Quasi-cotilting modules and torsion-free classes^{*}

Peiyu Zhang and Jiaqun Wei[†] E-mail: zhangpeiyu2011@163.com, weijiaqun@njnu.enu.cn Institute of Mathematics, School of Mathematics Sciences Nanjing Normal University, Nanjing 210023 China

Abstract

We prove that all quasi-cotilting modules are pure-injective and cofinendo. It follows that the class $\operatorname{Cogen} M$ is always a covering class whenever M is a quasi-cotilting module. Some characterizations of quasi-cotilting modules are given. As a main result, we prove that there is a bijective correspondence between the equivalent classes of quasi-cotilting modules and torsion-free covering classes.

MSC 2010: 16D90 18E40 16E30 16S90

Keywords: quasi-cotilting module, torion-free class, covering class, pure-injective module,

cofinendo module

1 Introduction and Preliminaries

Quasi-tilting modules were introduced by Colpi, Deste, and Tonolo in [9] in the study of contexts of *-modules and tilting modules, where it was shown that these modules are closely relative to torsion theory counter equivalences. Recently, quasi-tilting modules turn out to be new interesting after the study of support τ -tilting modules by Adachi, Iyama and Reiten [1]. The second author proved that a finitely generated module over an artin algebra is support τ -tilting if and only if it is quasi-tilting [19]. Moreover, Angeleri-Hügel, Marks and Vitória [2] proved that finendo quasi-tilting modules are also closely related to silting modules (which is a generalizations of support τ -tilting modules in general rings).

It is natural to consider the dual of quasi-tilting modules, i.e., quasi-cotilting modules. As cotilting modules possess their own interesting properties not dual to tilting modules, we show in this paper that quasi-cotilting modules are not only to be the dual of quasi-tilting modules and they have their own interesting properties too. We prove that all quasi-cotilting modules are pure-injective and cofinendo. These are clearly new important properties of quasi-cotilting modules. Note that not all quasi-tilting modules are finendo. As a corollary, we obtain that the class Cogen M is a covering class whenever M is quasi-cotilting. We give variant characterizations of quasi-cotilting modules and cotilting modules. As the main result, we prove that there is a bijection between the equivalent classes of quasi-cotilting modules and torsion-free covering classes.

^{*}Supported by the National Science Foundation of China (Grant Nos. 11371196 and 11171149) and the National Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK2012044).

[†]Correspondent auther

Throughout this paper, R is always an associative ring with identity and subcategories are always full and closed under isomorphisms. We denote by R-Mod the category of all left R-modules. By ProjR we denote the class of all projective R-module.

Let $M \in R$ -Mod, we use following notations throughout this paper.

```
\begin{split} \operatorname{Adp} M &:= \{N \in R\text{-Mod} \mid \text{there is a module } L \text{ such that } N \oplus L = M^X \text{ for some } X\}; \\ \operatorname{Cogen} M &:= \{N \in R\text{-Mod} \mid \text{there is an exact sequence } 0 \to N \to M_0 \text{ with } M_0 \in \operatorname{Adp} M\}; \\ \operatorname{Copres} M &:= \{N \in R\text{-Mod} \mid \text{there is an exact sequence } 0 \to N \to M_0 \to M_1 \text{ with } M_0, \, M_1 \in \operatorname{Adp} M\}; \\ ^{\perp_1} M &:= \{N \in R\text{-Mod} \mid \operatorname{Ext}^1_R(N,M) = 0\}; \\ M^{\perp_1} &:= \{N \in R\text{-Mod} \mid \operatorname{Ext}^1_R(M,N) = 0\}; \\ ^{\circ} M &:= \{N \in R\text{-Mod} \mid \operatorname{Hom}_R(N,M) = 0\}; \\ M^{\circ} &:= \{N \in R\text{-Mod} \mid \operatorname{Hom}_R(N,N) = 0\}. \end{split}
```

Note that Cogen M is clearly closed under submodules, direct products and direct sums.

Let \mathcal{T} be a class of R-modules, we denoted by $Fac(\mathcal{T})$ the classes formes by the factor modules of all modules in \mathcal{T} . An R-module $M \in \mathcal{T}$ is called Ext-injective in \mathcal{T} if $\mathcal{T} \subseteq {}^{\perp_1}M$.

Let \mathcal{X} and \mathcal{Y} be two subcategories of R-Mod. The pair $(\mathcal{X},\mathcal{Y})$ is said to be a torsion pair if it satisfies the following three condition (1) $\operatorname{Hom}(\mathcal{X},\mathcal{Y}) = 0$; (2) if $\operatorname{Hom}(M,\mathcal{Y}) = 0$, then $M \in \mathcal{X}$; (3) if $\operatorname{Hom}(\mathcal{X},N) = 0$, then $N \in \mathcal{Y}$. In the case, \mathcal{X} is called a torsion class and \mathcal{Y} is called a torsion-free class. Note that a subcategory \mathcal{X} of R-Mod is torsion-free if and only if \mathcal{X} is closed under direct products, submodules and extensions, see [11].

Lemma 1.1 If an R-module M is Ext-injective in Cogen M, then $({}^{\circ}M, Cogen M)$ is a torsion pair.

Proof. It is easy to verify that ${}^{\circ}M = {}^{\circ}(\operatorname{Cogen}M)$. We only need to prove that $({}^{\circ}M)^{\circ} = \operatorname{Cogen}M$. If $T \in \operatorname{Cogen}M$, then there is an injective homomorphism $i: T \to M^X$ for some set X. For any $N \in {}^{\circ}M$ and $f \in \operatorname{Hom}_R(N,T)$, then $\operatorname{Hom}_R(N,M^X) = (\operatorname{Hom}_R(N,M))^X = 0$, hence if = 0. Then f = 0 since i is injective. So $\operatorname{Cogen}M \subseteq ({}^{\circ}M)^{\circ}$.

For any $T \in ({}^{\circ}M)^{\circ}$, consider the evaluation map $\alpha \colon T \to M^{\operatorname{Hom}_R(T,M)}$ with $K = \ker \alpha$. Take canonical resolution of α , i.e. $\alpha = i\pi$ with $\pi \colon T \to \operatorname{Im}\alpha$ and $i \colon \operatorname{Im}\alpha \to M^{\operatorname{Hom}_R(T,M)}$. Clearly, $\operatorname{Hom}_R(\pi,M)$ is surjective from the definition of α . Applying the functor $\operatorname{Hom}_R(-,M)$ to the exact sequence $0 \to K \to T \to \operatorname{Im}\alpha \to 0$, we have an exact sequence

$$0 \to \operatorname{Hom}_R(Im\alpha, M) \to \operatorname{Hom}_R(T, M) \to \operatorname{Hom}_R(K, M) \to \operatorname{Ext}^1_R(Im\alpha, M).$$

Since $Im\alpha \in \operatorname{Cogen} M \subseteq^{\perp_1} M$, $\operatorname{Ext}^1_R(Im\alpha, M) = 0$. As $\operatorname{Hom}_R(\pi, M)$ is surjective by above discussion, $\operatorname{Hom}_R(K, M) = 0$, and hence, $K \in {}^{\circ}M$. Since $T \in ({}^{\circ}M)^{\circ}$, we have that $\operatorname{Hom}_R(K, T) = 0$ and α is injective. Thus K = 0, i.e. $T \in \operatorname{Cogen}(M)$.

Definition 1.2 [3, Definition1.4] (1) Let Q be an injective cogenerator of R-Mod. A module M is called Q-cofinendo if there exist a cardinal γ and a map $f: M^{\gamma} \to Q$ such that for any cardinal α , all maps $M^{\alpha} \to Q$ factor through f.

(2) A module M is cofinendo if there is an injective cogenerator Q of R-Mod such that M is Q-cofinendo.

Let \mathcal{T} be a class of R-modules and M be an R-module. Then $f: X \to M$ with $X \in \mathcal{T}$ is a \mathcal{T} -precover of M provided that $\operatorname{Hom}(Y, f)$ is surjective for any $Y \in \mathcal{T}$. A \mathcal{T} -precover of M is called \mathcal{T} -cover of M if any $g: X \to X$ such that f = fg must be an isomorphism. A class \mathcal{T} of R-modules is said to be a precover class (cover class) provided that each module has a \mathcal{T} -precover (\mathcal{T} -cover).

Lemma 1.3 [3, Proposition 1.6] The following are equivalent for a module M:

- (1) M is cofinendo;
- (2) there is an AdpM-precover of an injective cogenerator Q of R-Mod;
- (3) CogenM is a precover class.

2 Quasi-cotilting modules

In this section, we introduce notion of quasi-cotilting modules and give some characterization of quasi-cotilting modules. In particular, we prove that all quasi-cotilting modules are pure injective and cofinendo.

Definition 2.1 (1) An R-module M is said to be a costar module if Cogen M = Copres M and $Hom_R(-, M)$ preserves exactness of any short exact sequence in Cogen M.

(2) An R-module M is called a quasi-cotilting module, if it is a costar module and M is Ext-injective in Cogen M.

Remark (1) Costar modules defined above had been studied in [16]. Moreover, their general version, i.e., n-costar modules, were studied by He [14] and Yao and Chen [22] respectively.

(2) Colby and Fuller [7] had defined another notion of costar modules which can be viewed as a special case of the above-defined costar modules.

For convenience, we say that a short exact sequence $0 \to A \to B \to C \to 0$ is $\operatorname{Hom}_R(-, M)$ -exact $((M \bigotimes_R -, \operatorname{resp.})\operatorname{-exact})$ if the functor $\operatorname{Hom}_R(-, M)$ $(M \bigotimes_R -, \operatorname{resp.})$ preserves exactness of this exact sequence.

The following result is well-known.

Lemma 2.2 Suppose that two short exact sequences $0 \to A \to B \to C \to 0$ and $0 \to A \to B' \to C' \to 0$ are Hom(-,M)-exact with $B,B' \in \text{Apd}M$. Then $B \oplus C' \cong B' \oplus C$

Proof. It is dual to Lemma 2.2 in [20].

The following result presents a useful property of costar modules.

Lemma 2.3 Let M be a co-star module. Suppose that the short exact sequence $0 \to A \to B \to C \to 0$ is $\operatorname{Hom}_R(-, M)$ -exact and $A \in \operatorname{Cogen} M$, then $B \in \operatorname{Cogen} M$ if and only if $C \in \operatorname{Cogen} M$.

Proof. \Leftarrow Since A and C are in CogenM, we have two monomorphisms $f \colon A \to M_A$ and $g \colon C \to M_C$ with M_A and M_C in AdpM. We consider the following diagram:

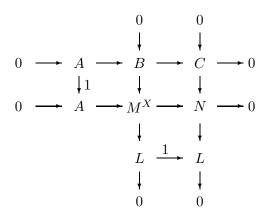
$$0 \longrightarrow A \xrightarrow{a} B \xrightarrow{b} C \longrightarrow 0$$

$$\downarrow f \qquad \downarrow (\theta, gb) \qquad \downarrow g$$

$$0 \longrightarrow M_A \xrightarrow{i} M_A \bigoplus M_C \xrightarrow{\pi} M_C \longrightarrow 0$$

where i and π is canonical injective and canonical projective respectively. Since the first row in above diagram is $\operatorname{Hom}_R(-,M)$ -exact, there exists a morphism θ such that $f=\theta a$. It further induces a commutative diagram as above. It follows from Snake Lemma that (θ,gb) is injective, i.e. $B \in \operatorname{Cogen} M$.

 \Rightarrow Since $B \in \text{Cogen}M$ and M is a costar module, we have that $0 \to B \to M_0 \to L' \to 0$ with $M_0 \in \text{Adp}M$ and $L' \in \text{Cogen}M$. There is a module M'_0 such that $M_0 \oplus M'_0 = M^X$. So we obtain a new short exact sequence $0 \to B \to M^X \to L \to 0$ with $L = L' \oplus M'_0 \in \text{Cogen}M$. Consider the pushout of $B \to C$ and $B \to M^X$:



Since the first row and second column are $\operatorname{Hom}_R(-, M)$ -exact in above diagram, it is easy to see that the second row is also $\operatorname{Hom}_R(-, M)$ -exact. Since $A \in \operatorname{Cogen} M$, similar to B, there is a short exact sequence $0 \to A \to M^Y \to K \to 0$ with $K \in \operatorname{Cogen} M$. By Lemma 2.2, we have that $M^Y \oplus N \cong M^X \oplus K$, then it is easy to see that $N \in \operatorname{Cogen} M$. Consequently, $C \in \operatorname{Cogen} M$. \square

Now we give some characterizations of quasi-cotilting modules.

Proposition 2.4 Let M be an R-Module, the following statements are equivalent:

- (1) M is a quasi-cotilting module;
- (2) Cogen M = Copres M and M is Ext-injective in Cogen M;
- (3) M is a costar module and CogenM is a torsion-free class;
- (4) $\operatorname{Cogen} M = \operatorname{Fac}(\operatorname{Cogen} M) \cap {}^{\perp_1} M$.

Proof. $(1) \Rightarrow (2)$ By the involved definitions.

- $(2) \Rightarrow (1),(3)$ If M is Ext-injective in CogenM, then it is easy to see that the functor $\operatorname{Hom}_R(-,M)$ preserves the exactness of any short exact sequences in CogenM. So M is a costar module by the assumption. By Lemma 1.1, we also have that CogenM is a torsion-free class.
- $(3)\Rightarrow (4)$ Clearly, Cogen $M\subseteq\operatorname{Fac}(\operatorname{Cogen}M)$. To see that $\operatorname{Cogen}M\subseteq {}^{\perp_1}M$, we take any extension $0\to M\to N\to L\to 0$ with $L\in\operatorname{Cogen}M$. Since $\operatorname{Cogen}M$ is a torsion-free class, it is closed under extensions. It follows that $N\in\operatorname{Cogen}M$. But M is a costar module, the exact sequence is then $\operatorname{Hom}_R(-,M)$ -exact. Thus, we can obtain that the exact sequence is actually split. Consequently we have that $L\in {}^{\perp_1}M$ for any $L\in\operatorname{Cogen}M$, i.e., $\operatorname{Cogen}M\subseteq {}^{\perp_1}M$.

On the other hand, take any $N \in \operatorname{Fac}(\operatorname{Cogen} M) \cap {}^{\perp_1} M$. Then there is a module L in $\operatorname{Cogen} M$ and an epimorphism $f \colon L \to N$. Set $K = \ker f$, then $K \in \operatorname{Cogen} M$ since $L \in \operatorname{Cogen} M$. Then there is a short exact sequence $0 \to K \to M_0 \to A \to 0$ with $A \in \operatorname{Cogen} M$ and $M_0 \in \operatorname{Adp} M$, as $\operatorname{Cogen} M = \operatorname{Copres} M$. Since $N \in {}^{\perp_1} M$, we have the following communicative diagram:

$$0 \longrightarrow K \longrightarrow L \xrightarrow{f} N \longrightarrow 0$$

$$\downarrow 1 \qquad \downarrow \alpha \qquad \downarrow \beta$$

$$0 \longrightarrow K \longrightarrow M_0 \longrightarrow A \longrightarrow 0$$

By Snake Lemma, we obtain that $\ker \beta = \ker \alpha \in \operatorname{Cogen} M = \operatorname{Copres} M$ since $L \in \operatorname{Cogen} M$. From the third column in above diagram, we obtain a new short exact sequence $0 \to \ker \beta \to N \to \operatorname{Im} \beta \to 0$ with $\operatorname{Im} \beta \in \operatorname{Cogen} M$ (since $A \in \operatorname{Cogen} M$). By the assumption, $\operatorname{Cogen} M$ is a torsion-free class, so we have $N \in \operatorname{Cogen} M$. Hence, $\operatorname{Cogen} M = \operatorname{Fac}(\operatorname{Cogen} M) \cap {}^{\perp_1} M$.

 $(4)\Rightarrow (2)$ We need only to prove that $\operatorname{Cogen} M\subseteq \operatorname{Copres} M$. Take any $N\in \operatorname{Cogen} M$ and consider the evaluation map $u\colon N\to M^X$ with $X=\operatorname{Hom}_R(N,M)$. It is easy to verify that u is injective. Thus we have a short exact sequence $0\to N\to M^X\to C\to 0$, so it is enough to prove that $C\in\operatorname{Cogen} M$. Applying the functor $\operatorname{Hom}_R(-,M)$ to the sequence, we have an exact sequence $0\to\operatorname{Hom}_R(C,M)\to\operatorname{Hom}_R(M^X,M)\to^\gamma\operatorname{Hom}_R(N,M)\to\operatorname{Ext}_R^1(C,M)\to 0$. It follows from u is the evaluation map that γ is surjective. So that $\operatorname{Ext}_R^1(C,M)=0$, i.e. $C\in L^1M$. It follows that $C\in\operatorname{Fac}(\operatorname{Cogen} M)\cap L^1M=\operatorname{Cogen} M$ by (4).

The above result suggests the following definition.

Definition 2.5 The torsion-free class \mathcal{T} is called a quasi-cotilting class if $\mathcal{T} = \text{Cogen} M$ for some quasi-cotilting module.

Let M be an R-module. We denoted by AnnM the ideal of R consisting of all elements $r \in R$ such that rM = 0. If AnnM = 0, then M is called faithful.

Lemma 2.6 The following statements are equivalent for an R-module M.

- (1) M is faithful;
- (2) $R \in \text{Cogen}M$;
- (3) $\operatorname{Proj} R \subseteq \operatorname{Cogen} M$;
- (4) $\operatorname{Fac}(\operatorname{Cogen} M) = R \operatorname{Mod}.$
- (5) $Q \in \operatorname{Fac}(\operatorname{Adp}M)$.
- (6) $Q \in \operatorname{Fac}(\operatorname{Cogen} M)$.

Proof. (1) \Leftrightarrow (2) Note that AnnM is just the kernel of the evaluation map $R \to M^{\text{Hom}_R(R,M)}$, so the result follows from the universal property of the evaluation map.

- $(2)\Leftrightarrow(3)$ This is followed from the fact that Cogen M is closed under direct sums and direct summands.
 - $(3)\Rightarrow (4)$ Using the fact that every module is a quotient of a projective module.
- $(4)\Rightarrow(3)$ If P is any projective module and Fac(Cogen M) = R—Mod, then there is an exact sequence $0 \to P_1 \to C \to P \to 0$ with $C \in Cogen M$. But P is projective implies that the exact sequence is split, it follows that P is a direct summand of C and consequently, $P \in Cogen M$. Thus, (3) follows.
 - $(4) \Rightarrow (5) \Rightarrow (6)$ Obviously.
- $(6)\Rightarrow (4)$ Clearly, Fac(CogenM) $\subseteq R$ -Mod. On the other hand, since $Q \in \text{Fac}(\text{Cogen}M)$, there exists an $H \in \text{Cogen}M$ such that $f \colon H \to Q$ is surjective. For any $L \in R$ -Mod, we have a monomorphism $L \to Q^X$ for some X, since Q an injective cogenerator. Then f^X is surjective and $Q^X \cong H^X/K$ with $K = \ker f^X$. Consequently, there exists a submodule H_1 of H^X such that $L \cong H_1/K$. It is easy to see that $H_1 \in \text{Cogen}M$, so $L \in \text{Fac}(\text{Cogen}M)$ and (4) holds. \square

Recall that an R-module M is called (1-)cotilting if it satisfies the following three conditions: (1) the injective dimension of M is not more than 1, i.e., $\mathrm{id} M \leq 1$; (2) $\mathrm{Ext}^1_R(M^\lambda, M) = 0$ for any set λ ; (3) There is an exact sequence $0 \to M_1 \to M_0 \to Q \to 0$ where $M_0, M_1 \in \mathrm{Adp} M$ and Q is an injective cogenerator. Note that M is cotilting is equivalent to that $\mathrm{Cogen} M = {}^{\perp_1} M$, see for instance [3]. We will freely use these two equivalent definition of cotilting modules.

A torsion-free class \mathcal{T} is called a cotilting class if $\mathcal{T} = \text{Cogen}M$ for some cotilting module M.

We have the following characterizations of cotilting modules. Some of them were obtained in [16] (in Chinese). For reader's convenience, we include here a complete proof.

Proposition 2.7 Let M be an R-module and Q be an injective cogenerator of R-Mod, then the following statements are equivalent:

- (1) M is a cotilting module;
- (2) M is a quasi-cotilting module and $Q \in Fac(AdpM)$;
- (3) M is a quasi-cotilting module and $ProjR \subseteq CogenM$;
- (4) M is a quasi-cotilting module and Fac(Cogen M) = R-Mod;
- (5) M is a faithful quasi-cotilting module.
- (6) M is a quasi-cotilting module and CogenM is a cotilting torsion-free class.
- (7) M is a costar module and $Q \in Fac(AdpM)$;
- (8) M is a costar module and $ProjR \subseteq CogenM$;
- (9) M is a costar module and Fac(Cogen M) = R-Mod;
- (10) M is a faithful costar module.
- (11) M is a costar module and CogenM is a cotilting torsion-free class.

Proof. $(2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Rightarrow (10) \Leftrightarrow (9) \Leftrightarrow (8) \Leftrightarrow (7)$ By Lemma 2.6 and the definitions.

- (1)⇒(2) Since M is cotilting, we have that and $Cogen M = ^{\bot_1}M$ and Fac(Cogen M) = R-Mod by the above arguments. It follows $Cogen M = Fac(Cogen M) \cap ^{\bot_1}M$. Hence, M is quasi-cotilting by Proposition 2.4.
- $(8)\Rightarrow(1)$ Since $\operatorname{Proj} R\subseteq\operatorname{Cogen} M$, we have that $\operatorname{Fac}(\operatorname{Cogen} M)=R\operatorname{-Mod}$. For any $T\in\operatorname{Cogen} M$, there is a short exact sequence $0\to K\to P_0\to T\to 0$ with $P_0\in\operatorname{Proj} R$. Note that the sequence is indeed in $\operatorname{Cogen} M$, so $\operatorname{Hom}_R(-,M)$ preserves exactness of this short exact sequence, as M is a costar module. It follows that $\operatorname{Ext}_R^1(T,M)=0$ since $\operatorname{Ext}_R^1(P_0,M)=0$. Thus $\operatorname{Cogen} M\subseteq {}^{\perp_1}M$ and $\operatorname{Cogen} M$ is a torsion-free class by Lemma 1.1. Furthermore, we have that M is a quasi-cotilting module by Proposition 2.4. Consequently, $\operatorname{Cogen} M={}^{\perp_1}M$ by Proposition 2.4 again, since $\operatorname{Fac}(\operatorname{Cogen} M)=R\operatorname{-Mod}$. So M is a cotilting module.
 - $(1)\Rightarrow(6)\Rightarrow(11)$ It is obvious now.
- $(11)\Rightarrow(8)$. If Cogen M is a cotilting torsion-free class, i.e., Cogen M= Cogen T is for some cotilting module T, Then $\text{Proj}R\subseteq \text{Cogen}T$ by the above argument. Thus (8) follows.

The above result yields the following characterization of costar modules.

Proposition 2.8 The following statements are equivalent for an R-module M.

- (1) M is a costar R-module;
- (2) M is a costar \bar{R} -module, where $\bar{R} = R/\mathrm{Ann}M$;
- (3) M is a costar R/I-module for any ideal I of R such that IM = 0;
- (4) M is a cotilting \bar{R} -module.

Proof. Note that the category of R/I-modules can be identified to the full subcategory $\{M \in R\text{-Mod} \mid IM = 0\}$. Under this identification, it is not difficult to verify that $\operatorname{Cogen}_{R/I}M = \operatorname{Cogen}_RM = \operatorname{Cogen}_RM$. Therefore, $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ is obvious from the definitions.

 $(2)\Rightarrow(4)$ Note that M is always faithful as an \bar{R} -module, so the conclusion follows from Proposition 2.7.

$$(4)\Rightarrow(2)$$
 By Proposition 2.7.

A short exact sequence $0 \to A \to B \to C \to 0$ is called pure exact if it is $(M \otimes_R -)$ -exact for any right R-module M. In this case, C is called a pure quotient module of B. A module M is called pure injective if any pure exact sequence is $\text{Hom}_R(-, M)$ -exact.

Lemma 2.9 The following statements are equivalent:

- (1) M is a pure injective R-module;
- (2) For any X, the short exact sequence $0 \to M^{(X)} \to M^X \to C \to 0$ is $\operatorname{Hom}_R(-,M)$ exact;
- (3) M is a pure injective \bar{R} -module, where $\bar{R} = R/\mathrm{Ann}M$.

Proof. (1) \Leftrightarrow (2) by [5, Lemma 2.1]. Similar to (1) \Leftrightarrow (2), it is easy to see that (2) \Leftrightarrow (3) since $M^{(X)}$, M^X and C are in \bar{R} -Mod.

From the above discussion, we can get the following important properties of quasi-cotilting modules.

Proposition 2.10 All costar modules are pure injective and cofinendo. Specially, all quasicotilting modules are pure injective and cofinendo.

Proof. Let M be a costar R-module. We obtain that M is a cotilting \bar{R} -module by Proposition 2.8. It follows that M is a pure injective \bar{R} -module since all cotilting modules are pure injective [5]. Thus M is a pure injective R-module by Lemma 2.9.

To prove that M is cofinendo, we only need to prove that $\operatorname{Cogen} M$ is closed under direct sums and pure quotient modules by Lemma 2.11 and Lemma 1.3. Obviously, $\operatorname{Cogen} M$ is closed under direct sums. Suppose the short exact sequence $0 \to A \to B \to C \to 0$ is pure exact and $B \in \operatorname{Cogen} M$. It follows that $A \in \operatorname{Cogen} M$ and that $0 \to A \to B \to C \to 0$ is $\operatorname{Hom}_R(-, M)$ exact from M is pure injective. So $C \in \operatorname{Cogen} M$ by Proposition 2.3, i.e. $\operatorname{Cogen} M$ is closed under pure quotient modules.

Lemma 2.11 [15, Theorem 2.5] If a class A is closed under pure quotient modules, then the following statements are equivalent:

- (1) A is closed under arbitrary direct sums;
- (2) \mathcal{A} is a precover class;
- (3) \mathcal{A} is a cover class.

Corollary 2.12 If M is a costar module, then CogenM is a cover class. In particular, CogenM is a cover class for any quasi-cotilting module M.

Proof. By the proof of Proposition 2.10, we obtain that Cogen M is closed under pure quotient and direct sums. Thus Cogen M is a cover class by Lemma 2.11.

3 Quasi-cotilting torsion-free class

Lemma 3.1 If M is a quasi-cotilting module, then $AdpM = \ker \operatorname{Ext}_R^1(\operatorname{Cogen} M, -) \cap \operatorname{Cogen} M$.

Proof. Suppose that $N \in \operatorname{Adp} M$. Clearly we get $N \in \ker \operatorname{Ext}^1_R(\operatorname{Cogen} M, -) \cap \operatorname{Cogen} M$, from (3) in Proposition 2.4,. For the inverse inclusion, take any $L \in \ker \operatorname{Ext}^1_R(\operatorname{Cogen} M, -) \cap \operatorname{Cogen} M$. Then there is a short exact sequence $0 \to L \to M_0 \to C \to 0$ with $M_0 \in \operatorname{Adp} M$ and $C \in \operatorname{Cogen} M$ since $L \in \operatorname{Cogen} M = \operatorname{Copres} M$. Since $\operatorname{Ext}^1(C, L) = 0$, we can obtain that this exact sequence is split and hence $L \in \operatorname{Adp} M$.

Theorem 3.2 Let Q be an injective cogenerator of R-Mod. The following statements are equivalent:

- (1) M is a quasi-cotilting module;
- (2) M is Ext-injective in CogenM and there is an exact sequence

$$0 \to M_1 \to M_0 \to^{\alpha} Q$$

with M_0 and M_1 in AdpM and α a CogenM-precover.

Proof. (1) \Rightarrow (2) By Proposition 2.10, M is a cofinendo module. Then there is a morphism α : $M_0 \to Q$ with α an AdpM-precover by Lemma 1.3. It can be shown that α is also a CogenM-precover. Indeed, suppose that $M' \in \operatorname{Cogen} M$, we proof that f can factor through α for any $f \colon M' \to Q$. There exists a monomorphism $i \colon M' \to M^X$ since $M' \in \operatorname{Cogen} M$. We have a morphism $g \colon M^X \to Q$ such that f = gi since Q is injective. It follows from α is AdpM-precover that there is a morphism $h \colon M^X \to M_0$ such that $g = \alpha h$. Thus $f = gi = \alpha hi$. So α is a CogenM-precover. Now set $M_1 = \ker \alpha$, we only need to prove that $M_1 \in \operatorname{Adp} M$. Consider the exact sequence $0 \to M_1 \to M_0 \to^{\pi} \operatorname{Im} \alpha \to 0$, it is easy to prove that π is also CogenM-precover by the definition. For any $N \in \operatorname{Cogen} M$, applying the functor $\operatorname{Hom}_R(N, -)$ to this exact sequence, we have that

$$0 \to \operatorname{Hom}_R(N, M_1) \to \operatorname{Hom}_R(N, M_0) \to \operatorname{Hom}_R(N, \operatorname{Im}\alpha) \to \operatorname{Ext}^1_R(N, M_1) \to \operatorname{Ext}^1_R(N, M_0) = 0.$$

It follows from π is CogenM-precover that $\operatorname{Ext}_R^1(N, M_1) = 0$. Obviously, $M_1 \in \operatorname{Cogen} M$. Thus $M_1 \in \operatorname{Adp} M$ by Lemma 3.1.

 $(2)\Rightarrow (1)$ We only need to prove that $\mathrm{Cogen}M=\mathrm{Copres}M$ by Proposition 2.4. Suppose that $N\in\mathrm{Cogen}M$. Consider the evaluation map $a\colon N\to M^X$ with $X=\mathrm{Hom}_R(N,M)$, which is injective since $N\in\mathrm{Cogen}M$. Set $C=\mathrm{coker}\ a$, next we prove that $C\in\mathrm{Cogen}M$. There is a monomorphism $f\colon C\to Q^Y$ for some Y since Q is an injective cogenerator. Now consider the following commutative diagram:

$$0 \longrightarrow N \xrightarrow{a} M^X \xrightarrow{b} C \longrightarrow 0$$

$$\downarrow h \qquad \downarrow s_1 \downarrow g \qquad \downarrow s_0 \downarrow f$$

$$0 \longrightarrow M_1^Y \xrightarrow{\beta} M_0^Y \xrightarrow{\alpha} Q^Y$$

Since α is CogenM-precover, there is a morphism g such that $\alpha g = fb$, and then we have that $\beta h = ga$. Since a is evaluation map and $M_1^Y \in \mathrm{Adp}M$, we have s_1 such that $h = s_1a$. It is easy to see that $(g - \beta s_1)a = 0$, and then we have s_0 such that $g - \beta s_1 = s_0b$. So $\alpha s_0b = \alpha(g - \beta s_1) = \alpha g = fb$, thus $f = \alpha s_0$ since b is surjective. Since f is injective, s_0 is injective. Consequently, $C \in \mathrm{Cogen}M$ and $\mathrm{Cogen}M = \mathrm{Copres}M$. Then the proof is completed.

Let \mathcal{D} be a class of R-modules. A module $M \in \mathcal{D}$ is called an injective object of \mathcal{D} if for any short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{D} is $\operatorname{Hom}_R(-, M)$ -exact. A module $M \in \mathcal{D}$ is called a cogenerator of \mathcal{D} if for any N in \mathcal{D} , there is a monomorphism $i: N \to M^X$ for some set X.

Lemma 3.3 Let \mathcal{T} be a class of R-modules and Q be an injective cogenerator of R-Mod. Suppose that an exact sequence $0 \to A \to B \to^{\alpha} Q \to^{\pi} K \to 0$ satisfies that α is a \mathcal{T} -precover and that A is Ext-injective in \mathcal{T} . Denote $\mathcal{D} = \{N \in R\text{-Mod} \mid \operatorname{Hom}_R(N, \pi) = 0\}$. Then $\mathcal{T} \subseteq \mathcal{D}$ and $M := \operatorname{Im} \alpha$ is an injective cogenerator in \mathcal{D} .

Proof. For any $C \in \mathcal{T}$ and any morphism $f: C \to Q$, there is a morphism $g: C \to B$ such that $f = \alpha g$ since α is a \mathcal{T} -precover. Thus $\operatorname{Hom}_R(C, \pi) = 0$ and $\mathcal{T} \subseteq \mathcal{D}$.

Take any short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{D} and any morphism $h: X \to M$. Consider the following commutative diagram:

$$0 \longrightarrow X \xrightarrow{a} Y \longrightarrow Z \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\beta} Q \xrightarrow{\pi} K \longrightarrow 0$$

It follows that from Q is injective that there is a morphisms c such that bh=ca. Since $Y\in\mathcal{D}$, we have a morphism β such that $c=b\beta$. Thus $bh=b\beta a$ and $h=\beta a$ since b is injective. So the exact sequence is $\mathrm{Hom}(-,M)$ -exact, i.e. M is injective in \mathcal{D} . For any $N\in\mathcal{D}$, we have a monomorphism $i\colon N\to Q^I$ since Q is an injective cogenerator. Consider the exact sequence $0\to M^I\to Q^I\to K^I\to 0$. Since $N\in\mathcal{D}$, we have that $\mathrm{Hom}_R(N,\pi^I)\cong (\mathrm{Hom}_R(N,\pi))^I=0$, i.e., $\pi^Ii=0$. So there is a morphism $\gamma\colon N\to M^I$ such that $i=b^I\gamma$ and γ is injective since i is injective. Consequently, M is a cogenerator in \mathcal{D} .

The following result is usually called Wakamatsu's lemma, see for instance [12].

Lemma 3.4 (Wakamatsu's lemma) If \mathcal{T} is a class of modules closed under extensions and if $\varphi \colon T \to M$ is a \mathcal{T} -cover, then $\ker \varphi \in T^{\perp_1}$.

Theorem 3.5 Let \mathcal{T} be a torsion-free classes in R-Mod. The following statements are equivalent:

- (1) \mathcal{T} is quasi-cotilting torsion-free. i.e. there exists a quasi-cotilting module M such that $\mathcal{T} = \operatorname{Cogen} M$;
 - (2) \mathcal{T} is a cover class;
 - (3) For any R-module N, there is an exact sequence

$$0 \to A \to B \to^{\alpha} N$$

with α a \mathcal{T} -precover and A Ext-injective in \mathcal{T} .

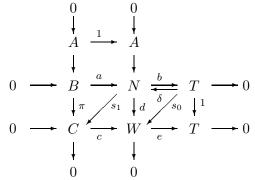
Proof. (1) \Rightarrow (2) By Corollary 2.12.

 $(2) \Rightarrow (3)$ For any R-module N, there is an exact sequence

$$0 \to A \to B \to^{\alpha} N$$

with α \mathcal{T} -cover by (2). By Wakamatsu's lemma, we have that $A \in \mathcal{T}^{\perp_1}$. Since $B \in \mathcal{T}$ and \mathcal{T} is a torsion-free class, A is in \mathcal{T} . Thus A is Ext-injective in \mathcal{T} .

 $(3)\Rightarrow (1)$ Take N=Q with Q an injective cogenerator of R-Mod, then we have an exact sequence $0\to A\to B\to^{\alpha}Q$ with α a \mathcal{T} -precover and A Ext-injective in \mathcal{T} by assumption. Set $M=A\oplus B$. Then $\mathrm{Cogen}M\subseteq \mathcal{T}$ since \mathcal{T} is a torsion-free class. On the other hand, for any $L\in \mathcal{T}$, we have a monomorphism $f\colon L\to Q^X$. There is a morphism $g\colon L\to B^X$ such that $f=\alpha^X g$ since α^X is clearly a \mathcal{T} -precover. It follows from f is injective that g is injective. Thus $L\in \mathrm{Cogen}M$ and $\mathrm{Cogen}M=\mathcal{T}$. It remains to show that M is Ext-injective in $\mathrm{Cogen}M$ by Theorem 3.2. In fact, by assumption, we have to verify this only to B. Take any exact sequence $0\to B\to N\to T\to 0$ with $T\in \mathrm{Cogen}M$. Then N is in $\mathrm{Cogen}M$ since $\mathrm{Cogen}M=\mathcal{T}$ is a torsion-free class. Set $C=\mathrm{Im}\alpha$, consider the pushout of $B\to N$ and $B\to C$:



By Lemma 3.3, the exact sequence $0 \to B \to N \to T \to 0$ is $\operatorname{Hom}(-,C)$ -exact. So there is a morphism s_1 such that $\pi = s_1a$. It is easy to see that $(d - cs_1)a = 0$. So we have $d = cs_1 + s_0b$ in the above diagram for some s_0 . Since A is Ext-injective in $\operatorname{Cogen} M$, there is a morphism δ : $T \to N$ such that $s_0 = d\delta$. So $b = ed = e(s_0b + cs_1) = es_0b$ and $es_0 = 1$ since b is surjective. But $b\delta = ed\delta = es_0 = 1$, thus, b is split. Consequently, B is Ext-injective in $\operatorname{Cogen} M$.

We say that two quasi-cotilting modules M_1 and M_2 are equivalent if $AdpM_1 = AdpM_2$.

Corollary 3.6 There are bijections between

- (1) equivalence classes of quasi-cotilting modules;
- (2) torsion-free cover classes;
- (3) torsion-free classes \mathcal{T} in R-Mod such that every module has a \mathcal{T} -precover with Extinjective kernel.

Proof. Let M_1 and M_2 be two quasi-cotilting modules, it is easy to prove that $AdpM_1 = AdpM_2$ if and only if $CogenM_1 = CogenM_2$ by Lemma 3.1. Now this correspondences can be defined as follows:

- $(1) \rightarrow (2): M \longmapsto \operatorname{Cogen} M$
- $(2)\rightarrow(3): \mathcal{T} \longmapsto \mathcal{T}$
- $(3) \rightarrow (1): \mathcal{T} \longmapsto M \text{ with } \operatorname{Cogen} M = \mathcal{T}.$

References

- [1] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, Compos. Math. 2014, 150 (3): 415-452.
- [2] L. Angeleri-Hügel, F. Marks and J. Vitória, Silting module, arxiv: 1405.2531v1.

- [3] L. Angeleri-Hügel, A. Tonolo and J. Trlifaj, Tilting Preenvelopes and Cotilting Precovers, Algebras and Representation Theory, 2001, 4(2): 155-170.
- [4] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math., 1991, 86: 111-152.
- [5] S. Bazzoni, Cotilting modules are pure injective, Proceedings of the American Mathematical Society, 2003, 131(12): 3665-3672.
- [6] S. Brenner, M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA III, in: Lecture Notes in Math., vol. 832, Springer-Verlag, 1980, pp.: 103-169.
- [7] R.R. Colby and K.R. Fuller, Costar modules, Journal of Algebra, 2001, 242: 146-159.
- [8] R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra, 1990, 18: 1935-1951.
- [9] R. Colpi, G. Deste, and A. Tonolo, Quasi-Tilting Modules and Counter Equivalences, J. Algebra, 1997, 191: 461-494.
- [10] R. Colpi, J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 1995, 178: 614-634.
- [11] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 1966: 223-235.
- [12] Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra,
- [13] D. Happel, C. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 1976, 215: 81-98.
- [14] D. He, n-Costar modules and n-cotilting modules, Master Dissertion, 2009.
- [15] H. Holm and P. Jørgensen, Covers, precovers and purity, Illinois Journal of Mathematics, 2008, 52(2): 691-703.
- [16] H. Liu and S. Zhang, costar modules and 1-cotilting modules (in Chinese), Chinese Annals of Mathematics, 2009, 30A(1): 63-72.
- [17] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z., 1986, 193: 113-146.
- [18] C. Menini, A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 1989, 82: 203-231.
- [19] J. Wei, τ -theory and *-modules, J. Algebra 2014, 414, 1-5.
- [20] J. Wei, n-Star modules and n-tilting modules, Journal of Algebra, 2005, 283: 711-722.
- [21] J. Wei, Z. Huang, W. Tong and J. Huang, Tilting modules of finite projective dimension and a generalization of *-modules, Journal of Algebra, 2003, 268: 404-418.
- [22] L. Yao and J. Chen, Co-*-modules, Algebra Colloq, 2010, 17(3): 447-456.