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Abstract

We prove that all quasi-cotilting modules are pure-injective and cofinendo. It follows that
the class CogenM is always a covering class whenever M is a quasi-cotilting module. Some
characterizations of quasi-cotilting modules are given. As a main result, we prove that there
is a bijective correspondence between the equivalent classes of quasi-cotilting modules and
torsion-free covering classes.
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1 Introduction and Preliminaries

Quasi-tilting modules were introduced by Colpi, Deste, and Tonolo in [9] in the study of

contexts of ˚-modules and tilting modules, where it was shown that these modules are closely

relative to torsion theory counter equivalences. Recently, quasi-tilting modules turn out to be

new interesting after the study of support τ -tilting modules by Adachi, Iyama and Reiten [1].

The second author proved that a finitely generated module over an artin algebra is support

τ -tilting if and only if it is quasi-tilting [19]. Moreover, Angeleri-Hügel, Marks and Vitória [2]

proved that finendo quasi-tilting modules are also closely related to silting modules (which is a

generalizations of support τ -tilting modules in general rings).

It is natural to consider the dual of quasi-tilting modules, i.e., quasi-cotilting modules. As

cotilting modules possess their own interesting properties not dual to tilting modules, we show

in this paper that quasi-cotilting modules are not only to be the dual of quasi-tilting modules

and they have their own interesting properties too. We prove that all quasi-cotilting modules

are pure-injective and cofinendo. These are clearly new important properties of quasi-cotilting

modules. Note that not all quasi-tilting modules are finendo. As a corollary, we obtain that the

class CogenM is a covering class wheneverM is quasi-cotilting. We give variant characterizations

of quasi-cotilting modules and cotilting modules. As the main result, we prove that there is a

bijection between the equivalent classes of quasi-cotilting modules and torsion-free covering

classes.

˚Supported by the National Science Foundation of China (Grant Nos. 11371196 and 11171149) and the
National Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK2012044).
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Throughout this paper, R is always an associative ring with identity and subcategories are

always full and closed under isomorphisms. We denote by R-Mod the category of all left R-

modules. By ProjR we denote the class of all projective R-module.

Let M P R-Mod, we use following notations throughout this paper.

AdpM :“ tN P R-Mod | there is a module L such that N ‘ L “ MX for some Xu;

CogenM :“ tN P R-Mod | there is an exact sequence 0 Ñ N Ñ M0 with M0 P

AdpMu;

CopresM :“ tN P R-Mod | there is an exact sequence 0 Ñ N Ñ M0 Ñ M1 with

M0, M1 P AdpMu;

K1M :“ tN P R-Mod | Ext1RpN,Mq “ 0u;

MK1 :“ tN P R-Mod | Ext1RpM,Nq “ 0u;

˝M :“ tN P R-Mod | HomRpN,Mq “ 0u;

M˝ :“ tN P R-Mod | HomRpM,Nq “ 0u.

Note that CogenM is clearly closed under submodules, direct products and direct sums.

Let T be a class of R-modules, we denoted by FacpT q the classes formes by the factor

modules of all modules in T . An R-module M P T is called Ext-injective in T if T Ď K1M .

Let X and Y be two subcategories of R-Mod. The pair (X ,Y) is said to be a torsion pair if it

satisfies the following three condition (1) HompX ,Yq “ 0; (2) if HompM,Yq “ 0, then M P X ;

(3) if HompX , Nq “ 0, then N P Y. In the case, X is called a torsion class and Y is called a

torsion-free class. Note that a subcategory X of R-Mod is torsion-free if and only if X is closed

under direct products, submodules and extensions, see [11].

Lemma 1.1 If an R-module M is Ext-injective in CogenM , then p˝M,CogenMq is a torsion

pair.

Proof. It is easy to verify that ˝M “˝pCogenMq. We only need to prove that p˝Mq˝ “ CogenM .

If T P CogenM , then there is an injective homomorphism i: T Ñ MX for some set X. For

any N P ˝M and f P HomRpN,T q, then HomRpN,MXq “ pHomRpN,MqqX “ 0, hence if “ 0.

Then f “ 0 since i is injective. So CogenM Ď p˝Mq˝.

For any T P p˝Mq˝, consider the evaluation map α: T Ñ MHomRpT,Mq with K “ kerα. Take

canonical resolution of α, i.e. α “ iπ with π: T Ñ Imα and i: Imα Ñ MHomRpT,Mq. Clearly,

HomRpπ,Mq is surjective from the definition of α. Applying the functor HomRp´,Mq to the

exact sequence 0 Ñ K Ñ T Ñ Imα Ñ 0, we have an exact sequence

0 Ñ HomRpImα,Mq Ñ HomRpT,Mq Ñ HomRpK,Mq Ñ Ext1RpImα,Mq.

Since Imα P CogenM ĎK1M , Ext1RpImα,Mq“ 0. As HomRpπ,Mq is surjective by above

discussion, HomRpK,Mq “ 0, and hence, K P ˝M . Since T Pp˝Mq˝, we have that HomRpK,T q “

0 and α is injective. Thus K “ 0, i.e. T P CogenpMq. l

Definition 1.2 r3,Definition1.4s p1q Let Q be an injective cogenerator of R-Mod. A module

M is called Q-cofinendo if there exist a cardinal γ and a map f : Mγ Ñ Q such that for any

cardinal α, all maps Mα Ñ Q factor through f .

p2q A module M is cofinendo if there is an injective cogenerator Q of R-Mod such that M

is Q-cofinendo.
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Let T be a class of R-modules and M be an R-module. Then f : X Ñ M with X P T is

a T -precover of M provided that HompY, fq is surjective for any Y P T . A T -precover of M

is called T -cover of M if any g: X Ñ X such that f “ fg must be an isomorphism. A class

T of R-modules is said to be a precover class (cover class) provided that each module has a

T -precover (T -cover).

Lemma 1.3 r3,Proposition1.6s The following are equivalent for a module M :

p1q M is cofinendo;

p2q there is an AdpM -precover of an injective cogenerator Q of R-Mod;

p3q CogenM is a precover class.

2 Quasi-cotilting modules

In this section, we introduce notion of quasi-cotilting modules and give some characteriza-

tion of quasi-cotilting modules. In particular, we prove that all quasi-cotilting modules are pure

injective and cofinendo.

Definition 2.1 p1q An R-module M is said to be a costar module if CogenM “ CopresM and

HomRp´,Mq preserves exactness of any short exact sequence in CogenM .

p2q An R-module M is called a quasi-cotilting module, if it is a costar module and M is

Ext-injective in CogenM .

Remark (1) Costar modules defined above had been studied in [16]. Moreover, their general

version, i.e., n-costar modules, were studied by He [14] and Yao and Chen [22] respectively.

(2) Colby and Fuller [7] had defined another notion of costar modules which can be viewed

as a special case of the above-defined costar modules.

For convenience, we say that a short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 is HomRp´,Mq-

exact ((M
Â

R ´, resp.)-exact) if the functor HomRp´,Mq (M
Â

R ´, resp.) preserves exactness

of this exact sequence.

The following result is well-known.

Lemma 2.2 Suppose that two short exact sequences 0 Ñ A Ñ B Ñ C Ñ 0 and 0 Ñ A Ñ B
1

Ñ

C
1

Ñ 0 are Homp´,Mq-exact with B,B1 P ApdM . Then B
À

C
1

– B
1 À

C

Proof. It is dual to Lemma 2.2 in [20]. l

The following result presents a useful property of costar modules.

Lemma 2.3 Let M be a co-star module. Suppose that the short exact sequence 0 Ñ A Ñ B Ñ

C Ñ 0 is HomRp´,Mq-exact and A P CogenM , then B P CogenM if and only if C P CogenM .

Proof. ð Since A and C are in CogenM , we have two monomorphisms f : A Ñ MA and g:

C Ñ MC with MA and MC in AdpM . We consider the following diagram:

0 ✲ MA
✲ MA

À

MC
✲ MC

✲ 0
❄f

θ
❄pθ,gbq ❄g

i π

0 ✲ A ✲ B ✲
✟✟✟✟✟✙

ba
C ✲ 0
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where i and π is canonical injective and canonical projective respectively. Since the first row in

above diagram is HomRp´,Mq-exact, there exists a morphism θ such that f “ θa. It further

induces a commutative diagram as above. It follows from Snake Lemma that pθ, gbq is injective,

i.e. B P CogenM .

ñ Since B P CogenM and M is a costar module, we have that 0 Ñ B Ñ M0 Ñ L
1

Ñ 0

with M0 P AdpM and L
1

P CogenM . There is a module M
1

0
such that M0 ‘ M

1

0
“ MX . So

we obtain a new short exact sequence 0 Ñ B Ñ MX Ñ L Ñ 0 with L “ L
1

‘ M
1

0
P CogenM .

Consider the pushout of B Ñ C and B Ñ MX :

0 0
❄

1

❄

L ✲ L

❄ ❄

0 ✲ A ✲ MX ✲ N ✲ 0
❄1 ❄ ❄

0 ✲ A ✲ B ✲ C ✲ 0
❄ ❄

0 0

Since the first row and second column are HomRp´,Mq-exact in above diagram, it is easy to

see that the second row is also HomRp´,Mq-exact. Since A P CogenM , similar to B, there is a

short exact sequence 0 Ñ A Ñ MY Ñ K Ñ 0 with K P CogenM . By Lemma 2.2, we have that

MY ‘ N – MX ‘ K, then it is easy to see that N P CogenM . Consequently, C P CogenM . l

Now we give some characterizations of quasi-cotilting modules.

Proposition 2.4 Let M be an R-Module, the following statements are equivalent:

p1q M is a quasi-cotilting module;

p2q CogenM “ CopresM and M is Ext-injective in CogenM;

p3q M is a costar module and CogenM is a torsion-free class;

p4q CogenM “ FacpCogenMq
Ş

K1M .

Proof. (1)ñ (2) By the involved definitions.

(2)ñ (1),(3) If M is Ext-injective in CogenM , then it is easy to see that the functor

HomRp´,Mq preserves the exactness of any short exact sequences in CogenM . So M is a

costar module by the assumption. By Lemma 1.1, we also have that CogenM is a torsion-free

class.

(3)ñ (4) Clearly, CogenM Ď FacpCogenMq. To see that CogenM Ď K1M , we take any

extension 0 Ñ M Ñ N Ñ L Ñ 0 with L P CogenM . Since CogenM is a torsion-free class, it

is closed under extensions. It follows that N P CogenM . But M is a costar module, the exact

sequence is then HomRp´,Mq-exact. Thus, we can obtain that the exact sequence is actually

split. Consequently we have that L P K1M for any L P CogenM , i.e., CogenM Ď K1M .

On the other hand, take any N P FacpCogenMq
Ş

K1M . Then there is a module L in

CogenM and an epimorphism f : L Ñ N . Set K “ ker f , then K P CogenM since L P CogenM .

Then there is a short exact sequence 0 Ñ K Ñ M0 Ñ A Ñ 0 with A P CogenM and M0 P

AdpM , as CogenM “ CopresM . SinceN P K1M , we have the following communicative diagram:
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0 ✲ K ✲ M0
✲ A ✲ 0

❄1 ❄α ❄β

0 ✲ K ✲ L ✲f N ✲ 0

By Snake Lemma, we obtain that ker β “ kerα P CogenM “ CopresM since L P CogenM .

From the third column in above diagram, we obtain a new short exact sequence 0 Ñ ker β Ñ

N Ñ Imβ Ñ 0 with Imβ P CogenM (since A P CogenM). By the assumption, CogenM is a

torsion-free class, so we have N P CogenM . Hence, CogenM “ FacpCogenMq
Ş

K1M .

(4)ñ (2) We need only to prove that CogenM Ď CopresM . Take any N P CogenM and

consider the evaluation map u: N Ñ MX with X “ HomRpN,Mq. It is easy to verify that u

is injective. Thus we have a short exact sequence 0 Ñ N Ñ MX Ñ C Ñ 0, so it is enough

to prove that C P CogenM . Applying the functor HomRp´,Mq to the sequence, we have an

exact sequence 0 Ñ HomRpC,Mq Ñ HomRpMX ,Mq Ñγ HomRpN,Mq Ñ Ext1RpC,Mq Ñ 0. It

follows from u is the evaluation map that γ is surjective. So that Ext1RpC,Mq “ 0, i.e. C P
K1M . It follows that C P FacpCogenMq

Ş

K1M “ CogenM by (4). l

The above result suggests the following definition.

Definition 2.5 The torsion-free class T is called a quasi-cotilting class if T “ CogenM for

some quasi-cotilting module.

Let M be an R-module. We denoted by AnnM the ideal of R consisting of all elements

r P R such that rM “ 0. If AnnM “ 0, then M is called faithful.

Lemma 2.6 The following statements are equivalent for an R-module M .

p1q M is faithful;

p2q R P CogenM ;

p3q ProjR Ď CogenM ;

p4q FacpCogenMq “ R´Mod.

p5q Q P FacpAdpMq.

p6q Q P FacpCogenMq.

Proof. (1)ô(2) Note that AnnM is just the kernel of the evaluation map R Ñ MHomRpR,Mq,

so the result follows from the universal property of the evaluation map.

(2)ô(3) This is followed from the fact that CogenM is closed under direct sums and direct

summands.

(3)ñ(4) Using the fact that every module is a quotient of a projective module.

(4)ñ(3) If P is any projective module and FacpCogenMq “ R´Mod, then there is an exact

sequence 0 Ñ P1 Ñ C Ñ P Ñ 0 with C P CogenM . But P is projective implies that the exact

sequence is split, it follows that P is a direct summand of C and consequently, P P CogenM .

Thus, (3) follows.

(4)ñ(5)ñ(6) Obviously.

(6)ñ(4) Clearly, FacpCogenMq Ď R-Mod. On the other hand, since Q P FacpCogenMq,

there exists an H P CogenM such that f : H Ñ Q is surjective. For any L P R-Mod, we have a

monomorphism L Ñ QX for some X, since Q an injective cogenerator. Then fX is surjective

and QX – HX{K with K “ ker fX . Consequently, there exists a submodule H1 of HX such

that L – H1{K. It is easy to see that H1 P CogenM , so L P FacpCogenMq and (4) holds. l
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Recall that an R-module M is called (1-)cotilting if it satisfies the following three conditions:

(1) the injective dimension of M is not more than 1, i.e., idM ď 1; (2) Ext1RpMλ,Mq “ 0 for

any set λ; (3) There is an exact sequence 0 Ñ M1 Ñ M0 Ñ Q Ñ 0 where M0,M1 P AdpM and

Q is an injective cogenerator. Note that M is cotilting is equivalent to that CogenM “ K1M ,

see for instance [3]. We will freely use these two equivalent definition of cotilting modules.

A torsion-free class T is called a cotilting class if T “ CogenM for some cotilting module

M .

We have the following characterizations of cotilting modules. Some of them were obtained

in [16] (in Chinese). For reader’s convenience, we include here a complete proof.

Proposition 2.7 Let M be an R-module and Q be an injective cogenerator of R´Mod, then

the following statements are equivalent:

p1q M is a cotilting module;

p2q M is a quasi-cotilting module and Q P FacpAdpMq;

p3q M is a quasi-cotilting module and ProjR Ď CogenM ;

p4q M is a quasi-cotilting module and FacpCogenMq “ R´Mod;

p5q M is a faithful quasi-cotilting module.

p6q M is a quasi-cotilting module and CogenM is a cotilting torsion-free class.

p7q M is a costar module and Q P FacpAdpMq;

p8q M is a costar module and ProjR Ď CogenM ;

p9q M is a costar module and FacpCogenMq “ R´Mod;

p10q M is a faithful costar module.

p11q M is a costar module and CogenM is a cotilting torsion-free class.

Proof. (2)ô(3)ô(4)ô(5)ñ(10)ô(9)ô(8)ô(7) By Lemma 2.6 and the definitions.

(1)ñ(2) Since M is cotilting, we have that and CogenM “ K1M and FacpCogenMq “

R´Mod by the above arguments. It follows CogenM “ FacpCogenMq
Ş

K1M . Hence, M is

quasi-cotilting by Proposition 2.4.

(8)ñ(1) Since ProjR Ď CogenM , we have that FacpCogenMq=R-Mod. For any T P

CogenM , there is a short exact sequence 0 Ñ K Ñ P0 Ñ T Ñ 0 with P0 P ProjR. Note

that the sequence is indeed in CogenM , so HomRp´,Mq preserves exactness of this short exact

sequence, as M is a costar module. It follows that Ext1RpT,Mq “ 0 since Ext1RpP0,Mq “ 0.

Thus CogenM Ď K1M and CogenM is a torsion-free class by Lemma 1.1. Furthermore, we

have that M is a quasi-cotilting module by Proposition 2.4. Consequently, CogenM “K1M by

Proposition 2.4 again, since FacpCogenMq=R-Mod. So M is a cotilting module.

(1)ñ(6)ñ(11) It is obvious now.

(11)ñ(8). If CogenM is a cotilting torsion-free class, i.e., CogenM “ CogenT is for some

cotilting module T , Then ProjR Ď CogenT by the above argument. Thus (8) follows. l

The above result yields the following characterization of costar modules.

Proposition 2.8 The following statements are equivalent for an R-module M .

p1q M is a costar R-module;

p2q M is a costar R̄-module, where R̄ “ R{AnnM ;

p3q M is a costar R{I-module for any ideal I of R such that IM “ 0;

p4q M is a cotilting R̄-module.

6



Proof. Note that the category of R{I-modules can be identified to the full subcategory tM P

R-Mod | IM “ 0u. Under this identification, it is not difficult to verify that CogenR{IM “

CogenRM “ CogenR̄M . Therefore, (1)ô(2)ô(3) is obvious from the definitions.

(2)ñ(4) Note that M is always faithful as an R̄-module, so the conclusion follows from

Proposition 2.7.

(4)ñ(2) By Proposition 2.7. l

A short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 is called pure exact if it is (M bR ´)-exact

for any right R-module M . In this case, C is called a pure quotient module of B. A module M

is called pure injective if any pure exact sequence is HomRp´,Mq-exact.

Lemma 2.9 The following statements are equivalent:

p1q M is a pure injective R-module;

p2q For any X, the short exact sequence 0 Ñ M pXq Ñ MX Ñ C Ñ 0 is HomRp´,Mq exact;

p3q M is a pure injective R̄-module, where R̄ “ R{AnnM .

Proof. (1) ô (2) by [5, Lemma 2.1]. Similar to (1) ô (2), it is easy to see that (2) ô (3) since

M pXq, MX and C are in R̄-Mod. l

From the above discussion, we can get the following important properties of quasi-cotilting

modules.

Proposition 2.10 All costar modules are pure injective and cofinendo. Specially, all quasi-

cotilting modules are pure injective and cofinendo.

Proof. Let M be a costar R-module. We obtain that M is a cotilting R̄-module by Proposition

2.8. It follows that M is a pure injective R̄-module since all cotilting modules are pure injective

[5]. Thus M is a pure injective R-module by Lemma 2.9.

To prove that M is cofinendo, we only need to prove that CogenM is closed under direct

sums and pure quotient modules by Lemma 2.11 and Lemma 1.3. Obviously, CogenM is closed

under direct sums. Suppose the short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 is pure exact and

B P CogenM . It follows that A P CogenM and that 0 Ñ A Ñ B Ñ C Ñ 0 is HomRp´,Mq

exact from M is pure injective. So C P CogenM by Proposition 2.3, i.e. CogenM is closed

under pure quotient modules. l

Lemma 2.11 [15, Theorem 2.5] If a class A is closed under pure quotient modules, then the

following statements are equivalent:

p1q A is closed under arbitrary direct sums;

p2q A is a precover class;

p3q A is a cover class.

Corollary 2.12 If M is a costar module, then CogenM is a cover class. In particular, CogenM

is a cover class for any quasi-cotilting module M.

Proof. By the proof of Proposition 2.10, we obtain that CogenM is closed under pure quotient

and direct sums. Thus CogenM is a cover class by Lemma 2.11. l
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3 Quasi-cotilting torsion-free class

Lemma 3.1 If M is a quasi-cotilting module, then AdpM=ker Ext1RpCogenM,´q
Ş

CogenM .

Proof. Suppose that N P AdpM . Clearly we get N P ker Ext1RpCogenM,´q
Ş

CogenM , from

(3) in Proposition 2.4,. For the inverse inclusion, take any L P ker Ext1RpCogenM,´q
Ş

CogenM .

Then there is a short exact sequence 0 Ñ L Ñ M0 Ñ C Ñ 0 with M0 P AdpM and C P CogenM

since L P CogenM “ CopresM . Since Ext1pC,Lq “ 0, we can obtain that this exact sequence

is split and hence L P AdpM . l

Theorem 3.2 Let Q be an injective cogenerator of R-Mod. The following statements are equiv-

alent:

p1q M is a quasi-cotilting module;

p2q M is Ext-injective in CogenM and there is an exact sequence

0 Ñ M1 Ñ M0 Ñα Q

with M0 and M1 in AdpM and α a CogenM -precover.

Proof. (1)ñ(2) By Proposition 2.10, M is a cofinendo module. Then there is a morphism

α: M0 Ñ Q with α an AdpM -precover by Lemma 1.3. It can be shown that α is also a

CogenM -precover. Indeed, suppose that M 1 P CogenM , we proof that f can factor through

α for any f : M 1 Ñ Q. There exists a monomorphism i: M 1 Ñ MX since M 1 P CogenM .

We have a morphism g: MX Ñ Q such that f “ gi since Q is injective. It follows from α is

AdpM -precover that there is a morphism h: MX Ñ M0 such that g “ αh. Thus f “ gi “ αhi.

So α is a CogenM -precover. Now set M1 “ kerα, we only need to prove that M1 P AdpM .

Consider the exact sequence 0 Ñ M1 Ñ M0 Ñπ Imα Ñ 0, it is easy to prove that π is also

CogenM -precover by the definition. For any N P CogenM , applying the functor HomRpN,´q

to this exact sequence, we have that

0 Ñ HomRpN,M1q Ñ HomRpN,M0q Ñ HomRpN, Imαq Ñ Ext1RpN,M1q Ñ Ext1RpN,M0q “ 0.

It follows from π is CogenM -precover that Ext1RpN,M1q “ 0. Obviously, M1 P CogenM . Thus

M1 P AdpM by Lemma 3.1.

(2)ñ(1) We only need to prove that CogenM “ CopresM by Proposition 2.4. Suppose that

N P CogenM . Consider the evaluation map a: N Ñ MX with X “ HomRpN,Mq, which is

injective since N P CogenM . Set C “ coker a, next we prove that C P CogenM . There is a

monomorphism f : C Ñ QY for some Y since Q is an injective cogenerator. Now consider the

following commutative diagram:

0 ✲ MY
1

✲β MY
0

✲α QY

❄
h

❄
g

❄
fs1 s0

0 ✲ N ✲a MX ✲b

�
�

�✠

C ✲

�
�

�✠

0

Since α is CogenM -precover, there is a morphism g such that αg “ fb, and then we have

that βh “ ga. Since a is evaluation map and MY
1

P AdpM , we have s1 such that h “ s1a.

It is easy to see that pg ´ βs1qa “ 0, and then we have s0 such that g ´ βs1 “ s0b. So

αs0b “ αpg ´ βs1q “ αg “ fb, thus f “ αs0 since b is surjective. Since f is injective, s0 is

injective. Consequently, C P CogenM and CogenM “ CopresM . Then the proof is completed.
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l

Let D be a class of R-modules. A module M P D is called an injective object of D if for any

short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 in D is HomRp´,Mq-exact. A module M P D is

called a cogenerator of D if for any N in D, there is a monomorphism i: N Ñ MX for some set

X.

Lemma 3.3 Let T be a class of R-modules and Q be an injective cogenerator of R-Mod. Suppose

that an exact sequence 0 Ñ A Ñ B Ñα Q Ñπ K Ñ 0 satisfies that α is a T -precover and that A

is Ext-injective in T . Denote D=tN P R-Mod | HomRpN,πq “ 0u. Then T Ď D and M :“ Imα

is an injective cogenerator in D.

Proof. For any C P T and any morphism f : C Ñ Q, there is a morphism g: C Ñ B such that

f “ αg since α is a T -precover. Thus HomRpC, πq “ 0 and T Ď D.

Take any short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 in D and any morphism h: X Ñ M .

Consider the following commutative diagram:

0 ✲ M ✲b Q ✲ K ✲ 0
π

❄h ❄cβ

0 ✲ X ✲a Y ✲

�
��✠

Z ✲ 0

It follows that from Q is injective that there is a morphisms c such that bh “ ca. Since

Y P D, we have a morphism β such that c “ bβ. Thus bh “ bβa and h “ βa since b is injective.

So the exact sequence is Homp´,Mq-exact, i.e. M is injective in D. For any N P D, we have

a monomorphism i: N Ñ QI since Q is an injective cogenerator. Consider the exact sequence

0 Ñ M I Ñ QI Ñ KI Ñ 0. Since N P D, we have that HomRpN,πIq – pHomRpN,πqqI “ 0,

i.e., πI i “ 0. So there is a morphism γ: N Ñ M I such that i “ bIγ and γ is injective since i is

injective. Consequently, M is a cogenerator in D. l

The following result is usually called Wakamatsu’s lemma, see for instance [12].

Lemma 3.4 (Wakamatsu1s lemma) If T is a class of modules closed under extensions and if

ϕ: T Ñ M is a T -cover, then kerϕ P TK1 .

Theorem 3.5 Let T be a torsion-free classes in R-Mod. The following statements are equiva-

lent:

p1q T is quasi-cotilting torsion-free. i.e. there exists a quasi-cotilting module M such that

T “ CogenM ;

p2q T is a cover class;

p3q For any R-module N , there is an exact sequence

0 Ñ A Ñ B Ñα N

with α a T -precover and A Ext-injective in T .

Proof. (1)ñ (2) By Corollary 2.12.

(2)ñ (3) For any R-module N , there is an exact sequence

0 Ñ A Ñ B Ñα N

9



with α T -cover by (2). By Wakamatsu’s lemma, we have that A P T K1 . Since B P T and T is

a torsion-free class, A is in T . Thus A is Ext-injective in T .

(3)ñ (1) Take N “ Q with Q an injective cogenerator of R-Mod, then we have an exact

sequence 0 Ñ A Ñ B Ñα Q with α a T -precover and A Ext-injective in T by assumption. Set

M “ A ‘ B. Then CogenM Ď T since T is a torsion-free class. On the other hand, for any

L P T , we have a monomorphism f : L Ñ QX . There is a morphism g: L Ñ BX such that

f “ αXg since αX is clearly a T -precover. It follows from f is injective that g is injective. Thus

L P CogenM and CogenM “ T . It remains to show that M is Ext-injective in CogenM by

Theorem 3.2. In fact, by assumption, we have to verify this only to B. Take any exact sequence

0 Ñ B Ñ N Ñ T Ñ 0 with T P CogenM . Then N is in CogenM since CogenM “ T is a

torsion-free class. Set C “ Imα, consider the pushout of B Ñ N and B Ñ C:

0 0
❄ ❄

0 ✲ C ✲
c

W ✲
e

T ✲ 0
❄π ❄ ❄

1s1 d s0

0 ✲ B ✲a N ✲b

δ�
��✠

T ✲✛
�

��✠

0
❄❄

A ✲1 A
❄❄

0 0

By Lemma 3.3, the exact sequence 0 Ñ B Ñ N Ñ T Ñ 0 is Homp´, Cq-exact. So there is a

morphism s1 such that π “ s1a. It is easy to see that pd ´ cs1qa “ 0. So we have d “ cs1 ` s0b

in the above diagram for some s0. Since A is Ext-injective in CogenM , there is a morphism δ:

T Ñ N such that s0 “ dδ. So b “ ed “ eps0b ` cs1q “ es0b and es0 “ 1 since b is surjective.

But bδ “ edδ “ es0 “ 1, thus, b is split. Consequently, B is Ext-injective in CogenM . l

We say that two quasi-cotilting modules M1 and M2 are equivalent if AdpM1 “ AdpM2.

Corollary 3.6 There are bijections between

p1q equivalence classes of quasi-cotilting modules;

p2q torsion-free cover classes;

p3q torsion-free classes T in R-Mod such that every module has a T -precover with Ext-

injective kernel.

Proof. LetM1 andM2 be two quasi-cotilting modules, it is easy to prove that AdpM1 “ AdpM2

if and only if CogenM1 “ CogenM2 by Lemma 3.1. Now this correspondences can be defined as

follows:

(1)Ñ(2): M ÞÝÑ CogenM

(2)Ñ(3): T ÞÝÑ T

(3)Ñ(1): T ÞÝÑ M with CogenM “ T . l
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