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and H2O. The present implementation will open a way to the first-principle theoretical study of
intense-field and attosecond-pulse induced ultrafast phenomena in general molecules.
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I. INTRODUCTION

The dynamics of atoms and molecules under intense
(typically & 1014 W/cm

2
) laser pulses is of great inter-

est in a variety of fields such as attosecond science and
high-field physics [1–3], with a goal to directly measure
and manipulate electronic motion. Numerical simula-
tions of such electron dynamics are a challenging task
[4]. Direct solution of the time-dependent Schrödinger
equation (TDSE) cannot be applied beyond He, H2, and
Li, due to a prohibitive computational cost. Thus, one of
major recent directions attracting increasing interest is
the multiconfiguration self-consistent-field (MCSCF) ap-
proach, which expresses the total wave function Ψ(t) as
a superposition [5–9]

|Ψ(t)〉 =
∑
J

cJ(t)|J〉, (1)

of Slater determinants |I〉 built from spin orbitals
|φ(i,σ)〉 = |φi〉 ⊗ |σ〉, where {φi} and σ ∈ {α, β} denote
one-electron spatial orbital functions and spin eigenfunc-
tions, respectively. Different variants with this ansatz
have recently been actively developed [4].

The time-dependent configuration-interaction (TDCI)
methods take orbital functions to be time-independent
and propagate only CI coefficients cI(t). Santra et
al. [10] have implemented its simplest variant, i.e., the
time-dependent configuration-interaction singles (TD-
CIS) method to treat atomic high-field processes. In
this method, only up to single-orbital excitation from
the Hartree-Fock (HF) ground-state is included. Bauch
el al. [11] have recently developed TD generalized-active-
space CI based on a general CI truncation scheme and
discussed its numerical implementation for atoms and di-
atomic molecules.

In the other class of MCSCF approaches, not only
CI coefficients but also orbital functions are varied in

time. The multiconfiguration time-dependent Hartree-
Fock (MCTDHF) [12, 13] considers all the possible elec-
tronic configuration for a given number of spin or-
bitals. As its flexible generalizations, we have re-
cently formulated the TD complete-active-space self-
consistent field (TD-CASSCF) [8] and TD occupation-
restricted multiple-active space (TD-ORMAS) [9] meth-
ods. The latter is valid for general MCSCF wave func-
tions with arbitrary CI spaces [4, 14] including, e.g.,
the TD restricted-active-space self-consistent-field (TD-
RASSCF) theory developed by Miyagi and Madsen [15].
Numerical implementations of MCTDHF for atoms as
well as diatomic molecules have been reported for the
calculation of valence and core photoionization cross sec-
tions [16]. We have also implemented TD-CASSCF for
atoms by expanding orbital functions with spherical har-
monics and successfully computed high-harmonic gener-
ation and nonsequential double ionization of Be [17].

Practically all the existing implementations are in-
tended for atoms and diatomic molecules, exploiting the
underlying symmetries with either the spherical [18–22],
cylindrical [23–26], or prolate spheroidal [27–30] coordi-
nates.

In this study, we report a three-dimensional (3D) nu-
merical implementation of MCTDHF based on a multi-
resolution Cartesian grid, with no need to assume any
symmetry of molecular structure, this can in principle
be applied to any molecule. With the use of a multi-
resolution finite-element representation of orbital func-
tions, we can fulfill a high degree of refinement near nu-
clei and, at the same time, a simulation domain large
enough to sustain departing electrons. As demonstra-
tions, we successfully compute high-harmonic generation
(HHG) from H2 and H2O. The present implementation
will open a way to the first-principle theoretical study of
intense-field and attosecond-pulse induced ultrafast phe-
nomena in general molecules.

This paper is organized as follows. In Sec. II, we briefly
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summarize the MCTDHF method. Section III describes
the multi-resolution cartesian grid. Section IV explains
the numerical procedure that we implement. In Sec. V,
we show examples of simulation results for He, H2, and
H2O. Conclusions are given in Sec. VI. Atomic units are
used throughout unless otherwise stated.

II. MCTDHF

In the MCTDHF method [12, 13], the sum in Eq. (1)

runs over the complete set of
(
M
Nα

)(
M
Nβ

)
Slater determi-

nants |J〉 that can be constructed from Nα electrons with
spin-projection α, Nβ electrons with spin-projection β,
and M spatial orbitals. Their spin-projection is conse-
quently restrited to Sz = (Nα −Nβ)/2.

Let us consider a Hamiltonian in the length gauge,

H(t) = H1(t) +H2, (2)

H1(t) =

N∑
i=1

(
−∇

2
i

2
−
∑
a

Za
|xi −Xa|

+ xi ·E(t)

)
, (3)

H2 =

N∑
i=1

i−1∑
j=1

1

|xi − xj |
, (4)

where N = Nα +Nβ , Xa and Za are the charge and po-
sition of the a-th atom, respectively, and E(t) is the laser
electronic field. One can derive the equations of motion
for the CI coefficients cJ(t) and spatial orbital functions
φi(t), resorting to the time dependent variational princi-
ple [31–33],

δ

(∫ t2

t1

〈Ψ|H(t)− i∂t|Ψ〉dt
)

= 0 (5)

with additional constraints for uniqueness [12],

〈φj |φk〉 = δj,k,

〈
φj |

∂φk
∂t

〉
= 0. (6)

The equations of motion are,

iċJ =
∑
K

〈J |H(t)|K〉 cK , (7)

and

i|φ̇i〉 = P̂

H1(t)|φi〉+
∑
jklm

(ρ−1)ijρ
(2)
jklmĝlm|φk〉

 ,

(8)

with,

P̂ = 1̂−
M∑
j=1

|φj〉〈φj |, (9)

ρi,j =
∑
σ

〈Ψ|â†iσâjσ|Ψ〉, (10)

ρ
(2)
jklm =

∑
στ

〈Ψ|â†jσâ
†
lτ âmτ âkσ|Ψ〉, (11)

glm(x) =

∫
dx

′
φ∗l (x

′
)

1

|x− x′ |
φm(x

′
), (12)

where 1̂ denotes the identity operator, and â†iσ and âiσ
the Fermion creation and annihilation operators, respec-
tively, associated with spatial orbital i and spin σ. Equa-
tion (12) is computed by solving the Poisson equation,

∇2glm(x) = −4πφ∗l (x)φm(x). (13)

It is convenient to rewrite Eq. (8) as,

iφ̇i = P̂ (Tφi +Wi(t)) (14)

where T is kinetic energy.

III. MULTI-RESOLUTION CARTESIAN GRID

We discretize spatial orbital functions on a multi-
resolution Cartesian grid, inspired by the work of Bischoff
and Valeev [34] and the finite volume method [35]. Fig-
ure 1 (a) schematically shows how to generate it. We
start from an equidistant Cartesian grid composed of cu-
bic cells. If a given cell is too large to represent orbital
functions with sufficient accuracy, typically near the nu-
clei, we subdivide it into eight cubic cells with half the
side length of the original cell. We continue the subdivi-
sion until accuracy requirements are satisfied. The center
of each cube is taken as the grid point representing the
cell.

The Laplacian ∇2φ of orbital function φ(r, t) is eval-
uated at each grid point by finite difference. We first
illustrate it for a one-dimensional case for simplicity in
Fig. 1(b). One can evaluate the second derivative of a
function f(x) at grid point xi as,

d2

dx2
f(xi) ≈

g+i − g
−
i

∆xi
, (15)

where ∆xi is the size of cell i, and the first derivatives
g±i at the cell boundaries are approximated by,

g+i ≈
2[f(xi+1)− f(xi)]

∆xi + ∆xi+1
, (16)

g−i ≈
2[f(xi)− f(xi−1)]

∆xi + ∆xi−1
. (17)

We show the extension to two dimensions in Fig. 1(c).
Grid points are marked by red and blue circles. In or-
der to evaluate the second derivative with respect to the
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vertical direction at the center of cell i, we need the
first derivative evaluated at the cell boundary marked
by the orange triangle, for which we need, in turn, the
value of the function at the position marked by the star
in cell i + 1. We approximate this latter by the value
fi+1 ≡ f(ri+1) at the grid point, i.e., the center of the
cell i + 1. Though inferior in terms of accuracy, this
scheme is much more advantageous in terms of com-
putational cost over conventional methods such as the
alternating direction implicit method [36], moving least
squares [37, 38], and symmetric smoothed particle hydro-
dynamics [39, 40].

Then, in the 3D case, we evaluate the Laplacian
∇2φ(r) as,

∇2φ(ra) ≈ Laaφ(ra) +
∑
b

′Labφ(rb), (18)

where a and b are cell indices, the primed sum is taken
over the cells adjacent to the a-th cell, and,

Laa = −
∑
b

′Lab, (19)

Lab =
l2b
l2a

2

la + lb

1

la
(a 6= b and lb < la), (20)

Lab =
2

la + lb

1

la
(a 6= b and lb ≥ la), (21)

with la being the side length of the a-th cell.

IV. NUMERICAL PROCEDURE

We present the essential steps of MCTDHF simula-
tions using multi-resolution cartesian grid as follows:

Step 1: Generation of grid and Laplacian matrix

We consider a cuboid simulation region V centered at
the origin: {x = (x, y, z) ∈ R2 | x ∈ [−xL, xL], y ∈
[−yL, yL], z ∈ [−zL, zL], xL > 0, yL > 0, zL > 0}. We
set the locations of grid points and prepare Laplacian
matrix elements Lab using Eqs. (19)–(21). These are
done only once in the beginning.

Step 2: Computation of ρ and ρ(2)

Each time step starts with computation of ρ and ρ(2),
using Eqs. (10) and (11), respectively.

Step 3: Computation of glm

We solve the Poisson equation (13) to obtain glm, by
the conjugate residual method [41, 42]. The condition
at the simulation boundary ∂V is given by multipole ex-

pansion

glm(xbound) =

∫
V

1

|xbound − x′|
φ∗l (x

′)φ∗m(x′)dx′ (22)

=

∞∑
l=0

∫
V

|x′|lPl(cos θ)

|xbound|l+1
φ∗l (x

′)φ∗m(x′)dx′

(23)

for xbound ∈ ∂V where Pl(z) denotes the Legendre
polynomial, and θ the angle between x′ and xbound. In
the present study, we truncate the sum in Eq. (23) at
l = 2 (second-order multipole expansion).

Step 4: Time propagation of cJ and φi

We solve the equations of motion Eqs. (7) and (14) us-
ing a second-order exponential integrator [43, 44]. Equa-
tion (7) is integrated as,

c
(1)
J (t+ ∆t) = cJ(t) + ∆t

∑
K

〈J |H|K〉cK , (24)

c
(2)
J (t+ ∆t) = c

(1)
J (t+ ∆t)

+ ∆t
∑
K

〈J (1)|H|K(1)〉c(1)K (t+ ∆t), (25)

cJ(t+ ∆t) =
cJ(t) + c

(2)
J (t+ ∆t)

2
, (26)

where |J (1)〉 with superscript “(1)” denotes the Slater de-

terminant constructed with orbital functions φ
(1)
i defined

below in Eq. (27). Equation (14) is integrated as,

φ
(1)
i = φi(t)

+ P̂
1

1 + i∆tT/2
[(−i∆tT )φi(t) + ∆tWi(t)] , (27)

φ
(2)
i (t+ ∆t) = φ

(1)
i

+ P̂ (1) 1

1 + i∆tT/2

[
(−i∆tT )φ

(1)
i + ∆tWi(t+ ∆t)

]
,

(28)

P̂ (1) = 1̂−
M∑
j=1

|φ(1)j 〉〈φ
(1)
j |, (29)

φi(t+ ∆t) =
φ
(2)
i (t+ ∆t) + φi(t)

2
. (30)

In Eqs. (27) and (28), (1 + i∆tT/2)−1 is operated by the
conjugate residual method [41, 42].

Step 5a: Absorbing boundary (only in real time propaga-
tion)
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FIG. 1. (a) Schematic of the cartesian-based multi-resolution grids. (b) Schematic of the computation of second order differential
at one-dimensional irregular grids. (c) Schematic of the computation of the first differential at the surface of the grid at two-
dimensional irregular grids. Real grid points are red and blue circles.

To prevent the reflection from the grid boundaries, af-
ter each time step, φi is multipled by a cos mask func-
tion M(x, y, z) that varies from 1 to 0 between the ab-
sorption boundary set at x = x0, y = y0, and z = z0
(0 < x0 < xL, 0 < y0 < yL, 0 < z0 < zL) and the outer
boundary ∂V [45, 46]:

M(x, y, z) = C

(
|x| − x0
xL − x0

)
C

(
|y| − y0
yL − y0

)
C

(
|z| − z0
zL − z0

)
(31)

where

C(x) = 1 (x ≤ 0), cos(x) (x > 0). (32)

Alternatively, one may use, e.g., exterior complex scaling
[47, 48].

Step 5b: Rescaling of cJ and orthonormalization of φi
(only in imaginary time propagation)

We obtain the initial ground state via imaginary time
propagation [49]. After each (imaginary) time step, cJ is
rescaled so that

∑
J |cJ |2 = 1, and φi is orthonormalized

through the Gram-Schmidt algorithm.

Step 6: End of time step

We go back to Step 2 to start next time step.

V. EXAMPLES

A. Benchmark : HHG from helium

We simulate HHG from a helium atom located at the
origin. Side length of the cell is set to be 0.6 (r > 4), 0.3
(2 < r < 4) and 0.15(r < 2) respectively, depending on
the distance r of the grid point at the center of each cell
and the origin. We also set xL = 70, yL = zL = 35 and
x0 = 0.7xL, y0 = 0.7yL, z0 = 0.7zL. The time step size
∆t is set to be 0.0025. We consider a laser pulse linearly
polarized along the x axis, whose electric field E(t) is
given by,

E(t) = Eenv(t) sinωt, (33)

Eenv(t) =

 ωt/2π (ωt < 2π),
2− ωt/2π (2π < ωt < 4π),
0 (otherwise),

(34)

with a central wavelength of 400 nm and a peak intensity
of 8×1014 W/cm2. For such an ultrashort pulse, the cut-
off energy predicted by the semiclassical three step model
[50, 51] is Ip + 2.07Up = 49.6 eV, which corresponds to
the 16.0 th order where Ip is ionization potential and
Up is pondermotive energy. The harmonic spectrum is
obtained from the Fourier transform of the dipole accel-
eration.

In Fig. 2 we compare the HHG spectrum calculated
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FIG. 2. HHG spectrum of helium computed by multi-
resolution MCTDHF(red-solid) and method of [17](black-
dashed). Arrows represent the cutoff energy.

number of largest cell side length l0
orbital M 0.7 0.7∗ 0.6 0.55

1 -1.83661 -1.83622 -1.84318 -1.84123
2 -1.85451 -1.85467 -1.86164 -1.85964
3 -1.86218 -1.86233 -1.86925 -1.86723
6 -1.87329 -1.87342 -1.88027 -1.87756

TABLE I. Ground-state energy (a.u.) of a hydrogen
molecule, obtained by relaxation in imaginary time. The val-
ues in column labeled “0.7∗” are obtained with grids displaced
parallel to the x axis by 0.025 a.u.

with the present implementation with that calculated
with another implementation in spherical coordinates
[17]. One can see that they agree with each other very
well.

B. HHG from a hydrogen molecule

Next, we simulate HHG from molecular hydrogen
where two hydrogen atoms are located at (±0.7, 0, 0),
respectively. Side length of cell is set to be l0 (r0 > 4),
l0/2 (2 < r0 < 4) and l0/4(r0 < 2), respectively where
l0 is the side length of the largest cells (see Table I
for its values). We also set xL = yL = zL = 27 and
x0 = 0.7xL, y0 = 0.7yL, z0 = 0.7zL. The time step size
∆t is set to be 0.01.

The ground-state energy, obtained through relaxation
in imaginary time, is shown in Table I where M is the
number of orbitals. It consistently tends to the literature
value -1.8884 a.u. [52] with an increasing number of
orbitals. The slight dependence on M and l0 has only a
small impact on calculated harmonic spectra, as we will
see below in Fig. 3(a,b). The values in column labeled
“0.7∗” are obtained with grids displaced parallel to the x
axis by 0.025. One can see that the resulting loss of grid
symmetry with respect to the yz plane also has only a
small impact.

Let us consider a linearly polarized laser pulse with a
central wavelength of 800 nm, a peak intensity of 1×1014

W/cm2, and an eight-cycle sine-squared envelope,

E(t) = E0 sin2(ωt/16) cos(ωt). (35)

Figure 3 presents HHG spectra for laser polarization par-
allel to the molecular axis (the x axis) [Fig. 3(a)(b)] and
30 degrees from the molecular axis [Fig. 3(c)]. The cutoff
energy predicted by the semiclassical three step model
is 34.3 eV, which corresponds to order 22.1. One can
see that the simulation is converged with respect to the
number of orbitals [Fig. 3(a)] and grid spacing [Fig. 3(b)].
Our multi-resolution Cartesian-grid MCTDHF, with no
a priori assumption of symmetry, can also handle laser
polarization oblique to the molecular axis [Fig. 3(c)].

In Fig. 3 we can clearly see the second plateau, some-
what weaker than the first one, extending beyond the
cutoff (∼ order 22.1). The second cutoff position is con-
sistent with the value (53.6 eV or the 34.6-th order) pre-
dicted by the three step model with the ionization po-
tential of H+

2 (34.7 eV). Hence, based on a speculation
that the second plateau harmonics are generated from
H+

2 produced via strong-field ionization, we have simu-
lated HHG from this molecular ion with the same laser
parameters. The obtained harmonic spectrum multiplied
with the ionization probability of H2 (2.4×10−4) is plot-
ted as a yellow dashed line in Fig. 3(a). The spectrum is
much weaker than the second plateau from H2.

Presumably, the harmonic response from H+
2 is sub-

stantially enhanced by the action of the oscillating dipole
formed by the recolliding first electron ejected from the
neutral molecule and the neutral ground state. This me-
chanics is similar to enhancement by an assisting har-
monic pulse [53–56], but the enhancement is due to direct
Coulomb force from the oscillating dipole, rather than
harmonics emitted from it. In the words of the semiclas-
sical three-step model, the recolliding first electron vir-
tually excites H+

2 , facilitating second ionization. Thus,
electron-electron interaction plays an important role in
high-harmonic generation in some cases, whereas HHG
is usually considered as a predominantly single-electron
process.

C. HHG from a water molecule

As an example of application to molecules of lower
symmetry, we simulate HHG from a water molecule with
its oxygen atom located at the origin and two hydrogen
atoms at (±1.4299, 1.10718, 0). Side length of cell is set
to be 0.6 (r0 > 4), 0.3 (2 < r0 < 4) and 0.15(r0 < 2)
respectively where r0 is the distance from the nearest
atom. Outer boundary xL, yL, zL is set to be 60 (axis
parallel to the polarization) and 30 (axis parpendicular
to the polarization) and absorption boundary x0, y0, z0 is
set to be 0.7 times as long as outer boundary. Step size
∆t is set to be 0.0025. We use the same laser pulse shape
as in Sec. V A. The cutoff energy predicted by the semi-
classical three step model is 37.3 eV, which corresponds
to the 12.0 th order.
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FIG. 3. Calculated high-harmonic spectra from a hydrogen
molecule. See text for laser parameters. (a) Comparison of
the results with M = 1(blue-dotted), M = 2 (black-solid),
and M = 3(purple-solid), for laser polarization parallel to
the molecular axis. Yellow-dashed line: spectrum from H+

2

multiplied with the ionization probability of H2 (2.4× 10−4).
(b) Comparison of the results with l0 = 0.7 (red-solid) and
0.55 (black-dashed). The calculation was done with M = 1 for
polarization parallel to the molecular axis. (c) Result for laser
polarization 30 degrees from the molecular axis [polarization
direction is (cos 30◦, sin 30◦, 0)]. M = 3 was used. Red-solid:
harmonics emitted in the y direction, black-dashed: in the x
direction. Arrows in each panel indicate the cutoff positions
expected for H2 (22.1-th order) and H+

2 (34.6-th order).

Figure 4, which presents calculated harmonic spectra
for three different directions of laser polarization, demon-
strates high flexibility of the multi-resolution Cartesian-
grid MCTDHF implementation.

VI. CONCLUSION

We have numerically implemented the MCTDHF
method on a multi-resolution Cartesian grid. Whereas
previous approaches have relied on underlying symme-
tries of simulated atoms and molecules, the present
implementation offers a flexible framework to describe
strong-field and attosecond processes of real general
molecules. Extension to computationally more compact
methods such as TD-CASSCF [8] and TD-ORMAS [9]
will be rather straightforward and enable application to
large molecules.

As demonstrations, we have successfully calculated
high-harmonic spectra from He, H2, and H2O. As
the presence of the second plateau in Fig. 3 implies,
the present implementation will uncover yet unexplored
multi-electron, multi-channel, and multi-orbital effects,
which only first-principles simulations can reveal.
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