjR such that M “ Kerσ P Dσ and

that Dσ is a torsion class. Moreover, an R-module M is said to be silting if there is some σ in

ProjR such that M “ Kerσ and Dσ “ GenM . Note that silting modules are always presilting

[4].

As for the duall case, we take a homomorphism σ : E0 Ñ E1 in InjR, and consider the

associated class of R-modules

Fσ “ tM P ModR | HomRpM,σq is surjectiveu.

The following result gives some useful properties of Fσ . Here we say that a homomorphism

σ : E0 Ñ E1 in InjR is an injective copresentation of M if M » Kerσ.

Lemma 3.3 Let σ be a homomorphism in InjR with K “ Kerσ. Then the following assertions

hold:

p1q Fσ is closed under submodules, extensions and direct sums;

p2q Fσ Ď KerExt1Rp´,Kq;

p3q An R-module M belongs to Fσ if and only if HomDpθr´1s, σq “ 0, for any injective

copresentation θ of M (here θ, σ are considered as a complex with terms concentred on

0-th and 1-th positions).

Proof. (1) Easily.

(2) Factor σ: E0 Ñ E1 canonically as σ “ iπ with i: C Ñ E1 and π: E0 Ñ C, where C “

Imσ. For any M P Fσ, applying HomRpM,´q to the exact sequence 0 Ñ K Ñ E0 Ñπ C Ñ 0 ,

we have an induced exact sequence HomRpM,E0q ÑHomRpM,πq HomRpM,Cq Ñ Ext1RpM,Kq Ñ

0. It is easy to verify that HomRpM,πq is surjective since that HomRpM,σq is surjective implies

HomRpM, iq is isomorphic. So Ext1RpM,Kq “ 0.

(3) (ñ) Set θ: I0 Ñ I1 to be an injective copresentation of M and write θ “ iπ with

i: Imθ Ñ I1 and π: I0 Ñ Imθ. For any morphism f : I0 Ñ E1, We consider the following

commutative diagram, where the second row is a complex.

0 ✲ E0
✲σ E1

✲ 0
❄
g

❄
fs1 s0

0 ✲ M ✲α I0 ✲θ

�
�

�✠

I1
�

�
�✠

Since M P Fσ , we have a morphism g such that fα “ σg. There is a morphism s1 such that

g “ s1α since E0 is injective. And pf ´ σs1qα “ 0, thus, there is a morphism h: Imθ Ñ E1 such

that f ´ σs1 “ hπ. Since E1 is injective and i is monomorphic, we have a homomorphism s0

such that h “ s0i. It is easy to see that f “ σs1 ` s0θ.

(ð) For any morphism a: M Ñ E1, consider the following commutative diagram

0 ✲ E0
✲σ E1

✲ 0
❄
bs1 s0

0 ✲ M
❅
❅
❅❘

✲α

a

I0 ✲θ

�
�

�✠

I1
�

�
�✠

Since E1 is injective, we have a morphism b such that a “ bα. Hence we have s1 and s0 such

that b “ σs1 ` s0θ by the assumption that HomDpθr´1s, σq “ 0. It is not difficult to verify that

a “ σs1α. Thus M P Fσ. l

We also need the following result. The proof is simple, so we left to the reader.
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Lemma 3.4 p1q Let a and b be a morphism in InjR, then Fa‘b “ Fa

Ş
Fb.

p2q Let α: I0 Ñ I and β: I1 Ñ I be two morphisms in InjR, then Fα Ď Fpα,βq.

We now give the definition of cosilting modules.

Definition 3.5 p1q An R-module M is called precosilting if there is an injective copresentation

σ of M such that M P Fσ and Fσ is a torsion-free class.

p2q An R-module M is called cosilting if there is an injective copresentation σ of M such that

Fσ “ CogenM .

Remark 3.6 p1q If M is precosilting, then CogenM Ď Fσ Ď KerExt1Rp´,Mq by Lemma 3.3;

p2q If M is cosilting, then CogenM “ Fσ Ď KerExt1Rp´,Mq. In particular, we have a torsion

pair pKerHomRp´,Mq,CogenMq by Proposition 3.2. So all cosilting modules are precosilting.

We say that an R-module M is cosincere if HompM, Iq ‰ 0 for any 0 ‰ I P InjR.

Recall that an R-module M is said to 1-cotilting, if it satisfies the following three conditions:

(i) idM ď 1, i.e., the injective dimension of M is not more than 1, (ii) Ext1RpMX ,Mq “ 0 for

every set X, and (iii) there is an exact sequence 0 Ñ M1 Ñ M0 Ñ Q Ñ 0 with M0,M1 P AdpM ,

where Q is some injective cogenerator. An R-module M is called partial 1-cotilting if it just

satisfies the first two conditions above.

Proposition 3.7 p1q An R-module M is partial 1-cotilting (resp., 1-cotilting) if and only if M

is a precosilting (resp., cosilting) module with respect to a surjective injective copresentation.

p2q Suppose that idM ď 1. Then M is 1-cotilting if and only if M is a cosincere cosilting

module.

Proof. (1) If M is a 1-precotilting module, then idM ď 1. So we have a short exact sequence

0 Ñ M Ñ I0 Ñσ I1 Ñ 0 with I0 and I1 injective. It is easy to verify that Fσ “ KerExt1Rp´,Mq

in the case. Since M is 1-precotilting, we have M P KerExt1Rp´,Mq “ Fσ . So M is precosilting.

If M is 1-cotilting, we have CogenM “ KerExt1Rp´,Mq “ Fσ, thus M is cosilting. The converse

is similar.

(2) It is easy to see that all cotilting modules are cosincere. By (1), all 1-cotilting modules

are also cosilting.

Assume that M is cosilting with respect to some σ : I0 Ñ I1 in InjR, we have an exact

sequence 0 Ñ M Ñ I0 Ñσ I1 Ñπ C Ñ 0 with I0 and I1 injective. Set K “ Imσ, then K is

injective since idM ď 1. It follows that the exact sequence 0 Ñ K Ñ I1 Ñ C Ñ 0 is split.

Thus, C is injective. For any morphism g: M Ñ C, there is a morphism f : M Ñ I1 such that

g “ πf . Note that f factors through σ since M P Fσ, we have g “ 0. So C “ 0 since M is

cosincere. Cosequently, M is 1-cotilting by (1). l

The following result gives some relations among cosilting modules, quasi-cotilting modules

and 1-cotilting modules. In particular, It shows all cosilting modules are pure-injective and

cofinendo.

Proposition 3.8 p1q All cosilting modules are quasi-cotilting. In particular, all cosilting mod-

ules are pure-injective and cofinendo.

p2q Let M be an R-module and Q be an injective cogenerator. If Q P GenpAdpMq, then the

following statements are equivelent:
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(i) M is cotilting;

(ii) M is cosilting;

(iii) M is quasi-cotilting.

Proof. (1) Let M be a cosilting module with respect to a homomorphism σ in InjR. Then

CogenM “ Fσ Ď KerExt1Rp´,Mq. Then we only need to prove that CogenM Ď CopresM by

the definition. For any T P CogenM , we have a short exact sequence 0 Ñ T Ñu MX Ñ C Ñ 0

with u the canonical evaluation map. It is enough to prove that C P Fσ “ CogenM . For any

morphism f : C Ñ I1, we consider the following commutative diagram:

0 ✲ M ✲i I0 ✲σ I1

❄
h

❄
g

❄
fα β

0 ✲ T ✲u MX ✲π

�
�

�✠

C ✲

�
�

�✠

0

Since MX P Fσ, there is a morphism g such that fπ “ σg. As u is the canonical evaluation

map, we have a morphism α such that h “ αu. It is easy to verify that pg ´ iαqu “ 0. Thus

there exists β such that g´ iα “ βπ. And then fπ “ σg “ σβπ, f “ σβ. Consequently, C P Fσ.

In particular, we get that all cosilting modules are pure-injective and cofinendo, by Proposition

3.2.

(2) By Proposition 3.7, (1) and Proposition 3.2. l

We now give some characterizations of cosilting modules.

Proposition 3.9 Let M be an R-module and Q be an injective cogenerator. The following

conditions are equivalent:

p1q M is a cosilting module with respect to σ.

p2q M is a precosilting module with respect to σ and there exists an exact sequence 0 Ñ

M1 Ñ M0 Ñϕ Q with M0 and M1 in AdpM such that ϕ is an Fσ-precover.

p3q CogenM Ď Fσ and there exists an exact sequence 0 Ñ M1 Ñ M0 Ñϕ Q with M0 and

M1 in AdpM such that ϕ is an Fσ-precover.

Proof. p3q ñ p1q Clearly, we only need to prove that Fσ Ď CogenM . For any T P Fσ, there

exists a monomorphism f : T Ñ QY since Q is an injective cogenerator. As ϕ is an Fσ-precover,

we have a morphism g: T Ñ MY
0 such that f “ ϕY g. Then g is injective since f is injective.

Thus T P CogenM .

p1q ñ p2q ñ p3q By Remark 3.6, Proposition 3.8 and Proposition 3.2. l

It is well known that every partial 1-cotilting module can be completed to a 1-cotilting

module and the complement is usually called Bongartz complement. The following result shows

that every precosilting modules has also a Bongartz complement.

Proposition 3.10 Every precosilting module M with respect to an injective representation σ is

a direct summand of a cosilting module ĎM “ M
À

N with same associated torsion-free class,

that is, CogenĎM “ Fσ.

Proof. Set σ: I0 Ñ I1. Taking the canonical evaluation map u: Q Ñ IX1 with Q an injective

cogenerator. Consider the pullback diagram of σX and u:
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0 ✲ MX ✲ IX0
✲σX

IX1

❄ ❄
v

❄
u

0 ✲ MX ✲ N ✲φ Q

Next, we prove that N P Fσ. For any morphism f : N Ñ I1, we consider the following

commutative diagram:

0 ✲ M ✲ I0 ✲σ I1

❄
g

❄
fh b

0 ✲ MX ✲α N ✲φ

�
�

�✠

Q

�
�

�✠

Similarly to discussion in the proof of Proposition 3.8 (1), we have that fα “ σg, g “ hα

and f “ σh ` bφ. From the pullback diagram above, we have bφ “ σv1, where b and v1 are

component maps u and v respectively. Thus f “ σph ` v1q and N P Fσ.

It is easy to see that φ is an Fσ-precover from the universal property of the pullback. Set

ĎM “ M
À

N . The pullback diagram above gives an exact sequence 0 Ñ N Ñ IX0
À

Q
pσX ,uq
ÝÑ IX1 .

So we obtain an injective representation ρ of ĎM , with ρ “ σ‘pσX , uq. Now we get that Fρ “ Fσ

and ĎM P Fρ, by Lemma 3.4. So ĎM is precosilting. Combining with Proposition 3.9, we know

that ĎM is cosilting. l

Remark 3.11 Most results in this section are also independently obtained by Breaz and Pop

[9] recently.

4 AIR-cotilting modules

In this section, we introduce AIR-cotilting modules and give precise relations between them

and cosilting modules and quasi-cotilting modules. Moreover, it is shown that they are intimately

related to 1-cosilting complexes.

Let R be a ring and M be an R-module. Recall from [28] that M is a large support

τ-tilting module if it satisfies the following two conditions: (1) there is an exact sequence

P1 Ñf P0 Ñ T Ñ 0 with P1, P0 projective such that Hompf, T pXqq is surjective for any set

X and, (2) there is an exact sequence R Ñg T0 Ñ T1 Ñ 0 with T0, T1 P AddT such that

Hompg, T pXqq is surjective for any set X.

We will say that M is an AIR-tilting module if it is large support τ -tilting.

It is easy to see that 1-tilting modules, support τ -tilting modules over artin algebras [1] and

silting modules [4] are all AIR-tilting modules. From the proof of the main theorem in [28],

we also know that an AIR-tilting module M can always be completed to an equivalent silting

module ĎM in sense that there is some M 1 P AddM such that ĎM “ M ‘ M 1 is a silting module.

It is known that both silting modules and AIR-tilting modules coincide with support τ -tilting

modules in the scope of the category of finitely generated modules over artin algebras. But it is

a question if silting modules and AIR-tilting modules coincide with each other in general. It is

also known that AIR-tilting modules are finendo quasi-tilting. But the converse is not true in

general [25].

We introduce the following dual definition.
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Definition 4.1 Let R be a ring and M be an R-module. M is called AIR-cotilting module if it

satisfies the following conditions:

p1q there exists an exact sequence 0 Ñ M Ñ Q0 Ñf Q1 such that HomRpMX , fq is surjective

for any set X, where Q0 and Q1 are in InjR.

p2q there exists an exact sequence 0 Ñ M1 Ñ M0 Ñg Q such that HomRpMX , gq is surjective

for any set X, where Q is an injective cogenerator of ModR and M1, M0 P AdpM .

An R-module M will be called partial AIR-cotilting if it satisfies the first condition in

the above definition.

Lemma 4.2 Let σ : L Ñ Q1 be a homomorphism with Q1 injective. Assume that M is an

R-module such that HomRpM,σq is surjective. Then every submodule N of M has the property

that HomRpN,σq is surjective.

Proof. Let N be a submodule of M and φ : N Ñ M be the canonical embedding. Take any

f P HomRpN,Q1q and consider the following diagram.

L ✲σ Q1

❄
f

b

N ✲φ M
�

�
�✠

✟✟✟✟✟✙

h

Since Q1 is injective, f lifts to a homomorphism b : M Ñ Q1 such that f “ bφ. By

the assumption, b further lifts to a homomorphism h : M Ñ L such that b “ αh. Then

f “ bφ “ σhφ, i.e., f factors through σ. Hence we see that HomRpN,σq is surjective. l

The following proposition gives a characterization of partial AIR-cotilting modules in terms

of Fσ.

Proposition 4.3 An R-module M is partial AIR-cotilting if and only if there is an exact se-

quence 0 Ñ M Ñ Q0 Ñσ Q1 such that CogenM Ď Fσ. In particular, CogenM Ď KerExt1Rp´,Mq

if M is partial AIR-cotilting.

Proof. pñq Suppose that M is partial AIR-cotilting, i.e., there exists an exact sequence 0 Ñ

M Ñ Q0 Ñσ Q1 such that HompMX , σq is surjective for any set X, where Q0 and Q1 are in

InjR. Let N P CogenM . Then there a monomorphism φ : N Ñ MX for some X. Now by

Lemma 4.2 we obtain that HomRpN,σq is surjective. Thus, CogenM Ď Fσ.

pðq Obviously. l

We have the following easy corollary, which implies that, for an R-module M of injective

dimension not more than 1, M is partial AIR-cotilting if and only if M is partial 1-cotilting.

Corollary 4.4 Let M be an R-module and idM ď 1. Then the following statements are equiv-

alent:

p1q M is partial AIR-cotilting;

p2q CogenM Ď ker Ext1Rp´,Mq;

p3q Ext1RpMX ,Mq “ 0 for any set X.

Proof. (1)ñ(2) By Proposition 4.3.

(2)ñ(3) Obviously.

18



(3)ñ(1) Since idM ď 1, there is a short exact sequence 0 Ñ M Ñ Q0 Ñα Q1 Ñ 0 with Q0

and Q1 in InjR. Applying HomRpMX ,´q to this short exact sequence, we have

0 Ñ HomRpMX ,Mq Ñ HomRpMX , Q0q Ñ HomRpMX , Q1q Ñ Ext1RpMX ,Mq “ 0.

So HomRpMX , αq is surjective. l

We also have the following result.

Proposition 4.5 Let Q be an injective cogenerator of ModR and M be an R-module such that

Q P GenM .

p1q If M is partial AIR-cotilting, then idM ď 1.

p2q If M is AIR-cotilting, then M is 1-cotilting.

Proof. Note that there is an exact sequence M pY q Ñγ Q Ñ 0, since Q P GenM .

(1) By the definition, we have an exact sequence 0 Ñ M Ñ Q0 Ñα Q1 such that HomRpMX , αq

is surjective for any set X, where Q0 and Q1 are in InjR. As Q is an injective cogenerator, Q1

is a summand of QX for some X, and then we have a canonical projective π: QX Ñ Q1. Hence

we have a surjection f “ πγX : pM pY qqX Ñ Q1. Consider the following commutative diagram,

where i is a canonical embedding.

pM pY qqX

❄

✲

�
�

�
��✠

f

g
hhi

i
pMY qX

�
�

�
�

��✠

✟✟✟✟✟✟✟✟✟✟✙
0 ✲M ✲ Q0

✲α Q1

There is a morphism g such that f “ gi since Q1 is injective. Following from the property

of the morphism α, there exists a morphism h such that g “ αh. Hence, f “ gi “ pαhqi. Then

we obtain that α is surjective since f surjective. Thus, idM ď 1.

(2) Since M is AIR-cotilting, there exists an exact sequence 0 Ñ M1 Ñ M0 Ñβ Q such that

HomRpMX , βq is surjective for any X, whereM1 and M0 are in AdpM . Clearly, HomRpM pY q, βq

is also surjective in the case, so we have a morphism δ: M pY q Ñ M0 such that γ “ βδ. Thus β

surjective since γ is surjective. It follows that M is 1-cotilting from (1), Proposition 4.4 and the

definition of 1-cotilting modules. l

Next we will consider the relations between 2-term cosilting complexes (i.e., 1-cosilting com-

plexes in Section 2) and AIR-cotilting modules. We need some preparations.

Lemma 4.6 Let I‚: 0 Ñ I0 Ñα I1 Ñ 0 be a 2-term complex of injective modules and J‚:

0 Ñ J0 Ñ J1 Ñ ¨ ¨ ¨ be a complex. If K “ H0pJ‚q, then the following statements are equivalent:

p1q K P Fα, i.e., HomRpK,αq is surjective;

p2q HomDpJ‚, I‚r1sq “ 0.

In particular, an R-module K P Fα if and only if HomDpK, I‚r1sq “ 0.

Proof. The proof is dual to Lemma 3.4 in [1]. l

By Lemma 4.6, we can easily obtain the following corollary:
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Corollary 4.7 Suppose that there is an exact sequence 0 Ñ M Ñ I0 Ñα I1 with I0 and I1 in

InjR. Then the following statements are equivalent:

p1q HomRpMX , αq is surjective for any set X;

p2q The complex I‚: 0 Ñ I0 Ñ I1 Ñ 0 is partial cosilting.

The following result shows that we can obtain AIR-cotilting modules and cosilting modules

from 2-term cosilting complexes.

Proposition 4.8 Let the 2-term complex I‚: 0 Ñ I0 Ñα I1 Ñ 0 be cosilting and set K “

H0pI‚q. Then

p1q K is AIR-cotilting.

p2q K is a cosilting module.

Proof. (1) By Corollary 4.7, we only need to check the condition (2) in Definition 4.1. Since

I‚ is cosilting, there is a triangle I‚
1 Ñ I‚

0 Ñβ‚

Q Ñ with I‚
1 and I‚

0 in AdpI‚, where Q

injective cogenerator (see Section 2, Theorem 2.5 and Proposition 2.8). By taking homologies,

we can obtain an exact sequence 0 Ñ H0pI‚
1 q Ñ H0pI‚

0 q Ñ H0pQqp“ Qq. Set K1 “ H0pI‚
1 q,

K0 “ H0pI‚
0 q and β “ H0pβ‚q, then we have an exact sequence 0 Ñ K1 Ñ K0 Ñβ Q. It is easy

to see that K1 and K0 are in AdpK.

For any γ P HomRpKX , Qq with X a set, we see that γ lifts to a homomorphism γ‚ P

HomDppI‚qX , Qq, since Q is injective. By the assumption, I‚ is prod-semi-selforthogonal, so we

have that HomDppI‚qX , β‚q is surjective. Thus, there is a morphism δ‚ : pI‚qX Ñ I‚
0 such that

γ‚ “ β‚δ‚. Then we obtain that H0pγ‚q “ H0pβ‚qH0pδ‚q. That is, γ “ βδ, where δ “ H0pδ‚q.

Hence HomRpKX , βq is surjective.

(2) It is easy to see that CogenK Ď Fα by Corollary 4.7 and Lemma 3.3. We claim that the

exact sequence 0 Ñ K1 Ñ K0 Ñβ Q obtained in (1) satisfies that β is an Fα-precover. Thus K

is cosilting by Proposition 3.9.

In fact, take any M P Fα and any homomorphism f : M Ñ Q. We can consider these objects

and homomorphisms in the derived category. By Lemma 4.6, one has that HomDpM, I‚r1sq “ 0.

Thus, by applying the functor HomDpM,´q to the triangle I‚
1 Ñ I‚

0 Ñβ‚

Q Ñ, we get that

HomDpM,β‚q is surjective, i.e., there exists some η‚ : M Ñ I‚
0 such that f “ β‚η‚. Then we

obtain that H0pfq “ H0pβ‚qH0pη‚q. That is, f “ βη, where η “ H0pδ‚q. Hence HomRpM,βq

is surjective and β is an Fα-precover. l

We will say that two AIR-cotilting modules M,N are equivalent, denoted by M „ N ,

provided that AdpM “ AdpN . The next result shows that AIR-cotilting modules also give

2-term cosilting complexes.

Proposition 4.9 Let T be an AIR-cotilting module. Then

p1q there is a 2-term cosilting complex M‚ such that H0pM‚q » T ‘ T 1 with T 1 P AdpT . In

particular, H0pM‚q „ T ;

p2q the cosilting complexs in p1q is unique up to equivalences.

Proof. (1) Since T is an AIR-cotilting module, there exist two exact sequences 0 Ñ T Ñi

I0 Ñα I1 and 0 Ñ T1 Ñs T0 Ñt Q such that HomRpTX , αq and HomRpTX , tq are surjective

respectively for any set X, where I0, I1 P InjR and T1, T0 P AdpT . Assume that T 1
0‘T0 “ T Y for

some R-module T 1
0, then we have an exact sequence 0 Ñ T 1

1 Ñs1

T Y Ñt1

Q with T 1
1 “ T 1

0 ‘ T1,

s1 “

ˆ
s 0
0 1

˙
and t1 “ pt, 0q. It is easy to see that HomRpTX , t1q is surjective. Since Q is

20



injective, there exists a morphism u: IY0 Ñ Q such that t1 “ u ¨ iY . Set I‚: 0 Ñ I0 Ñα I1 Ñ 0.

Clearly, u induces a map of complex u‚: pI‚qY Ñ Q with H0pu‚q “ t1. Then we get a triangle

pI‚qY Ñu‚

Q Ñ Conpu‚q Ñ, where Conpu‚q: 0 Ñ IY0 Ñθ IY1
À

Q Ñ 0 with θ “

ˆ
αY

u

˙
is a

complex with terms fixed in p´1q-th and 0-th positions. By taking homology of this triangle,

we have an exact sequence 0 Ñ H´1pConpu‚qq Ñ T Y Ñt1

Q, thus H´1pConpu‚qq – T 1
1.

We assert that M‚ “ I‚‘Conpu‚qr´1s is the desired cosilting complex. Note that H0pM‚q “

H0pI‚q
À

H´1pConpu‚qq “ T
À

T 1
1 „ T , since T 1

1 P AdpT . Obviously, M‚ P KbpInjRq and

Q P xAdpM‚y. It remains to prove that M‚ is prod-semi-selforthogonal by Definition 2.4. This

is proceeded as follows.

(1) HomDppM‚qX , I‚r1sq “ 0 for any X. This is by Lemma 4.6.

(2) HomDppM‚qX ,Conpu‚qr´1sr1sq “ 0 for any X. Indeed, we only need to prove that

HomRpK, θq is surjective by Lemma 4.6, where K “ H0ppM‚qXq “ pT ‘ T 1qX . Note that K is

a direct summand of TX1

for some X 1, it is sufficient to prove that HomRpTX1

, θq is surjective.

For any morphism

ˆ
f

g

˙
: TX1

Ñ IY1
À

Q. Consider the following diagram, where t1, iY , αY , u

was defined as above.

0 ✲ T Y ✲

❄

iY
IY0

✲

�
�

��✠

αY

IY1

TX1

✻

❅
❅

❅❅■

❍❍❍❍❍❍❍❍❨

✛Q
g

t1 u
b

fa

Since HomRpTX1

, αY q is surjective, we can obtain a morphism a such that f “ αY a. Further,

since HomRpTX1

, t1q is surjective, we can obtain some morphism b, c : TX1

Ñ T Y such that

g “ t1b and ua “ t1c. Note that t1 “ u ¨ iY and αY iY “ 0, it is easy to see that

ˆ
f

g

˙
“

ˆ
αY

u

˙
pa ´ iY c ` iY bq.

Thus M‚ is just the desired cosilting complex.

(2) Suppose that M‚ and N‚ are 2-term cosilting complexes satisfying H0pM‚q „ H0pN‚q.

Then HomDppM‚qX , N‚r1sq “ 0 and HomDppN‚qX ,M‚r1sq “ 0, by Lemma 4.6. Now it is easy

to verify that M‚
À

N‚ is a cosilting complex, therefore, we have that M‚ P AdpDN
‚ and

N‚ P AdpDM
‚ by Proposition 2.7. It follows that AdpDN

‚ “ AdpDN
‚, i.e., M‚ and N‚ are

equivalent. l

As a direct corollary, we obtain the following relation between cosilting modules and AIR-

cotilting modules, dual to the tilting case.

Corollary 4.10 Let M be AIR-cotilting. Then there is some M 1 P AdpM such that ĎM “

M ‘ M 1 is a cosilting module.

Lemma 4.11 If two cosilting complexes U‚ and V ‚ are equivalent, then AdpHkpU‚q “ AdpHkpV ‚q

for any integer k.

Proof. It is enough to show that AdpHkpU‚q Ď AdpHkpV ‚q. For any M P AdpHkpU‚q,

we have M
À

N “ rHkpU‚qsX – HkppU‚qXq for some N . Since AdpDU
‚ “ AdpDV

‚, we

have pU‚qX
À

W ‚ “ pV ‚qY for some W ‚. Thus, HkppU‚qXq
À

HkpW ‚q – HkppV ‚qY q and

M
À

N
À

HkpW ‚q – rHkpV ‚qsY . So M P AdpHkpV ‚q. l
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Now we obtain the following theorem.

Theorem 4.12 Let R be a ring. There is a bijective correspondence between the equivalent

classes of AIR-cotilting modules and two-terms cosilting complexes.

Proof. By Proposition 4.8, 4.9 and Lemma 4.11. l

We now turn to study the precise relations between quasi-cotilting modules, cosilting modules

and AIR-cotilting modules. To this aim, the following is a key result.

Lemma 4.13 An R-module M is partial AIR-cotilting if and only if CogenM Ď KerExt1Rp´,Mq.

Proof. (ñ) By Proposition 4.3.

(ð) Let 0 Ñ M Ñ E0 Ñf E1 Ñ E2 be the minimal injective resolution of M , where each

Ei is in InjR. We need only to prove that HomRpMX , fq is surjective for any X.

Take any morphism g: MX Ñ E1 and consider the following commutative diagram.

0 ✲ M ✲ E0
✲f E1

✲θ E2

❄
a

❄
g

❄
1t n

0 ✲ K ✲k MX ✲θg

�
�

�✠

E2

�
�

�✠

Set K “ Kerpθgq and factor f “ hπ canonically, where h : Imf Ñ E1 and π : E0 Ñ Imf .

There exists a morphism α : K Ñ Imf such that gk “ hα, since θgk “ 0. As K P CogenM Ď

KerExt1Rp´,Mq, we have that HomRpK,πq is surjective. Hence, there is some a : K Ñ E0 such

that α “ πa. Then we get gk “ hα “ hπa “ fa.

Since E0, E1 are injective, a canonical argument shows that there are two morphisms t and

n such that a “ tk and g “ nθg` ft. Setting β “ g´ ft, then we have that nθβ “ nθpg´ ftq “

nθg “ g ´ ft “ β, that is, β “ nθβ. Now we claim that Imh
Ş

Imβ “ 0. Indeed, for any

e P Imh
Ş

Imβ, we have hpxq “ e “ βpyq “ nθβpyq “ nθhpxq “ 0, since θh “ 0. Thus e “ 0.

Since h is an injective envelope by assumption, we have that Imh is an essential submodule of

E1. This implies that Imβ “ 0, i.e., β “ 0. Then we have g “ ft. So HompMX , fq is surjective

for any set X. l

The following is a direct corollary.

Corollary 4.14 A direct summand of a partial AIR-cotilting module is again partial AIR-

cotilting.

The following result is well-known.

Lemma 4.15 p1q Suppose that f : M Ñ E is an injective envelope of M and g: M Ñ E1 is a

monomorphism with E1 injective. Then E1 » E ‘ E2 and g »

ˆ
f

0

˙
.

p2q Let 0 Ñ M Ñα E0 Ñβ E1 be a minimal injective resolution of M and 0 Ñ M Ñδ

I0 Ñσ I1 be any injective resolution of M. Then I0 » E0 ‘ E1
0 and I1 » E1 ‘ E1

0 ‘ E1
1 and,

moreover, the complex 0 Ñ M Ñδ I0 Ñσ I1 is isomorphic to the direct sums of three complexes

0 Ñ M Ñα E0 Ñβ E1, 0 Ñ 0 Ñ E1
0 Ñ

1
E1
0 E1

0 and 0 Ñ 0 Ñ 0 Ñ E1
1.

The following result gives a characterization of partial AIR-cotilting modules in term of its

minimal injective copresentation.
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Proposition 4.16 Let M be an R-module and 0 Ñ M Ñ E0 Ñδ E1 be its minimal injective

copresentation. Then M is partial AIR-cotilting if and only if CogenM Ď Fδ.

Proof. (ð) By the definition.

(ñ) If M is partial AIR-cotilting, then there exists an exact sequence 0 Ñ M Ñ I0 Ñσ I1

such that HomRpMX , σq is surjective for any set X, where I0 and I0 are in InjR. By Lemma

4.15, we see that σ : I0 Ñ I1 is isomorphic to the direct sums of β : E0 Ñ E1 and 1E1
0
: E1

0 Ñ E1
0

and 0 Ñ E1
2 for some injective modules E1

0 and E1
1. Thus, δ is a direct summand of σ. It follows

that HomRpMX , δq is surjective from the assumption that HomRpMX , σq is surjective. Thus,

MX P Fδ for any X. It follows that CogenM Ď Fδ by Lemma 3.3. l

Moreover, we have the following easy observation by Lemma 4.15 and the involved definition.

Lemma 4.17 Let σ : I0 Ñ I1 be a homomorphism of injective R-modules. Assume that α :

I0 Ñ I is the composition of the canonical map π : I0 Ñ Imσ and the injective envelope map

i : Imσ Ñ I. Then σ is isomorphic to the direct sum of α and the zero map 0 Ñ I 1 for some

injective module I 1. In the case, it holds that Fσ “ Fα

Ş
KerHomRp´, I 1q.

Now we are in the position to give our main result in the paper.

Theorem 4.18 Let M be an R-module. Then the following statements are equivalent.

p1q M is AIR-cotilting.

p2q M is quasi-cotilting.

p3q M is cosilting.

Proof. p1q ñ p2q By Lemma 4.13, we have that CogenM Ď KerExt1Rp´,Mq. Then it is easy

to see that M is Ext-injective in CogenM . Since M is AIR-cotilting, we also have an exact

sequence 0 Ñ M1 Ñ M0 Ñg Q such that HomRpMX , gq is surjective, where Q is an injective

cogenerator and M1,M0 P AdpM . It is easy to see that g is a CogenM -precover by Lemma 4.2.

Hence, M is quasi-cotilting by Proposition 3.2.

p2q ñ p1q By Lemma 4.13 and Proposition 3.2.

p3q ñ p2q By Proposition 3.8.

p1q ñ p3q By Corollary 4.10, there exists some M 1 P AdpM such that ĎM » M ‘ M 1 is a

cosilting module. Let σ, α, β be the minimal injective copresentations of ĎM,M,M 1 respectively.

Then we have that σ “ α ‘ β. Now we will show that Fσ “ Fα. Since M
1

P AdpM , there is

a morphism γ in InjR satisfiing β ‘ γ “ αX for some X, so Fα “ FαX “ Fβ‘γ “ Fβ

Ş
Fγ . In

particular, Fα Ď Fβ. Thus, Fσ “ Fα‘β “ Fα

Ş
Fβ “ Fα.

Since ĎM is a cosilting module, there is an injective copresentation η of ĎM : I0 Ñ I1, where

I0, I1 are injective, such that CogenĎM “ Fη. By Lemma 4.17, we have that η » σ ‘ p0 Ñ I 1q

for some injective R-module I 1, and then Fη “ Fσ

Ş
KerHomRp´, I 1q. Let ξ “ α ‘ p0 Ñ I 1q,

then ξ is an injective copresentation of M . Note that Fη “ Fξ by the argument above and that

CogenM “ CogenĎM , so we obtain that CogenM “ CogenĎM “ Fη “ Fξ, i.e., M is a cosilting

module. l

Combining results in the Proposition 3.2 and Theorems 4.12 and 4.18, we obtain the following

result.

Theorem 4.19 There are bijections between

p1q equivalent classes of AIR-cotilting (resp., cosilting, quasi-cotilting) modules,
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p2q equivalent classes of 2-term cosilting complexes,

p3q torsion-free cover classes and,

p4q torsion-free special precover classes.
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