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Classification of modules over laterally complete regular

algebras
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Abstract

Let A be a laterally complete commutative regular algebra and X be a laterally com-

plete A-module. In this paper we introduce a notion of passport Γ(X) for X, which

consist of uniquely defined partition of unity in the Boolean algebra of idempotents in A

and the set of pairwise different cardinal numbers. It is proved that A-modules X and Y

are isomorphic if and only if Γ(X) = Γ(Y ).
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1 Introduction

J. Kaplansky [4] introduced a class of AW ∗-algebras to describe C∗-algebras, which is close

to von Neumann algebras by their algebraic and order structure. The class of AW ∗-algebras

became a subject of many researches in the operator theory (see review in [1]). One of the

important results in this direction is the realization of an arbitrary AW ∗-algebra M of type

I as a ∗-algebra of all linear bounded operators, which act in a special Banach module over

the center Z(M) of the algebra M [5]. The Banach Z(M)-valued norm in this module is

generated by the scalar product with values in the commutative AW ∗-algebra Z(M). Later,

these modules were called Kaplansky-Hilbert modules (KHM). Detailed exposition of many

useful properties of KHM is given, for example, in ([9], 7.4). One of the important properties

is a representation of an arbitrary Kaplansky-Hilbert module as a direct sum of homogeneous

KHM ([6], [9], 7.4.7).

Development of the noncommutative integration theory stimulated an interest to the dif-

ferent classes of algebras of unbounded operators, in particular, to the ∗-algebras LS(M) of

locally measurable operators, affiliated with von Neumann algebras or AW ∗-algebras M . If M
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is a von Neumann algebra, then the center Z(LS(M)) in the algebra LS(M) identifies with

the algebra L0(Ω,Σ, µ) of all classes of equal almost everywhere measurable complex functions,

defined on some measurable space (Ω,Σ, µ) with a complete locally finite measure µ ([11], 2.1,

2.2). IfM is an AW ∗-algebra, then Z(LS(M)) is an extended f -algebra C∞(Q), where Q is the

Stone compact coresponding to the Boolean algebra of central projectors inM [1]. The problem

(like the one in the work of J. Kaplansky [5] for AW ∗-algebras) on possibility of realization

of ∗-algebras LS(M), in the case, when M has the type I, as ∗-algebras of linear L0(Ω,Σ, µ)-

bounded (respectively, C∞(Q)-bounded) operators, which act in corresponding KHM over the

L0(Ω,Σ, µ) or over the C∞(Q) naturally arises. In order to solve this problem it is necessary

to construct corresponding theory of KHM over the algebras L0(Ω,Σ, µ) and C∞(Q). In a

particular case of KHM over the algebras L0(Ω,Σ, µ) this problem is solved in [7], where the

decomposition of KHM over L0(Ω,Σ, µ) as a direct sum of homogeneous KHM is given. Similar

decomposition as a direct sum of strictly γ-homogeneous modules is given in the paper [2] for

arbitrary regular laterally complete modules over the algebra C∞(Q) (the definitions see in the

Section 3 below).

The algebra C∞(Q) is an example of a commutative unital regular algebra over the field of

real numbers. In this algebra the following property of lateral completeness holds: for any set

{ai}i∈I of pairwise disjoint elements in C∞(Q) there exists an element a ∈ C∞(Q) such that

as(ai) = ai for all i ∈ I, where s(ai) is a support of the element ai (the definitions see in the

Section 2 below). This property of C∞(Q) plays a crucial role in classification of regular laterally

complete C∞(Q)-mpdules [2]. Thereby, it is natural to consider the class of laterally complete

commutative unital regular algebras A over arbitrary fields and to obtain variants of structure

theorems for modules over such algebras. Current work is devoted to solving this problem.

For every faithful regular laterally complete A-module X the concept of passport Γ(X), which

consist of the uniquely defined partition of unity in the Boolean algebra of idempotents in A

and the set of pairwise different cardinal numbers is constructed. It is proved, that the equality

of passports Γ(X) and Γ(Y ) is necessary and sufficient condition for isomorphism of A-modules

X and Y .

2 Laterally complete commutative regular algebras

Let A be a commutative algebra over the field K with the unity 1 and ∇ = {e ∈ A : e2 = e} be

a set of all idempotents in A. For all e, f ∈ ∇ we write e ≤ f if ef = e. It is well known (see,

for example [10, Prop. 1.6]) that this binary relation is partial order in ∇ and ∇ is a Boolean
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algebra with respect to this order. Moreover, we have the following equalities: e∨f = e+f−ef ,

e ∧ f = ef , Ce = 1− e with respect to the lattice operations and the complement Ce in ∇.

The commutative unital algebra A is called regular if the following equivalent conditions

hold [12, §2, item 4]:

1. For any a ∈ A there exists b ∈ A such that a = a2b;

2. For any a ∈ A there exists e ∈ ∇ such that aA = eA.

A regular algebra A is a regular semigroup with respect to the multiplication operation

[3, Ch. I, §1.9]. In this case all idempotents in A commute pairwisely. Therefore, A is a

commutative inverse semigroup, i.e. for any a ∈ A there exists an unique element i(a) ∈ A,

which is an unique solution of the system: a2x = a, ax2 = x [3, Ch. I, §1.9]. The element

i(a) is called an inversion of the element a. Obviously, ai(a) ∈ ∇ for any a ∈ A. In this case

the map i : A → A is a bijection and an automorphism (by multiplication) in semigroup A.

Moreover, i(i(a)) = a and i(g) = g for all a ∈ A, g ∈ ∇.

LetA be a commutative unital regular algebra and∇ be a Boolean algebra of all idempotents

in A. Idempotent s(a) ∈ ∇ is called the support of an element a ∈ A if s(a)a = a and ga = a,

g ∈ ∇ imply s(a) ≤ g. It is clear that s(a) = ai(a) = s(i(a)). In particular, s(e) = ei(e) = e

for any e ∈ ∇.

It is easy to show that supports of elements in a commutative regular unital algebra A

satisfy the following properties:

Proposition 2.1. Let a, b ∈ A, then

(i). s(ab) = s(a)s(b), in particular, ab = 0 ⇔ s(a)s(b) = 0;

(ii). If ab = 0, then i(a + b) = i(a) + i(b) and s(a+ b) = s(a) + s(b).

Two elements a and b in a commutative unital regular algebra A are called disjoint elements,

if ab = 0, which equivalent to the equality s(a)s(b) = 0 (see Proposition 2.1 (i)). If the Boolean

algebra ∇ of all idempotents in A is complete, a ∈ A and r(a) = sup{e ∈ ∇ : ae = 0}, then

s(a)r(a) = s(a) ∧ r(a) = s(a) ∧ (sup{e : ae = 0}) =

= sup{s(a) ∧ e : ae = 0} = sup{s(a)e : ae = 0} = 0.

Hence s(a) ≤ 1 − r(a). If q = (1 − r(a) − s(a)), then aq = as(a)q = 0, thus q ≤ r(a). This

yields that q = 0, i.e. s(a) = 1− r(a). This implies the following

Proposition 2.2. Let A be a commutative unital regular algebra and let ∇ be complete Boolean

algebra of idempotents in A. If {ei}i∈I is a partition of unity in ∇, a, b ∈ A and aei = bei for

all i ∈ I, then a = b.
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Proof. Since (a − b)ei = 0 for any i ∈ I, then 1 = sup
i∈I

ei ≤ r(a− b), i.e. r(a− b) = 1. Hence,

s(a− b) = 0, i.e. a = b.

Commutative unital regular algebraA is called laterally complete (l-complete) if the Boolean

algebra of its idempotents is complete and for any set {ai}i∈I of pairwise disjoint elements in A

there exists an element a ∈ A such that as(ai) = ai for all i ∈ I. The element a ∈ A such that

as(ai) = ai, i ∈ I, in general, is not uniquely determined. However, by Proposition 2.2, it follows

that the element a is unique in the case, when sup
i∈I

s(ai) = 1. In general case, due to the equality

as(ai) = ai = bs(ai) for all i ∈ I and a, b ∈ A, it follows that a supi∈I s(ai) = b supi∈I s(ai).

Let us give examples of l-complete and not l-complete commutative regular algebras. Let

∆ be an arbitrary set and K∆ be a Cartesian product of ∆ copies of the field K, i.e. the set of

all K-valued functions on ∆. The set K∆ is a commutative unital regular algebra with respect

to pointwise algebraic operations, moreover, the Boolean algebra ∇ of all idempotents in K∆ is

an isomorphic atomic Boolean algebra of all subsets in ∆. In particular ∇ is complete Boolean

algebra. If {aj = (α
(j)
q )q∈∆, j ∈ J} is a family of pairwise disjoint elements in K∆, then setting

∆j = {q ∈ ∆ : α
(j)
q 6= 0}, j ∈ J and a = (αq)q∈∆ ∈ K∆, where αq = α

(j)
q for any q ∈ ∆j ,

j ∈ J , and αq = 0 for q ∈ ∆ \
⋃

j∈J

∆j, we obtain that as(aj) = aj for all j ∈ J . Hence, K∆ is a

l-complete algebra.

Now let A be an arbitrary commutative unital regular algebra over the field K and ∇ be

a Boolean algebra of all idempotents in A. An element a ∈ A is called a step element in A if

it has the following form a =
∑n

k=1 λkek, here λk ∈ K, ek ∈ ∇, k = 1, . . . , n. The set K(∇)

of all step elements is the smallest subalgebra in A, which contains ∇. Any nonzero element

a =
∑n

k=1 λkek in K(∇) can be represented as a =
∑m

l=1 αlgl, here gl ∈ ∇, glgk = 0 when l 6= k,

0 6= αk ∈ K, l, k = 1, . . . , m. Setting b =
∑m

l=1 α
−1
l gl ∈ K(∇), we obtain a2b = a. Hence,

K(∇) is a regular subalgebra in A. Since ∇ ⊂ K(∇), the Boolean algebra of idempotents

in K(∇) coincides with ∇. Assume that card (K) = ∞ and card (∇) = ∞. We choose a

countable set K0 = {λn}∞n=1 of pairwise different nonzero elements in K and a countable set

{en}∞n=1 of nonzero pairwise disjoint elements in ∇. Let us consider a set {λnen}∞n=1 of pairwise

disjoint elements in K(∇). Assume that there exists b =
∑m

l=1 αlgl ∈ K(∇), 0 6= αl ∈ K,

gl ∈ ∇, glgk = 0 and l 6= k, l, k = 1, . . . , m, such that ben = bs(λnen) = λnen. In this case for

any positive integer n there exists natural number l(n), such that αl(n)gl(n)en = λngl(n)en 6= 0,

i.e. αl(n) = λn. This implies that the set {λn}∞n=1 is finite, which is not true. Hence, the

commutative unital regular algebra K(∇) is not l-complete.

Let ∇ be complete Boolean algebra and let Q(∇) be a Stone compact corresponding to ∇.
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An algebra C∞(Q(∇)) of all continuous functions a : Q(∇) → [−∞,+∞], taking the values

±∞ only on nowhere dense sets in Q(∇) [9, 1.4.2], is an important example of a l-complete

commutative regular algebra.

An element e ∈ C∞(Q(∇)) is an idempotent if and only if e(t) = χV (t), t ∈ Q(∇), for some

clopen set V ⊂ Q(∇), where

χV (t) =







1, t ∈ V ;

0, t /∈ V ,

i.e. χV (t) is a characteristic function of the set V . In particular, the Boolean algebra ∇ can be

identified with the Boolean algebra of all idempotents in algebra C∞(Q(∇)).

If a ∈ C∞(Q(∇)), then G(a) = {t ∈ Q(∇) : 0 < |a(t)| < +∞} is open set in the Stone

compact set Q(∇). Hence, the closure V (a) = G(a) in Q(∇) of the set G(a) is an clopen set,

i.e. χV (a) is an idempotent in the algebra C∞(Q(∇)). We consider a continuous function b(t),

given on the dense open set G(a) ∪ (Q(∇) \ V (a)) and defines by the following equation

b(t) =







1
a(t)

, t ∈ G(a),

0, t ∈ Q(∇) \ V (a).

This function uniquely extends to a continuous function defined on Q(∇) with values in

[−∞,+∞] [14, Ch.5, §2] (we also denote this extension by b(t)). Since ab = χV (a), then

a2b = a and s(a) = χV (a). Hence, C∞(Q(∇)) is a commutative unital regular algebra over the

field of real numbers R. In this case, the Boolean algebra of all idempotents in C∞(Q(∇)) is

complete.

It is known that (see, for example [9, 1.4.2]) C∞(Q(∇)) is an extended complete vector

lattice. In particular, for any set {aj}j∈J of pairwise disjoint positive elements in C∞(Q(∇))

there exists the least upper bound a = supj∈J aj and as(aj) = aj for all j ∈ J . It follows that

the commutative regular algebra C∞(Q(∇)) is laterally complete.

In the case, when ∇ is a complete atomic Boolean algebra and ∆ is the set of all atoms in

∇, then C∞(Q(∇)) is isomorphic to the algebra R∆.

The following examples of laterally complete commutative regular algebras are variants of

algebras C∞(Q(∇)) for any topological fields, in particular, for the field Qp of p-adic numbers.

Let K be an arbitrary field and t be the Hausdorff topology on K. If operations α → (−α),

α → α−1 and operations (α, β) → α + β, (α, β) → αβ, α, β ∈ K, are continuous with respect

to this topology, we say that (K, t) is a topological field (see, for example, [13, Ch.20, §165]).

Let (K, t) be a topological field, (X, τ) be any topological space and ∇(X) be a Boolean

algebra of all clopen subsets in (X, τ). A map ϕ : (X, τ) → (K, t) is called almost continuous
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if there exists a dense open set U in (X, τ) such that the restriction ϕ|U : U → (K, t) of the

map ϕ on the subset U is continuous in U . The set of all almost continuous maps from (X, τ)

to (K, t) we denote by AC(X,K).

We define pointwise algebraic operations in AC(X,K) by

(ϕ+ ψ)(t) = ϕ(t) + ψ(t);

(αϕ)(t) = αϕ(t);

(ϕ · ψ)(t) = ϕ(t)ψ(t)

for all ϕ, ψ ∈ AC(X,K), α ∈ K, t ∈ X .

Since an intersection of two dense open sets in (X, τ) is a dense open set in (X, τ), then

ϕ + ψ, ϕ · ψ ∈ AC(X,K) for any ϕ, ψ ∈ AC(X,K). Obviously, αϕ ∈ AC(X,K) for all

ϕ ∈ AC(X,K), α ∈ K. It can be easily checked that AC(X,K) is a commutative algebra

over K with the unit element 1(t) = 1K for all t ∈ X , where 1K is the unit element of K. In

this case, the algebra C(X,K) of all continuous maps from (X, τ) to (K, t) is a subalgebra in

AC(X,K).

In the algebra AC(X,K) consider the following ideal

I0(X,K) = {ϕ ∈ AC(X,K) : interior of preimage ϕ−1(0) is dense in (X, τ)}.

By C∞(X,K) denote the quotient algebra AC(X,K)/I0(X,K) and by

π : AC(X,K) → AC(X,K)/I0(X,K)

denote the corresponding canonical homomorphism.

Theorem 2.3. The quotient algebra C∞(X,K) is a commutative unital regular algebra over

the field K. Moreover, if (X, τ) is a Stone compact set, then algebra C∞(X,K) is laterally

complete, and the Boolean algebra ∇ of all its idempotents is isomorphic to the Boolean algebra

∇(X).

Proof. Since AC(X,K) is a commutative unital algebra over K, then C∞(X,K) is also a

commutative unital algebra over K with unit element π(1). Now we show that C∞(X,K) is a

regular algebra, i.e. for any ϕ ∈ AC(X,K) there exists ψ ∈ AC(X,K), such that π2(ϕ)π(ψ) =

π(ϕ).

We fix an element ϕ ∈ AC(X,K) and choose a dense open set U ∈ τ , such that the

restriction ϕ|U : U → (K, t) is continuous. Since K \ {0} is an open set in (K, t), then the set
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V = U ∩ ϕ−1(K \ {0}) is open in (X, τ). Clearly, the set W = X \ V
τ
is also open in (X, τ),

in this case V ∪W is a dense open set in (X, τ).

We define a map ψ : X → K, as follow: ψ(x) = (ϕ(x))−1 if x ∈ V , and ψ(x) = 0 if

x ∈ X \ V . It is clear that ψ ∈ AC(X,K) and ϕ2ψ − ϕ ∈ I0(X,K), i.e. π2(ϕ)π(ψ) = π(ϕ).

Hence, the algebra C∞(X,K) is regular.

For any clopen set U ∈ ∇(X) its characteristic function χU belongs to AC(X,K), in this

case, π(χU)
2 = π(χ2

U) = π(χU), i.e. π(χU) is an idempotent in the algebra C∞(X,K).

Assume that (X, τ) is a Stone compact and we show that for any idempotent e ∈ C∞(X,K)

there exists U ∈ ∇(X) such that e = π(χU).

If e ∈ ∇, then e = π(ϕ) for some ϕ ∈ AC(X,K) and

π(ϕ) = e2 = π(ϕ2),

i.e. (ϕ2−ϕ) ∈ I0(X,K). Hence, there exists a dense open set V in X such that ϕ2(t)−ϕ(t) = 0

for all t ∈ V . Denote by U a dense open set in X such that the restriction ϕ|U : U → K is

continuous. Put U0 = ϕ−1({0}) ∩ (U ∩ V ), U1 = ϕ−1({1K}) ∩ (U ∩ V ). Since U0 ∩ U1 =

∅, U0 ∪ U1 = U ∩ V ∈ τ and the sets U0, U1 are closed in U ∩ V with respect to the topology

induced from (X, τ), it follows that U0, U1 ∈ τ . Hence, the set Uϕ = U1 belongs to the Boolean

algebra ∇(X), besides, Uϕ ∩ U0 = ∅.

Since U0 ∪ U1 = U ∩ V is a dense open set in (X, τ) and ϕ(t) = χUϕ
(t) for all t ∈ U0 ∪ U1,

it follows that e = π(ϕ) = π(χUϕ
). Thus, the mapping Φ : ∇(X) → ∇ defined by the equality

Φ(U) = π(χU), U ∈ ∇(X), is a surjection.

Moreover, for U, V ∈ ∇(X) the following equalities hold

Φ(U ∩ V ) = π(χU∩V ) = π(χUχV ) = π(χU)π(χV ) = Φ(U)Φ(V ),

Φ(X \ U) = π(χX\U ) = π(1− χU) = Φ(X)− Φ(U).

Furthermore, the equality Φ(U) = Φ(V ) implies that the continuous mappings χU and χV

coincide on a dense set in X . Therefore χU = χV , that is U = V .

Hence, Φ is an isomorphism from the Boolean algebra ∇(X) onto the Boolean algebra ∇

of all idempotents from C∞(X,K), in particular, ∇ is a complete Boolean algebra.

Finally, to prove l-completeness of the algebra C∞(X,K) we show that for any family

{π(ϕi) : ϕ ∈ AC(X,K)}i∈I of nonzero pairwise disjoint elements in C∞(X,K) there exists

ϕ ∈ AC(X,K) such that π(ϕ)s(π(ϕi)) = π(ϕi) for all i ∈ I. For any i ∈ I we choose a

dense open set Ui such that the restriction ϕi|Ui
is continuous and put Vi = Ui ∩ ϕ

−1
i (K \ {0}),

i ∈ I. It is not hard to prove that s(π(ϕi)) = Φ(Vi). In particular, Vi ∩ Vj = ∅ when i 6= j,
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i, j ∈ I. Define the mapping ϕ : X → K, as follows ϕ(t) = ϕi(t) if t ∈ Vi and ϕ(t) = 0 if

t ∈ X \

(

⋃

i∈I

Vi

)

. Clearly, ϕ ∈ AC(X,K) and π(ϕ)s(π(ϕi)) = π(ϕχVi
) = π(ϕiχVi

) = π(ϕi) for

all i ∈ I.

3 Laterally complete regular modules

Let A be a laterally complete commutative regular algebra and let ∇ be a Boolean algebra

of all idempotents in A. Let X be a left A-module with algebraic operations x + y and ax,

x, y ∈ X , a ∈ A. Since the algebra A is commutative, then a left A-module X becomes a right

A-module, if we put xa := ax, x ∈ X , a ∈ A. Hence, we can assume, that X is a bimodule over

A, where the following equality ax = xa holds for any x ∈ X , a ∈ A. Next, an A-bimodule X

we shall call an A-module.

An A-module X is called faithful, if for any nonzero e ∈ ∇ there exists x ∈ X such that

ex 6= 0. Clearly, for a faithful A-module X the set Xe := eX is a faithful Ae-module for any

0 6= e ∈ ∇, where Ae := eA.

An A-module X is said to be a regular module, if for any x ∈ A the condition ex = 0 for

all e ∈ L ⊂ ∇ implies (supL)x = 0. In this case, for x ∈ X the idempotent

s(x) = 1− sup{e ∈ ∇ : ex = 0}

is called the support of an element x. In case, when X = A, the notions of support of an

element in an A-module X and of support of an element in A coincide. If X is a regular

A-module, then Xe is also a regular Ae-module for any nonzero e ∈ ∇.

We need the following properties of supports of elements in a regular A-module X .

Proposition 3.1. Let X be a regular A-module, x, y ∈ X, a ∈ A. Then

(i). s(x)x = x;

(ii). if e ∈ ∇ and ex = x, then e ≥ s(x);

(iii). s(ax) = s(a)s(x).

Proof. (i). If r(x) = sup{e ∈ ∇ : ex = 0}, then s(x) = 1 − r(x) and r(x)x = 0. Hence,

x = (s(x) + r(x))x = s(x)x.

(ii). As ex = x, then (1− e)x = 0, and therefore 1− e ≤ r(x). Thus e ≥ 1− r(x) = s(x).

(iii). Since (s(a)s(x)) · (ax) = (s(a)a) · (s(x)x) = ax, then by (ii) we have s(ax) ≤ s(a)s(x).

If g = s(a)s(x) − s(ax) 6= 0, then ga 6= 0, g ≤ s(a) and gs(ax) = 0. Hence gax = 0 and
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0 = i(ga)(gax) = (i(g)i(a)ga)x = (gi(a)a)x = gs(a)x = gx 6= 0. This contradiction implies

g = 0, i.e. s(ax) = s(a)s(x).

We say that a regular A-module X is laterally complete (l-complete), if for any set

{xi}i∈I ⊂ X and for any partition {ei}i∈I of unity of the Boolean algebra ∇ there exists x ∈ X

such that eix = eixi for all i ∈ I. In this case, the element x is called mixing of the set {xi}i∈I

with respect to the partition of unity {ei}i∈I and denote by mix
i∈I

(eixi). Mixing mix
i∈I

(eixi) is

defined uniquely, whereas the equalities eix = eixi = eiy, x, y ∈ X , i ∈ I, implies ei(x− y) = 0

for all i ∈ I, and, by regularity of the A-module X , we obtain x = y.

Let {xi}i∈I ⊂ E ⊂ X and let {ei}i∈I be a partition of unity in ∇. The set of all mixings

mix
i∈I

(eixi) is called a cyclic hull of the set E in X and denotes by mix(E). Obviously, the

inclusion E ⊂ mix(E) is always true. If E = mix(E), then E is called a cyclic set in X

(compare with [8], 1.1.2).

Thus, a regular A-module X is a l-complete A-module if and only if X is a cyclic set. In

particular, in any l-complete A-module X its submodule Xe is also a l-complete Ae-module for

any nonzero idempotent e in A.

We need the following properties of cyclic hulls of sets.

Proposition 3.2. Let X be a l-complete A-module and let E be a nonempty subset in X,

a ∈ A. Then

(i). mix(mix(E)) = mix(E);

(ii). mix(aE) = amix(E);

(iii). If Y is an A-submodule in X, then mix(Y ) is a l-complete A-submodule in X;

(iv). If U is an isomorphism from A-module X onto A-module Z, then Z is a l-complete

A-module and mix(U(E)) = U(mix(E)).

Proof. (i). It is sufficient to show that mix(mix(E)) ⊂ mix(E). If x ∈ mix(mix(E)), then

x = mix
i∈I

(eixi), where xi ∈ mix(E), i ∈ I. Since xi ∈ mix(E), then xi = mix
j∈J(i)

(e
(i)
j x

(i)
j ), where

x
(i)
j ∈ E, j ∈ J(i) and {e(i)j }j∈J(i) is a partition of unity in the Boolean algebra ∇ for all i ∈ I.

Fix i ∈ I and put g
(i)
j := eie

(i)
j . It is clear that {g(i)j }j∈J(i) is a partition of the idempotent ei.

Hence, {g(i)j }j∈J(i),i∈I is a partition of unity 1. Besides,

g
(i)
j x = g

(i)
j eix = g

(i)
j eixi = eie

(i)
j xi = eie

(i)
j x

(i)
j = g

(i)
j x

(i)
j .

This yields that x = mix
j∈J(i),i∈I

(g
(i)
j x

(i)
j ) ∈ mix(E).

(ii). If x ∈ mix(aE), then x = mix
i∈I

(eiayi), where yi ∈ E, i ∈ I. Since X is a l-complete

A-module, then there exists y = mix
i∈I

(eiyi) ∈ mix(E) and eix = aeiyi = ei(ay) for all i ∈ I.
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Hence, ei(x − ay) = 0, and regularity of the A-module X implies the equality x = ay. Thus,

mix(aE) ⊂ amix(E).

Conversely, if x ∈ amix(E), then x = az, where z = mix
i∈I

(eizi), zi ∈ E, i ∈ I. Since azi ∈ aE

and eix = ei(az) = eiaeiz = ei(azi) for all i ∈ I, we have that x = mix
i∈I

(ei(azi)) ∈ mix(aE).

Hence, amix(E) ⊂ mix(aE).

(iii). Let x, y ∈ mix(Y ), x = mix
i∈I

(eixi), y = mix
j∈J

(gjyj), where xi, yj ∈ Y , i ∈ I, j ∈ J ,

{ei}i∈I , {gj}j∈J are partitions of unity in ∇. Clearly, that pij = eigj, i ∈ I, j ∈ J , is also a

partition of unity in ∇ and pij(x + y) = pij(xi + yj), where xi + yj ∈ Y for all i ∈ I, j ∈ J .

This means that (x+ y) ∈ mix(Y ).

Since aY ⊂ Y , then by (ii) we have that ax ∈ amix(Y ) = mix(aY ) ⊂ mix(Y ). Hence,

mix(Y ) is an A-submodule inX , and by regularity of the A-moduleX , it is a regular A-module.

The equality mix(Y ) = mix(mixY ) (see (i)) implies that mixY is a l-complete A-module.

(iv). If U(x) = y ∈ Z, x ∈ X , ∅ 6= L ⊂ ∇ and ey = 0 for all e ∈ L, then U(ex) = eU(x) =

ey = 0. Since U is a bijection, then ex = 0 for any e ∈ L. By regularity of the A-module

X , we have that (supL)x = 0, and, therefore, (supL)y = U((supL)x) = 0. Hence, Z is a

regular A-module. In the same way we show that Z is a l-complete A-module and the equality

mix(U(E)) = U(mix(E)) holds.

Let ∇ be an arbitrary complete Boolean algebra. For any nonzero element e ∈ ∇ we put

∇e = {q ∈ ∇ : q ≤ e}. The set ∇e is a Boolean algebra with the unity e with respect to partial

order, induced from ∇.

We say that a set B in ∇ is a minorant subset for nonempty set E ⊂ ∇, if for any nonzero

e ∈ E there exists nonzero q ∈ B such that q ≤ e. We need the following property of complete

Boolean algebras.

Theorem 3.3. ([9], 1.1.6) If ∇ is a complete Boolean algebra, e is a nonzero element in ∇ and

B is a minorant subset for ∇e, then there exists a disjoint subset L ⊂ B such that supL = e.

We say that a Boolean algebra ∇ has a countable type or is σ-finite, if any nonfinite family

of nonzero pairwise disjoint elements in ∇ is a countable set. A complete Boolean algebra ∇ is

called multi-σ-finite, if for any nonzero element g ∈ ∇ there exists 0 6= e ∈ ∇ such that e ≤ g

and the Boolean algebra ∇e has a countable type. By theorem 3.3, a multi-σ-finite Boolean

algebra ∇ always has a partition {ei}i∈I of unity 1 such that the Boolean algebra ∇ei has a

countable type for all i ∈ I.

By theorem 3.3 we set the following useful properties of l-complete A-modules.
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Proposition 3.4. Let X be an arbitrary l-complete A-module and ∇ be a complete Boolean

algebra of all idempotents in A. Then

(i). If X is a faithful A-module, then there exists an element x ∈ X such that s(x) = 1;

(ii). If Y is a l-complete A-submodule in a regular A-module X and for any nonzero e ∈ ∇

there exists a nonzero ge ∈ ∇ such that ge ≤ e and geY = geX, then Y = X.

Proof is in the same way as the proof of Proposition 2.4 in [2].

We need a representation of a faithful l-complete A-module X as the Cartesian product of

a faithful l-complete Aei-modules family, where {ei}i∈I is a partition of unity in the Boolean

algebra ∇ of all idempotents in A. In the Cartesian product

∏

i∈I

eiX = {{yi}i∈I : yi ∈ eiX}

of A-submodules eiX we consider coordinate-wise algebraic operations. It is clear that
∏

i∈I

eiX

is a faithful l-complete A-module. We define a map U : X →
∏

i∈I

eiX given by U(x) = {eix}i∈I .

Obviously, U is a homomorphizm from X onto
∏

i∈I

eiX . If U(x) = U(y), then eix = eiy for all

i ∈ I, and by regularity of the A-module X , it follows that x = y.

If z = {xi}i∈I ∈
∏

i∈I

eiX , where xi ∈ eiX ⊂ X , i ∈ I, then l-completeness of the A-module

X implies that there exists an element x ∈ X such that eix = eixi = xi for all i ∈ I. Hence,

U(x) = z, i.e. U is a surjection.

Thus, the following proposition holds.

Proposition 3.5. If X is a faithful l-complete A-module, {ei}i∈I is a partition of unity of the

Boolean algebra ∇ of all idempotents in A, then
∏

i∈I

eiX is also a faithful l-complete A-module

and U is an isomorphism from X onto
∏

i∈I

eiX.

4 Homogenous A-modules

Let A be a laterally complete commutative regular algebra, let ∇ be a complete Boolean algebra

of all idempotents in A, let X be a faithful A-module. The following A-submodule in X is

called A-linear hull of a nonempty subset Y ⊂ A

Lin(Y,A) =

{

n
∑

i=1

aiyi : ai ∈ A, yi ∈ Y, i = 1, . . . , n, n ∈ N

}

,

where N is the set of all natural numbers. If X is a l-complete A-module, then by proposition

3.2 (iii), mix(Lin(Y,A)) is also a l-complete A-submodule in X .
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A set {xi}i∈I in an A-module X is called A-linearly independent, if for any a1, . . . , an ∈ A,

xi1 , . . . , xin ∈ {xi}i∈I , n ∈ N , the equality
n
∑

k=1

akxik = 0 implies equalities a1 = . . . = an = 0.

Proposition 4.1. If Y = {x1, . . . , xk} is a finite A-linearly independent subset in a l-complete

A-module X, then mix(Lin(Y,A)) = Lin(Y,A).

Proof. It is sufficient to show the following inclusion mix(Lin(Y,A)) ⊂ Lin(Y,A). Let

x ∈ mix(Lin(Y,A)), {ei}i∈I be a partition of unity in the Boolean algebra ∇ and let

{yi}i∈I ⊂ Lin(Y,A) be such that eix = eiyi for all i ∈ I. Since eix = eiyi ∈ Lin(Y,A),

then eix =
k
∑

j=1

a
(i)
j xj for some a

(i)
j ∈ A, j = 1, . . . , k. Hence, eix = ei(eix) =

k
∑

j=1

eia
(i)
j xj .

Since A is a l-complete commutative regular algebra and {ei}i∈I is a partition of unity in

∇, then there exists a unique element βj ∈ A such that eiβj = eia
(i)
j for all i ∈ I, where

j ∈ {1, . . . , k}. Thus, eix =
k
∑

j=1

eiβjxj = ei

(

k
∑

j=1

βjxj

)

for any i ∈ I, and this implies the

equality x =
k
∑

j=1

βjxj ∈ Lin(Y,A).

We say that an A-linearly independent system {xi}i∈I from a l-complete A-module X is

A-Hamel basis, if

mix(Lin({xi}i∈I ,A)) = X.

In the case when an A-Hamel basis is a finite set, we say that it is an A-basis in X .

Theorem 4.2. If {xi}ni=1, {yj}
k
j=1 are A-basises in an A-module X, then n = k.

Proof. First we shall show the following A-variant of one known fact from the linear algebra.

Lemma 4.3. Let {zi}ni=1 ⊂ X, {yj}kj=1 ⊂ X, {eyj}kj=1 ⊂ Lin({ezi}ni=1,Ae) for nonzero e ∈ ∇.

If the set {ey1, . . . , eyk} is Ae-linearly independent, then k ≤ n.

Proof. We use the mathematical induction. Let us suppose that for n = 1, k > 1 the equalities

ey1 = a1ez1, . . . , eyk = akez1 hold, where ai ∈ Ae, i = 1, . . . , k. Since a2ey1 + (−a1)ey2 = 0,

then ea1 = ea2 = 0, i.e. ey1 = ey2 = 0, this contradicts to Ae-linear independence of the

elements ey1 and ey2. Hence, k = 1.

Now assume that the lemma holds for n = l−1. Let {zi}li=1 ⊂ X and the following equalities

hold

eyj =
l
∑

i=1

ajiezi, aji ∈ Ae, j = 1, . . . , k, i = 1, . . . , l. (1)
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Let aj0lexl 6= 0 for some j0 ∈ {1, . . . , k}. By reindexing {yj}kj=1, we can assume that

aklexl 6= 0, in particular p = s(akle) 6= 0, wherein p ≤ e. Since the set {eyj}
k
j=1 is Ae-linearly

independent, then the set {pyj}kj=1 is Ap-linearly independent, wherein, by (1), we have

pyj =
l
∑

i=1

ajipzi, j = 1, . . . , k. (2)

Since A is a regular algebra, then for the inversion h = i(akl) ∈ A the equality hakl = s(akl)

holds. Therefore the following equality

pyk =

l−1
∑

i=1

akipzi + aklpzl

implies

pzl = hpyk −
l−1
∑

i=1

akihpzi. (3)

Substitute pzl from (3) in the first (k − 1) equalities from (2) and collect similar terms, we

obtain

pyj − hajlpyk =
l−1
∑

i=1

βjipzi ∈ Lin({pzi}
l−1
i=1,Ap)

for some βji ∈ Ap, i = 1, . . . , l − 1, j = 1, . . . , k − 1.

Let us show that the elements uj = pyj − hajlpyk, j = 1, . . . , k− 1 are Ap-linearly indepen-

dent. Let
k−1
∑

j=1

γjpyj −

(

k−1
∑

j=1

γjhajl

)

pyk =

k−1
∑

j=1

γjuj = 0,

where γj ∈ Ap, j = 1, . . . , k − 1. Since {pyj}kj=1 is Ap-linearly independent, then pγ1 = pγ2 =

. . . = pγk−1 = 0, i.e. the set {uj}
k−1
j=1 is Ap-linearly independent in pX . By the assumption of

the mathematical induction we have that k − 1 ≤ l − 1, and thus k ≤ l. The Lemma 4.3 is

proved.

Return to the proof of Theorem 4.2. As {xi}ni=1 is an A-basis in X , then by Proposition

4.1 we obtain that X = Lin({xi}ni=1,A). On the other hand, {yj}kj=1 ⊂ X and {yj}kj=1 is an

A-linearly independent set. Therefore, by Lemma 4.3 it follows that k ≤ n.

Similarly, we show that n ≤ k, and thus n = k.

Next we need the following characterization of A-Hamel basises.

Proposition 4.4. For an A-linearly independent set {xi}i∈I in a l-complete A-module X the

following conditions are equivalent:
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(i). {xi}i∈I is an A-Hamel basis;

(ii). For any x ∈ X and any nonzero idempotent e ∈ A there exists a nonzero idempotent

g ≤ e, such that gx ∈ gLin({xi}i∈I ,A).

Proof. (i) ⇒ (ii). If X = mix(Lin({xi}i∈I ,A)), then for x ∈ X there exists a partition {ej}j∈J

of unity, such that ejx ∈ ejLin({xi}i∈I ,A). Since sup
j∈J

ej = 1, then for 0 6= e ∈ ∇ there exists

an element j0 ∈ J such that g = ej0e 6= 0, wherein gx ∈ gLin({xi}i∈I ,A).

(ii) ⇒ (i). Fix 0 6= x ∈ X and for any nonzero idempotent e ∈ ∇ choose a nonzero

idempotent g(e, x) ≤ e such that g(e, x)x ∈ g(e, x)Lin({xi}i∈I ,A). By Theorem 3.3, there

exists a set {qj}j∈J of pairwise disjoint idempotents in A such that sup
j∈J

qj = 1 and qjx ∈

qjLin({xi}i∈I ,A) for all j ∈ J . This means that x ∈ mix(Lin({xi}i∈I ,A)), which implies the

equality X = mix(Lin({xi}i∈I ,A)).

Fix some cardinal number γ. A faithful l-complete A-module X is called γ-homogeneous,

if there exists an A-Hamel basis {xi}i∈I in X with card I = γ. We say that A-module X

homogeneous, if it is a γ-homogeneous A-module for some cardinal number γ.

If X is a γ-homogeneous A-module, then obviously, eX is also γ-homogeneous Ae-module

for any nonzero idempotent e ∈ A. Besides, by Proposition 3.2 (iv) it follows that, if A-module

Y is isomorphic to a γ-homogeneous A-module X , then Y is also a γ-homogeneous module.

By repeating the proof of Theorem 3.8 from [2], we establish the following proposition on

isomorphisms of γ-homogeneous A-modules.

Proposition 4.5. If X and Y are γ-homogeneous A-modules, then X and Y are isomorphic.

Let us give examples of γ-homogeneous A-modules for an arbitrary cardinal number γ and

for any l-complete commutative regular untaly algebra A. Consider an arbitrary set of indexes

I with card I = γ. Since the algebra A is l-complete, then the Cartesian product

Y =
∏

i∈I

A = {α̂ = {αi}i∈I : αi ∈ A, i ∈ I}

is a l-complete A-module with coordinate-wise algebraic operations.

For any j ∈ I consider an element ĝj = {g(j)i }i∈I from Y , where g
(j)
i = 0, i 6= j and g

(i)
i = 1,

i ∈ I. Clearly, that the set {ĝj}j∈I is A-linearly independent, and, therefore, the A-submodule

X = mix (Lin ({ĝj}j∈I ,A)) in Y is a γ-homogeneous A-module.

If γ is a positive integer n, then for the faithful l-complete A-module Y =
n
∏

i=1

A = An and

for ĝj = {g(j)i }ni=1, j = 1, . . . , n we have that Lin ({ĝj}nj=1,A) = Y , i.e. the set {ĝj}nj=1 is an

A-Hamel basis in Y . Thus, Proposition 4.5 implies the following

14



Corollary 4.6. For any positive integer n there exists a unique, up to isomorphism, n-homogeneous

A-module, which is isomorphic to An.

Let X be a faithful l-complete A-module, which is γ-homogeneous and λ-homogeneous

simultaneously. There is a natural question, whether in this case the equality γ = λ holds.

Similar question was studied in classification of Kaplansky-Hilbert modules (KHM) X over a

commutative AW ∗-algebra A with the Boolean algebra of projections ∇ (see [6]). In the case,

when ∇ is a multi-σ-finite Boolean algebra in [6] it is proved that for a KHM X the equality

λ = γ is always true. However, for an arbitrary complete Boolean algebra ∇ this equality

cannot be established. Thereby, in ([9], 7.4.6) the notion of strictly γ-homogeneous KHM X is

defined, and this gave an opportunity to classify KHM X over an arbitrary commutative AW ∗-

algebra A. For the same reason, below we introduce the notion of strictly γ-homogeneous

faithful l-complete modules over laterally complete algebras A. With this notion we obtain

necessary and sufficient conditions for l-complete A-modules to be isomorphic.

Let X be a faithful l-complete A-module, 0 6= e ∈ ∇. By κ(e) = κX(e) we denote the

smallest cardinal number γ such that the Ae-module Xe is γ-homogeneous. If the A-module

X is homogeneous, then the cardinal number κ(e) is defined for all nonzero e ∈ ∇. Further,

by ([9], 7.4.7), we assume that κ(0) = 0.

We say that an A-module X is strictly γ-homogeneous (compare with [9], 7.4.6), if X is γ-

homogeneous and γ = κ(e) for all nonzero e ∈ ∇. If an A-module X is strictly γ-homogeneous

for some cardinal number γ, then such A-module X is called strictly homogeneous.

Clearly, any strictly γ-homogeneous A-module is a γ-homogeneous A-module. By Lemma

4.3 it follows that every n-homogeneous A-module X is a strictly n-homogeneous module.

By Proposition 3.2 (iv) every A-module Y , which is isomorphic to a strictly γ-homogeneous

A-module X , is also strictly γ-homogeneous.

The following theorem holds.

Theorem 4.7. Let λ and γ be infinite cardinal numbers and let the Boolean algebra ∇ of all

idempotents in a l-complete commutative regular algebra A has countable type. If a faithful

l-complete A-module X is λ-homogeneous and γ-homogeneous simultaneously, then γ = λ.

Proof of Theorem 4.7 is similar to that of Theorem 3.4 in [2].

Using Theorem 4.7 to the Ae-module Xe, we have, that Theorem 4.7 holds in the case,

when in the Boolean algebra ∇ of idempotents in A there exists nonzero element e, which has

a countable type. Thus, repeating the proof of Corollary 3.7 in [2], we obtain the following nec-
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essary and sufficient conditions for coincidence of strictly γ-homogeneous and γ-homogeneous

notions for A-modules.

Proposition 4.8. Let a Boolean algebra ∇ of all idempotents on a l-complete commutative

regular algebra A be multi-σ-finite. If γ is an infinite cardinal number andX is a γ-homogeneous

A-module, then the module X is strictly γ-homogeneous.

The following proposition enables to “glue” γ-homogeneous (strictly γ-homogeneous) A-

modules.

Proposition 4.9. Let A be a l-complete commutative regular algebra, let X be a l-complete

A-module and let {ei}i∈I be a set of pairwise disjoint nonzero idempotents in A and e = sup
i∈I

ei.

If Xei is a γ-homogeneous (respectively, strictly γ-homogeneous) Aei-module for all i ∈ I, then

the Ae-module Xe is also γ-homogeneous (respectively, strictly γ-homogeneous).

Proof is similar to that of Proposition 3.10 in [2].

5 Classification of faithful l-complete A-modules

In this section it is proved that every faithful laterally complete A-module is isomorphic to a

Cartesian product of strictly homogeneous A-modules. The important step in obtaining such

an isomorphism is the following theorem.

Theorem 5.1. Let A be a l-complete commutative regular algebra, let ∇ be a Boolean algebra of

all idempotents in A and let X be a faithful l-complete A-module. Then there exists a nonzero

idempotent p ∈ ∇ such that Xp is a strictly homogeneous Ap-module.

Proof. Using Proposition 3.4 (i), we choose x0 ∈ X such that s(x0) = 1. If X = Lin(x0,A),

then X is a strictly 1-homogeneous module and Theorem 5.1 is proved.

Assume that X 6= mix ({x0}). We consider in X the following nonempty family of subsets

E = {B ⊂ X : x0 ∈ B,B −A-linearly independent set}.

We introduce in E a partial order by B ≤ C ⇔ B ⊂ C. By Zorn’s lemma there exists maximal

element D in E . If D is an A-Hamel basis in X , then X is (cardD)-homogeneous A-module.

Assume that X 6= mix (Lin (D,A)). If for any nonzero e ∈ ∇ there exists 0 6= qe ∈ ∇

such that qe mix (Lin (D,A)) = qeX , then from Proposition 3.2 (iii) and Proposition 3.4 (ii)
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it follows that X = mix (Lin (D,A)), which contradicts our assumption. Hence, there exists

nonzero e ∈ ∇ such that the following condition holds:

gmix (Lin (D,A)) 6= gX for all non zero g ∈ ∇e. (1)

Denote by L a set of all nonzero e ∈ ∇ with property (1). Put e0 = supL and show that

the equality e0 = 1 fails.

Assume that e0 = 1. In this case for every nonzero q ∈ ∇ there exists e ∈ L such that

g = qe 6= 0. Hence, gX 6= gmix (Lin (D,A)) (see (1)), which implies

qX 6= qmix (Lin (D,A)). (2)

Show that for any nonzero q ∈ ∇ there exists a nonzero idempotent r ≤ q such that for any

0 6= g ∈ ∇r the following property holds:

There exists xg ∈ gX such that s(xg) = g and lxg 6∈ Lin (D,A) for all 0 6= l ∈ ∇g. (3)

If this is not true, then there exists a nonzero q ∈ ∇ such that for every 0 6= r ∈ ∇q there

exists a nonzero idempotent gr ∈ ∇r without property (3), i.e. for any x ∈ grX with s(x) = gr

there exists a nonzero idempotent e(xg, r) ≤ gr ≤ q such that

e(xg, r)x ∈ e(xg, r)Lin (D,A) ⊂ Lin (D,A).

Show that, in this case, gqX = gqmix (Lin (D,A)). Let x be a nonzero element in gqX ,

in particular, 0 6= s(x) ≤ gq. For any nonzero idempotent a ≤ s(x) there exists a nonzero

idempotent e(ax, a) ≤ a such that e(ax, a)x ∈ Lin (D,A). By Theorem 3.3, there exists a

partition {ei}i∈I of support s(x) such that eix ∈ s(x)Lin (D,A) for all i ∈ I. This means that

x ∈ mix (s(x)Lin (D,A)) = s(x)mix (Lin (D,A)) (see Proposition 3.2 (ii)). Since s(x) ≤ gq, we

have that x ∈ gqmix (Lin (D,A)), which implies the inclusion gqX ⊂ gqmix (Lin (D,A)). On

the other hand, by l-completeness of an Agq-module gqX we have that

gqmix (Lin (D,A)) ⊂ gqmix (X) = mix (gqX) = gqX.

Hence, gqX = gqmix (Lin (D,A)), which contradicts to (2).

Thus, for every nonzero q ∈ ∇ there exists a nonzero idempotent r ≤ q such that for any

0 6= g ∈ ∇r property (3) holds.

Again by Theorem 3.3, we choose a partition {gj}j∈J of the idempotent r and a set {xgj}j∈J

in rX , such that s(xgj) = gj and lxgj 6∈ Lin (D,A) for all 0 6= l ∈ ∇gi.
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Since rX is a l-complete Ar-module, then there exists x ∈ rX such that gjx = xgj . In

particular, s(x) = r, wherein lx 6∈ Lin (D,A) for all 0 6= l ∈ ∇r.

Again by Theorem 3.3 we choose a partition {rk}k∈K of the unity 1 in the Boolean algebra

∇ and a set {xk}k∈K in X , such that s(xk) = rk and lxk 6∈ Lin (D,A) for any 0 6= l ∈ ∇rk . By

l-completeness of the A-module X there exists x̂ ∈ X such that rkx̂ = xk for all k ∈ K. In this

case s(x̂) = 1 and lx̂ 6∈ Lin (D,A) for any 0 6= l ∈ ∇.

Show that the set D∪{x̂} is A-linearly independent. Let a0x̂+
n
∑

i=1

aixi = 0, where a0, ai ∈ A,

xi ∈ D, i = 1, . . . , n. If a0 = 0, then
n
∑

i=1

aixi = 0 and by A-linear independence of the set D

it follows that ai = 0 for all i = 1, . . . , n. If a0 6= 0, then s(a0) 6= 0 and for i(a0) = h ∈ A we

have that ha0 = s(a0) and s(a0)x̂ = −
n
∑

i=1

aihxi ∈ Lin (D,A), which is not true. Hence, the set

D ∪ {x̂} is A-linearly independent in X , which contradicts to maximality of the set D.

Thus the equality e0 = 1 is impossible. This means that e = 1 − e0 6= 0. By construction

of the idempotent e0, every nonzero idempotent r ≤ e does not have property (1). Hence, for

any 0 6= r ∈ ∇e there exists a nonzero idempotent pr ≤ r such that

prX = prmix (Lin (D,A)) = mix (Lin (prD,Apr)) = prmix (Lin (eD,Ae)).

From Propositions 3.2 (iii) and 3.4 (ii) it follows that

eX = mix (Lin (eD,Ae)).

Since eD is an Ae-linearly independent subset in the Ae-module eX , then eD is an Ae-basis

in eX , i.e. eX is a γ-homogeneous Ae-module, where γ = card (eD). In particular, a cardinal

number κ(p) is defined for all nonzero p ∈ ∇e. Let γe be the smallest cardinal number in the

set of cardinal numbers {κ(p) : 0 6= p ≤ e}, i.e. γe = κ(p) for some nonzero p ≤ e. By the

choice of the idempotent p it follows that γe = κ(p) = κ(q) for all 0 6= q ∈ ∇p. This means

that the Ap-module Xp is strictly homogeneous.

Now everything is ready to obtain the isomorphism from the faithful laterally complete

A-module to the Cartesian product of strictly homogeneous A-modules.

Theorem 5.2. Let A be a l-complete commutative regular algebra, let ∇ be a Boolean algebra

of all idempotents in A and let X be a faithful l-complete A-module. Then there exist a uniquely

defined set of pairwise disjoint nonzero idempotents {ei}i∈I ⊂ ∇ and a set of pairwise different

cardinal numbers {γi}i∈I such that sup
i∈I

ei = 1 and Xei is a strictly γi-homogeneous Aei-module

for all i ∈ I. In this case, the A-modules X and
∏

i∈I

Xei are isomorphic.
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Proof. By Theorem 5.1 for every nonzero idempotent e ∈ A there exists a nonzero idempotent

g ≤ e such that Xg is a strictly homogeneous Ag-module. By Theorem 3.3, choose a set of

pairwise disjoint nonzero idempotents {qj}j∈J such that sup
j∈J

qj = 1 and qjX is a strictly λj-

homogeneous Aqj-module for all j ∈ J . We decompose the set of cardinal numbers A = {λj}j∈J

as a union of disjoint subsets Ai in such a way that every Ai consists of equal cardinal numbers

from A. By γi denote an element in Ai. By Proposition 4.9, for ei = sup{qj : λj ∈ Ai} we

have that the Aei-module Xei is strictly γi-homogeneous. Moreover, by Proposition 3.5, the

A-module X and
∏

i∈I

eiX are isomorphic.

Assume, that there exist other sets of pairwise disjoint nonzero idempotents {gj}j∈J and

pairwise different cardinal numbers {µj}j∈J , such that sup
j∈J

gj = 1 and Xgj is a strictly µj-

homogeneous Agj -module for all j ∈ J . For any fixed j ∈ J , by the equality sup
i∈I

ei = 1, we

have that gj = sup
i∈I

eigj. If there exist two different indexes i1, i2 ∈ I such that ei1gj 6= 0 and

ei2pj 6= 0, then

µj = κ(gj) = κ(ei1gj) = κ(ei1) = γi1 6= γi2 = κ(ei2) = κ(ei2gj) = µj.

By this contradiction, it follows that eigj = 0 for all i ∈ I except one index, which we denote

by i(j). Since ei(j)gj 6= 0, we have that

µj = κ(gj) = κ(ei(j)gj) = κ(ei(j)) = γi(j).

If gj 6= ei(j), then by the equality sup
j∈J

gj = 1, there exists index j1 ∈ J , j1 6= j such that

ei(j)gj1 6= 0. Hence,

µj = γi(j) = κ(ei(j)) = κ(ei(j)gj1) = κ(gj1) = µj1,

which is not true. Thus, gj = ei(j) and µj = γi(j).

For the same reason, for any i ∈ I there exists the unique index j(i) such that ei = gj(i)

and γi = µj(i).

The partition {ei}i∈I of unity in a Boolean algebra of idempotents in A and the set of

cardinal numbers {γi}i∈I in Theorem 5.2 are called a passport for a faithful laterally complete

A-module X and denoted by Γ(X) = {(ei(X), γi(X))}i∈I(X).

Thus, a passport Γ(X) = {(ei(X), γi(X))}i∈I(X) for a faithful l-completeA-moduleX means

that X =
∏

i∈I(X)

ei(X)X (up to an isomorphism), where ei(X)X is a strictly γi(X)-homogeneous

Aei-module for all i ∈ I(X), ei(X) 6= 0, ei(X)ej(X) = 0, γi(X) 6= γj(X), i 6= j, i, j ∈ I(X),

sup
i∈I(X)

ei(X) = 1.
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The following theorem gives a criterion for isomorphism between faithful l-complete A-

modules, by using the notion of passport for these A-modules.

Theorem 5.3. Let A be a l-complete commutative regular algebra, X and Y be a faithful

l-complete A-modules. The following conditions are equivalent:

(i) Γ(X) = Γ(Y );

(ii) A-modules X and Y are isomorphic.

Proof. (i) ⇒ (ii). Let {(ei(X), γi(X))}i∈I(X) = Γ(X) = Γ(Y ) = {(ei(Y ), γi(Y ))}i∈I(Y ), i.e.

I(X) = I(Y ) := I, ei(X) = ei(Y ) := ei and γi(X) = γi(Y ) := γi for all i ∈ I. By Theorem

5.2, there exists an isomorphism U from A-module X onto A-module
∏

i∈I

eiX (respectively an

isomorphism V from A-module Y onto A-module
∏

i∈I

eiY ), where U(x) = {eix}i∈I (respectively,

V (y) = {eiy}i∈I) for every x ∈ X (respectively, for every y ∈ Y ).

Since eiX (respectively, eiY ) is a strictly γi-homogeneous Aei-module, then by Proposition

4.5, for all i ∈ I there exists an isomorphism Ui from the Aei-module eiX onto the Aei-module

eiY . It is clear that a map Φ : X → Y , defined by the equality

Φ(x) = V −1({Ui(eix)}i∈I).

is an isomorphism from the A-module X onto the A-module Y .

(ii) ⇒ (i). Let Ψ be an isomorphism from X onto Y and Γ(X) = {(ei(X), γi(X))}i∈I(X)

be a passport for a faithful l-complete A-module X . By Proposition 3.2 (iv), the following

Aei(X)-module

Yi = Ψ(ei(X)X) = ei(X)Ψ(X) = ei(X)Y

is strictly γi(X)-homogeneous. This means that {(ei(X), γi(X))}i∈I is a passport for the faithful

l-complete A-module Y , i.e. Γ(X) = Γ(Y ).

Let A be a l-complete commutative regular algebra, let ∇ be a Boolean algebra of all

idempotents in A. A faithful l-complete A-module X is called finitely-dimensional, if there

exist a finite partition {ei}ki=1 of unity in the Boolean algebra ∇ (ei 6= 0, i = 1, . . . , k) and a

finite set {ni}ki=1 of natural numbers (n1 < n2 < . . . < nk) such that Xei is an ni-homogeneous

Aei-module for all i = 1, . . . , k.

This means that any finitely-dimensional A-module X has a passport of the following form

Γ(X) = {(ei(X), ni(X))}ki=1,
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where

e1(X) + . . .+ ek(X) = 1, n1(X) < . . . < nk(X) <∞.

Theorem 5.4. For a faithful l-complete A-module X the following conditions are equivalent:

(i). X is a finitely-dimensional module;

(ii). X is a finitely-generated module, i.e. there exists a finite set {xi}mi=1 of elements in X

such that X = Lin({xi}mi=1,A);

(iii). There exists a positive integer m such that for any nonzero idempotent e ∈ A any

Ae-linearly independent set in Xe consists of not more than m elements.

Proof. (i) ⇒ (ii). Let Γ(X) = {(ei(X), ni(X))}ki=1 be a passport for the A-module X . For

every i = 1, . . . , k we choose the Aei-basis {x(i)j }ni

j=1 in Xei. If x ∈ X , then eix =
ni
∑

j=1

a
(i)
j x

(i)
j ,

where a
(i)
j ∈ Aei. Hence,

x =

k
∑

i=1

eix =

k
∑

i=1

ni
∑

j=1

a
(i)
j g

(i)
j ∈ Lin ({x(i)j }j=1,ni,i=1,k,A).

This means that A-module X is finitely-generated.

(ii) ⇒ (iii). If X = Lin({xi}mi=1,A), e is a nonzero idempotent in A and {yj}lj=1 is an

Ae-linearly independent set in Xe, then by Lemma 4.3, it follows that l ≤ m.

(iii) ⇒ (i). By Theorem 5.2, there exist a set of pairwise disjoint nonzero idempotents

{ei}i∈I and a set of pairwise different cardinal numbers {γi}i∈I such that sup
i∈I

ei = 1 and Xei

is a strictly γi-homogeneous Aei-module for all i ∈ I. If γi > m, then in Xei there exists a

finite set {xi}li=1, which consist of Ae-linearly independent elements, and besides l > m, which

contradicts to condition (iii). Hence, γi ≤ m for all i ∈ I. Since natural numbers {γi}i∈I are

pairwise different, then I is a finite set, i.e. {γi}i∈I = {ni}ki=1, where n1 < n2 < . . . nk. Hence,

the A-module X is finitely-dimensional.

The following description of finitely-dimensional A-modules follows directly from Theorem

5.2 and Corollary 4.6.

Corollary 5.5. If X is a finitely-dimensional A-module, then there exist an uniquely defined

finite partition {ei}
k
i=1 of unity in the Boolean algebra of all idempotents in A and a finite set

of positive integers n1 < . . . < nk such that the A-module X is isomorphic to the A-module
k
∏

i=1

Ani
ei

(here ei 6= 0 for all i = 1, . . . , k).
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A faithful l-complete A-module X is called σ-finitely-dimensional, if there exist a countable

partition {ei}
∞
i=1 of unity in the Boolean algebra of all idempotents inA (ei 6= 0, i = 1, 2, . . .) and

a countable set {ni}∞i=1 of positive integers (n1 < n2 < . . .) such that Xei is an ni-homogeneous

Aei-module for all i = 1, 2, . . .

By Theorem 5.2 and Corollary 4.6 we obtain the following description of σ-finitely-dimensional

A-modules.

Corollary 5.6. If X is a σ-finitely-dimensional A-module, then there exist a uniquely defined

countable partition {ei}∞i=1 of unity in the Boolean algebra of all idempotents in A and a count-

able set of positive integers n1 < n2 < . . . such that the A-module X is isomorphic to the

A-module
∞
∏

i=1

Ani
ei

(here ei 6= 0 for all i = 1, 2, . . .).
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