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Abstract

We introduce and study the new concepts of cosilting complexes, cosilting modules and
ATR-cotilting modules. We prove that the three concepts AIR-cotilting modules, cosilting
modules and quasi-cotilting modules coincide with each other, in contrast with the dual fact
that AIR-tilting modules, silting modules and quasi-tilting modules are different. Further,
we show that there are bijections between the following four classes (1) equivalent classes
of AIR-cotilting (resp., cosilting, quasi-cotilting) modules, (2) equivalent classes of 2-term
cosilting complexes, (3) torsion-free cover classes and (4) torsion-free special precover classes.
We also extend a classical result of Auslander and Reiten on the correspondence between
certain contravariantly finite subcategories and cotilting modules to the case of cosilting
complexes.
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1 Introduction

The tilting theory is well known, and plays an important role in the representation theory
of Artin algebra. The classical notion of tilting and cotilting modules was first considered in the
case of finite dimensional algebras by Brenner and Butler [10] and by Happel and Ringel [17].
Cotilting theory (for arbitrary modules over arbitrary unital rings) extends Morita duality in
analogy to the way tilting theory extends Morita equivalence. In particular, cotilting modules
generalize injective cogenerators similarly as tilting modules generalize progenerators. Later,
many scholars have done a lot of research on the tilting theory and cotilting theory, for instance
[3, 51 6l [7, 13, 14, 22] 26] 29] and so on.

The silting theory seems to be the tilting theory in the level of derived categories (while
the tilting complexes play the role of progenerators). Silting complexes were first introduced by
Keller and Vossieck [19] to study t-structures in the bounded derived category of representations
of Dynkin quivers. Beginning with [2], such objects were recently shown to have various nice
properties [20, 2I]. The results in [27] show that silting complexes (i.e., semi-tilting complexes
in [27]) have similar properties as that tilting modules have in the module categories. The recent
paper by Buan and Zhou [12] also shows that it is reasonable to see the silting theory as the
tilting theory in the level of derived categories.
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The 7-tilting theory recently introduced by Adachi, Iyama and Reiten [I] is an important
generalization of the classical tilting theory. In particular, it was shown that support 7-tilting
modules have close relations with 2-term silting complexes and cluster-tilting objects [I]. In
[], the authors introduce silting modules as a generalization of support 7-tilting modules over
arbitrary rings and modules. We note that there is also another little different generalization
of support 7-tilting modules over arbitrary rings, called large support 7-tilting modules, which
was introduced by the second author [28§].

In this paper, we concentre on the dual case, i.e., the correspondent cotilting parts to the
above achievements. In the level of finitely generated modules over artin algebras, such dual
cases proceed very well. So we only consider the dual over arbitrary rings and modules. As one
will see, there are many interesting properties in such case.

Let us briefly introduce the contents and main results of this paper in the following.

After the introduction in Section 1, Section 2 is devoted to studying cosilting complexes.
Namely, a complex T over a ring R is cosilting if it satisfies the following three conditions:

(1) T € K*(InjR),

(2) T is prod-semi-selforthogonal and,

(3) K®(InjR) is just the smallest triangulated subcategory containing (AdppT", where AdppT
denotes the class of complexes isomorphic in the derived category D(ModR) to a direct
summand of some direct products of copies of T

It is clear that a cotilting complex [11] is cosilting. We show that an R-module is a cotilting
module if and only if it is isomorphic in the derived category to a cosilting complex. Some
characterizations of cosilting complexes are obtained. In particular, we extend a simple char-
acterization of cotilting modules [7] to cosilting complexes (Theorem 2.14]). In [6], Auslander
and Reiten showed that, over an artin algebra, there is a one-one correspondence between cer-
tain contravariantly finite subcategories and basic cotilting modules. The result was extended
to the derived category of artin algebras by Buan [I1], where the author proved that there is
a one-one correspondence between basic cotilting complexes and certain contravariantly finite
subcategories of the derived category. Here, we further extend the result to cosilting complexes
and to arbitrary rings (Theorem 2.17).

In Section 3, we study quasi-cotilting modules and cosilting modules. In the tilting case, it
is known that a silting module is always a finendo quasi-tilting module but the converse is not
true in general [25]. However, in the dual case, we see that quasi-cotilting modules are always
cofinendo and that they are also pure-injective [30]. We show that cosilting modules are always
quasi-cotilting modules, and consequently, cosilting modules are pure injective and cofinendo.
Interesting properties and characterizations of cosilting modules are also given in this section.

In Section 4, we introduce and study AIR-cotilting modules. We call an R-module M AIR-
tilting if it is large support 7-tilting in sense of [28], i.e., it satisfies the following two conditions:

(1) there is an exact sequence P, —/ Py — M — 0 with Pj, Py projective such that
Hom(f, M X)) is surjective for any set X and,

(2) there is an exact sequence R —9 My — M; — 0 with My, M; € AddM such that
Hom(g, M (X )) is surjective for any set X.

Dually, we call an R-module M AIR-cotilting if it satisfies the following two conditions:

(1) there is an exact sequence 0 — T' — Iy —/ I; with Iy, I1 injective such that Hom(7T™, f)
is surjective for any set X and,

(2) there is an exact sequence 0 — 17 — Ty =9 Q with Ty, Ty € AdpT and @ an injective
cogenerator such that Hom (T, g) is surjective for any set X.



Clearly, 1-tilting modules are AIR-tilting modules and 1-cotilting modules are AIR-cotilting
modules. In the tilting case, a silting module is always AIR-tilting and an AIR-tilting module
can be completed to a silting module [4, 28]. But it is a question if these two notions are the same
in general (they are the same in the scope of finitely generated modules over artin algebras).
It is also known that AIR-tilting modules are finendo quasi-tilting. But the converse is not
true in general [25]. However, in the dual case, we prove that AIR-cotilting modules coincide
with cosilting modules, as well as quasi-cotilting modules (Theorem [LI8]). Moreover, we also
show that there is a 1-1 correspondence between equivalent classes of AIR-cotilting modules and
2-term cosilting complexes (Theorem [4.12]).

Summarized, we obtain the following main results.

Theorem 1.1 There is a one-one correspondence, given by u : T — +>0T between equivalent
classes of cosilting complezes in D and subcategories T < D> which is specially contravariantly
finite in DT, resolving and closed under products such that T = D™ .

Theorem 1.2 Let R be a ring and M be an R-module. The following statements are equivalent:
(1) M is AIR-cotilting;
(2) M is quasi-cotilting.
(3) M is cosilting.

Theorem 1.3 There are bijections between
(1) equivalent classes of AIR-cotilting (resp., cosilting, quasi-cotilting) modules;
(2) equivalent classes of 2-term cosilting complexes;
(3) torsion-free cover classes and,
(4)

4) torsion-free special precover classes.

Throughout this paper, R will denote an associative ring with identity and we mainly work
on the category of left R-modules which is denoted by ModR. We denote by InjR (resp.,
ProjR) the class of all injective (resp., projective) R-modules. The notations K’(InjR) (resp.,
KC®(ProjR)) denotes the homotopy category of bounded (always cochain) complexes of injective
(resp., projective) modules. The unbounded derived category of Mod R will be denoted by D(R),
or simply D, with [1] shift functor. We denoted by D> the subcategory of complexes whose
homologies are concentrated on non-negative terms. We use D' to denote the subcategory of
D consists of bounded-below complexes.

Note that D is a triangulated category and K?(InjR), K°(ProjR), D* are all full triangulated
subcategories of D. We refer to Happel’s paper [16] for more details on derived categories and
triangulated categories.

2 Subcategories of the derived category and cosilting complexes

In this section we study the dual of silting complexes and give various characterizations
of cosilting complexes. In particular, we extend a result of Bazzoni [7] and establish a one-
one correspondence between certain subcategories of the derived category D and the equivalent
classes of cotilting complexes stemming from Auslander and Reiten [6].

We begin with some basic notations and some useful facts in general triangulated categories.



Let C be a triangulated category with [1] the shift functor. Assume that B is a full subcategory
of C. Recall that B is closed under extension if for any triangle X — Y — Z — in C with
X,Z € C, we have V € C. The subcategory B is resolving (resp., coresolving) if it is closed under
extension and under the functor [—1] (resp., [1]). It is easy to prove that B is resolving (resp.,
coresolving) if and only if for any triangle X - Y — Z — (resp., Z - Y — X —) in B with
Z € B,one hasthat - X e B<YeB'.

We say that an object M € C has a B-resolution (resp., B-coresolution) with the length at
most m (m = 0), if there are triangles M;y; — X; — M; — (resp., M; — X; — M;;1 —)
with 0 < ¢ < m such that My = M, M,,,1 = 0 and each X; € B. In the case, we denoted by
B-res.dim(L) < m (resp., B-cores.dim(L) < m). One may compare such notions with the usual
finite resolutions and coresolutions respectively in the module category.

Associated with a subcategory B, we have the following notations which are widely used in
the tilting theory (see for instance [6]), where n > 0 and m is an integer.

(B), = {L € C | B-res.dim(L) < n}.
(B)n, ={L € C | B-cores.dim(L) < n}.

~ A~

B ={LeC| Le(B), for some n}.

B ={LeC|Le(B), for some n}.

Bt#0 = {NeC | Hom(M,N[i]) = 0 for all M € B and all i # 0}.
LizoB = {N e C | Hom(N, M[i]) = 0 for all M € B and all i # 0}.
Bti=m = {N e C | Hom(M, N[i]) = 0 for all M € B and all i > m}.
Li=mB = {N € C | Hom(N, M[i]) = 0 for all M € B and all i > m}.
Bt»0 = {NeC| N e Bti=m for some m}.

Note that Bli=m (resp., 1i>mB) is coresolving (resp., resolving) and closed under direct
summands and that B0 is a triangulated subcategory of C.

The subcategory B is said to be semi-selforthogonal (resp., selforthogonal) if B < Bti=m
(resp., B € B1#0). For instance, both subcategories ProjR and InjR are selforthogonal.

In the following results of this section, we always assume that B is semi-selforthogonal and
that B is additively closed (i.e., B = add¢B where addeB denotes the subcategory of all objects
in C which are isomorphic to a direct summand of finite direct sums of copies of objects in B).

Associated with the subcategory B, we also have the following two useful subcategories which
are again widely used in the tilting theory (see for instance [6]).

Xp = {N e +>0B | there are triangles N; — B; — N;;1 — such that Ny = N,
N; € F=0B and B; € B for all i > 0}.

gX ={N € BLi>o | there are triangles N;; 1 — B; — N; — such that Ny
N; € BY>0 and B; € B for all i > 0}.

I
=

We summarize some results on subcategories associated with B in the following, where (B)
denotes the smallest triangulated subcategory containing B. We refer to [27] for their proofs.

Proposition 2.1 Let B be a semi-selforthogonal subcategory of a triangulated category C such
that B is additively closed. Then
(1) The three subcategories Bc Xgc =08 is resolving and closed under direct summands.
(2) The three subcategories B < pX < BLio s coresolving and closed under direct summands.

(3) B =B\ Br=o=BLt=B.



(4) (B), = XgN\(Xp)t=r = Xg(L=0B)L>n. In particular, it is closed under extensions
and direct summands.

(5) (B)n = pX L= (3X) = gX (L= (BLi=0). In particular, it is closed under extensions
and direct summands.

(6) The following three subcategories coincide with each other.

(i) {B): the smallest triangulated subcategory containing B;
(17) (B)— = {X €C| there exists some Y € B and some i <0 such that X = Y[i]};
(1i1) (B)+ = {X € C| there exists some Y € B and some i = 0 such that X = Y[i]}.
(7) B = BLi=o N (B).
(8) B =108 (B).

We also need the following results.

Lemma 2.2 Suppose thatn = 1 and there are triangles L; — M; — L; 1 — with each M; € X,
where 0 < i <n — 1. Then there exist X,,,Y,, € C such that
(1) Yn € XB,
(2) there is a triangle L, — X, — Y, —, and
(3) there are triangles X;—1 — Bi—1 — X; — with each B;_1 € B, for all 1 < i < n, where
Xo = Ly.

Proof. We use induction on n to prove this conclusion.
For n = 1, there is a triangle My — By — Y7 — with By € B and Y; € Xz since M € Xj.
Then we can get the following triangle commutative diagram:

Ly — My — L —

| |

!
Ly — By — X5 —

| |

!
0 - Yl — Yl —
}

| |

Obviously, X7 and Y7 in diagram above are just the objects we look for.

We suppose that the result holds for n — 1. Next, we will verify that the result holds for n.
According to the known condition, we have the triangle L,,_1 — M,,_1 — L, — with M,_1 € X;.
Using the induction on L,,_1, one can obtain some triangles L, — X,,—1 — Y,—1 — with
Y, 1€dXpand X; 1 > B;_1 > X; —» with B, € B, forall 1 <7 <n—1, where Xy = Ly. Hence
we have the following triangle commutative diagram:

Ln—l - Mn—l - Ln -

| | |



From the second column in diagram above, we can obtain that H € Xz by Proposition 2.11
So one have a triangle H — B, 1 — X,, — with B,,_1 € B, X,, € X5. Consequently, one have
the following triangle commutative diagram:

Xn—l - H - Ln -
} } }

Xp-1 — Bpo1 — X, —

| | |

| | |

It is easy to see that X, and Y,, from diagram above are just the objects we want. O

Corollary 2.3 For any L € (/'/V;g)n, then there are two triangles L — X — Y — with X € (B)n,
YeXsandU —V — L — withU € (B),_1 and V € +>°8.

Proof. For any L € (i’;g)n, we have triangles L; — M; — L;.1 — with M; € Xg, where
0<i<mn,Ly=0,L,;1 = L By Lemma[22 we obtain the triangle L, - X — Y — with
X € (B)n, Y € Xp. Since X € (B),, one can get a triangle U — By — X — with Ty € B and

A~

U € (B)n—1. Then we have the following triangles commutative diagram:

u — U — 0 —
! ! !
V — By — Y —
! ! !
L — X — Y —
! ! !

From the second row in diagram above, one can easy see that V € +>08 since Y, Ty € +>01.
Hence the triangle U — V — L — is just what we want. O

Now let R be a ring and 7" be a complex. Recall that AdppT" denotes the class of complexes
isomorphic in the derived category D to a direct summand of some direct products of T. We
say that T is prod-semi-selforthogonal if AdppT is semi-selforthogonal. It is easy to see that
AdppT is additively closed in this case. So the results above applies when we set B = AdppT.

We introduce the following definition.

Definition 2.4 A complex T is said to cosilting if it satisfies the following conditions:
(1) T e K*(InjR),
(2) T is prod-semi-selforthogonal, and
(3) K¥(InjR) = (AdppT), i.e., K’ (InjR) coincides with the smallest triangulated subcategory
containing AdppT.

Now let Q be an injective cogenerator for ModR. Recall that DT is the triangulated sub-
category of the derived category D consists of bounded-below complexes, K’(InjR) is homotopy
category of bounded complexes of injective modules. Also, recall that D is the subcategory of



the complexes whose homologies are concentrated on non-negative terms. It is not difficult to
verify that D> = +>0Q and DT = +i»0Q.
The following result gives a characterization of cosilting complexes.

Theorem 2.5 Let T be a complex and @ be an injective cogenerator of ModR. Up to shifts,
we may assume that T € DZ. Then T is cosilting if and only if it satisfies the following three
conditions:

(i) T € AdppQ,

(ii) T 1is prod-semi-selforthogonal, and

(ii) Q € AdppT.

Proof. < Since T' € AdppQ, there are triangles T; — @Q; — T;41 — with Q; € AdppQ@
for all 0 < i < n, where Ty = T,T,.1 = 0. It is easy to see that each T; € K°(InjR), for
i=mn,n—1,---,0, since AdppQ@ =Inj R < K’(InjR). In particular, T € K’(InjR). Now we
need only prove that K°(InjR) = (AdppT). Note that AdppQ < AH;;T by Proposition 2.1]
since @ € A@T. and that T € K?(InjR), so we have

K (InjR) = (AdppQ) < (AdppT) = (AdppT) < K*(InjR).

Thus, T is cosilting.

= Since T € D® = 1>0Q and T € (AdppT) = K’(InjR) = (AdppQ), one can get that
T e AdppQ@ by Proposition 2l Note that AdppT < 1>0Q, since T € D> = L=0Q, so
Q € (AdppT)*=°. Combining with the fact that Q € K’(InjR) = (AdppT), we have that

o

Q@ € AdppT by Proposition 211 ]

Recall that an R-module T is (n-)cotilting (see for instance [7]) if it satisfies the following
three conditions (1) idT' < n, i.e., the injective dimension of T is finite, (2) Exth(TX,T) = 0
for any X and, (3) there is an exact sequence 0 — T, — --- — Ty — @ — 0, where T; € AdppT
and (@ is an injective cogenerator of ModR.

Proposition 2.6 Assume that T is an R-module. Then T is a cotilting module if and only if
T s isomorphic in the derived category to a cosilting complex.

Proof. = Since short exact sequences give triangles in the derive category, it is easy to see
that every cotilting module is cosilting in the derived category by Theorem

< Note that there is a faithful embedding from ModR into D. i.e., for any two
modules M, N € ModR, we have that Homp(M,N) =~ Hompg(M,N). Moreover, we have
Homp(M, N[i]) = Ext’%(M,N) for all i > 0 and for any two modules M, N. So the condi-
tion (2) in the definition of cotilting modules is satisfied.

As to the condition (1) in the definition of cotilting modules, since 7" is isomorphic in the
derived category to a cosilting complex and T' € D=, by Theorem 2.5 we have that T' € AdppQ.
i.e., there are triangles T; - @Q; — T;+1 — with Q; € AdppQ for all 0 < i < n, where Ty =T,
Th+1 = 0. We will show that these triangles are in ModR and hence give short exact sequences
in ModR.

Consider firstly the triangle Ty —* Q¢ — 11 —, where Ty = T is already an R-module.
Then oy € Homp(Ty, Qo) ~ Homp(Th, Qo) shows that g is homomorphism between modules.
We claim that g is injective. To see this, taking any momomorphism £: Ty — Q' with
Q' an injective module. Since T € AdppQ, it is easy to see that all T; € ~>9Q. Hence



Hompg (v, Q') = Homp (g, Q') is surjective. Then we have the following commutative diagram
in ModR for some homomorphisms 3.

) (07
0 —ker(ag)—— Ty = Qo

B /B’
Ql

From the diagram above, we have that Bag = B'agi = 0. Note that [ is injective, so
we obtain that ¢ = 0 and consequently, aq is injective. Then we have an exact sequence
0 — Ty — Qo — Coker(ag) — 0 which induces a triangle Ty — Qg — Coker(ag) —. It follows
that 77 =~ Coker(ayg) is (quasi-isomorphic to) an R-module. Repeating discussion above for all
i, we can get that each «; is injective and each T; is (quasi-isomorphic to) an R-module.

Note that T,, = Q),,. By discussion above, we can get a long exact sequence 0 — T — Qg —
Q1 — - — Qn— 0. SoidT < n, i.e., the condition (1) in the definition of cotilting modules is
satisfied.

Finally, still by Theorem 23] we have that @ € A@T. Similarly to the above process, we
can get a long exact sequence 0 — T, — --- = T} — Ty — @ — 0 with T; € AdpT, i.e., the
condition (3) in the definition of cotilting modules is satisfied. O

Proposition 2.7 Suppose that T € D is a cosilting complex.
(1) If S@T is also a cosilting complex for some S, then S € AdppT.
(2) If there are triangles T; — @Q; — Tj11 — with Q; € AdppQ for all 0 < ¢ < n, where
To=T, Tnht1 =0, then Adpp(D;_, Qi) = AdppQ.
(3) If there are triangles Q41 — T; — Q; — with T; € AdppT for all 0 < i < m, where
Qo = Q, Qm+1 = 0, then @~ T; is a cosilting complex. Moreover, Adpp(P;,T;) =
AdppT.

Proof. (1) Since S@ T is a cosilting complex, we have that (Adpp(SPT)) = KP(InjR) =
(AdppT). Tt is easy to verify that S € 20T and S € (AdppT)*i=0 since S@ T is prod-semi-
selforthogonal. It follows from Proposition 2] that
§ € 40T (YAdpp(S D T)) = “=0T (AdppT) — AdppT.
Hence S € AdppT ((AdppT)*>0 = AdppT by Proposition 211
(2) Obviously, @;-, Qi € AdppQ is prod-semi-selforthogonal. It is not difficult to see that
AdppT < (P}, Qi) by Proposition Tl It follows that

n

(AdppQ) = K*(InjR) = (AdppT) < (Adpp(ED Qi) < (AdppQ).
i=0
Hence (Adpp(P,Qi)) = (AdppQ). Clearly, (P, Qi) P Q is cosilting. It follows from (1)
that Adpp(P;_, Qi) = AdppQ.
(3) It is easy to verify that both (P;~,T;) ®T and P, T; are cosilting by Theorem
Consequently, we have that Adpp(D;~,T;) = AdppT by (1). ]

i
Proposition 2.8 Let T € D> be a cosilting complex and n = 0. Then T € (AdppQ), if and
only if Q € (AdppT)y,.

Proof. = We have that Q € (Agp?T)m for some m, by Theorem If m < n, then the
conclusion holds clearly. Suppose that m > n. There are triangles ;11 — 1; — @; — with



T; € AdppT for 0 < i < m, where Qp = @, Qm+1 = 0. Applying the functor Homp(—, Q) to
these triangles, we can obtain that

Homp(Qm—1, Qm[1]) ~ Homp(Qm—2, Qm|[2])
>~ > HomD(Qo, Qm[m]) = HOH]D(Q7 Qm[m])

It is not difficult to verify that AdppT < (+i=0Q)*>» since T € (AdppQ),. Then we have
that Homp(Q, @Q.n[t]) = 0 for t > n since Q € +>°Q and Q,,, = T}, € AdppT. Consequently,
Homp(Qm—-1,Qm[1]) = 0 and the triangle T,, = Qn — Ti—1 — Qm-1 — is split. Hence
Qm-1 E/EpDT and Q € (A@T)m,l. By continuing this process, we can finally obtain that
Q € (AdppT)n.

< The proof is just the dual of above statement. ]

The following is an easy observation.
Lemma 2.9 Suppose that T € D is prod-semi-selforthogonal, then =0T = XAdppT-

Proof. Clearly, Xaqp,1 S Lizo,

Take any M € =0T and consider the triangle M —® TX — M; —, where « is the
canonical evaluation map. Applying the functor Homp(—,T') to this triangle, we can obtain
that Homp(M;,T[i]) = 0 for all i > 0. ie., M; € -=0T. Continuing this process, we get
triangles M; — T; — M;4q with T; € AdppT and M; € Li=oT for all j = 0, where My = M.
Consequently, M € Xaqp,,7 by the definition. So Lo c x ‘Adpp7 and the conclusion holds. []

We say a complex is partial cosilting, if it satisfies the first two conditions in Definition [2.4]
Proposition 2.10 IfT € D is partial cosilting. Then T is cosilting if and only if =0T < D>.

Proof. = By Theorem (3), there are triangles Q;+1 — T; — Q; — with T; € AdppT for
all 0 < i < n, where Qp = Q,Qnt+1 = 0. Applying the functor Homp(M, —) to these triangles,
where M € Li>0T | we can get that M € +i>0Q. Hence 10T < Li=0Q) = D>,

< It is not difficult to verify that Q € *>»T for some n, so Q[—n]/e_i”T. Then there are
triangles Q[—i—1] - 0 — Q[—i] — for all 0 < i < n—1. Hence Q € (+i>0T),,. We can obtain a
triangle @ - X — Y — with X € (A@T)n, Y € 1i=0T by Corollary 23 and Lemma 23 Note
that =0T < D>. So Y € 1>0Q) and the triangle Q — X — Y — is split. Hence Q € (A@T)n
since (A/d‘IET )n is closed under direct summands. Consequently, T" is a cosilting complex.  []

We say that a complex T € DZ is n-cosilting if it is a cosilting complex such that Q €
(A@T)n. A characterization of m-cotilting modules says that an R-module T is n-cotilting
if and only if Cogen™T = KerExt%>?(—,T), see [7] for more details. We will present a similar
characterization of n-cosilting complexes in the following.

We need the following subcategory of D. Let T' € D and n > 0, we denote

Copreshs (AdppT') = {M € D | there exist some triangles M; — T; — M;1 — with
T; € AdppT for all 0 < i < n, where M,, € D> and My = M }.

It is not difficult to verify that Copresf,s (AdppT') is closed under products. The following
result gives more properties about this subcategory.



Lemma 2.11 (1) D*[—n] < Copres (AdppT).
(2) If T € D, then Copresp= (AdppT) < D>.

Proof. Since 0 € AdppT and D7 is resolving, it is easy to verify the conclusions by the
definitions. ]

Proposition 2.12 Assume that T € D is n-cosilting. Then +=0T = Copresh (AdppT).

Proof. By Proposition 2.10] and Lemma 2.9, we get that +>0T < +i>0Q = D> and LT =
Xadppr- In particular, Li=oT < Copress (AdppT).

Now we prove that Copresf.(AdppT) < Li=0T. For any M € D> = 1i>0Q), it is not
difficult to verify that M e +>nT. Take any N € Copresps (AdppT’), then there are triangles
N; — T; — N;11 — with T; € AdppT for all 0 < i < n, where N,, € DZ and Ny = N. Applying
the functor Homp (T, —) to these triangles, we have that

Homp(Ny, T'[i]) = Homp (N1, T[i + 1]) = - -+ = Homp(N,, T[i + n]) =0, i > 0.

Hence Homp (N, T'[i]) = Homp(Ny, T[i]) = 0,7 > 0 and N € +=0T. i.e., Copres} (AdppT) S
Li=0T'. The proof is then completed. O

It is well known that 7' e K*(InjR) if and only if D+ < LT,
Proposition 2.13 Assume that T € D>. If L>0T = Copreshs (AdppT), then T' is n-cosilting.

Proof. Note that 7' € Copres}. (AdppT) =+=0T. Since Copresp= (AdppT) is closed under
products, we have that AdppT < Li=0T . Hence T is prod-semi-selforthogonal.

From Lemma 21T} we know that D?[—n] € Copresp. (AdppT) = +=0T. So D> < Li=nT.
In particular, D¥ < 10T, Consequently, T € K’(InjR). It follows that T € (AdppQ@)., for
some m from the argument above and Proposition 211

We note that 1i>0T = Copres},- (AdppT') € D> by Lemma 2.I1] (2). Hence, by Proposition
210 T is m-cosilting complex, where m is the integer given in the last paragraph. Since
T € Adpp@. then there are triangles T; — Q; — T;41 — with Q; € Adpp@ for all 0 < i < m,
where T),11 = 0 and Ty = T. Applying the functor Hom(Q,,,—) to these triangles, we can
obtain that

Homp(Qm, Trn—1[1]) = Homp(Qm, Trn—2[2]) = -+ - = Homp(Qm, To[m]) = Homp(Q, T[m]).

Noted that Q[—n] € Copresi (AdppT) =0T since 0 € AdppT. Hence Homp(Q, T[i +
n]) = 0, for any i > 0. If m < n, then T is clearly n-cosilting. If m > n, it follows from the
discussion above that T),—1 — Qm-1 — Qn — is split. ie., T € (AdppQ)m—1. Repeating this
process, we finally get that T' € (AdppQ@),. Consequently, T' is n-cosilting. O

Combining Proposition 2.12] and Proposition 2.13] we obtain the following characterization
of m-cosilting complexes.

Theorem 2.14 Assume that T € DZ. Then the following are equivalent:

(1) T is n-cosilting,
(2) Li=0T = Copresf- (AdppT).

10



In [6], Auslander and Reiten showed that there is a one-one correspondence between isomor-
phism classes of basic cotilting modules and certain contravariantly finite resolving subcategories.
Extending this result, Buan [11] showed that there is a one-to-one correspondence between ba-
sic cotilting complexes and certain contravariantly finite subcategories of the bounded derived
category of an artin algebra. In the following, we aim to extend such a result to cosilting
complexes.

We need the following definitions. Let X € ) be two subcategories of D. X is said to be
contravariantly finite in ), if for any Y € ), there is a homomorphism f : X — Y for some
X € X such that Homp (X', f) is surjective for any X’ € X. Moreover, X is said to be specially
contravariantly finite in ), if for any Y € ), there is triangle U — X — Y — with some
X € X such that Homp(X’,U[1]) = 0 for any X’ € X'. Note that in the later case, one has that
U e X+i=0 if X is closed under [—1].

Proposition 2.15 Assume that T € D> is cosilting. Then Li=0T = D and =0T < D> is
specially contravariantly finite in DT .

Proof. We have proved that ->0T < D in Proposition 210, so we get that Li=0T < DT,
Now we take any X € Dt. It is easy to see that X € +=>mT for some m since T’ € KP(InjR).
Consequently, X[—m] € Li=oT Note that 0 € AdppT, so we have X € Li=0T by the definition.
Hence +i=0T = DT,

By Lemma 2.9, we have that L>0T = Xadp,- Taking any/%(\e Dt = Lli>oT = X/A;;T, by
Corollary 23, we obtain a triangle U — V — X — with U € AdppT and V € +=0T . Note that
A/d‘I;T c (+=oT) L0, so particularly we get that Homp (M, U[1]) = 0 for any M € =0T Tt
follows that +i>0T is specially contravariantly finite in D7. O

Proposition 2.16 Assume that T < D= is specially contravariantly finite in D and is resolv-
ing such that T = D%. If T(T+° is closed under products, then there is a cosilting complex
T such that T = 10T,

Proof. It is not difficult to verify that Dt = 7 < Li»0(7TLi>0). Hence we can obtain that
T+=0 € KP(InjR).

Taking any M € D%, since T is specially contravariantly finite in Dt and is resolving,
there are triangles M; 1 — T; — M; — with Tj € T for all j > 0, where My := M and
each M; € T+i>0 for j > 1. It follows that T, € TN TLi=0 for all j > 1. Since Tt>0 <
Kb(InjR) and M e D%, it is easy to see that M € +i=n(T+i=0) for some n depending on M.
Applying Homp(—, M,,+1) to the triangles above, we obtain that Homp (M, My, +1[1]) ~ -+ ~
Homp (M, My +1[n + 1]) = 0. Thus, the triangle M,,.1 — T,, — M, — is split and so M,
is a direct summand of T},. Note that the conditions 7 (7 1>° is closed under products and
T is resolving imply that 7 () 7>° is closed under direct summands, so we have that M, €
TN TL=o.

Recall that Q is an injective cogenerator in ModR. Note that Q € 710 since T < D> =
Li>0(). Specially the object M in the above to be @, we obtain triangles Qjy1 — TJ( - Q; —
with Q; € T+ and T]’ e T T+=° for all 0 < j < n, where Qp = Q and Q,;1 = 0. Taking
T =@"_,T.. We will show that T is cosilting. It is easy to see that T is precosilting since

J=0"J"
T+=0 < KP(InjR) and T ()70 is closed under products. Moreover, the argument above

e

shows that @ € AdppT too. Hence T is cosilting.
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Now we need only prove that 7 = +>0T. Obviously, we have that 7 < +>T since T =
@?:0 Tjand Tj € T TLi>0 for all 0 < j < n. Taking any N € =0T, Similar to the discussion
above, there are triangle Nj1 — T} — N; — with Nj € TL=o T! e T and Tj € TN TL=o
for all 1 < j < m, where Ny = N and N,,+1 = 0. Note that all objects in these triangles
are in =0T, For any L € T ()7 >0, it is easy to verify that T @ L is also cosilting, hence
L € AdppT by Proposition 27 (1). Tt follows that 7 (7 +>° < AdppT. Now it is easy to see
that 7 ()7 +>° = AdppT. So the above triangles imply that N; € A/cf[—);T and consequently,
Ny € Li>0TﬂA/d‘1—);T = AdppT. Thus, the triangle Ny — Ty — N — is split. It follows that
N € T from the facts that Ty, N1 € T and that 7T is resolving. So we obtain that Ti=0T T
The proof is then completed. L]

By Propositions 2.I5] and 216l we obtain the following desired result. Here, we say two
complexes M and N are equivalent if AdppM = AdppN.

Theorem 2.17 There is a one-one correspondence, given by u : T — =0T between equivalent
class of cosilting complexes in D> and subcategories T < D> which is specially contravariantly
finite in DT, resolving and closed under products such that T = D™ .

Proof. It follows from Propositions and that the correspondence is well-defined.
Moreover, wu is surjective by Proposition If both T} and T, are cosilting with L>0T} =
Li=oT, it is easy to varify that Ty @ T is also cosilting by the definition. So we have that
AdppTy = AdppTh by Proposition 27 i.e., 77 and Tb are equivalent. Hence, u is bijective. []

3 Quasi-cotilting modules and cosilting modules

In this section, we introduce cosilting modules which is the dual of silting modules introduced
in [4]. We study their relationship with quasi-cotilting modules and provide some characteriza-
tions of cosilting modules. In particular, we obtain that all cosilting modules are pure-injective
and cofinendo and that every presilting module has a Bongartz complement.

Let R be a ring and U be a class of R-modules. Following [7], we denote by Gen"U the
class of all modules M such that there is an exact sequence U, — --- — U; —» M — 0 with
each U; € U. Note that Gen'tf and Gen? are often denoted by Genld and Presl respectively.
Dually, we denote by Cogen™U the class of all modules M such that there is an exact sequence
0—>M—U; —---— U, with each U; € . Also we have Cogenld = Cogen'lf and Copresld =
CogenU/.

We simply denote Gen™U with Gen"T in case that & = AddT for some R-module T', where
AddT denotes the class of modules which is a direct summand of some direct sums of copies of
T. Dually, we simply denote Cogen™U with Cogen™T in case that Y = AdpT for some R-module
T, where AdpT denotes the class of modules which is a direct summand of some direct products
of copies of T. We have similar simple notations GenT', PresT, CogenT’, CopresT.

Now let T be an R-module. Recall that T is an n-star module if Gen™T = Gen""'T and
Hompg (T, —) preserve the exactness of exact sequences in Gen"T' [26]. Dually, one call that T is
an n-costar module if Cogen™T" = Cogen™ T and Hompg(—,T') preserve the exactness of exact
sequences in Cogen"T' [18].
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Let U be a class of R-modules. We denote by KerExth (U, —) the class of all R-modules M
such that Ext} (U, M) = 0 for all U € Y. We have similar notations such as KerExt}(—,U).

Recall that an R-module E is Ext-injective in U if F € U [ KerExth(U, —), and dually, an
R-module F is Ext-projective in U if F e U [ KerExth(—,U).

We have the following definitions [4] 13} [30].

Definition 3.1 (1) An R-module M ‘s called a quasi-tilting module, if it is a 1-star module and
1s Ext-projective in GenM .

(2) An R-module M is called a quasi-cotilting module, if it is a 1-costar module and is
Ext-injective in CogenM .

We will say that two quasi-cotilting modules M, N are equivalent if AdpM = AdpN.

Let @ be an injective cogenerator of ModR. Following [5], an R-module M is called Q-
cofinendo if there exist a cardinal v and a map f: MY — @ such that for any cardinal «,
all maps M* — @ factor through f. An R-module M is cofinendo if there is some injective
cogenerator ) of ModR such that M is @Q-cofinendo.

A short exact sequence 0 > A — B — C — 0 is called pure exact if the induced sequence
0 >N®rA—> N®rB — N®grC — 0 is still exact for any right R-module N. An R-module
M is called pure injective if Hompg(—, M) preserves the exactness of all pure exact sequences.
We note that a remarkable properties of cotilting modules is that they are pure-injective [8], [24].

Let U be a class of R-modules and N be an R-module. Recall that a homomorphism
f: U — N is called a precover, or a right U-approximation, of N if U € U and Hompg(U’, f)
is surjective for any U’ € U. A U-precover f : U — N of N is called a U-cover, or a minimal
right U-approximation, of M if any g : U — U such that f = fg must be an isomorphism.
A U-precover f : U — N of N is called special if Kerf € KerExt}z(Z/{,—). A class U of R-
modules is said to be a precover class, or contrvariantly finite, provided that every R-module
has a U-precover. Cover classes and special precover classes are defined similarly.

Recall that a class U of R-modules is torsion-free if U is closed under direct products,
submodules and extensions, see [15].

We collect some import results on quasi-cotilting modules from [30] in the following propo-
sition.

Proposition 3.2 Let M be an R-module and Q be an injective cogenerator of ModR.

(1) If CogenM < KerExth(—, M), then (KerHompg(—, M), CogenM) is a torsion pair.

(2) All quasi-cotilting modules are pure-injective and cofinendo;

(3) M is quasi-cotilting module if and only if M is Ext-injective in CogenM and there is an
exact sequence 0 — My — My = Q with My, My € AdpM such that « is a CogenM -
precover.

(4) M is 1-cotilting if and only if M is quasi-cotilting and @ € Gen(CogenM).

(5) There are one-one correspondences between the following three classes

(i) equivalent classes of quasi-cotilting modules,
(ii) torsionfree cover classes and,
(iii) torsionfree specially precover classes.

We now turn to cosilting modules.
Firstly, let us recall the definition of silting modules given in [4]. Let o : P, — Py be in
ProjR and D, be the class of all R-modules N such that Homp(o, N) is surjective. Then an
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R-module M is said to be presilting if there is some ¢ in ProjR such that M = Kero € D, and
that D, is a torsion class. Moreover, an R-module M is said to be silting if there is some ¢ in
ProjR such that M = Kero and D, = GenM. Note that silting modules are always presilting
[4].
As for the duall case, we take a homomorphism o : Ey — Ej in InjR, and consider the
associated class of R-modules
Fo = {M € ModR | Homp(M, o) is surjective}.

The following result gives some useful properties of F,. Here we say that a homomorphism
0 : FEy — F1 in InjR is an injective copresentation of M if M ~ Kero.

Lemma 3.3 Let o be a homomorphism in InjR with K = Kera. Then the following assertions
hold:
(1) Fy is closed under submodules, extensions and direct sums;
(2) F, € KerExth(—, K);
(3) An R-module M belongs to F, if and only if Homp(8[—1],0) = 0, for any injective
copresentation 6 of M (here 0,0 are considered as a complex with terms concentred on
0-th and 1-th positions).

Proof. (1) Easily.

(2) Factor o: Ey — Ej canonically as o = im with i: C — E; and m: Ey — C, where C' =
Imo. For any M € F,, applying Hompg(M, —) to the exact sequence 0 - K — Ey —»" C — 0,
we have an induced exact sequence Hompg(M, Eg) —HomeMm) Homp (M, C) — Exth(M, K) —
0. It is easy to verify that Hompg(M, 7) is surjective since that Homp (M, o) is surjective implies
Hompg (M, i) is isomorphic. So ExthL(M, K) = 0.

(3) (=) Set 0: Iy — I; to be an injective copresentation of M and write § = im with
i: Imf@ — I} and m: Iy — Imé. For any morphism f: Iy — F;, We consider the following
commutative diagram, where the second row is a complex.

0 M Iy I
p%lfﬁ
0 Ey — % B 0

Since M € F,, we have a morphism ¢ such that fa = og. There is a morphism s; such that
g = sy« since Ej is injective. And (f —os1)a = 0, thus, there is a morphism h: Imf — F; such
that f —os; = hw. Since Fj is injective and ¢ is monomorphic, we have a homomorphism sg
such that h = sgi. It is easy to see that f = os1 + s¢f.

(<) For any morphism a: M — Ej, consider the following commutative diagram

« 6

0 M Iy I
SEb A
0 Ey — E; 0

Since Fy is injective, we have a morphism b such that a = ba. Hence we have s; and sg such
that b = 051 + spf by the assumption that Homp(6[—1],0) = 0. It is not difficult to verify that
a =osia. Thus M € F,. O

We also need the following result. The proof is simple, so we left to the reader.
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Lemma 3.4 (1) Let a and b be a morphism in InjR, then Fagp = Fu| ) Fb-
(2) Let a: Iy — I and B: Iy — I be two morphisms in InjR, then Fo S Fap)-

We now give the definition of cosilting modules.

Definition 3.5 (1) An R-module M 1is called precosilting if there is an injective copresentation
o of M such that M € F, and F, is a torsion-free class.

(2) An R-module M is called cosilting if there is an injective copresentation o of M such that
Fo = CogenM .

Remark 3.6 (1) If M is precosilting, then CogenM < F, < KerExt}z(—,M) by Lemma[3.3;
(2) If M is cosilting, then CogenM = F, < KerExth(—, M). In particular, we have a torsion
pair (KerHomp(—, M), CogenM ) by Proposition [3.2. So all cosilting modules are precosilting.

We say that an R-module M is cosincere if Hom(M, I) # 0 for any 0 # [ € InjR.

Recall that an R-module M is said to 1-cotilting, if it satisfies the following three conditions:
(i) idM < 1, i.e., the injective dimension of M is not more than 1, (ii) ExthL(MX, M) = 0 for
every set X, and (iii) there is an exact sequence 0 — M; — My — @ — 0 with My, M; € AdpM,
where @ is some injective cogenerator. An R-module M is called partial 1-cotilting if it just
satisfies the first two conditions above.

Proposition 3.7 (1) An R-module M is partial 1-cotilting (resp., 1-cotilting) if and only if M
is a precosilting (resp., cosilting) module with respect to a surjective injective copresentation.

(2) Suppose that idM < 1. Then M is 1-cotilting if and only if M is a cosincere cosilting
module.

Proof. (1) If M is a l-precotilting module, then idM < 1. So we have a short exact sequence
0 — M — Iy —° I; — 0 with Iy and I; injective. It is easy to verify that F, = KerExt}(—, M)
in the case. Since M is 1-precotilting, we have M € KerExt}%(—, M) = F,. So M is precosilting.
If M is 1-cotilting, we have CogenM = KerExt}z(—, M) = F,, thus M is cosilting. The converse
is similar.

(2) It is easy to see that all cotilting modules are cosincere. By (1), all 1-cotilting modules
are also cosilting.

Assume that M is cosilting with respect to some o : Iy — I; in InjR, we have an exact
sequence 0 - M — Iy —»% I} -7 C — 0 with Iy and I; injective. Set K = Imo, then K is
injective since idM < 1. It follows that the exact sequence 0 - K — [y — C — 0 is split.
Thus, C is injective. For any morphism g: M — C, there is a morphism f: M — I such that
g = wf. Note that f factors through o since M € F,, we have g = 0. So C' = 0 since M is
cosincere. Cosequently, M is 1-cotilting by (1). O

The following result gives some relations among cosilting modules, quasi-cotilting modules
and 1-cotilting modules. In particular, It shows all cosilting modules are pure-injective and
cofinendo.

Proposition 3.8 (1) All cosilting modules are quasi-cotilting. In particular, all cosilting mod-
ules are pure-injective and cofinendo.

(2) Let M be an R-module and @ be an injective cogenerator. If Q € Gen(AdpM), then the
following statements are equivelent:
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(i) M is cotilting;
(i) M is cosilting;
(iii) M is quasi-cotilting.

Proof. (1) Let M be a cosilting module with respect to a homomorphism o in InjR. Then
CogenM = F, < KerExt}%(—, M). Then we only need to prove that CogenM < CopresM by
the definition. For any T € CogenM, we have a short exact sequence 0 — T' —% MX — C — 0
with u the canonical evaluation map. It is enough to prove that C' € F, = CogenM. For any
morphism f: C' — I, we consider the following commutative diagram:

0 T — X ¢ 0
lh/lgﬁlf
0 M —% I, =% 1

Since MX € F,, there is a morphism ¢ such that fm = og. As u is the canonical evaluation
map, we have a morphism « such that h = au. It is easy to verify that (¢ —ia)u = 0. Thus
there exists 8 such that g —ia = fn. And then fr = og = 087, f = 0. Consequently, C' € F,.
In particular, we get that all cosilting modules are pure-injective and cofinendo, by Proposition

(2) By Proposition B.7], (1) and Proposition O

We now give some characterizations of cosilting modules.

Proposition 3.9 Let M be an R-module and @) be an injective cogenerator. The following
conditions are equivalent:
(1) M is a cosilting module with respect to o.
(2) M s a precosilting module with respect to o and there exists an exact sequence 0 —
My — My —% Q with My and My in AdpM such that ¢ is an Fs-precover.
(3) CogenM < F, and there exists an exact sequence 0 — My — My —% Q with My and
M in AdpM such that ¢ is an F,-precover.

Proof. (3) = (1) Clearly, we only need to prove that F, < CogenM. For any T € F,, there
exists a monomorphism f: T'— QY since Q is an injective cogenerator. As ¢ is an F,-precover,
we have a morphism ¢g: T — Mgf such that f = ¢¥¢. Then g is injective since f is injective.
Thus T € CogenM .

(1) = (2) = (3) By Remark 3.6 Proposition 3.8 and Proposition d

It is well known that every partial 1-cotilting module can be completed to a 1-cotilting
module and the complement is usually called Bongartz complement. The following result shows
that every precosilting modules has also a Bongartz complement.

Proposition 3.10 Every precosilting module M with respect to an injective representation o is
a direct summand of a cosilting module M = M @ N with same associated torsion-free class,
that is, CogenM = F,.

Proof. Set o: Iy — I;. Taking the canonical evaluation map u: Q — IiX with @ an injective
cogenerator. Consider the pullback diagram of ¢X and wu:
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0 MX N Q
o]k
0 MX — X T X

Next, we prove that N € F,. For any morphism f: N — I;, we consider the following
commutative diagram:

0 MX—2% N —% Q
b AL A
0 M Iy, =% I

Similarly to discussion in the proof of Proposition B.8 (1), we have that fa = og, g = ha
and f = oh + bp. From the pullback diagram above, we have bp = ov’, where b and v’ are
component maps u and v respectively. Thus f = o(h +v') and N € F,.

It is easy to see that ¢ is an F,-precover from the universal property of the pullback. Set
M = M @ N. The pullback diagram above gives an exact sequence 0 — N — I@X P (UX—’@ I iX .
So we obtain an injective representation p of M, with p = 0@ (X, u). Now we get that Fo=Fs
and M e F,, by Lemma 3.4l So M is precosilting. Combining with Proposition 3.9, we know

that M is cosilting. O

Remark 3.11 Most results in this section are also independently obtained by Breaz and Pop
[9] recently.

4 AIR-cotilting modules

In this section, we introduce AIR-cotilting modules and give precise relations between them
and cosilting modules and quasi-cotilting modules. Moreover, it is shown that they are intimately
related to 1-cosilting complexes.

Let R be a ring and M be an R-module. Recall from [28] that M is a large support
7-tilting module if it satisfies the following two conditions: (1) there is an exact sequence
P, -/ Py - T — 0 with Py, Py projective such that Hom(f, T(X)) is surjective for any set
X and, (2) there is an exact sequence R —9 Ty — Ty — 0 with Ty, 77 € AddT such that
Hom(g, 7)) is surjective for any set X.

We will say that M is an AIR-tilting module if it is large support 7-tilting.

It is easy to see that 1-tilting modules, support 7-tilting modules over artin algebras [I] and
silting modules [4] are all AIR-tilting modules. From the proof of the main theorem in [28],
we also know that an AIR-tilting module M can always be completed to an equivalent silting
module M in sense that there is some M’ € AddM such that M = M @ M’ is a silting module.
It is known that both silting modules and AIR-tilting modules coincide with support 7-tilting
modules in the scope of the category of finitely generated modules over artin algebras. But it is
a question if silting modules and AIR-tilting modules coincide with each other in general. It is
also known that AIR-tilting modules are finendo quasi-tilting. But the converse is not true in
general [25].

We introduce the following dual definition.

17



Definition 4.1 Let R be a ring and M be an R-module. M is called AIR-cotilting module if it
satisfies the following conditions:
(1) there exists an exact sequence 0 — M — Qo —7 Q1 such that Homp(MX, f) is surjective
for any set X, where Qo and Q1 are in InjR.
(2) there exists an exact sequence 0 — My — My —9 Q such that Homg(M™X, g) is surjective
for any set X, where Q) is an injective cogenerator of ModR and My, My e AdpM.

An R-module M will be called partial ATR-cotilting if it satisfies the first condition in
the above definition.

Lemma 4.2 Let 0 : L — Q1 be a homomorphism with Q1 injective. Assume that M is an
R-module such that Homg(M, o) is surjective. Then every submodule N of M has the property
that Hompg(N, o) is surjective.

Proof. Let N be a submodule of M and ¢ : N — M be the canonical embedding. Take any
f € Hompg(N, Q1) and consider the following diagram.

N —% M
v
L =
Since @)1 is injective, f lifts to a homomorphism b : M — @ such that f = b¢. By

the assumption, b further lifts to a homomorphism A : M — L such that b = «h. Then
f =0b¢ = cho, ie., f factors through o. Hence we see that Homp (N, o) is surjective. O

The following proposition gives a characterization of partial AIR-cotilting modules in terms
of F,.

Proposition 4.3 An R-module M is partial AIR-cotilting if and only if there is an exact se-
quence 0 — M — Qg — Q1 such that CogenM < F,. In particular, CogenM < KerExt}z(—, M)
if M is partial AIR-cotilting.

Proof. (=) Suppose that M is partial AIR-cotilting, i.e., there exists an exact sequence 0 —
M — Qo —° Q1 such that Hom(M™X, ) is surjective for any set X, where Qo and @Q; are in
InjR. Let N € CogenM. Then there a monomorphism ¢ : N — MX for some X. Now by
Lemma [4.2] we obtain that Homp (N, o) is surjective. Thus, CogenM < F,.

(<) Obviously. O

We have the following easy corollary, which implies that, for an R-module M of injective
dimension not more than 1, M is partial AIR-cotilting if and only if M is partial 1-cotilting.

Corollary 4.4 Let M be an R-module and idM < 1. Then the following statements are equiv-
alent:

(1) M is partial AIR-cotilting;

(2) CogenM < ker Exth(—, M);

(3) Exth(MX, M) =0 for any set X.

Proof. (1)=(2) By Proposition
(2)=(3) Obviously.
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(3)=(1) Since idM < 1, there is a short exact sequence 0 - M — Qo — Q1 — 0 with Qg
and @ in InjR. Applying Hompz(M™X, —) to this short exact sequence, we have

0 — Homp(M™X, M) — Homp(M™*, Qo) — Homp(M™X,Q;) — Exth(M*, M) = 0.
So Homp(M™X, a) is surjective. ]
We also have the following result.

Proposition 4.5 Let Q be an injective cogenerator of ModR and M be an R-module such that
Q € GenM.

(1) If M is partial AIR-cotilting, then idM < 1.

(2) If M is AIR-cotilting, then M is 1-cotilting.

Proof. Note that there is an exact sequence M) -7 Q — 0, since Q € GenM.

(1) By the definition, we have an exact sequence 0 — M — Q¢ —¢ Q1 such that Hompg(MX, o)
is surjective for any set X, where Qy and @7 are in InjR. As () is an injective cogenerator, (1
is a summand of Q¥ for some X, and then we have a canonical projective m: QX — Q. Hence
we have a surjection f = myX: (M (Y))X — 1. Consider the following commutative diagram,
where ¢ is a canonical embedding.

0 M Qo Q1

There is a morphism ¢ such that f = gi since @)1 is injective. Following from the property
of the morphism «, there exists a morphism h such that ¢ = ah. Hence, f = gi = (ah)i. Then
we obtain that « is surjective since f surjective. Thus, idM < 1.

(2) Since M is AIR-cotilting, there exists an exact sequence 0 — M; — My —? @Q such that
Homp(MX, ) is surjective for any X, where M; and My are in AdpM. Clearly, Homg (M), 3)
is also surjective in the case, so we have a morphism 6: M) — My such that v = 8. Thus 3
surjective since + is surjective. It follows that M is 1-cotilting from (1), Proposition 4] and the
definition of 1-cotilting modules. O

Next we will consider the relations between 2-term cosilting complexes (i.e., 1-cosilting com-
plexes in Section 2) and AIR-cotilting modules. We need some preparations.

Lemma 4.6 Let I°: 0 — Iyp > Iy — 0 be a 2-term complex of injective modules and J°:
0—Jyo—J —--- beacompler. If K= HY(J*), then the following statements are equivalent:
(1) K € Fy, i.e., Homp(K, ) is surjective;
(2) Homp(J*®, I*[1]) = 0.
In particular, an R-module K € F,, if and only if Homp (K, I*[1]) = 0.

Proof. The proof is dual to Lemma 3.4 in [I]. O

By Lemma [£.6] we can easily obtain the following corollary:
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Corollary 4.7 Suppose that there is an exact sequence 0 — M — Iy —“ Iy with Iy and I in
InjR. Then the following statements are equivalent:

(1) Homgr(M¥X, a) is surjective for any set X;

(2) The complex I°*: 0 — Iy — I — 0 is partial cosilting.

The following result shows that we can obtain AIR-cotilting modules and cosilting modules
from 2-term cosilting complexes.

Proposition 4.8 Let the 2-term complex I°: 0 — Iy —»% I; — 0 be cosilting and set K =
HO(I*). Then

(1) K is AIR-cotilting.

(2) K is a cosilting module.

Proof. (1) By Corollary .7 we only need to check the condition (2) in Definition Il Since
I* is cosilting, there is a triangle I} — I -8 Q — with I? and I§ in AdpI®, where @
injective cogenerator (see Section 2, Theorem and Proposition [Z8]). By taking homologies,
we can obtain an exact sequence 0 — HO(I}) — H°(I3) — H%(Q)(= Q). Set K1 = H(I}),
Ky = HO(I(;) and 8 = H°(j3*), then we have an exact sequence 0 — K| — K —° Q. It is easy
to see that K7 and Ky are in AdpK.

For any v € Hompg(K~,Q) with X a set, we see that v lifts to a homomorphism 7* €
Homp((I*)X,Q), since @ is injective. By the assumption, I* is prod-semi-selforthogonal, so we
have that Homp((I°*)%, 3°*) is surjective. Thus, there is a morphism §° : (I*)X — I such that
7* = B*6°. Then we obtain that H°(y*) = H°(3*)H"(5*). That is, v = 36, where 6 = H°(5*).
Hence Homp (KX, 3) is surjective.

(2) It is easy to see that CogenK < F, by Corollary A7l and Lemma 3.3l We claim that the
exact sequence 0 — K; — Ky —? @ obtained in (1) satisfies that 3 is an F,-precover. Thus K
is cosilting by Proposition 3.9l

In fact, take any M € F, and any homomorphism f : M — ). We can consider these objects
and homomorphisms in the derived category. By Lemmal[d.0] one has that Homp (M, I*[1]) = 0.
Thus, by applying the functor Homp(M, —) to the triangle I} — I3 —P* Q —, we get that
Homp (M, 5*) is surjective, i.e., there exists some n°® : M — I§ such that f = §°n°*. Then we
obtain that HO(f) = H°(8*)H(n*). That is, f = n, where n = H°(6*). Hence Hompg (M, B3)
is surjective and ( is an JF,-precover. O

We will say that two AIR-cotilting modules M, N are equivalent, denoted by M ~ N,
provided that AdpM = AdpN. The next result shows that AIR-cotilting modules also give
2-term cosilting complexes.

Proposition 4.9 Let T be an AIR-cotilting module. Then
(1) there is a 2-term cosilting complex M* such that HO(M®) ~ T ® T’ with T' € AdpT. In
particular, HO(M*) ~ T';
(2) the cosilting complexs in (1) is unique up to equivalences.

Proof. (1) Since T is an AIR-cotilting module, there exist two exact sequences 0 — T —°
Ip »® I and 0 — Ty —° Ty —! @ such that Hompg(TX, ) and Hompg(TX,t) are surjective
respectively for any set X, where Iy, I; € InjR and T, Ty € AdpT. Assume that Tj@Tp = T Y for
some R-module T}, then we have an exact sequence 0 — T} —* TY ! Q with T} = T, ® T1,

s = (g (1)> and t' = (t,0). It is easy to see that Homp(TX,#') is surjective. Since Q is
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injective, there exists a morphism w: Ig/ — @Q such that ¢/ = u-i¥. Set I*: 0 — Iy -~ I; — 0.

Clearly, u induces a map of complex u®: (I*)Y — @ with H°(u®) = #’. Then we get a triangle

oY

(I*)Y -% Q — Con(u®) —, where Con(u®*): 0 — I} =% I'®Q — 0 with 6 = < u) is a
complex with terms fixed in (—1)-th and 0-th positions. By taking homology of this triangle,
we have an exact sequence 0 — H~'(Con(u®)) — TY —' @, thus H~(Con(u*)) = T}.

We assert that M*® = I*®Con(u®)[—1] is the desired cosilting complex. Note that H(M*) =
HO(I*)@ H Y(Con(u®)) = TPT| ~ T, since T{ € AdpT. Obviously, M* € K*(InjR) and
Q € (AdpM*). It remains to prove that M* is prod-semi-selforthogonal by Definition [Z4l This
is proceeded as follows.

(1) Homp((M*)X,I*[1]) = 0 for any X. This is by Lemma E6!

(2) Homp((M*)X,Con(u®)[—1][1]) = 0 for any X. Indeed, we only need to prove that
Homp(K, #) is surjective by Lemma 6], where K = HO((M*)X) = (I' ® T')X. Note that K is
a direct summand of TX' for some X', it is sufficient to prove that Homp(TX " 0) is surjective.

For any morphism (g) X' - If @ Q. Consider the following diagram, where ¢/,i", oY, u

was defined as above.

: Y
0—7Y—— [ —=— I
g TX/

Since Homp (T X aY) is surjective, we can obtain a morphism @ such that f = o¥ a. Further,
since HomR(TX,,t’ ) is surjective, we can obtain some morphism b,¢ : T X" 5 TY such that

t'b and ua = t'c. Note that ' = u .Y and a¥i¥ = 0, it is easy to see that <‘§> =

g =

Y
(ozu > (a—i¥c+i"b).

Thus M* is just the desired cosilting complex.

(2) Suppose that M* and N*® are 2-term cosilting complexes satisfying HO(M*) ~ HY(N*).
Then Homp((M*)*, N*[1]) = 0 and Homp((N*)X, M*[1]) = 0, by Lemma [Z6l Now it is easy
to verify that M*@ N*® is a cosilting complex, therefore, we have that M* € AdppN°® and
N* € AdppM* by Proposition 2.7l It follows that AdppN® = AdppN°®, i.e., M* and N*® are
equivalent. ]

As a direct corollary, we obtain the following relation between cosilting modules and AIR-
cotilting modules, dual to the tilting case.

Corollary 4.10 Let M be AIR-cotilting. Then there is some M' € AdpM such that M =
M @ M’ is a cosilting module.

Lemma 4.11 If two cosilting complezes U® and V'* are equivalent, then AdpH*(U*®) = AdpH*(V*)
for any integer k.

Proof. It is enough to show that AdpHF(U*) < AdpH*(V*). For any M e AdpH*(U*),
we have M PN = [HFU*)]X = HF(U*)X) for some N. Since AdppU® = AdppV*®, we
have (U)X @PW* = (V*)¥ for some W*. Thus, H*(U*)X)@ HY(W*) =~ H¥(V*)Y) and
M@®NQ@H (W*) = [H*(V*)]Y. So M € AdpH*(V*). 0
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Now we obtain the following theorem.

Theorem 4.12 Let R be a ring. There is a bijective correspondence between the equivalent
classes of AIR-cotilting modules and two-terms cosilting complexes.

Proof. By Proposition 48] 4.9 and Lemma 111 O

We now turn to study the precise relations between quasi-cotilting modules, cosilting modules
and AIR-cotilting modules. To this aim, the following is a key result.

Lemma 4.13 An R-module M is partial AIR-cotilting if and only if CogenM < KerExt}z(—, M).

Proof. (=) By Proposition [£.3]

(<) Let 0 > M — Ey —/ E; — Ej be the minimal injective resolution of M, where each
E; is in InjR. We need only to prove that Hompg(M™X, f) is surjective for any X.

Take any morphism g: M~X — E; and consider the following commutative diagram.

0 K —foyux g,
By atyat
0 M B, - B Z% g

Set K = Ker(fg) and factor f = hmw canonically, where h : Imf — E; and 7 : Ey — Imf.
There exists a morphism « : K — Imf such that gk = ha, since gk = 0. As K € CogenM <
KerExthL(—, M), we have that Homp(K, 7) is surjective. Hence, there is some a : K — FEj such
that o = ma. Then we get gk = ha = hma = fa.

Since Ey, F/y are injective, a canonical argument shows that there are two morphisms ¢ and
n such that a = tk and g = nfg + ft. Setting 5 = g — ft, then we have that nff = nf(g— ft) =
nfg = g — ft = B, that is, 8 = nfB. Now we claim that Imh[)ImS = 0. Indeed, for any
e € Imh () Imf, we have h(z) = e = B(y) = n8B(y) = nbh(x) = 0, since 6h = 0. Thus e = 0.
Since h is an injective envelope by assumption, we have that Imh is an essential submodule of
Ey. This implies that Im3 = 0, i.e., 8 = 0. Then we have g = ft. So Hom(M™X, f) is surjective
for any set X. ]

The following is a direct corollary.

Corollary 4.14 A direct summand of a partial AIR-cotilting module is again partial AIR-
cotilting.

The following result is well-known.

Lemma 4.15 (1) Suppose that f: M — E is an injective envelope of M and g: M — E' is a

monomorphism with E' injective. Then E' ~ E® E" and g ~ (‘é)

(2) Let 0 > M —® Ey —P E; be a minimal injective resolution of M and 0 — M —9
Ip =% I be any injective resolution of M. Then Iy ~ Ey@® E| and I, ~ E, @ Ey ® E}| and,
moreover, the complex 0 — M —9 Iy —° I is isomorphic to the direct sums of three complezes
0> M % Ey—B B, 00— E)—'5% E, and0—0— 0 — E.

The following result gives a characterization of partial AIR-cotilting modules in term of its
minimal injective copresentation.
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Proposition 4.16 Let M be an R-module and 0 — M — Ej —9 Fy be its minimal mjective
copresentation. Then M is partial AIR-cotilting if and only if CogenM < Fj.

Proof. (<) By the definition.

(=) If M is partial AIR~cotilting, then there exists an exact sequence 0 — M — Iy —7 I3
such that Hompg(M™X, o) is surjective for any set X, where Iy and Iy are in InjR. By Lemma
[LIE] we see that o : Iy — I is isomorphic to the direct sums of 3 : Ey — Ey and 1p E}, — E|
and 0 — Ej for some injective modules E{) and Ej. Thus, J is a direct summand of o. It follows
that Homp(M™X,0) is surjective from the assumption that Homp(M™X, o) is surjective. Thus,
MX e Fs for any X. It follows that CogenM < F5 by Lemma 331 ]

Moreover, we have the following easy observation by Lemma[4.15and the involved definition.

Lemma 4.17 Let o : Iy — I1 be a homomorphism of injective R-modules. Assume that « :
Iy — I is the composition of the canonical map m : Iy — Imo and the injective envelope map
1 :Imo — I. Then o is isomorphic to the direct sum of o and the zero map 0 — I' for some
injective module I'. In the case, it holds that F, = F, (| KerHomp(—,I").

Now we are in the position to give our main result in the paper.

Theorem 4.18 Let M be an R-module. Then the following statements are equivalent.
(1) M is AIR-cotilting.
(2) M is quasi-cotilting.
(3) M is cosilting.

Proof. (1) = (2) By Lemma [ZT3] we have that Cogen M < KerExt}(—, M). Then it is easy
to see that M is Ext-injective in CogenM . Since M is AIR-cotilting, we also have an exact
sequence 0 — M; — My —9 @ such that Homp (M X g) is surjective, where @) is an injective
cogenerator and My, My € AdpM. It is easy to see that g is a CogenM-precover by Lemma [£.2]
Hence, M is quasi-cotilting by Proposition

(2) = (1) By Lemma [4.13] and Proposition

(3) = (2) By Proposition B.8l

(1) = (3) By Corollary EI0} there exists some M’ € AdpM such that M ~ M @ M’ is a
cosilting module. Let o, v, 8 be the minimal injective copresentations of M, M, M’ respectively.
Then we have that o = a @ 8. Now we will show that F, = F,. Since M € AdpM, there is
a morphism v in InjR satisfing @ vy = o for some X, so F, = F,x = Foay = Fg( 1 Fy- In
particular, 7o,  Fp. Thus, Fy = Fogp = Fal ) Fs = Fa-

Since M is a cosilting module, there is an injective copresentation n of M : Iy — I;, where
Iy, I, are injective, such that CogenM = F,. By Lemma E.IT, we have that n ~ o @ (0 — I)
for some injective R-module I’, and then F,, = F, [ KerHompg(—,I’). Let £ = a® (0 — I'),
then £ is an injective copresentation of M. Note that F, = F¢ by the argument above and that
CogenM = CogenM, so we obtain that CogenM = CogenM = Fn = Fg, ie., M is a cosilting
module. ]

Combining results in the Proposition B.2land Theorems[£.12] and [£.18] we obtain the following
result.

Theorem 4.19 There are bijections between
(1) equivalent classes of AIR-cotilting (resp., cosilting, quasi-cotilting) modules,

23



(2) equivalent classes of 2-term cosilting complexes,
(3) torsion-free cover classes and,
(4) torsion-free special precover classes.
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