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On the Search Algorithm for the Output Distribution

that Achieves the Channel Capacity

Kenji Nakagawa∗, Kohei Watabe∗, Takuto Sabu∗

Abstract

We consider a search algorithm for the output distribution that achieves the channel
capacity of a discrete memoryless channel. We will propose an algorithm by iterated projec-
tions of an output distribution onto affine subspaces in the set of output distributions. The
problem of channel capacity has a similar geometric structure as that of smallest enclosing
circle for a finite number of points in the Euclidean space. The metric in the Euclidean
space is the Euclidean distance and the metric in the space of output distributions is the
Kullback-Leibler divergence. We consider these two problems based on Amari’s α-geometry
[1]. Then, we first consider the smallest enclosing circle in the Euclidean space and develop
an algorithm to find the center of the smallest enclosing circle. Based on the investigation,
we will apply the obtained algorithm to the problem of channel capacity.

Keywords: channel capacity, discrete memoryless channel, smallest enclosing circle, infor-
mation geometry, projection algorithm

1 Introduction

The channel capacity C of a discrete memoryless channel is defined as the maximum of the

mutual information. C is also formulated as the solution of a minmax problem concerned with

the Kullback-Leibler divergence [4], [7]. If we replace the Kullback-Leibler divergence with the

Euclidean distance, a similar problem in the Euclidean space is obtained. That is the problem

of smallest enclosing circle for a finite number of points. In this paper, we will investigate

the problem of smallest enclosing circle in the Euclidean space geometrically, and develop an

algorithm to compute the solution to the minmax problem of the Euclidean distance. Then,

the resulting algorithm will be applied to the minmax problem of channel capacity to make an

algorithm for calculating the output distribution that achieves the channel capacity. The reason

for taking such an approach is because the Euclidean geometry is familiar to us, so it may be

easier to make new geometric algorithms.

As mentioned above, the problem of channel capacity is described by an optimization prob-

lem concerned with the output probability distributions. The geometry on the set of output

probability distributions is the information geometry [1]. The Euclidean geometry and the in-

formation geometry can be considered in a unified manner from the viewpoint of α-geometry by

Amari [1]. Therefore, the solution algorithm for the problem of smallest enclosing circle can be

applied to the problem of channel capacity through this geometric similarity. For that purpose,

it is necessary to use only the applicable properties to the problem of channel capacity. If it is

achieved, then an algorithm obtained in the smallest enclosing circle can be transplanted almost

automatically to the channel capacity. In this paper, we will actually use only barycentric coor-

dinate, inner product, Pythagorean theorem, and projection onto affine subspaces, as common
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properties in both geometries, to develop a computation algorithm. The algorithm is called a

“projection algorithm.”

In this paper, first we consider the algorithm for calculating the center of the smallest

enclosing circle for a finite number of points in general position in the Euclidean space. Then,

similarly, in the case that the row vectors of the channel matrix are in general position, we

consider the algorithm for calculating the output distribution that achieves the channel capacity.

We will show that the both problems are solved by common geometric properties. Further,

based on the above investigation, we consider the case that the finite number of points and the

row vectors are not necessarily in general position. Then, finally we propose heuristic search

algorithms and perform the proposed algorithm for randomly generated placements of points

and row vectors. We evaluate the percentage that correct solutions are obtained by our heuristic

algorithm.

1.1 Related Works

There are roughly two categories of calculation methods for the channel capacity, one is solving

equations due to Muroga [6] and the other is a sequential calculation method due to Arimoto

[2]. In Muroga [6], the input probability distribution that achieves the channel capacity is

obtained by solving directly the equations derived from the Lagrange multiplier method. In this

case, we should take care of the inequality condition that the probability takes a non-negative

value. Simply solving the equations by ignoring this inequality condition may yield a solution

of a negative probability. Of course this is not a correct solution. The inequality condition

makes the problem difficult, however, we can say this difficulty makes the problem attractive.

In Muroga [6], if a solution includes a negative probability, one of the input symbols should be

removed and solving equations should be continued repeatedly until all the probabilities become

non-negative. Therefore, if all the possibilities are exhausted, the total number of equations to

be solved is exponential.

In Arimoto’s sequential approximation method [2], the channel capacity of an arbitrary

channel matrix is calculated numerically by a recurrence formula. This method does not yield a

negative probability, but corresponding to it, if some input probability becomes 0, an exceptional

treatment is required in the calculation of a reverse channel. Both in Muroga [6] and Arimoto

[2], it is important to determine which input symbol has a positive probability. That is a main

subject of this paper.

1.2 Channel matrix and channel capacity

Let us consider a discrete memoryless channel X → Y with input source X and output source

Y . Denote by {x1, · · · , xm} the input alphabet and {y1, · · · , yn} the output alphabet. The

conditional probability P i
j that yj is received when xi was transmitted is denoted by

P i
j = P (Y = yj|X = xi), i = 1, · · · ,m, j = 1, · · · , n,

and the row vector P i is defined by

P i = (P i
1, · · · , P

i
n), i = 1, · · · ,m. (1)



The channel matrix Φ is defined by

Φ =




P 1

...
Pm


 =




P 1
1 · · · P 1

n
...

...
Pm
1 · · · Pm

n


 . (2)

The set ∆̄m of all input probability distributions on the input alphabet {x1, · · · , xm} is defined

by

∆̄m = {λ = (λ1, · · · , λm)|λi ≥ 0, i = 1, · · · ,m,
m∑

i=1

λi = 1}.

Similarly, the set ∆̄n of all output probability distributions on the output alphabet {y1, · · · , yn}

is defined by

∆̄n = {Q = (Q1, · · · , Qn)|Qj ≥ 0, j = 1, · · · , n,

n∑

j=1

Qj = 1}.

The output distribution Q ∈ ∆̄n corresponding to the input distribution λ ∈ ∆̄m is denoted by

Q = λΦ, i.e., Qj =
∑m

i=1 λiP
i
j , j = 1, · · · , n, and the mutual information I(λ,Φ) is defined by

I(λ,Φ) =

m∑

i=1

n∑

j=1

λiP
i
j log

P i
j

Qj

. (3)

Then, the channel capacity C is defined by

C = max
λ∈∆̄m

I(λ,Φ). (4)

For two output distributions Q = (Q1, · · · , Qn), Q
′ = (Q′

1, · · · , Q
′
n) ∈ ∆̄n, the Kullback-Leibler

divergence D(Q‖Q′) is defined by

D(Q‖Q′) ≡

n∑

j=1

Qj log
Qj

Q′
j

, (5)

see [4]. The channel capacity C is also formulated by the Kullback-Leibler divergence as follows

[4]:

C = min
Q∈∆̄n

max
1≤i≤m

D(P i‖Q). (6)

For some channel matrix, the input distribution λ that achieves (4) is not unique, but the

output distribution Q that achieves (6) is unique for any channel matrix [4]. By virtue of the

uniqueness, it is easy to consider the method of calculating the channel capacity C based on (6)

using geometric properties of the Kullback-Leibler divergence.

On the other hand, in order to prove that the resulting output distribution actually achieves

C, we will use the convex optimization (4) rather than the geometrical consideration by (6).

Concerning (4), the following Kuhn-Tucker condition holds [5].

Theorem: (Kuhn-Tucker condition for the problem of channel capacity) A necessary and

sufficient condition for an input distribution λ∗ = (λ∗
1, · · · , λ

∗
m) ∈ ∆̄m to achieve the channel

capacity C is that there exists a value C0 with

D(P i‖λ∗Φ)

{
= C0, for i with λ∗

i > 0,
≤ C0, for i with λ∗

i = 0.
(7)

Then, C0 is equal to C.



1.3 Smallest enclosing circle

Now, replacing D(P i‖Q) in (6) with the Euclidean distance, we can consider a similar problem

in R
n. That is, for P 1, · · · , Pm ∈ R

n, let us consider

min
Q∈Rn

max
1≤i≤m

d(P i, Q), (8)

where d(P i, Q) denotes the Euclidean distance between the points P i and Q in R
n. This is the

problem of smallest enclosing circle for the set of points {P 1, · · · , Pm}. The purpose of this

paper is to study the problem of smallest enclosing circle geometrically and obtain a search

algorithm for the optimal solution. Then, through the similarity of (6) and (8), we will apply

the resulting algorithm to obtain a search algorithm for the output distribution that achieves

the channel capacity.

(6) and (8) not only resemble formally, but have common geometric structures from the view

point of Amari’s α-geometry [1]. Therefore, if we can develop an algorithm and prove its validity

by using only the common properties to both geometries, then an algorithm obtained in one

problem can be applied to the other problem almost automatically. In fact, it will be apparent

that is so in this paper.

Then, first, let us consider the problem of smallest enclosing circle in the Euclidean space.

2 Problem of smallest enclosing circle in the Euclidean space

Consider a finite number of points P 1, · · · , Pm in the n dimensional Euclidean space R
n. The

smallest sphere in R
n that includes these points in its inside or on the boundary is called the

smallest enclosing circle, and is represented by Γ(P 1, · · · , Pm). The smallest enclosing circle

Γ(P 1, · · · , Pm) is formulated by (8). TheQ = Q∗ that achieves (8) is the center of Γ(P 1, · · · , Pm)

and d∗ = max1≤i≤m d(P i, Q∗) is its radius.

2.1 Equidistant point and projection

As a simplest example, let us consider the center Q∗ and the radius d∗ of the smallest enclosing

circle Γ = Γ(P 1, P 2, P 3) for three points P 1, P 2, P 3 in R
2. We will investigate separately in

cases that △P 1P 2P 3 is an acute triangle and obtuse triangle.

(I) Case that △P 1P 2P 3 is acute triangle (see Fig.1).

In this case, the circumcenter of △P 1P 2P 3, i.e., the equally distant point Q0 from P 1, P 2, P 3

is the center of the smallest enclosing circle Γ and d(P 1, Q0)(= d(P 2, Q0) = d(P 3, Q0)) is its

radius d∗.

From this example, we find it valid to consider the equidistant point Q0 from the given points

P 1, · · · , Pm.

(II) Case that △P 1P 2P 3 is obtuse triangle (see Fig.2).

In this case, assuming ∠P 1 is an obtuse angle, we see that the center Q∗ of the smallest

enclosing circle Γ is the midpoint of the side P 2P 3, and the radius d∗ is equal to d(P 2, Q∗)(=

d(P 3, Q∗)). The equidistant point Q0 from P 1, P 2, P 3 exists, however, Q0 is not the center

of the smallest enclosing circle because Q0 is outside of △P 1P 2P 3. Then, defining Q1 as the



P 1

P 2
P 3

Q0 = Q∗

d∗

d∗
d∗

Figure 1: Smallest enclosing circle for acute triangle △P 1P 2P 3

P 1

P 2 P 3

Q0

Q1 = Q∗

d∗d∗

Figure 2: Smallest enclosing circle for obtuse triangle △P 1P 2P 3

nearest point from Q0 on the straight line L(P 2, P 3) passing through P 2, P 3, we write it as

Q1 = π(Q0|L(P 2, P 3)). Q1 is called the projection of Q0 onto L(P 2, P 3). Q1 is the midpoint of

the side P 2P 3, therefore, we have Q∗ = Q1.

From this example, we find it valid to consider the projection of the equidistant point Q0

onto some set if Q0 is outside of △P 1P 2P 3. In this paper, we call it the projection algorithm that

calculates the center Q∗ of the smallest enclosing circle (or the output distribution Q∗ achieving

the channel capacity) by the projection onto a straight line passing through two points or an

affine subspace spanned by plural points.

2.2 Barycentric coordinate

Let O be the origin of Rn. Henceforth, for the sake of simplicity, we write P i instead of
−−→
OP i,

λ1P
1 + λ2P

2 instead of λ1

−−→
OP 1 + λ2

−−→
OP 2, and P 2 − P 1 instead of

−−−→
P 1P 2, and so on. Depending



on the case, we consider P i as a point in R
n, or as a vector

−−→
OP i.

We say thatm points P 1, · · · , Pm ∈ R
n are in general position if the vectors P 2−P 1, · · · , Pm−

P 1 are linearly independent, or

rank




P 2 − P 1

...
Pm − P 1


 = m− 1. (9)

Let L0 = L(P 1, · · · , Pm) denote the affine subspace spanned by P 1, · · · , Pm, i.e., the minimum

affine subspace including P 1, · · · , Pm, then we have dimL0 = m− 1 under the condition (9).

We will use the barycentric coordinate to represent the position of a point in L0. Consider

m points P 1, · · · , Pm ∈ R
n in general position. The barycentric coordinate of a point Q ∈ L0

about P 1, · · · , Pm is defined as the m-tuple of real numbers λ = (λ1, · · · , λm) with
{

Q = λ1P
1 + · · ·+ λmPm, (10)

λ1 + · · ·+ λm = 1. (11)

The barycentric coordinate λ in the problem of smallest enclosing circle corresponds to the input

probability λ in the problem of channel capacity.

2.3 Analysis for smallest enclosing circle

The smallest enclosing circle Γ(P 1, · · · , Pm) for P 1, · · · , Pm ∈ R
n is obtained by solving the

minmax problem (8). In (8), the problem is expressed by the distance d(P i, Q), so it is easily

understood geometrically. Therefore, it is possible to develop a solution algorithm by geometric

considerations. In fact, in this paper, we will develop new algorithms based on (8). However, in

order to prove that the algorithm is correct, the double optimization problem as (8) is difficult

to apply. Then, a convex optimization problem (convex programming) as a simple optimization

problem equivalent to (8) is given as follows.

The coordinates of P 1, · · · , Pm are defined by

P i = (P i
1, · · · , P

i
n) ∈ R

n, i = 1, · · · ,m, (12)

and a matrix Φ with row vectors P i is defined by

Φ =




P 1

...
Pm


 =




P 1
1 · · · P 1

n
...

...
Pm
1 · · · Pm

n


 ∈ R

m×n. (13)

A vector a is defined by a = (‖P 1‖2, · · · , ‖Pm‖2), where ‖P i‖2 =
∑n

j=1(P
i
j )

2 is the squared

norm of the vector P i, i = 1, · · · ,m. Then, a function f(λ,Φ) of λ ∈ R
m associated with Φ is

defined by

f(λ,Φ) = λ ta− λΦ tΦ tλ, (14)

where, t denotes the transposition of vector or matrix. f(λ,Φ) is a differentiable and convex

upward function of λ. Let us define ∆̄m by

∆̄m = {λ = (λ1, · · · , λm)|λi ≥ 0, i = 1, · · · ,m,

m∑

i=1

λi = 1},



then the convex optimization problem

max
λ∈∆̄m

f(λ,Φ) (15)

is equivalent to the problem of smallest enclosing circle [8]. For λ = λ∗ that achieves (15),

Q∗ ≡ λ∗Φ is the center of the smallest enclosing circle Γ(P 1, · · · , Pm) and d∗ ≡
√

f(λ∗,Φ) is

its radius [8].

For (15), the following Kuhn-Tucker condition holds [5],[8].

Theorem: (Kuhn-Tucker condition for the problem of smallest enclosing circle) A necessary

and sufficient condition for λ∗ = (λ∗
1, · · · , λ

∗
m) ∈ ∆̄m to achieve (15) is that there exists d0 with

d(P i,λ∗Φ)

{
= d0, for i with λ∗

i > 0,
≤ d0, for i with λ∗

i = 0.
(16)

Then, Q∗ = λ∗Φ is the center of the smallest enclosing circle Γ(P 1, · · · , Pm) and d∗ = d0 is its

radius.

2.4 Equidistant point from P 1, · · · , Pm and its barycentric coordinate

For P 1, · · · , Pm ∈ R
n, the equidistant point from P 1, · · · , Pm is a pointQ0 ∈ L0 = L(P 1, · · · , Pm)

that satisfies d(P 1, Q0) = · · · = d(Pm, Q0).

Now, we assume in this chapter that P 1 · · · , Pm are in general position. Then, defining

Ψ =




P 2 − P 1

...
Pm − P 1


 ∈ R

(m−1)×n, (17)

we have from (9)

rankΨ = m− 1. (18)

We will calculate the barycentric coordinate λ0 of the equidistant point Q0 ∈ L0.

2.4.1 Calculation of λ0

The coordinate of P i is defined by (12) and the m× n matrix Φ is defined by (13). Define the

coordinate of Q0 by

Q0 = (Q0
1, · · · , Q

0
n) ∈ R

n, (19)

and further define the following:

P̂ i = (1, P i)

= (1, P i
1, · · · , P

i
n) ∈ R

n+1, i = 1, · · · ,m, (20)

Q̂0 = (1, Q0) = (1, Q0
1, · · · , Q

0
n) ∈ R

n+1, (21)



Φ̂ =




P̂ 1

...

P̂m




=




1 P 1
1 · · · P 1

n
...

...
...

1 Pm
1 · · · Pm

n


 ∈ R

m×(n+1), (22)

J =




−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


 ∈ R

(m−1)×m, (23)

â = (‖P̂ 1‖2, · · · , ‖P̂m‖2) ∈ R
m, (24)

1 = (1, · · · , 1) ∈ R
m. (25)

Because P 1, · · · , Pm ∈ R
n are in general position, we see rank Φ̂ = m. In fact, if

∑m
i=1 ciP̂

i = O,

then
∑m

i=2 ci(P
i − P 1) = O, hence from (18) we have ci = 0, i = 1, · · · ,m.

The barycentric coordinate λ0 of Q0 about P 1, · · · , Pm satisfies

{
Q0 = λ0Φ, (26)

λ0 t1 = 1. (27)

Together (26) and (27) is written as

Q̂0 = λ0Φ̂. (28)

The equidistant point Q0 from P 1, · · · , Pm satisfies

d(P i, Q0) = d(P 1, Q0), i = 2, · · · ,m, (29)

hence we have from (29)

2(P i − P 1)tQ0 = ‖P i‖2 − ‖P 1‖2, i = 2, · · · ,m, (30)

and from (20), (21), (30),

2(P̂ i − P̂ 1)tQ̂0 = ‖P̂ i‖2 − ‖P̂ 1‖2, i = 2, · · · ,m. (31)

Since (31) is written as

2JΦ̂ tQ̂0 = J tâ, (32)

we have from (28)

2JΦ̂ tΦ̂tλ0 = J tâ. (33)



Defining M ≡ Φ̂ tΦ̂ ∈ R
m×m, we have from (33)

J(2M tλ0 − tâ) = 0. (34)

Because rankM = rank Φ̂ = m, M is non-singular. Since KerJ = {τ t1|τ ∈ R}, from (34) there

exists τ ∈ R with

λ0 =
1

2
(â+ τ1)M−1. (35)

So, from (27)

1 = λ0 t1 =
1

2
(â+ τ1)M−1 t1, (36)

and from (36), we have

τ =
2− âM−1 t1

1M−1 t1
. (37)

Substituting (37) into (35), we finally have

λ0 =
1

2

(
â+

2− âM−1 t1

1M−1 t1
1

)
M−1. (38)

This is the barycentric coordinate of the equidistant point Q0.

2.5 Inner product, Pythagorean theorem and projection in R
n

We will describe the inner product, Pythagorean theorem and projection in R
n, which are

important to determine the solution of the problem of smallest enclosing circle by the projection

algorithm.

2.5.1 Inner product

For three points Qk = (Qk
1 , · · · , Q

k
n) ∈ R

n, k = 1, 2, 3, let us define the inner product (Q1 −

Q2, Q3 −Q2) by

(Q1 −Q2, Q3 −Q2) =

n∑

j=1

(Q1
j −Q2

j)(Q
3
j −Q2

j ). (39)

This is the inner product of two vectors Q1 −Q2(=
−−−→
Q2Q1) and Q3 −Q2(=

−−−→
Q2Q3).

We have the following lemmas.

Lemma 1 For points P i (i = 1, · · · ,m), Q,R in R
n, consider the inner products σi = (P i −

Q,R−Q), i = 1, · · · ,m. If
∑m

i=1 λi = 1, then we have

m∑

i=1

λiσi =
( m∑

i=1

λiP
i −Q,R−Q

)
.

Proof: By a simple calculation. ✷

Lemma 2 For any P, Q ∈ R
n, P 6= Q, we have

(P −Q,P −Q) > 0.



Proof: By a simple calculation. ✷

Lemma 3 For any P,Q,R ∈ R
n, we have

2(P −Q,R −Q) = d2(P,Q) + d2(Q,R)− d2(P,R).

Proof: By a simple calculation. ✷

2.5.2 Pythagorean theorem

For three points P,Q,R in R
n, the following Pythagorean theorem and its inequality versions

hold.

Theorem 1 (Pythagorean) For P,Q,R ∈ R
n, we have

(P −Q,R−Q) T 0 ⇐⇒ d2(P,Q) + d2(Q,R) T d2(P,R). (40)

Proof: By Lemma 3. ✷

2.5.3 Projection

For a point Q′ ∈ R
n and a subset L ⊂ R

n, the point Q = Q′′ that achieves minQ∈L d(Q,Q′)

is called the projection of Q′ onto L, and is denoted by by Q′′ = π(Q′|L). In this paper, we

consider only affine subspaces of Rn as L.

Lemma 4 Let L be an affine subspace of Rn. For any Q′ ∈ R
n, the projection Q′′ = π(Q′|L)

exists and is unique. Moreover, Q′′ = π(Q′|L) is equivalent to that (P −Q′′, Q′ −Q′′) = 0 holds

for any P ∈ L.

Proof: see [9]. ✷

2.5.4 Projection of equidistant point

For P 1, · · · , Pm ∈ R
n in general position, let L0 = L(P 1, · · · , Pm) be the affine subspace spanned

by P 1, · · · , Pm and Q0 ∈ L0 be the equidistant point from P 1, · · · , Pm. We see from (38) that

Q0 uniquely exists. Further, we define Lk = L(P k+1, · · · , Pm), k = 0, · · · ,m − 2 as the affine

subspace spanned by P k+1, · · · , Pm. L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ · · · is a decreasing sequence of

affine subspaces whose dimensions are decreasing by 1.

Let Q1 = π(Q0|L1) be the projection of Q0 onto L1. Further, let Qk = π(Qk−1|Lk), k =

1, · · · ,m− 2. We have the following lemmas.

Lemma 5 Qk = π(Q0|Lk), k = 0, 1, · · · ,m− 2.

Proof: It is trivial for k = 0, 1 by definition. Then, we prove for k = 2. From Lemma 4 and

Theorem 1, we have d2(Q,Q0) = d2(Q,Q1) + d2(Q1, Q0) for any Q ∈ L2 ⊂ L1. Therefore,

with respect to Q ∈ L2 minimizing d(Q,Q0) is equivalent to minimizing d(Q,Q1). Because the

projections π(Q0|L2) and π(Q1|L2) are unique by Lemma 4, so we have π(Q0|L2) = π(Q1|L2).

For k ≥ 3, we can prove it by mathematical induction. ✷

Lemma 6 (Qi −Qk, Q0 −Qk) = (Qi −Qk, Qi −Qk), i = 0, 1, · · · , k, k = 0, 1, · · · ,m− 2.

Proof: By calculation, we have (Qi−Qk, Q0−Qk) = −(Qk−Qi, Q0−Qi)+(Qi−Qk, Qi−Qk).

Since Qk ∈ Lk ⊂ Li, we have (Qk −Qi, Q0 −Qi) = 0 by Lemma 4. ✷



2.6 Search for Q∗ by projection algorithm

As we discussed in section 2.1, it is valid to consider the equidistant point Q0 and the projection

of Q0 onto some affine subspace. We are calling this a projection algorithm.

For given points P 1, · · · , Pm, let Q∗ be the center of the smallest enclosing circle Γ =

Γ(P 1, · · · , Pm) and d∗ be its radius. In this chapter, we are assuming that P 1, · · · , Pm are in

general position, and then we will show that Q∗, d∗ are calculated by the projection algorithm

in some situations.

2.7 Situation 1 [There is just one negative component of barycentric coordi-
nate at every projection.]

First, let us consider the following example.

Example 1 Consider four points P 1 = (−10, 1,−3), P 2 = (−9,−2, 8), P 3 = (−8, 10,−5), P 4 =

(4,−8, 8) given in R
3. P 1, · · · , P 4 are in general position. The equidistant point from P 1, · · · , P 4

is Q0 = (1.93, 4.59, 2.85), and its barycentric coordinate λ0 is

λ0 = (−0.84, 0.04, 1.11, 0.69), (41)

which is calculated by (38). Since λ0
1 = −0.84 < 0, we remove P 1 and calculate the projection

of Q0 onto L1 = L(P 2, P 3, P 4), i.e., Q1 = π(Q0|L1). We have Q1 = (0.48, 1.45,−0.16) and its

barycentric coordinate λ1 is

λ1 = (0,−0.31, 0.63, 0.68). (42)

Since λ1
2 = −0.31 < 0, we remove P 2 and calculate the projection Q2 of Q1 onto L2 = L(P 3, P 4),

i.e., Q2 = π(Q1|L2). We have Q2 = (−2, 1, 1.5), and its barycentric coordinate λ2 is

λ2 = (0, 0, 0.5, 0.5). (43)

Then, we have d(P 1, Q2) = 9.18, d(P 2, Q2) = 10.01, d(P 3, Q2) = d(P 4, Q2) = 12.62, so by the

Kuhn-Tucker condition (16), we see that Q2 is the center of the smallest enclosing circle, i.e.,

Q∗ = Q2, and thus, d∗ = d(P 3, Q2).

In this section, we represent “situation 1” as the case that there is just one negative com-

ponent of barycentric coordinate at every projection like (41), (42), and all the components are

non-negative at the last projection like (43). We will calculate below the smallest enclosing

circle by the projection algorithm in situation 1.

Assumption of situation 1 Assume P 1, · · · , Pm ∈ R
n are in general position, and let Lk =

L(P k+1, · · · , Pm), k = 0, 1, · · · , m − 2 be the affine subspace spanned by P k+1, · · · , Pm. Let

Q0 ∈ L0 be the equidistant point from P 1, · · · , Pm, and defineQk = π(Qk−1|Lk), k = 1, · · · ,m−

2. The barycentric coordinate of Qk about P 1, · · · , Pm is denoted by λk = (λk
1 , · · · , λ

k
m). Let

K = 0, 1, · · · ,m−2. We assume that for k = 0, 1, · · · ,K−1, there is just one negative component



of λk, and for k = K, all the components of λK are non-negative. That is,

λ0 = (λ0
1, λ

0
2, · · · , λ

0
m) = (−,+, · · · ,+),

λ1 = (λ1
1, λ

1
2, λ

1
3, · · · , λ

1
m) = (0,−,+, · · · ,+),

λ2 = (λ2
1, λ

2
2, λ

2
3, λ

2
4, · · · , λ

2
m) = (0, 0,−,+, · · · ,+),

...

λK−1 = (λK−1
1 , · · · , λK−1

K−1, λ
K−1
K , · · · , λK−1

m ) = (0, · · · , 0,−,+, · · · ,+),

λK = (λK
1 , · · · , λK

K , λK
K+1, · · · , λ

K
m) = (0, · · · , 0,+, · · · ,+).

If K = 0, we assume λ0 = (+,+, · · · ,+). Summarizing above, we have, for k = 0, 1, · · · ,K − 1,

λk
i





= 0, i = 1, · · · , k, (44a)

< 0, i = k + 1, (44b)

> 0, i = k + 2, · · · ,m, (44c)

and for k = K,

λK
i

{
= 0, i = 1, · · · ,K, (45a)

> 0, i = K + 1, · · · ,m. (45b)

(The end of Assumption of situation 1)

Now, let us consider the inner products σi ≡ (P i − QK , Q0 − QK), i = 1, · · · ,m. We have

the following lemma.

Lemma 7 σi

{
< 0, i = 1, · · · ,K,
= 0, i = K + 1, · · · ,m.

Proof: By Lemma 5, we have QK = π(Q0|LK), LK = L(PK+1, · · · , Pm). Since P i ∈ LK for

i = K + 1, · · · ,m, so by Lemma 4 we have P i −QK ⊥ Q0 −QK , thus

σi = 0, i = K + 1, · · · ,m. (46)

Next, we will prove σi < 0, i = 1, · · · ,K by mathematical induction in the order of i = K,K −

1, · · · , 1.

(I) Prove σK < 0:

From (44a), (46), we have

λK−1
K σK =

m∑

i=1

λK−1
i σi

=

(
m∑

i=1

λK−1
i P i −QK , Q0 −QK

)
(by Lemma 1)

= (QK−1 −QK , Q0 −QK)

= (QK−1 −QK , QK−1 −QK) (by Lemma 6)

> 0. (by Lemma 2) (47)

Since λK−1
K < 0 from (44b), we have σK < 0.



(II) Assuming σK < 0, σK−1 < 0, · · · , σk+1 < 0, prove σk < 0:

From (44a), (46), we have

K∑

i=k

λk−1
i σi =

m∑

i=1

λk−1
i σi

=

(
m∑

i=1

λk−1
i P i −QK , Q0 −QK

)

= (Qk−1 −QK , Q0 −QK)

= (Qk−1 −QK , Qk−1 −QK)

> 0, (48)

i.e., λk−1
k σk +

∑K
i=k+1 λ

k−1
i σi > 0. By the induction hypothesis, σi < 0, i = k + 1, · · · ,K, and

by (44b), λk−1
k < 0, by (44c), λk−1

i > 0, i = k + 1, · · · ,K, therefore we obtain σk < 0.

(III) From the above (I),(II), we have σi < 0, i = 1, · · · ,K. ✷

Lemma 8 d(P i, QK) < d(PK+1, QK) = · · · = d(Pm, QK), i = 1, · · · ,K.

Proof: By Lemma 7, σi = 0, i = K + 1, · · · ,m, thus by Theorem 1, we have d(PK+1, QK) =

· · · = d(Pm, QK). Also by Lemma 7, σi < 0, i = 1, · · · ,K, thus for i = 1, · · · ,K, we have by

Theorem 1,

d2(P i, QK) < d2(P i, Q0)− d2(QK , Q0)

= d2(PK+1, Q0)− d2(QK , Q0)

= d2(PK+1, QK).

✷

Theorem 2 The center of the smallest enclosing circle Γ is Q∗ = QK , and its radius is d∗ =

d(PK+1, QK).

Proof: It follows from (45a), (45b), Lemma 8 and the Kuhn-Tucker condition (16). ✷

2.8 Situation 2 [m = 2, 3, 4 and n is arbitrary.]

We will calculate by the projection algorithm the center Q∗ and the radius d∗ of the smallest

enclosing circle Γ = Γ(P 1, · · · , Pm) in the case that m = 2, 3, 4 and n is arbitrary. Of course

our goal is to find an algorithm to calculate Q∗ and d∗ for every m, but at present it is possible

to solve only for m = 2, 3, 4.

2.8.1 Case of m = 2

Consider the smallest enclosing circle Γ = Γ(P 1, P 2) for two different points P 1, P 2 in R
n. Let

Q0 be the midpoint of the line segment P 1P 2, then we have

Theorem 3 The center of Γ is Q∗ = Q0 and the radius is d∗ = d(P 1, Q0).



2.8.2 Case of m = 3

Consider the smallest enclosing circle Γ = Γ(P 1, P 2, P 3) for three points P 1, P 2, P 3 in general

position in R
n. Let L0 = L(P 1, P 2, P 3) be the affine subspace spanned by P 1, P 2, P 3, and

Q0 ∈ L0 be the equidistant point from P 1, P 2, P 3. The barycentric coordinate of Q0 about

P 1, P 2, P 3 is denoted by λ0 = (λ0
1, λ

0
2, λ

0
3).

Based on the signs of the components of λ0, we can make the following classification without

loss of generality.

Case 3-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Case 3-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Since Q0 is the equidistant point from P 1, P 2, P 3, there must be at least two positive com-

ponents in the barycentric coordinate of Q0. Therefore, all the cases are exhausted by Case 3-1

and Case 3-2. For each case, we will determine the center Q∗ and the radius d∗ of the smallest

enclosing circle Γ = Γ(P 1, P 2, P 3).

Case 3-1

In this case, △P 1P 2P 3 is an acute triangle. We have the following theorem by the Kuhn-Tucker

condition (16).

Theorem 4 The center of Γ is Q∗ = Q0 and the radius is d∗ = d(P 1, Q0).

Case 3-2

In this case, △P 1P 2P 3 is an obtuse triangle. Let L1 = L(P 2, P 3) be the line connecting the two

points P 2, P 3. By the assumption λ0
1 < 0, the equidistant point Q0 is in the opposite side of P 1

with respect to L1. Let Q
1 = π(Q0|L1) be the projection of Q0 onto L1, then Q1 is the midpoint

of P 2P 3. Denoting by λ1 = (λ1
1, λ

1
2, λ

1
3) the barycentric coordinate of Q1 about P 1, P 2, P 3, we

have λ1
1 = 0, λ1

2 = λ1
3 = 1/2, hence this case is the situation 1. So, we have

Theorem 5 The center of Γ is Q∗ = Q1 and the radius is d∗ = d(P 2, Q1).

2.8.3 Case of m = 4

Consider the smallest enclosing circle Γ = Γ(P 1, P 2, P 3, P 4) for four points P 1, P 2, P 3, P 4 in

general position in R
n. Let L0 = L(P 1, · · · , P 4) be the affine subspace spanned by P 1, · · · , P 4

and Q0 ∈ L0 be the equidistant point from P 1, · · · , P 4. The barycentric coordinate of Q0 about

P 1, · · · , P 4 is denoted by λ0 = (λ0
1, · · · , λ

0
4). Without loss of generality, we have the following

exhaustive classification:

Case 4-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-3: λ0
1 < 0, λ0

2 < 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-1

By the Kuhn-Tucker condition (16), we have



Theorem 6 The center of Γ is Q∗ = Q0 and the radius is d∗ = d(P 1, Q0).

Case 4-2

Because λ0
1 < 0, we consider the projection Q1 = π(Q0|L1) of Q

0 onto L1 = L(P 2, P 3, P 4). Let

λ1 = (λ1
1, · · · , λ

1
4) be the barycentric coordinate of Q1 about P 1, · · · , P 4. Since P 1 /∈ L1, we

have λ1
1 = 0. Based on the signs of the components of λ1, we have the following classification

without loss of generality.

Case 4-2-1: λ1
1 = 0, λ1

2 ≥ 0, λ1
3 ≥ 0, λ1

4 ≥ 0

Case 4-2-2: λ1
1 = 0, λ1

2 < 0, λ1
3 ≥ 0, λ1

4 ≥ 0

Case 4-2-1

This case is the situation 1, so we have

Theorem 7 The center of Γ is Q∗ = Q1 and the radius is d∗ = d(P 2, Q1).

Case 4-2-2

Let Q2 = π(Q1|L2) with L2 = L(P 3, P 4), then Q2 is the midpoint of P 3P 4. Denoting by

λ2 = (λ2
1, · · · , λ

2
4) the barycentric coordinate of Q2 about P 1, · · · , P 4, we have λ2

1 = λ2
2 =

0, λ2
3 = λ2

4 = 1/2, hence also this case is the situation 1. So, we have

Theorem 8 The center of Γ is Q∗ = Q2 and the radius is d∗ = d(P 3, Q2).

This completes Case 4-2, then let us consider Case 4-3.

Case 4-3

For the equidistant point Q0 ∈ L0, let us define Q1(1) = π(Q0|L(P 2, P 3, P 4)) and Q1(2) =

π(Q0|L(P 1, P 3, P 4)). Then, denote by λ1(1) = (λ
1(1)
1 , · · · , λ

1(1)
4 ) and λ1(2) = (λ

1(2)
1 , · · · , λ

1(2)
4 )

the barycentric coordinates of Q1(1) and Q1(2) about P 1, · · · , P 4, respectively. Because P 1 /∈

L(P 2, P 3, P 4), P 2 /∈ L(P 1, P 3, P 4), we have

λ
1(1)
1 = 0, λ

1(2)
2 = 0. (49)

Then, consider the inner products

σ
1(1)
i = (P i −Q1(1), Q0 −Q1(1)), i = 1, · · · , 4, (50)

σ
1(2)
i = (P i −Q1(2), Q0 −Q1(2)), i = 1, · · · , 4. (51)

Lemma 9 σ
1(1)
i

{
< 0, i = 1,
= 0, i = 2, 3, 4,

σ
1(2)
i

{
< 0, i = 2,
= 0, i = 1, 3, 4.

Proof: From P i −Q1(1) ⊥ Q0 −Q1(1), i = 2, 3, 4, we have σ
1(1)
i = 0, i = 2, 3, 4. Thus,

λ0
1σ

1(1)
1 =

4∑

i=1

λ0
iσ

1(1)
i

= (Q0 −Q1(1), Q0 −Q1(1)) > 0 (52)

holds, and by the assumption λ0
1 < 0 we obtain σ

1(1)
1 < 0. We can prove for σ

1(2)
i similarly. ✷



Lemma 10 λ
1(2)
1 σ

1(1)
1 + λ

1(1)
2 σ

1(2)
2 > 0.

Proof: From Lemma 9,

λ
1(2)
1 σ

1(1)
1 =

4∑

i=1

λ
1(2)
i σ

1(1)
i

= (Q1(2) −Q1(1), Q0 −Q1(1)), (53)

λ
1(1)
2 σ

1(2)
2 =

4∑

i=1

λ
1(1)
i σ

1(2)
i

= (Q1(1) −Q1(2), Q0 −Q1(2)), (54)

so, by (53)+(54) we obtain λ
1(2)
1 σ

1(1)
1 + λ

1(1)
2 σ

1(2)
2 = (Q1(1) −Q1(2), Q1(1) −Q1(2)) > 0. ✷

Now from Lemmas 9, 10, we see that λ
1(2)
1 < 0 or λ

1(1)
2 < 0 holds. So far, the points P 1 and

P 2 have been treated exactly equally, hence without loss of generality, we assume

λ
1(2)
1 < 0, (55)

and proceed to the next step. Here, we reconfirm the signs of the components of λ1(2) as follows:

λ
1(2)
1 < 0, λ

1(2)
2 = 0, λ

1(2)
3 ≥ 0, λ

1(2)
4 ≥ 0. (56)

We make a classification based on the sings of components of λ1(1). So far, the points P 3

and P 4 have been treated exactly equally, so without loss of generality, we have the following

classification:

Case 4-3-1: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-2: λ
1(1)
1 = 0, λ

1(1)
2 < 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-3: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0

Case 4-3-1

From Lemma 9, we obtain d(P 1, Q1(1)) < d(P 2, Q1(1)) = · · · = d(P 4, Q1(1)) in a similar way to

the proof of Lemma 8. Therefore, by the Kuhn-Tucker condition (16), we have

Theorem 9 The center of Γ is Q∗ = Q1(1) and the radius is d∗ = d(P 2, Q1(1)).

Case 4-3-2

Define Q2 ≡ π(Q1(1)|L(P 3, P 4)) = π(Q0|L(P 3, P 4)) and consider the inner products σ2
i =

(P i −Q2, Q0 −Q2), i = 1, · · · , 4. We have

Lemma 11 σ2
i

{
< 0, i = 1, 2,
= 0, i = 3, 4.

Proof: From P i−Q2 ⊥ Q0−Q2, i = 3, 4, we have σ2
i = 0, i = 3, 4. Next, we will prove σ2

1 < 0,

σ2
2 < 0. Note that Q2 = π(Q1(2)|L(P 3, P 4)) = π(Q0|L(P 3, P 4)). From (49),

λ
1(2)
1 σ2

1 =

4∑

i=1

λ
1(2)
i σ2

i

= (Q1(2) −Q2, Q0 −Q2)

= (Q1(2) −Q2, Q1(2) −Q2)

> 0,



and by the assumption λ
1(2)
1 < 0, we obtain σ2

1 < 0. Similarly, by considering
∑4

i=1 λ
1(1)
i σ2

i , we

obtain σ2
2 < 0. ✷

Lemma 12 d(P i, Q2) < d(P 3, Q2) = d(P 4, Q2), i = 1, 2.

Proof: Similar to the proof of Lemma 8. ✷

Theorem 10 The center of Γ is Q∗ = Q2 and the radius is d∗ = d(P 3, Q2).

Proof: By Lemma 12 and the Kuhn-Tucker condition (16). ✷

Case 4-3-3

Put Q1(3) = π(Q0|L(P 1, P 2, P 4)), and consider the inner products σ
1(3)
i = (P i − Q1(3), Q0 −

Q1(3)), i = 1, · · · , 4. We have

Lemma 13 σ
1(3)
i

{
> 0, i = 3,
= 0, i = 1, 2, 4.

Proof: From P i − Q1(3) ⊥ Q0 − Q1(3), i = 1, 2, 4, we have σ
1(3)
i = 0, i = 1, 2, 4. Thus,

λ0
3σ

1(3)
3 =

∑4
i=1 λ

0
iσ

1(3)
i = (Q0 −Q1(3), Q0 −Q1(3)) > 0, so by the assumption λ0

3 > 0, we obtain

σ
1(3)
3 > 0. ✷

Lemma 14 λ
1(3)
1 < 0.

Proof: By Lemma 13, we have

λ
1(1)
3 σ

1(3)
3 =

4∑

i=1

λ
1(1)
i σ

1(3)
i

= (Q1(1) −Q1(3), Q0 −Q1(3)). (57)

Further, by Lemma 9,

λ
1(3)
1 σ

1(1)
1 =

4∑

i=1

λ
1(3)
i σ

1(1)
i

= (Q1(3) −Q1(1), Q0 −Q1(1)). (58)

By (57)+(58), we have

λ
1(1)
3 σ

1(3)
3 + λ

1(3)
1 σ

1(1)
1 = (Q1(1) −Q1(3), Q1(1) −Q1(3))

> 0. (59)

By the assumption of Case 4-3-3, λ
1(1)
3 < 0 holds, by Lemma 13, σ

1(3)
3 > 0 holds, and by Lemma

9, σ
1(1)
1 < 0 holds, therefore, by (59), we obtain λ

1(3)
1 < 0. ✷

Here, we reconfirm the signs of the components of λ1(1) and λ1(3) as follows:

λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0, (60)

λ
1(3)
1 < 0, λ

1(3)
2 ≥ 0, λ

1(3)
3 = 0, λ

1(3)
4 ≥ 0. (61)



If we exchange the points P 2 and P 3, then the second coordinate and the third coordinate are

exchanged in (60) and (61), hence as a result, the signs of the components become the same

combination as in Case 4-3-2 and (56). In the proof of Case 4-3-2, the barycentric coordinate

λ0 of Q0 is not used, only λ1(1) and λ1(3) are used in the proof, therefore, exchanging P 2 and

P 3 in the proof of Case 4-3-2 gives the proof of Case 4-3-3. Hence, in this Case 4-3-3, we have

the following theorem.

Theorem 11 Put Q2† = π(Q0|L(P 2, P 4)). Then the center of Γ is Q∗ = Q2† and the radius

is d∗ = d(P 2, Q2†).

3 Problem of channel capacity

In chapter 2, we obtained some theorems on the problem of smallest enclosing circle using

Euclidean geometry. In particular, by using the distance, inner product, Pythagorean theorem

and projection in the Euclidean space, we obtained a method of searching for the center Q∗ of

the smallest enclosing circle by the projection algorithm. The problem of channel capacity has

a similar geometric structure to that of smallest enclosing circle based on the similarity of (6)

and (8).

In this chapter, we will consider the problem of channel capacity geometrically based on the

results in chapter 2, to exploit a projection algorithm of searching for the output distribution

that achieves the channel capacity.

3.1 Information geometry

The underlying geometry of the problem of channel capacity is the information geometry [1],

rather than the Euclidean geometry. A difference between the Euclidean geometry and the

information geometry is that the Euclidean geometry uses one coordinate system but the infor-

mation geometry uses two mutually dual coordinate systems. Amari [1] investigated α-geometry

for real α, which is a family of geometric structures. The Euclidean geometry corresponds to

α = 0 and the geometry of ∆n corresponds to α = ±1, so, they can be regarded as a special case

of α-geometry. In α-geometry, α-divergence, inner product, Pythagorean theorem, α-projection

can be used. In the proof of theorems for the problem of smallest enclosing circle, we only

used the Euclidean distance, inner product, Pythagorean theorem and projection among the

properties of the Euclidean geometry. Thus, the resulting theorems or algorithms are expected

to apply easily to the problem of channel capacity. In fact, we show it in the following.

3.2 Geometric structure on ∆n

Let ∆n be the set of probability distributions with positive components on the output alphabet

{y1, · · · , yn}, i.e.,

∆n = {Q = (Q1, · · · , Qn)|Qj > 0, j = 1, · · · , n,

n∑

j=1

Qj = 1}.

Geometric structure is introduced on ∆n as follows [1].



3.2.1 Dual coordinate systems

Two coordinate systems, in other words, two ways to specify Q = (Q1, · · · , Qn) ∈ ∆n are given

on ∆n.

η coordinate:

η = (η2, · · · , ηn), ηj = Qj, j = 2, · · · , n,

θ coordinate:

θ = (θ2, · · · , θn), θj = log
Qj

Q1
, j = 2, · · · , n.

The η coordinate system and the θ coordinate system are mutually dual coordinate systems [1].

3.2.2 Geodesic

A straight line with respect to the η coordinate is called an η geodesic. Let η1,η2 be the η

coordinates of Q1, Q2 ∈ ∆n, respectively, then the η geodesic passing through Q1, Q2 is defined

by

η(t) = (1− t)η1 + tη2 ∈ ∆n, t ∈ R. (62)

Further, a straight line with respect to the θ coordinate is called a θ geodesic. Let θ1,θ2 be

the θ coordinates of Q1, Q2 ∈ ∆n, respectively, then the θ geodesic passing through Q1, Q2 is

defined by

θ(t) = (1− t)θ1 + tθ2 ∈ ∆n, t ∈ R. (63)

3.3 Inner product, Pythagorean theorem and projection in ∆n

3.3.1 Inner product

Consider three points Q1, Q2, Q3 ∈ ∆n. The inner product (Q1 − Q2, Q3 ⊖ Q2) is defined as

follows. Let η1 = (η12 , · · · , η
1
n),η

2 = (η22 , · · · , η
2
n) be the η coordinates of Q1, Q2, respectively,

and θ2 = (θ22, · · · , θ
2
n),θ

3 = (θ32, · · · , θ
3
n) be the θ coordinates of Q2, Q3, respectively. Then the

inner product is defined by

(Q1 −Q2, Q3 ⊖Q2) ≡

n∑

j=2

(η1j − η2j )(θ
3
j − θ2j ). (64)

This is the inner product (in the usual sense) of the two tangent vectors dη(t)/dt|t=0 = η1 −η2

and dθ(t)/dt|t=0 = θ3−θ2 at Q2 for two geodesics η(t) = (1−t)η2+tη1 and θ(t) = (1−t)θ2+tθ3

passing through Q2 [1].

For Q1, Q2, Q3 ∈ ∆n, the η geodesic η(t) = (1 − t)η2 + tη1 and the θ geodesic θ(t) =

(1− t)θ2 + tθ3 are said to be orthogonal at Q2 if [1]

(Q1 −Q2, Q3 ⊖Q2) = 0. (65)

We have the following lemmas.



Lemma 15 For P i (i = 1, · · · ,m), Q,R ∈ ∆n, consider the inner products σi = (P i − Q,R ⊖

Q), i = 1, · · · ,m. If
∑m

i=1 λi = 1, then

m∑

i=1

λiσi =

(
m∑

i=1

λiP
i −Q,R⊖Q

)
. (66)

Proof: By the definition of inner product and a simple calculation. ✷

Lemma 16 For any P,Q,R ∈ ∆n, we have

(P −Q,R⊖Q) = −(Q− P,R⊖ P ) + (P −Q,P ⊖Q).

Proof: By a simple calculation. ✷

Lemma 17 For any P,Q,R ∈ ∆n, we have

(P −Q,R ⊖Q) = D(P‖Q) +D(Q‖R)−D(P‖R).

Proof: By a simple calculation (see also [1]). ✷

3.3.2 Pythagorean theorem

For three points P,Q,R in ∆n, the following Pythagorean theorem and its inequality version

hold.

Theorem 12 (Pythagorean) For P,Q,R ∈ ∆n, we have

(P −Q,R⊖Q) T 0 ⇐⇒ D(P‖Q) +D(Q‖R) T D(P‖R). (67)

Proof: By Lemma 17 (see also [1]). ✷

3.3.3 Projection by Kullback-Leibler divergence

For P 1, · · · , Pm ∈ ∆n, the affine subspace L(P 1, · · · , Pm) ⊂ ∆n spanned by P 1, · · · , Pm is

defined by

L(P 1, · · · , Pm) =

{
m∑

i=1

λiP
i
∣∣∣

m∑

i=1

λi = 1

}
∩∆n. (68)

For Q′ ∈ ∆n and a subset L ⊂ ∆n, the Q = Q′′ that achieves minQ∈LD(Q‖Q′) is called the

projection of Q′ onto L, and denoted by Q′′ = π(Q′|L). In this paper, we consider only affine

subspaces as L.

Lemma 18 Let L be an affine subspace in ∆n. Then, for any Q′ ∈ ∆n, the projection Q′′ =

π(Q′|L) exists and is unique. Moreover, Q′′ = π(Q′|L) is equivalent to that (P−Q′′, Q′⊖Q′′) = 0

holds for any P ∈ L (see Fig.3).

Proof: see [1]. ✷



Q′

Q′′P
L

θ geodesic

η geodesic

Figure 3: Projection Q′′ = π(Q′|L) of Q′ onto affine subspace L

3.4 Equidistant point and projection of equidistant point

We will calculate the channel capacity C and the output distribution Q∗ that achieves C, in

case that the row vectors P 1, · · · , Pm of the channel matrix Φ in (2) are in general position.

In chapter 2, we investigated the problem of smallest enclosing circle based on the Euclidean

geometry in case that the points P 1, · · · , Pm are in general position. In this chapter, we will

consider the problem of channel capacity based on the information geometry.

3.4.1 Equidistant point from P 1, · · · , Pm

For a channel matrix Φ in (2), a matrix Ψ ∈ R
(m−1)×n is defined by

Ψ =




P 2 − P 1

...
Pm − P 1




=




P 2
1 − P 1

1 · · · P 2
n − P 1

n
...

...
Pm
1 − P 1

1 · · · Pm
n − P 1

n


 . (69)

Then, P 1, · · · , Pm are said to be in general position, if the vectors P 2 − P 1, · · · , Pm − P 1 are

linearly independent, or

rankΨ = m− 1. (70)

Now, we assume in this chapter that P 1, · · · , Pm are in general position. Then, denote by

Ψ′ ∈ R
(m−1)×(n−1) the matrix that is made by removing the first column of Ψ, i.e.,

Ψ′ =




P 2
2 − P 1

2 · · · P 2
n − P 1

n
...

...
Pm
2 − P 1

2 · · · Pm
n − P 1

n


 . (71)

We see rankΨ′ = m−1. In fact, let P i′ = (P i
2, · · · , P

i
n), i = 1, · · · ,m, and suppose

∑m
i=2 ci(P

i′−

P 1′) = O. Noticing
∑n

j=1 P
i
j = 1, i = 1, · · · ,m, we have

∑m
i=2 ci(P

i − P 1) = O, therefore, from

(70), ci = 0, i = 2, · · · ,m.

Now, similarly to the problem of smallest enclosing circle, we consider an output distribution

that has the equal Kullback-Leibler divergence from P 1, · · · , Pm, i.e., we consider Q ∈ ∆n that

satisfies

D(P i‖Q) = D(P 1‖Q), i = 2, · · · ,m. (72)



Let θ = (θ2, · · · , θn) be the θ coordinate of Q, and H(P i) = −
∑n

j=1 P
i
j log P

i
j be the entropy of

P i, i = 1, · · · ,m. Then by a simple calculation, we have from (72),

D(P i‖Q)−D(P 1‖Q)

= −

n∑

j=2

(P i
j − P 1

j ) θj −H(P i) +H(P 1)

= 0, i = 2, · · · ,m. (73)

Putting b = (−H(P 2) +H(P 1), · · · ,−H(Pm) +H(P 1)) ∈ R
m−1, we can rewrite (73) as

Ψ′ tθ = tb. (74)

Because rankΨ′ = m − 1, the equation (74) has a solution θ, but it is not necessarily unique.

From a solution θ = (θ2, · · · , θn) of (74), we make Q = (Q1, · · · , Qn) ∈ ∆n by





Q1 =


1 +

n∑

j=2

exp θj




−1

,

Qj = Q1 exp θj, j = 2, · · · , n.

(75)

Then the θ coordinate of Q becomes θ.

Lemma 19 Let L0 = L(P 1, · · · , Pm) be the affine subspace spanned by P 1, · · · , Pm (see (68)).

Make Q ∈ ∆n by (75) from a solution θ of the equation (74) and put Q0 = π(Q|L0). Then, Q0

is the unique point in L0 with

D(P i‖Q0) = D(P 1‖Q0), i = 2, · · · ,m. (76)

Proof: For Q, Q′ ∈ ∆n with (74), (75), let Q0 = π(Q|L0), Q
0′ = π(Q′|L0). We will prove

Q0 = Q0′. Put Q0 = (Q0
1, · · · , Q

0
n), Q

0′ = (Q0
1
′, · · · , Q0

n
′). Both Q and Q′ satisfy the equation

(72), so from Theorem 12 and Lemma 18, we have

n∑

j=1

P i
j log

P i
j

Q0
j

=

n∑

j=1

P 1
j log

P 1
j

Q0
j

, i = 2, · · · ,m, (77)

n∑

j=1

P i
j log

P i
j

Q0
j
′
=

n∑

j=1

P 1
j log

P 1
j

Q0
j
′
, i = 2, · · · ,m. (78)

Subtracting (77) from (78),

n∑

j=1

P i
j log

Q0
j

Q0
j
′
=

n∑

j=1

P 1
j log

Q0
j

Q0
j
′
, i = 2, · · · ,m. (79)

From (79), we can write

n∑

j=1

P i
j log

Q0
j

Q0
j
′
= κ (constant), i = 1, · · · ,m. (80)



Let λ0 = (λ0
1, · · · , λ

0
m), λ0′ = (λ0

1
′, · · · , λ0

m
′) be the barycentric coordinates of Q0, Q0′ ∈ L0

about P 1, · · · , Pm, respectively. Then, from (80),

κ =

m∑

i=1

λ0
i

n∑

j=1

P i
j log

Q0
j

Q0
j
′
= D(Q0‖Q0′), (81)

κ =

m∑

i=1

λ0
i
′

n∑

j=1

P i
j log

Q0
j

Q0
j
′
= −D(Q0′‖Q0). (82)

Subtracting (82) from (81),

0 = D(Q0‖Q0′) +D(Q0′‖Q0), (83)

thus, we obtain Q0 = Q0′. ✷

Q0 ∈ L0 = L(P 1, · · · , Pm) with (76) is called the equidistant point from P 1, · · · , Pm. The

existence and uniqueness of Q0 is guaranteed by Lemma 19. It might be better to call Q0

an equi-divergence distribution, but, by analogy with smallest enclosing circle, we call it an

equidistant point, too.

3.4.2 Projection of equidistant point

Now, we further define Lk = L(P k+1, · · · , Pm), k = 0, 1, · · · ,m− 2. L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ · · ·

is a decreasing sequence of affine subspaces whose dimensions are decreasing by 1.

LetQ1 = π(Q0|L1) denote the projection ofQ0 onto L1. Further, we defineQ
k = π(Qk−1|Lk),

k = 1, · · · ,m− 2.

Lemma 20 Qk = π(Q0|Lk), k = 0, 1, · · · ,m− 2.

Proof: It is trivial for k = 0, 1 by definition. Next for k = 2, putting Q2′ = π(Q0|L2), we will

prove Q2′ = Q2 ≡ π(Q1|L2). Since Q
1 = π(Q0|L1), for any Q ∈ L1 we have by Theorem 12 and

Lemma 18

D(Q‖Q0) = D(Q‖Q1) +D(Q1‖Q0). (84)

Therefore, by (84), with respect to Q ∈ L2(⊂ L1) minimizing D(Q‖Q0) and minimizing

D(Q‖Q1) are equivalent. Because the projections π(Q1|L2) and π(Q0|L2) are unique by Lemma

18, we obtain Q2′ = Q2. For k ≥ 3, it is proved by mathematical induction. ✷

Lemma 21 (Qi −Qk, Q0 ⊖Qk) = (Qi −Qk, Qi ⊖Qk), i = 0, 1, · · · , k, k = 0, 1, · · · ,m− 2.

Proof: By Lemma 16, we have

(Qi −Qk, Q0 ⊖Qk)

= −(Qk −Qi, Q0 ⊖Qi) + (Qi −Qk, Qi ⊖Qk). (85)

By Lemma 20, Qi = π(Q0|Li), and by k ≥ i, Qk ∈ Li, so we obtain (Qk −Qi, Q0 ⊖Qi) = 0 by

Lemma 18. ✷

Lemma 22 For any P,Q ∈ ∆n, P 6= Q, we have (P −Q,P ⊖Q) > 0.

Proof: By Lemma 17, we obtain (P −Q,P ⊖Q) = D(P‖Q) +D(Q‖P ) > 0. ✷



3.5 Search for Q∗ by projection algorithm

For a given channel matrix Φ in (2), let C be the channel capacity and Q∗ be the output

distribution that achieves C. In this section, similarly to section 2.6, we will show that Q∗ and

C are obtained by the projection algorithm, under the assumption that the row vectors of the

channel matrix Φ are in general position and in the situations 1 and 2 below.

3.6 Situation 1 [There is just one negative component of barycentric coordi-
nate at every projection.]

We consider the following assumption similar to section 2.7.

Assumption of situation 1 Assume P 1, · · · , Pm ∈ ∆n are in general position, and let Lk =

L(P k+1, · · · , Pm), k = 0, 1, · · · , m − 2 be the affine subspace spanned by P k+1, · · · , Pm. Let

Q0 ∈ L0 be the equidistant point from P 1, · · · , Pm, and defineQk = π(Qk−1|Lk), k = 1, · · · ,m−

2. The barycentric coordinate of Qk about P 1, · · · , Pm is denoted by λk = (λk
1 , · · · , λ

k
m). Let

K = 0, 1, · · · ,m − 2. We assume that for k = 0, 1, · · · ,K − 1, there is just one negative

component of λk, and for k = K, all the components of λK are non-negative. That is, for

k = 0, 1, · · · ,K − 1,

λk
i





= 0, i = 1, · · · , k, (86a)

< 0, i = k + 1, (86b)

> 0, i = k + 2, · · · ,m, (86c)

and for k = K,

λK
i

{
= 0, i = 1, · · · ,K, (87a)

> 0, i = K + 1, · · · ,m. (87b)

If K = 0, we assume λ0
i ≥ 0, i = 1, · · · ,m.

(The end of Assumption of situation 1)

Here, we consider the inner products σi = (P i −QK , Q0 ⊖QK), i = 1, · · · ,m.

Lemma 23 σi

{
< 0, i = 1, · · · ,K,
= 0, i = K + 1, · · · ,m.

Proof: By Lemma 20, QK = π(Q0|LK), and since PK+1 · · · , Pm ∈ LK , we have, by Lemma

18,

σi = 0, i = K + 1, · · · ,m. (88)

Next, we will prove σi < 0, i = 1, · · · ,K by mathematical induction in the order of i = K,K −

1, · · · , 1.

(I) Prove σK < 0:

By (86a), (88), we have

λK−1
K σK =

m∑

i=1

λK−1
i σi

= (QK−1 −QK , Q0 ⊖QK)

= (QK−1 −QK , QK−1 ⊖QK) (by Lemma 21)

> 0 (by Lemma 22). (89)



By (86b), λK−1
K < 0, thus we obtain σK < 0 by (89).

(II) Assuming σK < 0, σK−1 < 0, · · · , σk+1 < 0, prove σk < 0:

By (86a), (88), we have

λk−1
k σk +

K∑

i=k+1

λk−1
i σi =

m∑

i=1

λk−1
i σi

= (Qk−1 −QK , Q0 ⊖QK)

= (Qk−1 −QK , Qk−1 ⊖QK)

> 0. (90)

By the induction hypothesis, σi < 0, i = k + 1, · · · ,K, and by (86b), λk−1
k < 0, by (86c),

λk−1
i > 0, i = k + 1, · · · ,K, thus by (90), we obtain σk < 0.

(III) By the above (I), (II), we have σi < 0, i = 1, · · · ,K. ✷

Lemma 24 D(P i‖QK) < D(PK+1‖QK) = · · · = D(Pm‖QK), i = 1, · · · ,K.

Proof: By Lemma 23 and Theorem 12. ✷

Theorem 13 The output distribution that achieves the channel capacity is Q∗ = QK , and the

channel capacity is C = D(PK+1‖QK).

Proof: By (87a), (87b), Lemma 24 and the Kuhn-Tucker condition (7). ✷

We see that the above Lemmas 23, 24, Theorem 13 and their proofs are very similar to

Lemmas 7, 8, Theorem 2 and their proofs in the problem of smallest enclosing circle in chapter

2. This is because that the problems of smallest enclosing circle and channel capacity can be

solved using only common properties of α-geometry.

3.7 Situation 2 [m = 2, 3, 4 and n is arbitrary.]

We will calculate by the projection algorithm the capacity achieving output distribution Q∗ and

the channel capacity C, under the assumption that the row vectors P 1, · · · , Pm of the channel

matrix Φ in (2) are in general position in ∆n.

Similarly to chapter 2, our goal is to find an algorithm to calculate Q∗ and C for every m,

but at present it is possible to solve only for m = 2, 3, 4.

As can be seen from the results of the previous section, the proofs of lemmas and theorems

in the case of smallest enclosing circle are almost the same as those of channel capacity. Because

those are similar also in this section, the proofs of the following lemmas and theorems will be

described simply.

3.7.1 Case of m = 2

Consider the channel capacity of a channel matrix Φ with two different row vectors P 1, P 2 ∈ ∆n.

Let L0 = L(P 1, P 2), and Q0 ∈ L0 be the equidistant point from P 1, P 2, i.e.,

D(P 1‖Q0) = D(P 2‖Q0), Q0 ∈ L0. (91)



Let λ0 = (λ0
1, λ

0
2) be the barycentric coordinate of Q0 about P 1, P 2. Because Q0 is between P 1

and P 2 in L0, we have λ0
1 > 0, λ0

2 > 0. Thus, by (91) and the Kuhn-Tucker condition (7), we

have

Theorem 14 The output distribution that achieves the channel capacity is Q∗ = Q0, and the

channel capacity is C = D(P 1‖Q0).

3.7.2 Case of m = 3

Suppose the channel matrix consists of three row vectors P 1, P 2, P 3 ∈ ∆n in general position.

Let L0 = L(P 1, P 2, P 3) and let Q0 ∈ L0 be the equidistant point from P 1, P 2, P 3. Let λ0 =

(λ0
1, λ

0
2, λ

0
3) be the barycentric coordinate of Q0 about P 1, P 2, P 3.

Based on the signs of the components of λ0, we have the following classification without loss

of generality.

Case 3-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Case 3-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0

As in the problem of smallest enclosing circle, all the cases are exhausted by Case 3-1 and

Case 3-2.

Case 3-1

By the Kuhn-Tucker condition (7), we have

Theorem 15 The output distribution that achieves the channel capacity is Q∗ = Q0 and the

channel capacity is C = D(P 1‖Q0).

Case 3-2

Similarly to the Case 3-2 in chapter 2, this case is the situation 1, hence we have

Theorem 16 The output distribution that achieves the channel capacity is Q∗ = Q1 and the

channel capacity is C = D(P 2‖Q1).

3.7.3 Case of m = 4

Suppose the channel matrix Φ consists of four row vectors P 1, P 2, P 3, P 4 ∈ ∆n in general

position. Let L0 = L(P 1, · · · , P 4) and Q0 ∈ L0 be the equidistant point from P 1, · · · , P 4. Let

λ0 = (λ0
1, · · · , λ

0
4) be the barycentric coordinate of Q0 about P 1, · · · , P 4.

Without loss of generality, we have the following classification:

Case 4-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-3: λ0
1 < 0, λ0

2 < 0, λ0
3 ≥ 0, λ0

4 ≥ 0

Case 4-1

By the Kuhn-Tucker condition (7), we have



Theorem 17 The output distribution that achieves the channel capacity is Q∗ = Q0 and the

channel capacity is C = D(P 1‖Q0).

Case 4-2

Let L1 = L(P 2, P 3, P 4) and Q1 = π(Q0|L1), and denote by λ1 = (λ1
1, · · · , λ

1
4) the barycentric

coordinate of Q1 about P 1, · · · , P 4. Since P 1 /∈ L1, we have λ1
1 = 0.

Based on the signs of the components of λ1, we have the following classification without loss

of generality.

Case 4-2-1: λ1
1 = 0, λ1

2 ≥ 0, λ1
3 ≥ 0, λ1

4 ≥ 0

Case 4-2-2: λ1
1 = 0, λ1

2 < 0, λ1
3 ≥ 0, λ1

4 ≥ 0

Consider the inner products σi = (P i −Q1, Q0 ⊖Q1), i = 1, · · · , 4.

Case 4-2-1

This case is the situation 1, hence we have

Theorem 18 The output distribution that achieves the channel capacity is Q∗ = Q1 and the

channel capacity is C = D(P 2‖Q1).

Case 4-2-2

Let us define Q2 = π(Q1|L2) with L2 = L(P 3, P 4), then Q2 is between P 3 and P 4 in the line

L2. Denoting by λ2 = (λ2
1, · · · , λ

2
4) the barycentric coordinate of Q2 about P 1, · · · , P 4, we have

λ2
1 = λ2

2 = 0, λ2
3 > 0, λ2

4 > 0, hence this is the situation 1. So, we have

Theorem 19 Let Q2 = π(Q1|L(P 3, P 4)). The output distribution that achieves the channel

capacity is Q∗ = Q2 and the channel capacity is C = D(P 3‖Q2).

This completes Case 4-2, then let us consider Case 4-3.

Case 4-3

Here, let us define Q1(1) = π(Q0|L(P 2, P 3, P 4)) and Q1(2) = π(Q0|L(P 1, P 3, P 4)). Then denote

by λ1(1) = (λ
1(1)
1 , · · · , λ

1(1)
4 ) and λ1(2) = (λ

1(2)
1 , · · · , λ

1(2)
4 ) the barycentric coordinates of Q1(1)

and Q1(2) about P 1, · · · , P 4, respectively. Consider the inner products

σ
1(1)
i = (P i −Q1(1), Q0 ⊖Q1(1)), i = 1, · · · , 4, (92)

σ
1(2)
i = (P i −Q1(2), Q0 ⊖Q1(2)), i = 1, · · · , 4. (93)

Lemma 25 σ
1(1)
i

{
< 0, i = 1,
= 0, i = 2, 3, 4,

σ
1(2)
i

{
< 0, i = 2,
= 0, i = 1, 3, 4.

Lemma 26 λ
1(2)
1 σ

1(1)
1 + λ

1(1)
2 σ

1(2)
2 > 0.

The above Lemmas 25, 26 are proved in the same way as Lemmas 9, 10.

Now from Lemmas 25, 26, we see that λ
1(2)
1 < 0 or λ

1(1)
2 < 0 holds. So far, the points P 1

and P 2 have been treated exactly equally, hence without loss of generality, we assume λ
1(2)
1 < 0.

Based on the signs of the components of λ1(1), we have the following classification:



Case 4-3-1: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-2: λ
1(1)
1 = 0, λ

1(1)
2 < 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-3: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0

Case 4-3-1

Theorem 20 The output distribution that achieves the channel capacity is Q∗ = Q1(1) and the

channel capacity is C = D(P 2‖Q1(1)).

Proof: Similar to the proof of Theorem 9. ✷

Case 4-3-2

Define Q2 ≡ π(Q1(1)|L(P 3, P 4))(= π(Q0|L(P 3, P 4))), and consider the inner products σ2
i =

(P i −Q2, Q0 ⊖Q2), i = 1, · · · , 4.

Lemma 27 σ2
i

{
< 0, i = 1, 2,
= 0, i = 3, 4.

Lemma 28 D(P i‖Q2) < D(P 3‖Q2) = D(P 4‖Q2), i = 1, 2.

Theorem 21 The output distribution that achieves the channel capacity is Q∗ = Q2 and the

channel capacity is C = D(P 3‖Q2).

The above Lemmas 27, 28 and Theorem 21 are proved in the same way as Lemmas 11, 12 and

Theorem 10.

Case 4-3-3

Let us define Q1(3) = π(Q0|L(P 1, P 2, P 4)), and denote by λ1(3) = (λ
1(3)
1 , · · · , λ

1(3)
4 ) the barycen-

tric coordinate of Q1(3) about P 1, · · · , P 4. Consider the inner products σ
1(3)
i = (P i−Q1(3), Q0⊖

Q1(3)), i = 1, · · · , 4.

Lemma 29 σ
1(3)
i

{
> 0, i = 3,
= 0, i = 1, 2, 4.

Lemma 30 λ
1(3)
1 < 0.

Theorem 22 Let Q2† ≡ π(Q0|L(P 2, P 4)). The output distribution that achieves the channel

capacity is Q∗ = Q2† and the channel capacity is C = D(P 2‖Q2†).

The above Lemmas 29, 30 and Theorem 22 are proved in the same way as Lemmas 13, 14 and

Theorem 11.

Summarizing the classification of case m = 4 in chapters 2 and 3, we have the signs of

barycentric coordinate and the pair (Q∗, d∗) as follows:

Case 4-1 (+ + ++) (Q0, d(P 1, Q0))

Case 4-2 (−+++)
Case 4-2-1 (0 + ++) (Q1, d(P 2, Q1))
Case 4-2-1 (0−++) (Q2, d(P 3, Q2))

Case 4-3 (−−++)

Case 4-3-1 (0 + ++) (Q1(1), d(P 2, Q1(1)))
Case 4-3-2 (0−++) (Q2, d(P 3, Q2))
Case 4-3-3 (0 +−+) (Q2†, d(P 2, Q2†))



Table 1: Correspondence of symbols between smallest enclosing circle and channel capacity
smallest enclosing circle channel capacity

λ barycentric coordinate input distribution

P 1, · · · , Pm given points ∈ R
n

output distributions ∈ ∆n

for input symbols
x1, · · · , xm

Φ




P 1

...
Pm


 matrix of

given points




P 1

...
Pm


 channel matrix

convex
function

f(λ,Φ) =
λ ta− λΦ tΦ tλ

a = (‖P 1‖2, · · · , ‖Pm‖2)

I(λ,Φ)
mutual information

metric
d(P,Q)

Euclidean distance

D(P‖Q)

Kullback-Leibler
divergence

Kuhn-
Tucker
condition

d(P i,λ∗Φ){
= d0, if λ

∗
i > 0

≤ d0, if λ
∗
i = 0

D(P i‖λ∗Φ){
= C0, if λ

∗
i > 0

≤ C0, if λ
∗
i = 0

Q∗ center of smallest
enclosing circle

capacity achieving
output distribution

inner
product

n∑

j=1

(Q1
j −Q2

j )(Q
3
j −Q2

j)

n∑

j=2

(η1j − η2j )(θ
3
j − θ2j )

Pythagorean
theorem

d2(P,Q) + d2(Q,R)
= d2(P,R)

D(P‖Q) +D(Q‖R)
= D(P‖R)

projection min
P∈L

d(P,Q) min
P∈L

D(P‖Q)

In chapters 2 and 3, we used common symbols both in smallest enclosing circle and channel

capacity. Then, we will show in TABLE 1 the correspondence of symbols between them.

4 Search for optimal solution for arbitrary placement of points

In the previous chapters, we assumed that the given points P 1, · · · , Pm ∈ R
n or ∈ ∆n are in

general position, i.e., (18) or (70). Under these assumptions, there exists the equidistant point

Q0 from P 1, · · · , Pm, hence by the projection algorithm, we could calculate the center of the

smallest enclosing circle Q∗, or the capacity achieving output distribution Q∗. However, we

cannot expect that arbitrarily given points P 1, · · · , Pm are in general position, especially if m

is large. For example, four points in R
2 are not in general position. If P 1, · · · , Pm are not in

general position, the projection algorithms in the previous chapters cannot be used.

In this chapter, we assume

rankΨ ≤ m− 1 for Ψ =




P 2 − P 1

...
Pm − P 1


 , (94)

which implies that there is no constraint on the placement of the points P 1, · · · , Pm. Because

the projection algorithms in chapters 2, 3 cannot be used in its present form if rank Φ < m− 1,

we must consider some way to avoid this difficulty. In this chapter, we will consider a method



Q̃0

P 2

P 1
P̃ 1

P 3

Figure 4: Getting equidistant point by shifting a point

of giving a little deformation to the placement of given points P 1, · · · , Pm so that the points of

the deformed placement are in general position, then apply the projection algorithm. According

to the method which will be proposed in this chapter, it is not necessary to check the rank of Φ

in advance. Furthermore, we do not need to know about geometric conditions, such as, a point

is contained in the convex hull of several other points, or what the dimension of the subspace

spanned by the whole points is, and so on. However, because we make a little deformation to

the original problem, there might be some possibility that the obtained result is different from

the true solution of the original problem.

Let us consider an example of Fig.4. The three points P 1, P 2, P 3 are on a straight line

in R
2. In this case, how can we determine the smallest enclosing circle Γ(P 1, P 2, P 3) without

knowing the positional relationship such as P 1 lies between P 2 and P 3? A method that we

conceive immediately is to select two points from the three points and check all the combinations

Γ(P 1, P 2), Γ(P 1, P 3), Γ(P 2, P 3). Among them, the one which includes all the points with the

minimum radius is the smallest enclosing circle. However, if the number of points becomes

large the computational complexity becomes large, thus, such a combinatorial method cannot

be applied to general cases.

Now, let us shift P 1 slightly to have P̃ 1 (see Fig. 4), then there exists the equidistant point

Q̃0 from P̃ 1, P 2, P 3, so, we can calculate the smallest enclosing circle Γ(P̃ 1, P 2, P 3) by the

projection algorithm in the previous chapters. If the amount of shift is small, then we can

expect Γ(P̃ 1, P 2, P 3) = Γ(P 1, P 2, P 3).

Based on the above fundamental idea, we will give the following algorithm.

4.1 Method of lifting dimension of point in R
n

For m points P 1, · · · , Pm in R
n with (94), define the points P̃ 1, · · · , P̃m ∈ R

n+m by lifting the

dimension as follows:

P 1 = (P 1
1 , · · · , P

1
n) → P̃ 1 = (P 1

1 , · · · , P
1
n , ε, 0, · · · , 0),

P 2 = (P 2
1 , · · · , P

2
n) → P̃ 2 = (P 2

1 , · · · , P
2
n , 0, ε, · · · , 0),

...
...

Pm = (Pm
1 , · · · , Pm

n ) → P̃m = (Pm
1 , · · · , Pm

n , 0, · · · , 0, ε),

(95)



P 1 = (1)P 2 = (0) P 3 = (2)

Figure 5: Three points P 1 = (1), P 2 = (0), P 3 = (2) in R

where ε ∈ R, ε 6= 0, and |ε| is sufficiently small. The above correspondence P i → P̃ i can be

written as follows. Defining the ith fundamental vector ei ∈ R
m by

ei = (0, · · · , 0,

i th
∨

1, 0, · · · , 0), i = 1, · · · ,m, (96)

we have the correspondence

R
n ∋ P i → P̃ i = (P i, εei) ∈ R

n+m, i = 1, · · · ,m. (97)

Then let

Φ̃ =




P̃ 1

...

P̃m


 ∈ R

m×(n+m). (98)

We have rank Φ̃ = m for ε 6= 0, hence, by the same argument as (2.4), we see that there exists the

equidistant point Q̃0 ∈ L(P̃ 1, · · · , P̃m) ⊂ R
n+m from P̃ 1, · · · , P̃m. Denote by λ̃0 = (λ̃0

1, · · · , λ̃
0
m)

the barycentric coordinate of Q̃0 about P̃ 1, · · · , P̃m. Define M̃ ≡ Φ̃tΦ̃ ∈ R
m×m, then since

rank M̃ =rank Φ̃ = m, M̃ is non-singular. Putting ã = (‖P̃ 1‖2, · · · , ‖P̃m‖2) ∈ R
m, we have

λ̃0 =
1

2

(
ã+

2− ãM̃−1 t1

1M̃−1 t1
1

)
M̃−1 (99)

in a similar way as (38).

Suppose we had the center Q̃∗ of the smallest enclosing circle for P̃ 1, · · · , P̃m by the pro-

jection algorithm in chapter 2, then for small ε, Q̃∗ is close to the true Q∗, which is the center

of the smallest enclosing circle for P 1, · · · , Pm. Denote by λ̃∗ the barycentric coordinate of Q̃∗

about P̃ 1, · · · , P̃m, and λ̃∗
∣∣
ε=0

by substituting ε = 0 in λ̃∗. Then Q∗ = λ̃∗
∣∣
ε=0

Φ is expected to

be the center of the original smallest enclosing circle.

Example 2 Let us consider three points P 1 = (1), P 2 = (0), P 3 = (2) in R (see Fig.5). Lifting

the dimension, we have P̃ 1, P̃ 2, P̃ 3 ∈ R
4 by

P 1 = (1) → P̃ 1 = (1, ε, 0, 0),

P 2 = (0) → P̃ 2 = (0, 0, ε, 0),

P 3 = (2) → P̃ 3 = (2, 0, 0, ε).

From (99), we have the barycentric coordinate λ̃0 = (λ̃0
1, λ̃

0
2, λ̃

0
3) about P̃

1, P̃ 2, P̃ 3 of the equidis-

tant point Q̃0 from P̃ 1, P̃ 2, P̃ 3 as

λ̃0 =

(
−2 + 2ε2

6ε2
,
1 + 2ε2

6ε2
,
1 + 2ε2

6ε2

)
. (100)



1

3

2

4/3

P 1

P 2 P 3

P 4

Q∗

Figure 6: Four points P 1 = (1, 2), P 2 = (0, 0), P 3 = (2, 0), P 4 = (1, 3) in R
2

For sufficiently small |ε| with ε 6= 0, λ̃0
1 = (−2 + 2ε2)/(6ε2) < 0, thus we remove P̃ 1 and project

Q̃0 onto L(P̃ 2, P̃ 3). The barycentric coordinate λ̃1 = (λ̃1
1, λ̃

1
2, λ̃

1
3) of Q̃1 = π(Q̃0|L(P̃ 2, P̃ 3))

about P̃ 1, P̃ 2, P̃ 3 is λ̃1 = (0, 1/2, 1/2). Because λ̃1
i ≥ 0, i = 1, 2, 3, this case is the situation 1, so

we have λ̃1 = λ̃∗ by Theorem 2. Then, substituting ε = 0, we obtain λ̃∗
∣∣
ε=0

= (0, 1/2, 1/2) and

Q∗ = λ̃∗
∣∣
ε=0

Φ

=

(
0,

1

2
,
1

2

)


1
0
2




= 1.

Therefore, the center Q∗ of Γ(P 1, P 2, P 3) is obtained correctly.

Example 3 Let us consider four points P 1 = (1, 2), P 2 = (0, 0), P 3 = (2, 0), P 4 = (1, 3) in R
2,

which are not in general position (see Fig.6). By lifting the dimension, we have

P 1 = (1, 2) → P̃ 1 = (1, 2, ε, 0, 0, 0),

P 2 = (0, 0) → P̃ 2 = (0, 0, 0, ε, 0, 0),

P 3 = (2, 0) → P̃ 3 = (2, 0, 0, 0, ε, 0),

P 4 = (1, 3) → P̃ 4 = (1, 3, 0, 0, 0, ε).

Let Q̃0 be the equidistant point from P̃ 1, · · · , P̃ 4, and λ̃0 = (λ̃0
1, · · · , λ̃

0
4) be the barycentric

coordinate of Q̃0 about P̃ 1, · · · , P̃ 4. From (99),

λ̃0 =

(
−42 + 7ε2 + 2ε4

54ε2 + 8ε4
,
7 + 15ε2 + 2ε4

54ε2 + 8ε4
,
7 + 15ε2 + 2ε4

54ε2 + 8ε4
,
28 + 17ε2 + 2ε4

54ε2 + 8ε4

)
. (101)

For sufficiently small |ε| with ε 6= 0, λ̃0
1 < 0, thus we remove P̃ 1 and project Q̃0 onto L(P̃ 2, P̃ 3, P̃ 4).



The barycentric coordinate λ̃1 = (λ̃1
1, · · · , λ̃

1
4) about P̃

1, · · · , P̃ 4 of Q̃1 = π(Q̃0|L(P̃ 2, P̃ 3, P̃ 4)) is

λ̃1 =

(
0,

5 + ε2

18 + 3ε2
,

5 + ε2

18 + 3ε2
,

8 + ε2

18 + 3ε2

)
. (102)

Because λ̃1
i ≥ 0, i = 1, · · · 4, this case is the situation 1, so we have λ̃1 = λ̃∗ by Theorem 2.

Substituting ε = 0, we have λ̃∗
∣∣
ε=0

= (0, 5/18, 5/18, 8/18). The center Q∗ of Γ(P 1, · · · , P 4) is

Q∗ = λ̃∗
∣∣
ε=0

Φ (103)

=

(
0,

5

18
,
5

18
,
8

18

)



1 2
0 0
2 0
1 3


 (104)

=

(
1,

4

3

)
. (105)

Hence, also in this case the center Q∗ of Γ(P 1, · · · , P 4) is correctly obtained.

4.2 Lifting dimension of channel matrix

In the previous section, for the points P 1, · · · , Pm in R
n, by lifting the dimension of these points,

we had P̃ 1, · · · , P̃m ∈ R
n+m which are in general position. In this section, for the row vectors

P 1, · · · , Pm of the channel matrix Φ in (2), we will define P̃ 1, · · · , P̃m by lifting the dimension

so that they are in general position.

In the case of smallest enclosing circle, we added εei to P i for lifting the dimension in (97).

εei is in the vicinity of the origin of Rn. In the problem of channel capacity, we will add a

constant multiple of a distribution in the vicinity of the uniform distribution to a constant

multiple of the row vector P i of the channel matrix. Since the sum of the probabilities is 1, if

some component is increased then another component must be decreased. By considering so,

we will use a vector ((1 + ε)/2m, (1 − ε)/2m, 1/2m, · · · , 1/2m)) etc., which is in the vicinity of

the uniform distribution (1/2m, 1/2m, · · · , 1/2m) ∈ ∆2m. Now, define P̃ i ∈ ∆n+2m by

P̃ i =
( P i

1

2m+ 1
, · · · ,

P i
n

2m+ 1
,

2i−2︷ ︸︸ ︷
1

2m+ 1
, · · · ,

1

2m+ 1
,

2i−1 th
∨

1 + ǫ

2m+ 1
,

2i th
∨

1− ǫ

2m+ 1
,

2m−2i︷ ︸︸ ︷
1

2m+ 1
, · · · ,

1

2m+ 1

)
,

(106)

where |ε| is sufficiently small and ε 6= 0. Let

Φ̃ =




P̃ 1

...

P̃m


 , (107)

then rank Φ̃ = m for ε 6= 0.

Define an m× 2m matrix Ξ by

Ξ =
1

2m




1 + ǫ 1− ǫ 1 1 · · · 1 1
1 1 1 + ǫ 1− ǫ · · · 1 1
...

...
. . .

. . .
...

...
1 1 1 1 · · · 1 + ǫ 1− ǫ


 ,



and denote by Ξi the i th row vector of Ξ, where Ξi ∈ ∆2m, i = 1, · · · ,m. (106) can be written

as

P̃ i =

(
1

2m+ 1
P i,

2m

2m+ 1
Ξi

)
, i = 1, · · · ,m. (108)

4.2.1 Dummy output alphabet

The channel defined by (106), (107), (108) is modeled as follows. That is, let the input alphabet

{x1, · · · , xm} be the same as the original one and then to the original output alphabet {y1,

· · · , yn} dummy alphabet {y′1, · · · , y
′
2m} is newly added. Let us define random variables Y , Y ′

taking values on {y1, · · · , yn}, {y
′
1, · · · , y

′
2m}, respectively, by

P (Y = yj |X = xi) = P i
j , i = 1, · · · ,m, j = 1, · · · , n,

P (Y ′ = y′j′|X = xi) = Ξi
j′, i = 1, · · · ,m, j′ = 1, · · · , 2m,

where Ξi
j′ denote the j′th element of the row vector Ξi. Further, define a random variable Ỹ as

the mixture of Y and Y ′ with weight (1/(2m + 1), 2m/(2m + 1)). Then X → Ỹ is a model of

the channel defined by (106), (107), (108). The mutual information I(λ,Ξ) between X and Y ′

is close to 0. Dummy alphabet is used for lifting the dimension of the row vectors of the channel

matrix to make them be in general position.

4.2.2 Equation of barycentric coordinate

Now, for Q = (Q1, · · · , Qn) ∈ ∆n, T = (T1, · · · , T2m) ∈ ∆2m, let Q̃ ∈ ∆n+2m be

Q̃ =

(
1

2m+ 1
Q,

2m

2m+ 1
T

)
. (109)

We will calculate the equidistant point Q̃ ∈ L(P̃ 1 · · · , P̃m) ⊂ ∆n+2m from P̃ 1 · · · , P̃m, i.e., Q̃

satisfies

D(P̃ i||Q̃) = D(P̃ 1||Q̃), i = 2, · · · ,m. (110)

By calculation,

D(P̃ i||Q̃) =
−1

2m+ 1

{ n∑

j=1

P i
j logQj + ǫ log

T2i−1

T2i
+H(P i) +

2m∑

j′=1

log(2mTj′) + H̄(ǫ)
}
, (111)

where we set H(P i) = −
∑n

j=1 P
i
j log P

i
j , H̄(ǫ) = −(1+ ǫ) log(1+ ǫ)− (1− ǫ) log(1− ǫ). By (110),

(111), we have

n∑

j=1

(
P i
j − P 1

j

)
logQj + ǫ log

T2i−1

T2i
− ǫ log

T1

T2
= −H(P i) +H(P 1), i = 2, · · · ,m. (112)

Next, let λ̃ = (λ̃1, · · · , λ̃m) be the barycentric coordinate of Q̃ about P̃ 1, · · · , P̃m, i.e., Q̃ = λ̃Φ̃

from (107). By (108), (109), Q = λ̃Φ, T = λ̃Ξ, thus substituting these into (112), we have

n∑

j=1

(
P i
j − P 1

j

)
log

m∑

i′=1

λ̃i′P
i′

j + ǫ log
1 + ελ̃i

1− ελ̃i

− ǫ log
1 + ελ̃1

1− ελ̃1

= −H(P i) +H(P 1), i = 2, · · · ,m.

(113)



For m unknowns λ̃1, · · · , λ̃m, there are m − 1 equations (113) and one equation
∑m

i=1 λ̃i = 1,

then we have the solution λ̃. The existence and the uniqueness of the solution λ̃ is guaranteed

by Lemma 19.

Example 4 Let us consider a channel matrix

Φ =




P 1

P 2

P 3


 =




0.1 0.9
0.7 0.3
0.8 0.2


 , (114)

where the rows are not in general position (see Fig.7). By lifting the dimension of Φ, we have

the channel matrix Φ̃ of (107) by

P 1 = (0.1, 0.9) → P̃ 1 = (0.1, 0.9, 1 + ε, 1− ε, 1, 1, 1, 1)/7,

P 2 = (0.7, 0.3) → P̃ 2 = (0.7, 0.3, 1, 1, 1 + ε, 1− ε, 1, 1)/7,

P 3 = (0.8, 0.2) → P̃ 3 = (0.8, 0.2, 1, 1, 1, 1, 1 + ε, 1 − ε)/7.

Let λ̃0 be the barycentric coordinate about P̃ 1, P̃ 2, P̃ 3 of the equidistant point Q̃0 from P̃ 1, P̃ 2, P̃ 3.

Solving the equation (113) with ε = 0.05, we have

λ̃0 = (2.39, −12.96, 11.57). (115)

Since λ̃0
2 = −12.96 < 0, we remove P̃ 2 and project Q̃0 onto L(P̃ 1, P̃ 3) to have Q̃1 = π(Q̃0|L(P̃ 1, P̃ 3)).

Let λ̃1 be the barycentric coordinate of Q̃1 about P̃ 1, P̃ 2, P̃ 3. By calculation λ̃1 = (0.52, 0, 0.48),

so this case is the situation 1. Therefore, we have λ̃∗ = λ̃1 by Theorem 13 and λ̃∗
∣∣
ε=0

=

(0.52, 0, 0.48). Thus,

Q∗ = λ̃∗
∣∣
ε=0

Φ (116)

= (0.52, 0, 0.48)




0.1 0.9
0.7 0.3
0.8 0.2


 (117)

= (0.436, 0.564) , (118)

(see Fig.7). The channel capacity is C = D(P 1‖Q∗) = 0.398 [bit/symbol]. So, the capacity

achieving Q∗ and the capacity C of Φ are correctly obtained.

Example 5 Consider the channel matrix

Φ =




P 1

P 2

P 3

P 4


 =




2/5 2/5 1/5
1/3 1/3 1/3
4/5 1/10 1/10
1/10 4/5 1/10


 , (119)

where the rows are not in general position (see Fig.8). By lifting the dimension of Φ, we have

the channel matrix Φ̃ of (107) by

P 1 = (2/5, 2/5, 1/5) → P̃ 1 = (2/5, 2/5, 1/5, 1 + ε, 1 − ε, 1, 1, 1, 1, 1, 1)/9,

P 2 = (1/3, 1/3, 1/3) → P̃ 2 = (1/3, 1/3, 1/3, 1, 1, 1 + ε, 1− ε, 1, 1, 1, 1)/9,

P 3 = (4/5, 1/10, 1/10) → P̃ 3 = (4/5, 1/10, 1/10, 1, 1, 1, 1, 1 + ε, 1− ε, 1, 1)/9,

P 4 = (1/10, 4/5, 1/10) → P̃ 4 = (1/10, 4/5, 1/10, 1, 1, 1, 1, 1, 1, 1 + ε, 1 − ε)/9.



P 1 = (0.1, 0.9)

Q∗ = (0.436, 0.564)

P 2 = (0.7, 0.3)

P 3 = (0.8, 0.2)

1

1

Figure 7: Three points P 1 = (0.1, 0.9), P 2 = (0.7, 0.3), P 3 = (0.8, 0.2) in ∆2

Solving the equation (113) with ε = 0.05, we have the barycentric coordinate λ̃0 of the equidis-

tant point Q̃0 from P̃ 1, P̃ 2, P̃ 3, P̃ 4 as

λ̃0 = (−19.00, 7.98, 6.01, 6.01). (120)

Since λ̃0
1 = −19.00 < 0, we remove P̃ 1 and consider the projection Q̃1 = π(Q̃0|L(P̃ 2, P̃ 3, P̃ 4)).

We have the barycentric coordinate of Q̃1 as

λ̃1 = (0,−0.14, 0.57, 0.57). (121)

Since λ̃1
2 = −0.14 < 0, we further we remove P̃ 2 and consider the projection Q̃2 = π(Q̃1|L(P̃ 3, P̃ 4)).

We have the barycentric coordinate of Q̃2 as

λ̃2 = (0, 0, 1/2, 1/2). (122)

Thus, this case is the situation 1, so we have λ̃∗ = λ̃2 from Theorem 13. Therefore,

Q∗ = λ̃∗
∣∣
ε=0

Φ (123)

= (0, 0, 1/2, 1/2)




2/5 2/5 1/5
1/3 1/3 1/3
4/5 1/10 1/10
1/10 4/5 1/10


 (124)

= (9/20, 9/20, 1/19) , (125)

and the channel capacity is C = D(P 3‖Q∗) = 0.540 [bit/symbol]. Also in this case, the capacity

achieving Q∗ and the capacity C of Φ are correctly obtained.

5 Heuristic algorithm of calculating smallest enclosing circle
and channel capacity

In this chapter, we will propose heuristic projection algorithms for the calculation of the smallest

enclosing circle and the channel capacity with arbitrary m, n and arbitrary placement of points,



P 1

P 2

P 3 P 4Q∗

e1 e2

e3

Figure 8: Four points P 1 = (2/5, 2/5, 1/5), P 2 = (1/3, 1/3, 1/3), P 3 = (4/5, 1/10, 1/10), P 4 =
(1/10, 4/5, 1/10) in ∆3

based on the algorithms in chapter 2, 3 and the dimension lifting in chapter 4. In chapter 2, 3,

we gave algorithms to calculate the smallest enclosing circle and the channel capacity under the

limited situations, i.e., situation 1 and situation 2. The methods which will be proposed in this

chapter can be applied to any number of points and any placement of points, but the obtained

results are not always correct. In the following, we describe heuristic algorithms and apply them

to many concrete problems generated by random numbers, then show the percentage of getting

correct solutions.

5.1 Heuristic algorithm for Smallest enclosing circle (HS)

1. For m points P 1, · · · , Pm in R
n, lift the dimension by (95) or (97) to obtain P̃ 1, · · · , P̃m.

2. Calculate by (99) the barycentric coordinate λ̃0 = (λ̃0
1, · · · , λ̃

0
m) of the equidistant point

from P̃ 1, · · · , P̃m.

3. If λ̃0
i ≥ 0, i = 1, · · · ,m, then end the algorithm and output Q̃0.

4. If some of λ̃0
i are negative, consider the smallest one, i.e., the negative one with maximum

absolute value, say, it is supposed to be λ̃0
1. Then remove P̃ 1 and leave P̃ 2, . . . , P̃m.

5. For m− 1 points P̃ 2, . . . , P̃m, repeat the algorithm from 2).

The simulation results of the above algorithm are shown in TABLE 2. Simulation method is as

follows: Generate n uniform random integers from −1000 to 1000 and let them be the coordinate

of one point in R
n. Repeat it m times to obtain m points of Rn, and let them P 1, · · · , Pm.

Calculate the center Q∗ of the smallest enclosing circle by the heuristic algorithm HS. The above

m time generation of points and the calculation of Q∗ are defined to be one set. Then 10000

sets are executed for each pair of m,n in TABLE 2 to show the percentage that the correct Q∗

is obtained. Hence, in total, 20 million sets are executed in the whole TABLE 2.

In every case of TABLE 2, we have succeeded in obtaining the correct solutions at fairly high

percentages. From these results, we can consider that many of actual placements of points are



Table 2: Simulation results of heuristic algorithm for smallest enclosing circle (HS)

❍
❍
❍
❍
❍❍

m
n 2 3 10 20

3 100% 100% 100% 100%

4 97.6% 99.7% 100% 100%

5 96.3% 95.0% 100% 100%

8 94.4% 85.3% 99.5% 100%

10 92.9% 82.5% 98.5% 100%

P 1 = (−10,−9)

P 2 = (6, 5)

P 3 = (6,−7)

P 4 = (−9,−10)

Q∗ = (−2,−2)

Figure 9: Example of placement of points for which our algorithm HS fails

the situation 1. For a fixed value of m, the percentage of success increases as n increases. This is

because the placements of points are easier to become in general position for a larger dimension

n. Further, for a fixed value of n, the percentage of success decreases as m increases. This is

because there exist so many points in a low dimensional space that our HS becomes difficult to

succeed.

5.1.1 Example of placement of points for which our algorithm fails

We will show an example of the placement of points for which the smallest enclosing circle cannot

be obtained by our heuristic algorithm HS (see Fig.9). Consider 4 points P 1 = (−10,−9), P 2 =

(6, 5), P 3 = (6,−7), P 4 = (−9,−10) in R
2. The center Q∗ of Γ = Γ(P 1, · · · , P 4) is Q∗ =

(−2,−2), which is the midpoint of P 1P 2. Thus, P 1 is necessary for determining Γ. However, if

we apply our HS to this placement of points, we have

λ0 =

(
−64800 + 22536ε2 + 357ε4 + ε6

70488ε2 + 1542ε4 + 4ε6
,
6480 + 43350ε2 + 523ε4 + ε6

70488ε2 + 1542ε4 + 4ε6
,

−10800 − 13278ε2 + 319ε4 + ε6

70488ε2 + 1542ε4 + 4ε6
,
69120 + 17880ε2 + 343ε4 + ε6

70488ε2 + 1542ε4 + 4ε6

)
.



Table 3: Simulation results of heuristic algorithm for channel capacity (HC)

❍
❍
❍
❍
❍❍

m
n 2 3 10 20

3 99.9% 99.9% 99.9% 99.9%

4 99.9% 99.9% 99.9% 99.9%

5 99.9% 99.8% 99.9% 99.9%

8 99.9% 99.8% 99.9% 99.9%

10 99.8% 99.5% 99.8% 99.9%

Because λ0
1 is negative and the smallest among λ0

1, · · · , λ
0
4 for sufficiently small |ε| with ε 6= 0,

our HS removes P 1. Hence, in this case our HS fails.

5.2 Heuristic algorithm for Channel capacity (HC)

1. For m probability distributions P 1, · · · , Pm in ∆n, lift the dimension by (106) or (108) to

obtain P̃ 1, · · · , P̃m.

2. Calculate by (113) the barycentric coordinate λ̃0 = (λ̃0
1, · · · , λ̃

0
m) of the equidistant point

from P̃ 1, · · · , P̃m.

3. If λ̃0
i ≥ 0, i = 1, · · · ,m, then end the algorithm and output Q̃0.

4. If some of λ̃0
i are negative, consider the smallest one, i.e., the negative one with maximum

absolute value, say, it is supposed to be λ̃0
1. Then remove P̃ 1 and leave P̃ 2, . . . , P̃m.

5. For m− 1 points P̃ 2, . . . , P̃m, repeat the algorithm from 2).

The simulation results of the above algorithm are shown in TABLE 3. Simulation method

is as follows: Generate n uniform random numbers Uj in (0, 1), j = 1, · · · , n and put S =
∑n

j=1 Uj. Then define P = (U1/S, · · · , Un/S) ∈ ∆n. Repeat it m times to obtain m probability

distributions P 1, · · · , Pm ∈ ∆n. Calculate the capacity achieving Q∗ by the heuristic algorithm

HC. The above m time generation of probability distributions and the calculation of Q∗ are

defined to be one set. Then 10000 sets are executed for each pair of m,n in TABLE 3 to

show the percentage that the correct Q∗ is obtained. The failures of HC in TABLE 3 include

computational errors by the function FindRoot in Mathematica.

In every case of TABLE 3, the percentage of success is more than 99%. But, in comparison

with TABLE 2 of the smallest enclosing circle, we do not understand well the reason why TABLE

3 has higher rate of success, although the geometric structures of the two problems are similar.

5.3 Comparison of computational complexity

For given m points P 1, · · · , Pm ∈ R
n or ∈ ∆n, the simplest way to calculate the center of the

smallest enclosing circle or the channel capacity achieving distribution is to examine all the

possible combinations of the points [6]. This is a brute force method. For example, consider the

case of 4 points in R
2. Because a circle in R

2 is determined by two or three points, the total



Table 4: Ratio N2/N1 of computational complexity

❍
❍
❍
❍
❍❍

m
n 2 3 10 20

3 0.250 0.250 0.250 0.250

4 0.200 0.182 0.182 0.182

5 0.150 0.120 0.115 0.115

8 0.071 0.039 0.024 0.024

10 0.048 0.021 0.008 0.008

number of all the possible combinations of the points in the brute force method is 4C2+4C3 = 10.

In a similar way, the total number N1 of all the possible combinations of m points in R
n or ∆n

is

N1 =

min(m,n+1)∑

ℓ=0

mCℓ. (126)

If we consider the computational complexity for one combination as 1, then the computational

complexity of the brute force method is N1.

On the other hand, in our proposed heuristic algorithms, the number of points is decreasing

by one at every time, hence the computational complexity N2 is

N2 = m− 2. (127)

We will show in TABLE 4 the ratio N2/N1 for the case of TABLE 2 and 3. N2 is very smaller

thanN1, however, note that the proposed method does not necessarily yield the correct solutions.

6 Conclusion

Since the Euclidean geometry is familiar to us, it is easy to develop an algorithm and to prove

the correctness of the obtained algorithm. A proposition in the Euclidean geometry can be

proved in many ways because there are many tools that we can use. However, if we consider

the corresponding proposition in the information geometry, all the proofs in the Euclidean

geometry are not necessarily applicable to the proposition. We found that there is one natural

proof in the Euclidean geometry that is directly applicable to the corresponding proposition of

the information geometry. Such a proof uses only common properties of both Euclidean and

information geometries. We also found that the natural proof is the simplest proof. This is a very

interesting result. If we considered only the problem of channel capacity from the beginning, I

think we could not obtain the projection algorithm developed in this paper. It is a result of a

successful link between the Euclidean and information geometries.

7 Future works

(1) Make an algorithm to calculate Q∗ for arbitrary number m of points in general position.



(2) Make a projection algorithm for the rate distortion function and the capacity constraint

function.

(3) Transplant the Arimoto algorithm to the problem of smallest enclosing circle.
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