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prove that 7" induces an equivalence between stable categories of repetitive algebras R
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1 Introduction

Tilting theory plays an important role in the representation theory of artin algebras. The
classical tilting modules were introduced in the early eighties by Brenner-Butler [6], Bongartz
[5] and Happel and Ringel [17]. Beginning with Miyashita [21] and Happel [17], the defining
conditions for a classical tilting module were relaxed to tilting modules of arbitrary finite
projective dimension, and further were relaxed to arbitrary rings and infinitely generated
modules by many authors such as Colby and Fuller [10], Colpi and Trlifaj [12], Angeleri-
Hiigel and Coelho [I], Bazzoni [4] etc..

One important result in tilting theory is the famous Brenner-Butler Theorem which
shows that a tilting module induces some equivalences between certain subcategories. In this
sense, tilting theory may be viewed as a far-reaching way of generalization of Morita theory
of equivalences between module categories. More interesting, when considering the derived
category of an algebra, which contains module category of the algebra as a full subcategory,
Happel [16] and later Cline, Parshall and Scott [§] proved that a tilting module of finite
projective dimension induces an equivalence between the bounded derived category of the

ordinary algebra and the derived category of the endomorphism algebra of the tilting module.
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This leads to the study of Morita theory for derived categories, which were completely
solved by Rickard [22] through the notion of tilting complexes and by Keller [I9] through
dg-categories.

A further generalization of tilting modules to tilting modules of possibly infinite projec-
tive dimension was given by Wakamatsu [23]. Following [15], such tilting modules of pos-
sibly infinite projective dimension are called Wakamatsu-tilting modules. It is known that
Wakamatsu-tilting modules also induce some equivalences between certain subcategories of
module categories [24]. But Wakamatsu-tilting modules don’t induce derived equivalences
in general.

However, we will show in this paper that Wakamatsu-tilting modules make more sense
when we consider a more general category than the derived category of an algebra, namely,
the stable module category of the repetitive algebra of an algebras. To be compared, let us
call the later category the repetitive category of the algebra. The repetitive category is a
triangulated category. Moreover, by Happel’s result [16], for an artin algebra R, there is a
fully faithful triangle embedding of the bounded derived category of R into the repetitive
category of R. Moreover, this embedding is an equivalence if and only if the global dimension
of R is finite.

We say that two algebras are repetitive equivalent if there is an equivalence between their
repetitive categories. It should be noted that repetitive equivalences are more general than
derived equivalences. In fact, by results in [2, [7, 22] etc., if two algebras are derived equiv-
alent, then their repeptitive algebras are derived equivalent, and hence stably equivalent.
Thus derived equivalences always induce repetitive equivalences.

The following is our main theorem.

Main Theorem Let R be an artin algebra. If T is a good Wakamatsu-tilting R-module with
S = End(TR), i.e., bimodules sTr and rDTs represent a cotorsion pair counter equivalence
between a complete hereditary cotorsion piar (B, A) in modR and a complete hereditary
cotorsion piar (G,K) in modS, then R and S are repetitive equivalent. The equivalence

restricts to the equivalence between A and G.

We refer to subsection [3.2] for more details on good Wakamatsu-tilting modules. Note
that that examples of good Wakamatsu-tilting modules contain tilting modules of finite
projective dimension and cotilting modules of finite injective dimension.

Though a good Wakamatsu-tilting module induces a repetitive equivalence, unfortunately
we can’t say anything about whether or not the equivalence is a triangle equivalence now.

However, if a repetitive equivalence is a triangle equivalence, we have the following result.

Proposition Let R and S are artin algebras. Assume that there is a triangle equivalence
between their repetitive categories and that this equivalence restricts to an equivalence between
a covariantly finite coresolving subcategory A in modR and a contravariantly finite resolving

subcategory G in modR. Let T be the preimage in modR of S. Then T is a good Wakamatsu-



tilting R-module with S ~ End(T%).

The paper is organized as follows. After the introduction, we provide basic knowledge
on Wakamatsu-tilting modules and repetitive categories in Section 2. Then in Section 3
we introduce good Wakamatsu-tilting modules through cotorsion pair counter equivalences.
Some properties and characterizations of good Wakamatsu-tilting modules are presented.
Section 4 is devoted to the proof of the main theorem and the proposition in the introduc-
tion. Though the proof of the theorem is a little complicated, the main idea is inspired by
constructions in [16, Lemma 4.1 in Chapter 3] and [24] Section 1]. Finally, we provide some
examples in the last section. In particular, it is shown that every Wakamatsu-tilting module
over an algebra of finite representation type is a good Wakamatsu-tilting module and hence

induces a repetitive equivalence.

Conventions Throughout this paper, we always work over artin algebras and right modules
unless we claim otherewise. For an algebra R, we denote by modR the category of all finitely
generated R-modules, and by projR (resp., injR) the category of finitele generated projective
(resp., injective) R-modules. We denote the usual duality over an artin algebra R by D.

For two functors F : A — B and G : B — C, we use GF to denote their composition.
While we use f o g, or simply just fg, to denote the composition of two homomorphisms
f:A— Bandg: B — C.

Let F : A — B be a functor, we use KerF to denote the subcategory of A € A such
that F(A) = 0. Moreover, if F; : A — B, i € I, is a class of functors, we denote KerF; =
N;e; KerF. For instance, KerExt%l (T, —) is the subcategory of all M € modR such that
Ext% (T, M) = 0 for all i > 1.

We write the elements of direct sums as row vectors.

2 Wakamatsu-tilting modules and repetitive categories

2.1 Wakamatsu-tilting modules

Recall that an R-module T"is Wakamatsu-tilting [23] provided that
(1) EndsT ~ R, where S := EndgT and,
(2) Exth(T,T) = 0 = Exty(T,T) = 0 for all i > 0.
These two conditions are also equivalent to the following two conditions [23].
(1) Exty(T,T) = 0 for all i > 0 and,
(2) There is an exact sequence 0 — R — Ty — 11 — -+, where T; € addgT for all 1,
which stays exact after applying the functor Homg(—,T).



Note that if T is Wakamatsu-tilting and S = End(Ty), then ¢7" is a Wakamatsu-tilting
left S-module. In this case, we say that T' is a Wakamatsu-tilting S-R-bimodule. It is easy
to see that DT is a Wakamatsu-tilting R-S-bimodule in the mean time.

2.1.1 Auslander class and co-Auslander class

Let T be a Wakamatsu-tilting module with S = End(7%). There are the following two
interesting classes associated with Wakamatsu-tilting modules.

The Auslander class in mod R with respect to the Wakamatsu-tilting module T, denoted
by Xr, is defined as follows [3].

Xr := {M € modR)| there is an infinite exact sequence 0 — M oy, I
Ty 25 ... such that Imf; € KerExtz'(—,T) for each i > 0}.

Obviously, it hold that Xy C KerExt%l(—, T). Moreover, the two classes coincide with
each other provided that 7' is a cotilting R-module.

Dually, the co-Auslander class in mod R with respect to the Wakamatsu-tilting R-module
T, denoted by 17X, is defined as follows.

rX = {M € modR)| there is an infinite exact sequence - - - LN (LN RN N
M — 0 such that Tmf; € KerExt3' (T, —) for each i > 0}.

Similarly, we have that 7 X C KerExt}%1 (T, —) and they coincide with each other provided
that T is a tilting R-module.

The following result collects some properties about Auslander class and co-Auslander
class for a Wakamatsu-tilting module [3], 20, 24, 25].

Proposition Let T' be a Waksmatsu-tilting R-module with S = EndgT.

(1) The Auslander class Xr is a resolving subcategory, i.e., it contains all projective
R-modules and is closed under extensions, kernels of epimorphisms and direct sum-
mands.

(2) The co-Auslander class X is a coresolving subcategory, i.e., it contains all injective
R-modules and is closed under extensions, cokernels of monomorphisms and direct
summands.

(3) KerExt(Xr, —) = KerExtz' (Xr, —) C 7X.

(4) KerExtp(—, 7X) = KerExtz' (—, 7X) C .

(5) The functors Homg(T, —) and —®gT induce an equivalence between the co-Auslander
class 7 X in modR and the Auslander class Xpr in modS. The equivalence restricts to

an equivalence between the class KerExtz' (Xp, —) and the class KerExtg' (—, prX).

Proof. (1) and (2) follows from [3| Section 5], see also [20].
(3) and (4) follows from [25, Lemma 1.4 and Proposition 1.6].
(5) follows from [24, Proposition 2.14]. O



We remark that in case T" = R, the class Xy = A’y is just the class of all Gorenstein
projective R-modules. Dually, in case T' = DR, the class 1X = prd&’ is just the class of
all Gorenstein injective modules. We refer to [I3] for more on Gorenstein projective and

Gorenstein injective modules.

2.1.2 The following is a characterization of Auslander class and co-Auslander class, by [24]
Section 2] .

Lemma Let T be a Wakamatsu-tilting R-module with S = End(Tg). Assume X € modR

(1) X € 72X if and only if X € KerExt?’(T,—), Homp(T,X) € KerTord,(—,T) and
Hompg (T, X) ®s T ~ X canonically.

(2) X € Xr if and only if X € KerExt7’(—,T), Homg(X,T) € KerExt3’(—,T) and
Hompg(Hompg (X, T),T) ~ A canonically.

2.1.3 Useful isomorphisms
Let T be a Wakamatsu-tilting S-R-bimodule. Then we have the following isomorphisms
of bimodules.
SDSS >~ ST KRR DTS and RDRR >~ RDT Xg TR.
Given an adjoint pair (F, G) of functors, we denote by I' the natural adjoint isomorphism
I' : Hom(F(—), —) ~ Hom(—, G(—)).
Moreover, for a homomorphism f : F(X) — Y, we denote by I'(f) : X — G(Y") the image
of f under the isomorphism T
In particular, associated with a S-R-bimodule T', we have the following adjoint isomor-
phism
I'": Hompg(— ®s T, —) ~ Homg(—, Homg(T, —)).
We denote by 77 and €’ the unit and counit of this adjoint pair respectively, i.e.,
nk =TT (1xger) : X = Homp(T, X ®s T) and
Eg; = (FT)_1<1H0mR(T,Y)) . HOIIlR(T, Y) ®S T — Y
for X € mod$S and Y € modR respectively.

By the naturality of the isomorphism I'; for all homomorphisms f : X; — X5, g :
F(X5) — Y; and h: Y] — Y5, it holds that T'(F(f)ogoh) = f oT'(g) o G(h).

2.2 Reprtitive algebras and Repetitive categories

2.2.1 We recall some basic facts on repetitive algebras mainly from [16].

Let R be an artin algebra. The repetitive algebra R of R was first introduced in [18]),



which is defined to be the direct sum R = D,.c, RO, ., DR with the multiplication given
by

A(ana ©n) (Ons Vn)n = (Anbn, Gn1tn + ©pbn ).
The repetitive algebra R can be interpreted as the following infinite matrix algebra (without
the identity)

DR R
DR R

2.2.2 Denote by modR the category of finitely generated R-modules. Then modR is equiv-

alent to the following two equivalent categories.

(1) RC®(R) = {X = {X;,6°(X)}icz | Xi € modR such that almost all X; are 0 and
that 67 (X) : X; ®gr DR — X,_ satisfying (67, ,(X) ®g DR) 0 6;(X) = 0, for each
(2) RCY(R) := {X = {X;,68(X)}icz, | X; € modR such that almost all X; are 0 and
that 67'(X) : X; — Hompg(DR, X;_;) satisfying d;},(X) o Homg(DR, §; (X)) = 0,

for each i}.

We will freely use these equivalences. In particular, we often view X & modR as the
following form with almost terms X; =0

Sit1 9; i1
LR XGRS X A

and we call it a (bounded chain) repe-complex with the repe-difference . We denote by
RC(R) the category of all such repe-complexes. Thus, RC(R) = modR. Note that there is
an obvious automorphism [1] : RC(R) — RC(R) defined by (X[1]); = X;_1 for each i.

We say that a repe-complex X = {X;,0;} € RC(R) is trivial if each §; = 0. The full
subcategory of all trivial repe-complexes is denoted by RC"™(R). Note that there is a natural
forgetting functor from RC(R) to RC™(R) by forgetting the repe-difference.

Let C be a class of R-modules, we denote by RC(C) the class of repe-complexes with
terms in C. The notation RC"(C) is defined similarly.

2.2.3 As shown in [16], Risa selfinjective algebra and the category RC(R)(= mod}Ai) is a
Frobenius category, where the projective (and also injective) objects are of the form

0it1 5; Gi—1
B peL b P el W

Y

/
where P; € projR, I; € injR and §; = (8 %) such that ¢! : P, g DR — I;_; is an

isomorphism (considered in RC¥(R)), or equivalently, &/ : P, — Homg(DR,I;_;) is an
isomorphism (considered in RC™(R)). Thus its stable category RC(R) is a triangulated



category. To compare with the derived category of an algebra, we will call it the repetitive
category of modR (or simply, of R).

It was shown in [16] that there is a fully faithful triangle embedding from the derived cat-
egory D’(modR) to the repetitive category RC(R). Moreover, there is a triangle equivalence
between D°(modR) and RC(R) if and only if R has finite global dimension.

For basic knowledge on triangulated categories, derived categories and the tilting theory,

we refer to [16].

3 Cotorsion pairs and good Wakamatusu-tilting modules

3.1 Cotorsion pair counter equivalences

A pair of subcategories (B,.A) in modR is called a cotorsion pair, if B = KerExtx(—, A)
and A = KerExty(B,—). A cotorsion pair (B,.A) is called hereditary provided that B
is resolving, or equivalently, A is coresolving. Moreover, a cotorsion pair (B,.4) is called
complete provided that, for each X € modR, there exist exact sequences 0 - X — A —
B—0and0— A - B — X — 0 for some A, A" € A and B,B’ € B. We refer to the
book [14] for the general results on cotorsion pairs.

Let (B,.A) be a cotorsion pair in modR and (G, ) be a cotorsion pair in modS. Similarly
to torsion theory counter equivalences studied in [9, [I1], we say that there is a cotorsion pair
counter equivalence between (B,.A) and (G, K) provided that there are an equivalence H :
A~ G: T and an equivalence H : K — B : T’. Moreover, we say that two bimodules sVz
and rV{ represent the cotorsion pair counter equivalence if H = Homg(V,—), T = —®s V
and H = Homg(V', —), T = — @z V"

There are close relations between Wakamatsu-tilting modules and cotorsion pairs, as

shown in the following proposition.

Proposition Let T' be a Waksmatsu-tilting R-module with S = End(Tg).
(1) Both pairs (KerExty(—, 7&), 7X) and (Xp, KerExtp(Xr, —)) are hereditary cotorsion
PaITs.
(2) The bimodules sTgr and rDTs represent a cotorsion pair counter equivalence be-
tween the cotorsion pair (KerExtp(—,7X),7&X) in modR and the cotorsion pair
(Xpr, KerExtg(Xpr, —)) in modS.
(3) The bimodules RDTs and sTg represent a cotorsion pair counter equivalence be-

tween the cotorsion pair (KerExtg(—, prX), pr&) in modS and the cotorsion pair
(Xr, KerExt(Xr, —)) in modR.

Proof. (1) follows from [20, Proposition 3.1] and Propsition 2.1.1]
(2) follows from Propositon 21,11 (5).
(3) is obtained from (2) by replacing s7x with gDT5s. O



3.2 Good Wakamatsu-tilting modules

3.2.1 In general case, the two cotorsion pairs in Proposition B (1) are not complete. For
instance, consider the case T'= R. Then X is the class of all Gorensten projective modules.
It is well known that this class is not a precovering class in general, see for instance [26].
Thus, the cotorsion pair (X, KerExtj(Xg, —)) cannot be complete. Dually, in case T = DR,
the cotorsion pair (KerExty(—, prX), prX) is not complete in general.

However, the other cotorsion pair of the two cotorsion pairs in Proposition 3.1 (1) for the

above examples is complete respectively. This leads to the following general definition.

Definition A Wakamatsu-tilting bimodule sTr is said to be good if the bimodules sTr and
rDTs represent a cotorsion pair counter equivalence between a compete hereditary cotorsion
pair (B, A) in modR and a compete hereditary cotorsion pair (G, K) in modS. Furthermore,
an R-module T 1s said to be a good Wakamatsu-tilting module if sTr is a good Wakamatsu-
tilting bimodule with S = End(Tg).

For example, R and DR are good Wakamatsu-tilting modules.

3.2.2 By the definition, we have the following property about good Wakamatsu-tilting

bimodules.

Proposition Let Ty be a good Waksmatsu-tilting bimodule. Assume that (B,.A) is a com-
pete hereditary cotorsion pair in modR and (G, K) is a compete hereditary cotorsion
pair in modS such that the bimodules sTr and rDTs represent a cotorsion pair
counter equivalence between them. Then

(1) There is an equivalence
Hompg(T, —) : A —Z G = ®sT
and an equivalence
Homg (DT, —) : K = B . — Qg DT.
(2) grDTjs is also a good Waksmatsu-tilting bimodule.
(3) BCAXr, A X and G C Xpr, K C prX.
(4) addgT = BN A and addsDT = G K.

Proof. (1) follows from the definition of good Wakamatsu-tilting bimodules.

(2) Replacing the Waksmatsu-tilting bimodule §7r with the Wakamatsu-tilting bimodule
rDTs and noting that DDT = T, one can obtain (2) directly.

(3) Firstly, we show that addgT C B() A and addgDT C G K.

Note that all the involved subcategories in (1) are closed under finite direct sums and
direct summands. Since G is resolving, we have that S € G. By the first equivalence in
(1), we obtain that 7' = S ®s T" € A. It follows that addgT C A. Dually, since K is

coresolving, we have that DS € K. It follows from the second equivalence in (1) that



T = Homg(S,T)) = Homg(DT, DS) € B. Hence, addgT C B too. Thus, we obtain that
addgT C B[).A. Dually, one also has addsDT C G K.

Clearly, B = KerExtg(—, A) = KerExtz'(—, A) C KerExtg'(—, T) follows from addzT C
B A and the fact that (B,.A) is a complete and hereditary cotorsion pair. Take any
B € B, then B ®r DT € K. Take an exact sequence 0 - B ®g DT — I — Y — 0 with
I € injS = addgDS. Since K is coresolving, we have that I,Y € K too. Applying the
functor Homg (DT, —), we obtain an induced exact sequence 0 — Homg (DT, B ®g DT') —
Homg(DT, 1) — Homg(DT,Y) — 0, since K = KerExtg(G, —) C KerExt(DT,—) by
the above argument. Note that B ~ Homg(DT, B ®g DT), Homg(DT,I) € addgT and
Homg(DT,Y) € B, so one can easily see that B € Xp. Thus B C Xr. By the equivalence in
Proposition B.1] (3), we also obtain that K C prX.

Now consider the good Wakamatsu-tilting module gk DTs and apply the above result, we
can obtain that G € Xpr and that A € 7 X.

(4) If X € B[ A, then X € B. Following from the proof of (3), we obtain that there is
an exact sequence 0 = X — Tx — X' — 0 with Tx € addgT and X’ € B. Since X € A too,
we have that Ext},(X’, X) = 0. It follows that the exact sequence splits. Hence X € addgT.
Together with the first claim in the proof of (3), we obtain that addgT = B[).A. Dually,
we also have that adds DT = G K. O

3.2.3 Recall that a subcategory A € modR is covariantly finite (or, a preenveloping calss) if
for any X € modR, there is an object Ax € A and a homomorphism u, : X — Ay such that
Hompg(u, , A) is surjective for any object A € A, see for instance [3]. Dually, a subcategory
B € modR is contravariantly finite (or, a precovering calss) if for any X € modR, there is
an object Bx € A and a homomorphism vy : By — X such that Homg (B, vy) is surjective
for any object B € B.

Let A be a subcategory of modR. An R-module T is said to be Ext-projective if T' €
AN KerExty(—,.A). Moreover, it is said to be an Ext-projective generator if, for any A € A,
there exists an exact sequence 0 — A" — T4 — A — 0 with Ty € addgT and A’ € A.
Dually, an R-module T is said to be an Ext-injective cogenerator if T € A (| KerExty (A, —)
and that, for any A € A, there exists an exact sequence 0 —- A — Ty — A’ — 0 with
Ty € addgT and A’ € A.

Lemma Let A be a subcategory closed under extensions and direct summands.
(1) Assume that A has an Ext-projective generator T. If0 — X —Y — Z — 0 is an
exact sequence which stays exact after the functor Homg(T, —), where Y, Z € A, then
X € A too.
(2) Assume that A has an Ext-injective cogenerator T. If0 — X — Y — Z — 0 is
an exact sequence which stays exact after the functor Homg(—,T), where X, Y € A,
then Z € A too.



Proof. (1) By the assumptions, we can construct the following commutative diagram, where
T; € addgT and Z' € A.

0
0 X xar, 27,0

| (M :

0 X 7 Y ——7 0

0 0
Since A is closed under extensions and direct summands, we have that X € A from the
middle column.
(2) Dually. O

3.2.4 Lemma Let T be a Wakamatsu-tilting R-module with S = End(Tg). Assume that
Homg(T,—): A —Z G: — ®g T define an equivalence. Then the following are equiv-
alent.

(1) A is coresolving and T is an Ext-projective generator in A.

(2) G is resolving and DT is an Ext-injective cogenerator in G.

Proof. (1) = (2) The condition that 7" is an Ext-projective generator in A says that T €
A C KerExt (T, —) and that every A € A admits an exact sequence 0 — A’ — Ty — A — 0
with T4 € addgT and A’ € A. This implies that A C KerExt%l(T, —), since A is coresolving.
In particular, A C 7X.

Note that, for any X € A, there is an exact sequence 0 - X — I — X' — 0 with
I' ¢ injR C A and X' € A. Applying the functor Homg(7, —), we have an exact sequence
0 — Hompg(7T, X) — Homg(T,I) — Hompg(T, X’) — 0. Since Hompg(7,I) € adds DT and
Extg(Hompg(T, X), DT) ~ Extg(Homg(T, X), Homg(T, DR)) = 0, we obtain that DT is an
Ext-injective cogenerator in Homg (7T, A) = G.

It is clear that G is closed under direct summands. Assume now there is an exact sequence
G): 0= X =Y % Z = 0with Z € G, then Z € Homg(T, A) C KerTor;(—,T).
Applying the functor — ®g 7T, we obtain an induce exact sequence (b ®@s7T): 0 > X @sT —
Y @ T2 Z@sT — 0.

Assume first X € G too, then X ®g T € A. It follows that Y ®¢ T € A too, since A
is closed under extensions. Note now there is an exact sequence 0 — Hompg(T, X ®¢T) —
Hompg(T,Y ®s T) — Homg(T, Z ®sT) — 0, so we have that Homg(7T,Y ®g T) ~ Y since
Hompg(T, X ®s T) ~ X and Homg(7,Z ®sT) ~ Z. Thus Y € Homg(T,A) = G. This
shows that G is closed under extensions.

Assume now Y € G, then Homg(T, g®sT') ~ g. In particular, we have that Homg (T, X ®g



T) ~ X and the homomorphism Hompg(7T, g ®g T) is surjective. It follows that the exact
sequence (b ®g T') stays exact after the functor Homg(7T, —). By Lemma B.2.3] we obtain
that X ®¢ T € A. Hence X € Hompg(T, A) = G. This shows that G is closed under kernels
of epimorphisms.

(2) Dually. O

3.2.5 Proposition Let sTr be a Wakamatsu-tilting module. Assume that (B, A) is a
hereditary cotorsion pair in modR and that T is an Ezt-projective gemerator in A, then
(Hompg(T, A), B @r DT) is a hereditary cotorsion pair in modS. In particular, the bi-

modules sTr and rRDTs represent a cotorsion pair counter equivalence between (B, A) and
(Homg(T,A), B®g DT) in the case.

Proof. Since T is an Ext-projective generator in A, we see that T € KerExtp(—, A) (A =
B().A and that, for any A € A, there is an exact sequence 0 - A" — T4 — A — 0 with
T4 € addgT and A" € A. In particular, for any X € A()B, there is an exact sequence
0= X' = Tx - X — 0 with Tx € addgT and X' € A, which is clearly split. Hence,
X € addgrT. It follows that addgT = B[).A. Moreover, by an argument similar to the
one used in the proof of [20, Proposition 2.13(b)], we have that 7" is also an Ext-injective
cogenerator in B. Note that these imply that A C +X and that B C X7.

By Lemma B24] we see that Homg(T', A) is resolving and that B ®g DT is coresolving.
It is also clear that the bimodules 7Tk and r DTy represent a counter equivalence between
two pairs (B,.A) and (Homg(7T,A), B®g DT), by assumptions. So, it just remains to show
that (Hompg(7T,.A), B®&g DT) is a cotorsion pair.

We divide the remained proof into three steps.
Step 1 Extly(Homg(T, A), B®gr DT) = 0, for any A € A and any B € B and for any i > 0.

Note that there is an isomorphism DHomg(S, B ®s DT) ~ Hompg(B, S ®s T') and that
it induces an isomorphism DHomg(S;, B®g DT') ~ Homg(B, S; ®sT), for any S; € addsS.

Now take A € A, since T is an Ext-projective generator, there is a long exact sequence

=T, = =T Ty —-A—0 (1)
with each T; € addgT and each image in A. Since B € KerExtp(—, A), we have an induced
exact sequence Hompg(B, t):
-+ —= Homp(B,T,,) = -+ = Hompg(B,T1) — Hompg(B,Ty) — Hompg(B, A) — 0.

On the other hand, by applying the functor DHomg(Hompg (T, —), B ®g DT), we have a

complex DHomg(Homg(T, 1), B ®g DT):

.-+ — DHomg(Homg(T,T,), B®r DT) — --- - DHomg(Homg(T,T1), B ®g DT)
— DHomg(Hompg(T,Ty), B ®r DT') - DHomg(Hompg(T, A), B®gr DT) — 0.
Since Hompg(T, T) is exact, one sees that the functor DHomg(Homg(7T, —), B @ DT) is
right exact. By the above isomorphism, we obtain the following isomorphisms of complexes
DHomg(Homg(T, 1), B ®g DT) ~ Hompg (B, Homg(T, 1) ®s T') ~ Hompg(B, T).



But the later is exact, so we obtain that

Ext(Hompg(T, A), B®pr DT) ~ H(Homg(Hompg(T, 1), B ®x DT))
~ DH!(DHomg(Hompg(T, 1), B ®r DT)) ~ DHomg(B, 1) = 0.
Thus, step 1 is established. In particular, we obtain that Hompg (7, A) C KerExts(—, BRg
DT) and that Homg(T, A) C KerExtg(—, B ®g DT), due to the arbitrarity of A € A and
B e B.

Step 2 KerExtg(—, B®@p DT) C Homg(T, A).
Take any Y € KerExtg(—,B®z DT) and a projective resolution of Y

RN Ciee O SN NN N SR LN SRR (N} (8)
Note that DT = R®r DT € B®pgr DT and that B ®gr DT is coresolving, so we obtain
that
Y € KerExtg(—,B®p DT) = KerExt3?(—, Bo@g DT) C KerExtz%(—, DT) = KerTor? o(—, T).
Then we have an induced exact sequence:
= S, @5 T == S @5 T = Sy@s T =Y ®5T — 0. (t®sT)
For any B € B, applying the left exact functor Homg(B, —), we obtain a complex
Hompg (B, ®s T):

-+ = Homp(B,S, ®sT) = --+ = Hompg(B, S1 ®s T)
— Hompg(B, So ®s T) — Hompg(B,Y ®s T) — 0.
Applying the right exact functor DHomg(—, B ®gs DT') to the sequence (f), we obtain a
complex DHomg(8, B ®¢ DT):

-+« —= DHomg(S,,, B®gs DT) — --- — DHomg(S1, B®g DT)
— DHomg(So, B ®s DT) — DHomg(Y, B ®s DT) — 0.
By the isomorphism in Step 1 again, we have isomorphisms of complexes
DHomg (4, B®g DT') ~ Hompg(B,f ®s T).
It follows that, for any ¢ > 2,

Extp(B,Y; ®s T) ~ H~ (Homg (B, t @5 T))
~ H~!(DHomg(t, B ®s DT)) = DExt%; (Y, B®s T) = 0,
where Y; = Im f;, since B € KerExtp(—,T) and Homp(B, —) is left right exact. This shows
that Y; ®s T € KerExtp(B, —) = A, foralli > 2. As S®gT ~ T € A and A is coresolving,
we obtain that Y ®¢7T € A too. Then we have an induced exact sequence Hompg(7, §®sT'):

-+ = Homp(T,S, ®sT) = --- = Hompg(T, 51 ®s T)
— Hompg(T, So ®s T) — Homp(T,Y ®s T) — 0.
It follows that Y ~ Hompg(T,Y ®sT) € Homg(T, A), since S; ~ Homg(T, S; ®5 T') for each
i. This shows that KerExtg(—,B®z DT) C Homp(T, A). Together with Step 1, we obtain
that KerExtg(—, B®g DT) = Hompg(T, A).

Step 3 KerExtg(Homg(T, A),—) C By DT.



Note that there is an isomorphism
Homg(Homg(T, A), DS) ~ DHomg(Homg(DT, DS), A),
for any A € modR and that it induces an isomorphism
Homg(Hompg(T, A), I;) ~ DHomg(Homg(DT), I;), A),
for any I; € addDS.

Now take any X € KerExtg(Hompg(T, A), —) and consider an injective resolution of X:

0—-X 2 2 2. 2y I (h)
Since DT ~ Hompg(T, DR) € Hompg(T,.A) and Hompg(T', A) is resolving, we obtain that
X € KerExtg(Homp(T, A), —) = KerExt3?(Homp(T, A), —) C KerExt3?(DT, ).
Thus, for any A € A, applying the functor Homg(Hompg(7, A), —), we have an induce
exact complex Homg(Homg(T, A), 5):

0 — Homg(Hompg (T, A), X)—Homg(Hompg(T, A), Iy)
—Homg(Hompg(T, A),I,)— - - - —Homg(Hompg (T, A), I,,)— - - -
On the other hand, we also have the following induced complex DHompg(Homg (DT, f), A),
by applying the functor DHomg(Homg (DT, —), A):

0 — DHompg(Homg (DT, X), A)— DHompg (Homg (DT, Iy), A)
—DHompg(Homg (DT, 1), A)— - - - —DHompg (Homg (DT, I,,), A)— - - -
By the above mentioned isomorphism (%) and the fact that Homg(DT,§) is exact, we

have that, for any ¢ > 1,

Exty (Homg (DT, X;42), A) ~ H!(Homz(Homg(DT, k), A))

~ DH!(DHompg(Homg (DT, t), A)) ~ DH!(Homg(Homg(T, A),5)) = 0,
where X; = Img;, since A € KerExtp(—,T) and Hompg(—, A) is left exact. It follows that
Homg(DT, X;12) € KerExtp(—, A) = B for any ¢ > 1. Since B is resolving, we also obtain
each Homg (DT, X;) € B for for each 0 < i < 2, where X, := X. Then we have an induced
exact sequence Homg (DT, 1) @ DT, since B C KerExth(—,T) = KerTor?(—, DT):

0 — Homg (DT, X) ®s DT — Homg(DT, Iy) ®s DT
— Homg (DT, I) ®s DT — --- = Homg (DT, I,,) ®s DT — - - -.

It follows that X ~ Homg (DT, X) ®¢ DT € B®g DT, since I; ~ Homg(DT, I;) ®¢ DT for
each i. This shows that KerExtg(Hompg(T, A), —) C B ®g DT. Together with Step 1, we
obtain that KerExtg(Homp(T,A), —) = B®g DT.

Altogether, we obtain that (Hompg (7T, .A), B®g DT) is a hereditary cotorsion pair. O

3.2.6 Corollary Let T' be a Wakamatsu-tilting R-module with S = End(Tg). Assume
that the functor Hompg(T, —) gives an equivalence between a covariantly finite coresolving
subcategory A in modR and a contravariantly finite resolving subcategory G in modS. If T

is an Ext-projective generator in A, then T is a good Wakamatsu-tilting module.

Proof. Since G is a contravariantly finite resolving subcategory in modsS, there is a cotorsion

pair (G, KerExty(G, —)) in modS, by [3, Proposition 1.10]. Dually, there is a cotorsion pair



(KerExt},(—,A), A) in modR, since A is a covariantly finite coresolving subcategory A in
modR. Note that both cotrosion pairs are complete and hereditary. Since T is an Ext-
projective generator in A, by Proposition [3.2.5] the bimodules s7x and rDTs represent a
cotorsion pair counter equivalence between the above two cotorsion pairs. Hence T is a good

Wakamatsu-tilting module by the definition. O
4 The proof of the main results

The whole section will be devoted to the proof of the two results mentioned in the
introduction.

Let R be an artin algebra and T" be a good Wakamatsu-tilting module with S = End(7%).
Then Tk be a good Wakamatsu-tilting bimodule. Assume that (B, .4) is a compete heredi-
tary cotorsion pair in modR and (G, K) is a compete hereditary cotorsion pair in modS such
that the bimodules ¢Tk and rDTs represent a cotorsion pair counter equivalence between
these two cotorsion pairs.

The sketch of our proof on the main theorem is as follows.

Firstly we construct a functor Ly : RC™(R) — RC(S) and a functor —®DT : RC(R) —

RC(S). Then we give a natural homomorphism
l})/{ : HomRCn(R) (X, Y) — Homﬁc(s) (X@DT, LT(Y))
which is functional in both variables. After this, associated with an object X € RC(R),

we use the condition that (B,.4) is a compete cotorsion pair in modR to obtain an object
Ax € RC"(A) and establish a homomorphism u, € Homgeu(g) (X, Ax). We then show that
the assignment that setting X —— Cok(I/(u, )) induces our desired functor St : RC(R) —
RC(S). We use the dual method to construct another desired functor Qpr : RC(S) —

RC(R). Then we prove that there are natural isomorphisms QprSy =~ 1ger) and SpQpr ~

Lre(r)-

4.1 From RC(R) to RC(S): the functor Sr
4.1.1 The functor Ly : RC™(R) — RC(S)

Let X = {X;} € RC"(R). We define Ly(X) € RC(S) as follows.
({1) The underlying module Ly (X); = Homg(T, X;_1) ® X; ®g DT and,
(12) The structure map 67 (Lp(X)) : Ly(X); — Lp(X),_; is given by (8 651'), where

01, is the composition:

~ €%  ®rDT
Hompa(T, X;—1) ®s DS =5 Homp(T, X;1) ®s T@r DT " X;_1 @g DT\

From the functor property of Homg(7, —) and — @ DT, one can easily see that Ly is a



functor from RC"(R) to RC(S).

Remark (1) If X € RC"(addgrT), i.e., X = {X;} with each X; € addzT, then Homg(T, X; ) €
addgS and dr, defined above is an isomorphism for each i. It follows that Ly(X) is a pro-
jective object in RC(S) in the case.

(2) In particular, in case T = R, we obtain the functor Ly : RC"(R) — RC(R) which
specially send objects in RC"(addgR) to a projective object in RC(R).

4.1.2 The functor —@DT : RC(R) — RC(S)

Let Y = {Y;,02(Y)} € RC(R). We define Y®DT € RC(S) by setting

(t1) the underlying module is (Y®DT); = Y; ®z DT and,
(#2) the structure map 62 (Y ®DT) is given by the composition
®
Y, 9r DT @5 DS =5 Y @5 DT ®s T ®p DT =+ Y; 05 DRor DT 57Ty, | @ DT

From the functor property of —®pz DT, one can see that —® DT is a functor from RC(R)
to RC(S).

4.1.3  The homomorphism Iy : Hompew g (X,Y) = Homge(s)(X@DT, Lp(Y))

Recall that we have a forgotting functor from RC(R) to RC"(R). For any X € RC(R)
and Y € RC"(R), there is a canonical homomorphism
I§ - Hompew z) (X, Y) = Hompe(s)(X@DT, Lyp(Y))
which is functional in both variables, defined by
Fru={w} = f={fi} with fi = (=0, w ®gDT),
where 0, is given by the composition

T
X; 9 DT 2% Homp(T, X; ®p DT ®5 T) = Homp (T, X; ®r DR)

Hompg(T,0x;) Homp (T,ui—1)
- =

HOIIlR(T’7 Xifl) HOmR(T,}/ifl).

Remark Using the fact gkDRr ~ g(DT ®g T)r and the adjoint isomorphism

I'T : Homg(X; ®g DR, Y;_1) ~ Homg(X; @ DT, Homg(T,Y; 1)),
one can easily check that 6, is just the image of the natural homomorphism &5 (X) o u;_4
under T ie., 0, = TT(62(X) ou;_q).

It is easy to see that, for any commutative diagram in RC(R)
X =Y
-
X/ L’ Y/

there is an induced commutative diagram in RC(S)



X&DT o 10(y)

oo

X'&DT Ly,

4.1.4 A monomorphism u, : X — Ax with Ax € RC"(A), for X € RC(R).

Let X = {X;} € RC(R). Since (B,.A) is a complete cotorsion pair in modR, there
are exact sequences 0 — X; & Ax, — Bx, — 0 with Ax, € A and By, € B, for
each i. This gives an exact sequence 0 — X —% Ay S Bx — 0 in RC™(R) with
Ax = {Ax,} € RC"(A) and By = {Bx,} € RC"(B).

Now let Y = {Y;} € RC(R) and h = {h;} € Homger)(X,Y). Then we have an exact
sequence 0 — Y —X Ay ™ By - 0in RCY™(R) with Ay = {Ay.} € RC"(A) and
By = {By,} € RC"(B), as above. Note that B C KerExt},(—,.A), it is easy to see that there
is a homomorphism h4 € Homgeu () (Ax, Ay) and further hp € Homgeu gy (Bx, By), such

that the following diagram in RC"(R) is commutative with exact rows.

0 XAy 5 By 0

h lhA \LhB
™

0 Y — Ay - By 0

4.1.5 The cokernel Cok(l(u,))

Applying the functor — ®z DT to the exact sequences 0 — X; BN x, & Bx, =+ 0in
the above, we obtain an induced exact sequences

uXi ®RDT

0——= X, ®xr DT Ax, ® DT ——= By, @ DT —0),

since By, € B C KerExtp(—,T) = KerTor(—, DT) for each 4. It follows that, by applying
the homomorphism [ in to the homomorphism w,, in .14 there is an induced exact

sequence

l(ux)

0—= X®DT Lr(Ax) —= = Cok(l, ) —=0.

Remark From the definition of Cok(I(u, )), one see that, for each i, Cok(I(u,)); is given by
the pushout

0.
Xz' KRR DT —ll> HOmR(T, AXz‘fl)

uXi®RDTl/ l

AXi ®R DT Cok(l(ux))l

Moreover, for Y € RC(R) and h € Homge(r) (X, Y), by applying the homomorphism / to



the left square in the commutation diagram in [4.1.4] we obtain the following commutative
diagram in RC(S), for some hcok.

l(“x)

0—> X&DT Lr(Ay) X Cok(I(uy)) —=0
h®DTL Lr(ha) l hcok l
~ I(u ™
0——Y&DT — ) 1, (Ay) —— %+ Cok(I(u,)) —= 0

4.1.6 The assignment St : RC(R) — RC(S) by setting X —— Cok(l(u,)) is a functor.

By 415 it is sufficient to prove that St (h) := hcox = 0 in RC(S) provided h = 0. We
divide the proof into two steps.

Step 1: Consider each piece in the commutative diagram in T4 If h = {h;} = 0,
then h; = 0 for each i. Thus, we have that Uy ha, = 0 and consequently, ha, = 7Ty g
for some ¢; : Bx, — Ay,. Since Bx, € B C X for each i, there are exact sequences
0 = By, —% Tp,, — B/ — 0 with T, € addgl and B/ € B C KerExth(—,A). It
follows that there exists t; € HomR(TBXi,AyZ. ) such that g; = b;t;. Altogether we obtain the
following commutative diagram

7er_
AXi — By,

o] A

Ayi <T TBXZ- .
This induces the following commutative diagram in RC"(R), where Ty, = {T, Bx, -

AX&)BX

w7

Ay <T TBX~
Set k := m,b. Then Lr(ha) = Ly(kt) = Ly(k)Lr(2).

Step 2: Consider the commutative diagram in Since u, m, = 0, we see that
l(u, )Lr(k) = 0 by the definitions. Hence there is some 6 € Hompc(s)(Coker(I(u,)), Lr(Ay))
such that Ly(k) = m,6. Consequently, we have that Ly(ha) = Lp(k)L(t) = m,0Lr(1).
Now we obtain that 7, hcoker = Lr(ha)m, = m,0Lp(t)m, . Since m, is epic, we get that

hcok = Lr(ha)m, = OL7(t)m,. That is, we have the following commutative diagram.

Cok(I(u, ) —=Lr(Tp,)

hCokl \LLT )

Cok(i(u,)) —— L(Ay)

™

Note that Ly(Tp, ) is a projective-injective object in RC(S), so hcox = 0 in RC(S).



4.1.7 The functor Sy : RC(R) — RC(S)

We will show that the functor St factors through RC(R).
To see this, it is enough to show that S7(X) is a projective object in RC(S) whenever
X is a projective object in RC(R).
W.lo.g., we assume that X = {X;} is an indecomposable projective object in RC(R).
Thus, X has the form
s 0~ Homp(DR,I) ~ I ~ 0 ~ -

where [ is on the (k-1)-th position, for some k.
Note that X, = Homg(DR,I) € addgR C Band X;_; = I € addg(DR) C A, so we can
choose Ay as the form
s 0 Ty o T s 0 o~ e

where Ay, = T} € addgT. And we have that the homomorphism u, : X — Ax is of the

form
X : cvv o~ 0 ~ 0 ~ Hompg(DR,I) ~ I ~ 0 ~ ---
buy buy 11
Ax : e s 0 v 0 T L AR | B

Then, from the structure of [(u, ), we can see that [(u, ) is of the form

XQDT: o o~ 0 ~ 0 ~ Homp(DR,I) @ g DT~ I®@r DT ~ 0 ~ ---
Ll(ux) 4 L (=01,,ur ®@p T) 11
(0,6, )
Lr(Ax): -+ ~» 0 ~ Hompg(T,Ty) A Homp(T, 1) ® Ty ®g DT ~ IQRDT ~ 0 ~ -

where 6;, is defined as in and 0r,,, is defined as in BTl repectively. One checks that
both homomorphisms 6;, and dr,,, are in fact isomorphisms. So we obtain that Sp(X) =
Coker(Il(u, )) is of the form

X
-~ 0 ~ Hompg(T,Ty) 6;231 T Qr DT ~+ 0 ~» 0 ~» ---
where ¢, is the induced isomorphism: Homp(T,T},)®sDS — T, @ DT. Since T}, @ g DT €
addg(T®r DT) = addg(DS), we see that T, @z DT is an injective S-module and that St (X)
is a projective object in RC(S).
It follows that the functor Sy factors through RC(R). We still denote by Sy the induced
functor from RC(R) to RC(S).

4.2 From RC to RC(R): The functor Qpr
The functor Qr is indeed defined in a way dual to the construction of Sy.

4.2.1 The functor Rpr : RCY(S) — RC(R)
Dually to E1.1] for any X = {X;} € RC"(S), we define Rpr(X) € RC(R) as follows.
(r1) the underlying module is Rpr(X); = Homg (DT, X;) & X;11 ®s T and,
(r2) the structure map 65 (Rpr) is given by (8 5?), where 0g, is the composition



Homs(DT n%.)

Homg (DT, X;) " Homg(DT,Homg(T, X; ®s T))
~ Homp(DT ®5 T, X; ®5 T)
~ Homg(DR, X; @5 T).

It is easy to see that Rpr is a functor.

Remark (1) If X € RC"(addsDT), ie., X = {X;} with each X; € addgDT, then
Homg (DT, X;) € addgrR and dp, defined above is an isomorphism for each i. It follows
that Rpr(X) is a projective object in RC(R) in the case.

(2) In particular, in case T = S, we obtain the functor Rpg : RC*(S) — RC(S) which
specially send objects in RC"(addsDS) to a projective object in RC(S) .

4.2.2 The functor Hom(DT, —) : RC(S) — RC(R)
Let Y = (Y;,08(Y)) € RC(S). We definie Homg(DT,Y) € RC(R) by setting
(h1) the underlying module is Homg(DT,Y); = Homg(DT,Y;) and,
(h2) the structure map 6%(Homg(DT,Y')) is given by the composition:
Homs (DT, 68(Y)) "™ 217 Homg (DT, Homs(DS, Yi_1)) ~ Homp (DR, Homg(DT, Y;_1))).

Then from the functor property of Homg(DT, —), one can see that Hom(DT,—) is a
functor from RC(S) to RC(R).

4.2.3  The homomorphism 15 : Homgew(g)(X,Y) = Homge(r) (Rpr(X), Hom(DT,Y))
Dually to the homomorphism [, for any X € RC"(S) and Y € RC(S), we have a

canonical homomorphism
7« Hompeu(g)(X,Y") = Homge(r) (Rpr(X), Hom(DT,Y))

which is functional in both variables, defined by
. Homg (DT, u;
W u={u} > f={f} with f, = ( 7 >),
where G, : Xi11 ®s T — Homg(DT,Y;) equals to (ui1 ®sT) 0 (6711 (Y) @5 T) © €1 (17

i.e., the composition

i §Y  ®sT
X1 @s T 22Ty 0s T Homg(DS,Y) ®s T

~ Homg (T ®r DT,Y;) ®s T

Hon S(DT Y;)

~ Hompg(7T, Homgs(DT,Y;)) ®s T Homg(DT,Y;)

Remark Using the fact ¢DSs ~ T ®g DTs and the adjoint isomorphism

I'PT : Homg(X; 41 ®s DS, Y;) ~ Homg(X; 41 ®s T, Homg(DT,Y;)),
one can easily check that (,, is the image of the natural homomorphism (u;+1®gDS)od5 ,(Y)
under I'P7 ie., ¢, = TPT((uj41 ®s DS) 0 67, (Y)).

4.2.4 An epimorphism vy : Gy — Y with Gy € RC™(G), for Y € RC(S).



Since (G, K) is a complete hereditary cotorsion pair in modS. It follows that, for any
Y = {V;} € RC(S5), there is an exact sequence 0 — Ky kU—Y> Gy 5 Y — 0 with Ky €
RC™(K) and Gy € RC™(G).

Moreover, for any h € Homge(s)(X,Y), there is an induced commutative diagram as
follows, since Ext§(G, K) = 0.

4.2.5 The kernel Ker(r(vy))

Applying the functor Homg (DT, —) to the bottom exact sequence in the above diagram,

we obtain an induced exact sequence
0 — Homg(DT, Ky) — Homg(DT, Gy) — Homg(DT,Y) — 0,

since Ky, € K C KerExtls(DT ,—) for each i. Thus, after applying the homomorphism r in
423 to the homomorphism vy in 2.4 we obtain the following exact sequence in RC(R).

0 — Ker(r(vy)) 25 Rpr(Gy) "% Hom(DT,Y) — 0

Moreover, for any h € Homge(s)(X,Y'), by applying the homomorphism r to the right
part of the commutative diagram in 2.4, we obtain the following commutative diagram in
RC(R), for some hie,.

Ar Ty ~
0—>Kel"(7”(’0)()) a RDT(GX) a HOIIl(DT,X) —0
hKeri RDT(ha)l ﬁom(DT,h)l
Ar Ty ~
0——s Ker(r(vy)) L RDT(Gy) L HOIIl(DT, Y) —0

4.2.6 The assignment Qpr : RC(S) — RC(R) by setting Y — Ker(r(vy)) is a functor.

By A.2.5] it is sufficient to prove that Qpr(h) := hge = 0 in RC(R) provided h = 0.
This is also divided into two steps.

Step 1: Consider each piece in the commutative diagram in £24 If h = {h;} = 0,
then h; = 0 for each i. Thus, we have that hg,vy, = 0 and consequently, hg, = giky,,
for some ¢; : Gx, — Ky,. Since Ky, € K C ppX for all 7, there are exact sequences
0= Ky, = DTk, by Ky, — 0 with DTk, € addsDT and Ky, € K C KerExtg(G, —). It
follows that there exists ¢; € Hompg(Gy;, DT KXi) such that g; = t;b;. Altogether we obtain

the following commutative diagram.



Gx, —> DTk,

o N

Gy, ~— Ky,
kuy_
K3

It follows that there is a commutative diagram in RC"(S), where DTy, = {DTk, },
Gx —> DTy,

| N

Gy ~ Ky.
vy

Set 8 := bky,,. Then Rpr(ha) = Rpr(tf) = Rpr(t)Ropr(5).

Step 2. Consider the commutative diagram in Since ky, vy, = 0, we see that
Rpr(B)r(vy) = 0 by the definitions. Hence there is some 6 € Homge(r) (Rpr(Gx ), Ker(r(vy)))
such that Rpr(8) = 6\,,. Consequently, we have that Rpr(hg) = Rpr(t)Rpr(f) =
Rpr(t)0A.,. Now we obtain that hAxeAr, = AyRpr(ha) = AyRpr(t)0A,,. Since A, is
monomorphic, we get that hxe = A Rpr(t)0. That is, we have the following commutative
diagram.

Ker(r(vy)) —2 Rpr(Gy)
hKerl lRDT(t)
Ker(r(vy)) <= Rpr(DTk, )

Note that Rpr (DT, ) is a projective-injective object in RC(R), so hke = 0 in RC(R).

4.2.7 The functor Qpr : RC(S) — RC(R)

We will show that the functor Qpr factors through RC(S).

To see this, it is enough to show that Qpr(X) is a projective object in RC(R), whenever
X is a projective object in RC(S).

W.lo.g., we assume that X = {X,} is an indecomposable projective object in RC(S).
Thus, we have that X has the form

-WOWP«}»P@)SDSWOW---

where P is on the (k+1)-th position, for some k.

Note that X1 = P € addgR C G and X, = P ®5 DS € addg(DR) C K, so we can
choose Gx as the form

C s 0 s P s DTy~ 0 o -

where G'x, = DT}, € addgDT. And we have that the homomorphism vy : Gx — X is of

the form



Gx: v 00 00w P DTy, 0o e

Jux J1 1 vk

X: v s 0 0w P s PRGDS v 0 s -

Then, from the structure of r(vy) in 2.3, we can see that r(vy) is of the form

(0.8r,)T
Rpr(X) : ©oi w0 ~ Homg(DT,P) ~ Homg(DT,DT})®P®RsT  ~F DI, ®sT ~ 0 ~ -
+ T(UX) 11 1 (HOH’IS(DT7 vk)v Cf'k )T 4
Hom(DT,X): --- ~» 0 ~ Homg(DT,P) ~» Homg (DT, P ®g DS) ~ 0 0 e

where (,, is defined as in 1.2.3] and dp, is defined as in d.2.J] repectively. One checks that
both homomorphisms (,, and g, are in fact isomorphisms. So we obtain that Qpr(X) =
Ker(r(vx)) is of the form
<~ 0 ~ 0 ~ Homg(DT, DTy) f,;g DT @sT ~ 0 ~> -

where 0, is an induced isomorphism: Homg(DT, DT}) — Homg (DS, DT} ®g T'). Since
Homg (DT, DT},) € addg(Homg (DT, DT')) = addgR, we see that Homg (DT, DT},) is projec-
tive and that Qpr(X) is a projective object in RC(R).

It follows that the functor Qpr factors through RC(S). We still denote by Qpr the
induced functor from RC(S) to RC(R).

4.3 The isomorphism QprSr ~ lzc(r)
4.3.1 Computing the composition QprSt

Take any X = {X;,0°} € RC(R). From the chosen exact sequence 0 — X —» Ay 2
Bx — 0 in RC"(R) with Ax = {Ax,} € RC"(A) and Bx = {Bx,} € RC"(B), as in 1.4,
we obtain an exact sequence

~ I(u s
0= X&DT Y 11(Ax) =5 Sp(X) = 0

by the construction of the functor Sy in L5 Note that, for each ¢, S (X); is given by the
pushout diagram
X, ©p DT —"% Homp(T, Ax,_,)
qu_@RDTl/ sgl

2
Ax, ® DT Sr(X);.

Si

Now we take a projective R-module PAXZ- such that PAXZ- 2y A x, — 0 is exact. Then

we have a pullback diagram

u

0—X; —% Py, —= Bx,—0
qll lpi H
0 X; — Ay, By 0.



Since B is closed under kernels of epimorphisms, we see that X; € B. By applying the
functor —®g DT, the diagram above induces the following commutative diagram with exact

TOWS.
u, QrDT

0—>72 Xr DT i PAXl- ®r DT

BXi ®R DT e O
%@RDTl

00— X, ®r DT

P¢®RDTl H

uX_®RDT
. AXi ®RDT BXi ®RDT—>O

Now, one can check that the following diagram is commutative with exact rows, for each

1, where the lower row is obtained from the above exact sequence.

1
P _ S;
¢ (m ®r DT) os%)

_ —(g:®rDT)oby, Tx,®r DY) iy
0 —X, @p DI 2 T Y f(T, Ax,_,) @ Pay, ®r DT

lQi®RDT l ((1) i ®OR DT) 5] ”
(_elivux,®RDT) e (S?)
0—X; ®p DT d Homp(T, Ax,_,) ® Ax, ®g DT S7(X)i— 0

Denote £ = {Homp(T, Ax, ,) © Pay, ®r DT} € RC™(S). Note that X; @z DT € K
and Homg(T, Ax, ,)® Py @p DT € G, so we have an exact sequence from the first row in

the commutative diagram

sP

0— X ®r DT—&L — Sp(X) =0
with X @ DT € RC"(K) and £f € RC™(G), as in @24l By applying the homomorphism
rin to the homomorphism s” : £§ — S7(X), we have an exact sequence in RC(R)
by the construction of the functor Qpr in

T SP il
0 = QprSr(X) =5 Rpr(2h ) " Hom(DT, S7(X)) — 0,
where 7(s?) is defined as in 12,3

4.3.2 The object X & Lgr(P} ) in RC(R)

Denote that Py = {PAXM}, then P} € RC"(addgR). Applying the functor Lp in
the remark in [.I.1] we obtain that L R(PXX) is a projective object in RC(R). Hence, the
object X @ Lgr(Py, ) is isomorphic to X in RC(R).

We will prove that QprS7(X) ~ X & LR(PXX) naturally. And then, QprSt >~ Igc(r).

The general strategy is as follows. Firstly, we construct a natural homomorphism ¢ :
X ®Lr(P{,) = Rpr(£], ). Secondly, we show that £ or(s”) = 0, i.e., the composition of &
and the homomorphism 7(s”) : Rp(£4,) — Hom(DT,S7(X)) in the exact sequence above
is 0. Thus, we obtain a homomorphism ¢ : X @ L R(PXX) — QprSr(X). Finally, we prove

that ¢ is indeed a natural isomorphism.

4.3.3 The homomorphism & : X ® Lr(P{_) — Rpr(£)

Recall from the construction in 3.1 that



X ={X,;} and,
Lr(Pf,) = {Homg(R, Pay ) @ Pa,,, ®r DR} = {Pa, @ Pa,_, ®r DR}
and that
Rpr(L],) = {Homg (DT, (£, ):) ® (L4, )ir1 @5 T}
= {Homg (DT, Homp(T, Ax, ,)®Pa,, @rDT)®(Homp(T, Ax,)®Pay,,, Or
DT) @5 T}
Let & = {&} : X @ Lg(Py, ) — Rpr(£%,) be a homomorphism. We may assume that
& = (&,€7), where
£+ X; @ Pay, ® Pay, , ®r DR — Homg(DT, (€], );) and
£ Xi® Pay, @ Pay, , ®r DR — (L5 )it ®sT.

4.3.3 (i) The homomorphism & in modR

SPIRS)

We set & = | €51 &5 | -
51 €52
Xi ) PAXl- ) PAXiJrl ®R DR — HOms(DT, HOHIR(T, AXi71> o) PAXl- ®R DT)
Using the isomorphism ¢DSs ~ ¢T ®r DT and the adjoint isomorphism
I'PT: Homg(— ®g DT, —) ~ Homg(—, Homg(DT, —)),
we define the components as follows.
e We set
£, =TP7(0,,) : X; — Homg (DT, Homg (T, Ax, ,)),

where 0;, : X; ®¢ DT — Hompg(T, Ax,_,) is defined in A.1.3
In the other words, the morphism &Yy is given by the composition : nf_ROHom r(DR,éx,)0

Hompg(DR, u, ) and some natural isomorphisms

DR
X; =% Hompg(DR, X; ®r DR)
Hompg (DR, qu‘—l)
— Hompg(DR, Ax, ;) ~ Homg(DT ®¢ T, Ax,_,)

~ HOIIIR(DT, HOIIIR(T, AXi—l))‘

Homp(DR,6x,
O8N Homp(DR, Xi 1)

e The morphism &5, = I‘DT(l(pri(@RDT)) = nfi{ : Py, — Homg(DT, Pay, ®g DT).

e The remained morphisms &{y, £5;, &5, &5, are all 0.

STy
So we have that ¢ = [ 0 &, |, where &y = TP7(0,), and &5, = T?"(1(p,, erp1))-
0 O !

4.3.3 (ii) The homomorphism & in modR



€h &y
We set ¢/ = [ & &, | :
& &
Xi ® Pay, ® Pay,,, ®r DR — (Hompg(T', Ax,) ® Pay,, , ©r DT) ®s T,

where the components are defined naturally as follows.

e The morphism &7 = u, o (e}, )™ : X; = Hompg(T, Ax,) ®5 T (note that €}, is an

isomorphism since Ay, € A), i.e., is given by the composition

(ET —1

U Ax.
Xz' i) AXi i) HOIIIR(T, AXZ) R T.
e The morphism &, = p; o (¢4, )7' : Pa,, — Homg(T, Ax,) ®s T, i.c., is given by the

composition
(ET )71
Pi Ax;
PAXl- — AXi — HomR(T, AX1> XRg T.
e The morphism £§2 : PAXZ_+1 ®Rr DR — PAXZ_+1 ®pr DT ®g T is the natural isomorphism
given by R(DT XRg T)R ~ RRR.

e The remained morphisms £%,, &5,, &5, are all 0.

& 0 b T 1 ¢b T 1 b 3
So we have that ¢ = | &, (2 , where &} = u, o (eAXZ_)_ ,€o =pio (EAX)_ , and &3, is
0 &3

the natural isomorphism.

4.3.3 (iii) ¢ is a homomorphism in RC(R)

It is not difficult to prove that the above-defined morphism ¢ is in fact a homomorphism
in RC(R) by the involved definitions.

4.3.4 The composition £ o r(s¥) = 0, and so € factors through a homomorphism ¢ : X &
LR(PXX) — QDTST(X)-

4.3.4 (i) The analysis of the homomorphism s : Ly(Ax) — Sr(X) in[4.31)

Recall from[.3Tlthat s = {s;} : Ly(Ax) — Sr(X) is a homomorphism in RC(.S) which is
the cokernel of the homomorphism /(u, ). Note that Lr(Ax) = Homg(T, Ax, ,)®Ax, @ DT,
so we write that s; = (z%) as we have done in the last commutative diagram in [£3.1l The
fact that s is a homomorphism in RC(S) implies that there is the following commutative

diagram, for each 1.

() s ps

[Homp(T,Ax; | )®Ax,@rDT|®sDS S7(X);®sDS
} 62wr(ax) <> } 82 (sr(x))
2
Si—1
HomR(TvAXi72)®AXi71®RDT St(X)i—1

By the definition of 67 (Ly(Ax)) (see EI1I)) and the above commutative diagram, we



obtain that (s2®DS)0d7(S7(X)) = 0 and that (s} ®@DS)odP(Sr(X)) = (ng-,l ®DT)os? ;.

4.3.4 (ii) The analysis of the homomorphism r(s”) : Rp(£4 ) — Hom(DT, S7(X))

1

P _ [PV _ ol . QP
Recall from 3T that s© = {s;'} = {((pz On DT)OS?)} » LY, — Sp(X). By
23, we know that Ry (L4, ) = {Homg(DT, (£ ):) & (€4 )it1 ®s T} and that r(s"); =

(MomsET ). where G, = DT (sF 95 DS) 002, (S2(X)

1
For convenience, we set r(s”); = (T’é), where
T
ri = Homg(DT,s]) : Homg (DT, (£ );) = Sr(X); and

r2 =G, (&4 )it ®s T — Sp(X);.

4.3.4 (iii) Checking Eor(s¥) =0

To check € o r(sP) = 0, we need only to check that £} + £r? = 0 for each 4, since

i

enough to check that £2 o Homg(DT, s?) = €0 o ¢,,.

1
& = (€460 and r(st); = (:22) Note that 7} = Homg(DT,s!’) and 72 = —(,., so it is

& 0 e 0
Since & = | 0 &, |, & = (& 0|, G = TPP((sf1 ®s DS) 007, (Sr(X))) and sf =
0 0 0 &,

1
% , we just check the following.

(pi ®r DT) o s?

(1) &y o Homg(DT, s;) = &, o TPT((sj, ®s DS) 0 65, (Sr(X))).
By 4.3.3 (i)l we have that
£% o Homg(DT, s}) = T'PT(6,,) o Homg (DT, s}) = TPT(6,, o s}),

where later equality uses the naturality of T'”T. On the other hand, by [£.3.3 (ii)] and
4.3.4 (1), we obtain that
& o TP ((siyy ®s DS) 0 075,(S7(X)))
= (uy, o (€4, )7") o TPT((€}, ®r DT) o s7)
— TP (((uy, o (h, )) @ DT) o (h, @5 DT) o 5)
= I‘DT((uXi ®@gr DT) o s?).

But (uy, ®g DT) o s} = 0, o s; by the pushout diagram on S7(X); in E3.11 Hence, the
equality (1) holds.

(2) £, o Homg (DT, (p; @ DT) 0 57) = &3, 0 TP (s}, ®s DS) 0 65,(S7(X))).



By [4.3.3 (i)] and the naturality of I'PT

&8y o Homg (DT, (p; @ DT') o s7)
= PDT(lpAXi(@RDT) o Homg(DT, (p; @ DT) o 57)
=T (1p,, wxor o ((pi @1 DT) 0 57))
=TPT((p; g DT) 0 s?).

On the other hand, by [4.3.3 (ii)] and [4.3.4 (i)] and the naturality of T'PT,

&5, o TPT((s}y, ®s DS) 0 65, (Sr(X)))
= (pio (5, ) ) o TPT (5, ®r DT) o s?)
= TP (((pio(h, )7") ®r DT) o (€y, ®r DT)o s7)
= PDT((pi ®@r DT) o 5?)

Hence, the equality (2) holds.
(3) 0= &3, o TPT(((piy1 ®r DT) 0 s57,,) @5 DS) 0 671, (Sr(X))).
In fact, the equality holds by observing that

TPT(((piy1 ®r DT) 0 5744) @5 DS) 0 65, (Sr(X)))
=77 ((pis1 ®r DT ®5 DS) o (s3,; ®s DS) 0 673, (Sr(X)))

since (s2,, ®s DS) 0 6%, (Sr(X))) = 0 by 34 (1)}

All together, we prove that & o r(s”) = 0 and therefore, £ factors through QprS7(X) =
Ker(r(s")) by a homomorphism ¢ : X & Lr(PJ ) = QprSr(X) in RC(R), ie., & =¢o A

4.3.5 The induced homomorphism ¢ : X @ Lr(Py ) — QprSr(X) is an isomorphism

We now prove that the induced homomorphism ¢ : X @ Lg(Py ) = QprSr(X) is an
isomorphism. Clearly it is equivalent to show that ¢; : (X & L R(PXX))Z- — QprSr(X); is an
isomorphism, for each i.

We will show that there is the following commutative diagram (x) with exact rows, for
each i, where X; € B is obtained in E31l Note that Lz(P} ); = Homg(T, Ay,) ®s T &
PAXi+1 RQr DT ®@sT ~ Ax, ® PAX@+1 ®r DR.
uy 0

1

—qisUy 50 (
(24&). Xi®Pay ®Pay  ®RDR 1

i AXiQBPAXiH@DR — 0
() : box) 1o ||

a;

_ A2
0 — Homp (DT, X;QzDT) —* QprS7(X); S HomR(TvAXi)@)ST@PAXiJrl®RDT®ST—> 0

Then, since X; € B implies that n%p is an isomorphism, we obtain that ¢; is also an



isomorphism from the above commutative diagram.

4.3.5 (i) The upper row in the diagram (x) is exact

In fact, the pullback of p; : Pay — Ax, and u, : X; — Ay, in 13T gives an exact

()

0%, % x 0 Py, — Ax, =0,

sequence

since p; is surjective. The direct sum of the above exact sequence and the trivial exact
1 . . .
sequence 0 — 0 — PAX_+1 — PAX_+1 — 0 gives us the exact sequence in the upper row in

the diagram (x).

4.3.5 (ii) The bottom row in the diagram (x)

Note that we have the following exact sequence in .37
T SP 2
0 = QprSr(X) =5 Rpr(2h ) " Hom(DT, S7(X)) — 0,
and that

Rpr(£], )i = Homg(DT, (£], ):) & (L], )it ®s T
= Homg(DT, HOIIlR(T, AXi—l) @ PAXz‘ ®R DT) @ (HomR(T, AXZ) @ PAXiJrl ®R DT) ®5 T

So we have the following pullback diagram, for some homomorphisms a;,

— a; 22
0 —Homg (DT, X;@rDT) —> Qp7rS7(X); —(Homp(T\Ax;_1)®Pax @rDT)®sT— ¢
| w =
- b rl
0 —Hom (DT, X;@rDT) —> Homg (DT Homp(T\Ax; )®Pay ®RDT) % Homg(DT,S7(X):) — 0
where r}, 72 and A\!, \? are the components of the homomorphisms r(s”); and \; respectively,

and b; = Homg (DT, t;) with
t;, = (—(qi ® DT) 00, ux, ®r DT) : X, ®r DT — Hompg(T, AXFI) @ PAxi ®pr DT
is given in A.3.1]
Note that r} is surjective as we indicate in E2.5]in the general case, so the upper row is

exact. Thus we get the bottom exact sequence in the diagram ().

4.3.5 (iii) The diagram (x) is commutative

At first, it is easy to see that the right part of the diagram (x) is commutative from the
construction of the morphism ¢ in 3.4.1.
As to the left part of the diagram (x), we first show that the following equality of com-

positions



ngToaio)\} = (—qi,ﬂxi,O)O(ﬁiO)\}. (Tl)

7

Indeed, we have that

DT 1
Ny ©a;© Ai

= n2tob; (by the commutative diagram in [4.3.5 (ii))

= nng o Homg (DT, ;) (since b; = Homg (DT, t;))
= FDT(lz-@RDT) o Homg(DT),t)

=T""(1x,4,prot) (by the naturality of T'PT)
=TI'P7(t)

= I'PT((—(¢; ®r DT) 0 0;,,ux, ®r DT)) (since t; = (—(¢; ® DT) 0 0;,,ux, ®r DT))

and we also have that

(_QiaﬂXw O) o ¢7, o )\11

= (_anﬂXﬂO)ogg (Since gl = ( 3767{)) :QSO)\)
SYEY
= (=g x;, O)O( 8 5(5)12) (by 4.3.3 (i))

(_Qi © £¢1117 HXi © 532)‘

But &4, = TPT(6,,) and &5, = FDT(l(pAX_®RDT)) by the construction in 4.3.3 (i)} we obtain
that

g o&f = q; o TPT(0),) = TP (g @r DT 0 0),)
and that
Uy, 0 &3 = Ux, © FDT(l(PAXZ_ wro1)) = DPT(Ux, @5 DT o Lpyy, oror)) = DPT(Ux, @R DT)
Hence, we see that the equality (f,) holds.

Since that a; o A = 0 and that
(=4i,Ux,, 0) 0 ¢ 0 N} = (=i, Tix;, 0) 0 & = 0,
we also get that
12T 0050 A2 = (—i Tx,,0) 0 d5 0 A (1)
Now, from the property of the pullback in we know that the two equalities (f,)
and (f,) together imply that
UB_T oa; = (—¢;,Ux,,0) 0 ¢;.

Xl
Thus, the left part of the diagram is also commutative.
4.3.6 The isomorphism ¢ : X ® Lr(Py. ) — QprSr(X) is natural on X.

For any X,Y € RC(R) and f € Homge(r)(X,Y), it is regular to show that the following

diagram is commutative, for some natural homomorphisms f & L R(PXf) and QprSr(f).



Px

X®Lg(Pf) —  QprSr(X)
f@LR(PXf)l lQDTST(f)

Y

Y ®Le(P) ——  QprSr(X).

Thus, the isomorphism ¢ is natural on X. This means that QprSr ~ 1gc(r) naturally.
4.4 The isomorphism SrQpr ~ 1zc(s)

Dually to the proof of A.3] one can show that S7Qpr ~ 1ges) naturally.

Namely, for an object Y € RC(.S), one uses that (G, K) is a complete hereditary cotorsion
pair in modS to obtain exact sequences 0 — Ky, — Gy, — Y; — 0, for each i. Then take
an injective S-module /g, and a monomorphism j : Gy, — g, , one can show that there is
a natural isomorphism S7Qpr(Y) — Y @ Rps(ly ), where Iy, = {Ig,  } and Rps(Iy) is a
projective object in RC(R) by Remark (2) in[d.2.1l And then one gets that SrQpr ~ 1gces)

naturally.

4.5 The last proof of main theorem

Recall that [1] is an automorphism of repetitive categories, where (X[1]); = X;_; for an
object in a repetitive category.

Define Fr := [—1|S7 : RC(R) — RC(S) and Gr := Qpr[l] : RC(S) — RC(R). Then
we have that FrGr ~ 1gc(s) naturally and that GrFr ~ 1ger) naturally. So that Fr and
G gives a repetitive equivalence between R and S.

It is easy to check that Fr|4 ~ Hompg(T, —) and that Gr|g ~ —®gT from the definitions

of two functors. Now the proof of the theorem is completed.
4.6 The proof of the proposition in the introduction

Assume that the equivalence is given by the functor F': RC(R) — RC(S). By assump-
tions, F' restricts to an equivalence A — G. Note that G is resolving and S € G. Let
T = F~1(S). Then T € A. By the triangle equivalence, we have that, for any A € A,

Extly (T, A) ~ Homge(r) (T, X' A) ~ Hompe(s) (S, X' F(A)) ~ Ext(S, F(A)),
where ¥ is the translator funtor in repetitive categories. In particular, we obtain that
Homp(T, A) ~ Homg(S, F(A)) ~ F(A) and that Extz(T, A) = 0 for all i > 0. It follows
that S ~ End(Tg) and Ext%(T,T) = 0 for all i > 0. Note that A is coresolving and DR € A,
so we also have that F(DR) ~ Homg(T, DR) ~ DT. Thus, we get that
Ext(sT, sT) ~ Exts(DT, DT) ~ Homge(s) (DT, 5 DT)
~ Homge(s)(F(DR), L F(DR)) ~ Homge ) (DR, S DR) ~ Exty (DR, DR).
It follows that End(s7) ~ R and that Exti(s7,s7) = 0 for all i > 0. Thus, T is a

Wakamatsu-tilting module.



By assumption, F|4 ~ Homg(T,—) gives the equivalence A — G. It follows that
Flg ~ — ®g5 T by the unique of the adjoint. Note that Homz(T,—) and — ®g T are
exact functors respectively in A and G, since F is a triangle functor. As A is coresolving,
for any A € A, the exact sequence 0 - A — I — A" — 0 with I € injR is a sequence
in A. Applying the exact functor Homp(T, —), we obtain that Extj(7, A) = 0. It follows
that T € A KerExtp(—,A), i.e, T is Ext-projective in A. Dually, we have also that
Tor{(X,T) = 0 for any X € G. In particular, for any A € A, suppose that A = X ®¢ T
for some X € G and take an exact sequence 0 — X' — P — X — 0 with P € projR,
then the sequence is in G since G is resolving, and hence there is an induced exact sequence
0= X'®sT — PRsT — X®5T — 0, since —®gT is exact in G. The last sequence gives an
exact sequence 0 - A" - T4 - A — 0with Ty = PRgT € addgT and A" = X' — P € A.
It follows that T is an Ext-projective generator in A. Now applying Corollary [3.2.6] we

conclude that T' is a good Wakamatsu-tilting module.

5 Examples

5.1 Tilting modules and cotilting modules

Let R ba an artin algebra. Recall that an R-module T is tilting provided the following

three conditions are satisfied:

(1) The projective dimension of T is finite;

(2) Ext (T, T) = 0 for all i > 0;

(3) There is an exact sequence 0 - R — Ty — - -+ — T,, — 0 for some integer n, where
each T; € addgT.

Dually, an R-module T is cotilting provided the following three conditions are satisfied:

(1) The injective dimension of 7' is finite;

(2) Exty(T,T) = 0 for all i > 0;

(3) There is an exact sequence 0 — T}, — - -+ — Ty — DR — 0 for some integer n, where
each T; € addgT.

It is known that an R-module T is a tilting module if and only if DT is a cotilting left
R-module if and only if DT is a cotilting S-module. Note also that both tilting modules
and cotilting modules are Wakamatsu-tilting modules.

We need the following well-known results on tilting modules and cotilting modules.

Proposition (1) If T is a tilting module, then the cortorsion pair (KerExtp(—,7X), 7X) is
complete.

(2) If T is a cotilting module, then the cortorsion pair (Xr, KerExtL(Xr, —)) is complete.
Proof. (2) follows from [3] Section 5], and (1) is just the dual of (2). O



5.1.1 Tilting modules are good Wakamatsu-tilting

Assume T is a tilting module of finite projective dimension. Let S = End(7%). Then
sTr is a good Wakamatsu-tilting module. Hence there is an equivalence between repetitive
categories RC(R) and RC(S).

Indeed, if ¢Tk is a tilting module of finite projective dimension, then 7' is Wakamatsu-
tilting and rD7Ty is a cotilting module of finite injective dimension. By Proposition [3.1]
we obtain that bimodules §Tr and rDTs represent a cotorsion pair counter equivalence
between the compete hereditary cotorsion pair (KerExtp(—,7X),7&X) in modR and the
compete hereditary cotorsion pair (Xpr, KerExty(Xpr, —)) in modS. It follows from the

definition that §7Tg is a good Wakamatsu-tilting bimodule.

5.1.2 Cotilting modules are good Wakamatsu-tilting

Assume now Ty is a cotilting module of finite injective dimension with S = End(T%).
Then T is also a good Wakamatsu-tilting module. Hence there is an equivalence between
repetitive categories RC(R) and RC(S).

Indeed, dually to B.1.2] if 7Tk is a cotilting module of finite injective dimension, then
rDTgs is a tilting module of finite projective dimension. By Proposition B.I] again, we obtain
that bimodules §Tr and grDTgs represent a cotorsion pair counter equivalence between the
compete hereditary cotorsion pair (X7, KerExtg(X7, —)) in modR and the compete hered-
itary cotorsion pair (KerExt(—, pr&), pr&) in modS. It follows from the definition that

sTR is also a good Wakamatsu-tilting bimodule.
5.2 Wakamatsu-tilting modules of finite type

5.2.1 We say that a Wakamatsu-tilting R-module T is of finite type provided that either the
subcategory KerExt},(—, 7X) or the subcategory KerExtj,(Xy, —) is of finite representation
type. In particular, if R is an algebra of finite representation type, then each subcategory of
modR is of finite representation type, and hence every Wakamatsu-tilting module in modR
is of finite type.

We note that, if 7" is a Wakamatsu-tilting R-module of finite type with S = End(T%),
then DT is a Wakamatsu-tilting S-module of finite type. This is just followed from the

equivalences in Proposition 3.1l

Proposition A Wakamatsu-tilting module of finite type is always a good Wakamatsu-tilting
module. In particular, every Wakamatsu-tilting module over an algebra of finite representa-
tion type is good.

Proof. Let T be a Wakamatsu-tilting R-module of finite type with S = End(Tg). As-
sume first that the subcategory KerExt}, (X7, —) is of finite representation type. Then the



hereditary cotorsion pair (Xg, KerExt(Xr, —)) in modR is complete. Moreover, by the
equivalence in Proposition B.1] (3), the subcategory KerExtp(—, prX) is also of finite rep-
resentation type. Thus, the hereditary cotorsion pair (KerExtp(—, pr&), pr&) in modS is
also complete. It follows that bimodules ¢T and rDTs represent a cotorsion pair counter
equivalence between the compete hereditary cotorsion pair (Xr, KerExtg (X7, —)) in modR
and the compete hereditary cotorsion pair (KerExth(—, prX), pr&) in modS. Similarly,
in case that KerExt},(—,7X) is of finite representation type, we have that bimodules Tk
and rDTys represent a cotorsion pair counter equivalence between the compete hereditary
cotorsion pair (KerExty(—, &), &) in modR and the compete hereditary cotorsion pair
(Xpr, KerExt(Xpr, —)) in modsS. Altogether, we see that 7" is a good Wakamatsu-tilting

module in either case. O

5.2.2 Two trivial examples of Wakamatsu-tilting modules of finite type over an algebra R
is the module R and the module DR. In the first case, the subcategory KerExtp(—, rX) =
projR is of finite representation type, while the subcategory KerExtp(Xr, —) = injR is of
finite representation type in the second case.

The following is an example of Wakamatsu-tilting modules of finite type over an algebra

of infinite representation type.

Example Let R be the bounded quiver algebra given by the following quiver over a field
with the relation given by rad*R = 0.

172230 S5 —=7
B 15
The following is the AR-quiver of the algebra.

7

/\/\/ )

NN LN
\/\/
/\/\
\/\/ \/

The algebra is of infinite representation type. Over this algebra, we have a Wakamatsu-

tilting module of finite type (and hence, a good Wakamatsu-tilting module)
2 13 4 5 6 7T
T'=19 5 ©30 350,950
Indeed, one can check that the subcategory KerExth(—, &) is of finite representation

type, while the subcategory X is of infinite representation type.
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