Classification of modules over laterally complete regular algebras

Vladimir I. Chilin, Jasurbek A. Karimov

Abstract

Let \mathcal{A} be a laterally complete commutative regular algebra and X be a laterally complete \mathcal{A} -module. In this paper we introduce a notion of passport $\Gamma(X)$ for X, which consist of uniquely defined partition of unity in the Boolean algebra of idempotents in \mathcal{A} and the set of pairwise different cardinal numbers. It is proved that \mathcal{A} -modules X and Yare isomorphic if and only if $\Gamma(X) = \Gamma(Y)$.

Key words: Commutative regular algebra, Homogeneous module, Finite dimensional module *Mathematics Subject Classification (2000):* MSC 13C05, MSC 16D70

1 Introduction

J. Kaplansky [4] introduced a class of AW^* -algebras to describe C^* -algebras, which is close to von Neumann algebras by their algebraic and order structure. The class of AW^* -algebras became a subject of many researches in the operator theory (see review in [1]). One of the important results in this direction is the realization of an arbitrary AW^* -algebra M of type I as a *-algebra of all linear bounded operators, which act in a special Banach module over the center Z(M) of the algebra M [5]. The Banach Z(M)-valued norm in this module is generated by the scalar product with values in the commutative AW^* -algebra Z(M). Later, these modules were called Kaplansky-Hilbert modules (KHM). Detailed exposition of many useful properties of KHM is given, for example, in ([9], 7.4). One of the important properties is a representation of an arbitrary Kaplansky-Hilbert module as a direct sum of homogeneous KHM ([6], [9], 7.4.7).

Development of the noncommutative integration theory stimulated an interest to the different classes of algebras of unbounded operators, in particular, to the *-algebras LS(M) of locally measurable operators, affiliated with von Neumann algebras or AW^* -algebras M. If M is a von Neumann algebra, then the center Z(LS(M)) in the algebra LS(M) identifies with the algebra $L^0(\Omega, \Sigma, \mu)$ of all classes of equal almost everywhere measurable complex functions, defined on some measurable space (Ω, Σ, μ) with a complete locally finite measure μ ([11], 2.1, 2.2). If M is an AW^* -algebra, then Z(LS(M)) is an extended f-algebra $C_{\infty}(Q)$, where Q is the Stone compact coresponding to the Boolean algebra of central projectors in M [1]. The problem (like the one in the work of J. Kaplansky [5] for AW^* -algebras) on possibility of realization of *-algebras LS(M), in the case, when M has the type I, as *-algebras of linear $L^0(\Omega, \Sigma, \mu)$ bounded (respectively, $C_{\infty}(Q)$ -bounded) operators, which act in corresponding KHM over the $L^0(\Omega, \Sigma, \mu)$ or over the $C_{\infty}(Q)$ naturally arises. In order to solve this problem it is necessary to construct corresponding theory of KHM over the algebras $L^0(\Omega, \Sigma, \mu)$ and $C_{\infty}(Q)$. In a particular case of KHM over the algebras $L^0(\Omega, \Sigma, \mu)$ this problem is solved in [7], where the decomposition of KHM over $L^0(\Omega, \Sigma, \mu)$ as a direct sum of homogeneous KHM is given. Similar decomposition as a direct sum of strictly γ -homogeneous modules is given in the paper [2] for arbitrary regular laterally complete modules over the algebra $C_{\infty}(Q)$ (the definitions see in the Section 3 below).

The algebra $C_{\infty}(Q)$ is an example of a commutative unital regular algebra over the field of real numbers. In this algebra the following property of lateral completeness holds: for any set $\{a_i\}_{i\in I}$ of pairwise disjoint elements in $C_{\infty}(Q)$ there exists an element $a \in C_{\infty}(Q)$ such that $as(a_i) = a_i$ for all $i \in I$, where $s(a_i)$ is a support of the element a_i (the definitions see in the Section 2 below). This property of $C_{\infty}(Q)$ plays a crucial role in classification of regular laterally complete $C_{\infty}(Q)$ -mpdules [2]. Thereby, it is natural to consider the class of laterally complete commutative unital regular algebras \mathcal{A} over arbitrary fields and to obtain variants of structure theorems for modules over such algebras. Current work is devoted to solving this problem. For every faithful regular laterally complete \mathcal{A} -module X the concept of passport $\Gamma(X)$, which consist of the uniquely defined partition of unity in the Boolean algebra of idempotents in \mathcal{A} and the set of pairwise different cardinal numbers is constructed. It is proved, that the equality of passports $\Gamma(X)$ and $\Gamma(Y)$ is necessary and sufficient condition for isomorphism of \mathcal{A} -modules X and Y.

2 Laterally complete commutative regular algebras

Let \mathcal{A} be a commutative algebra over the field K with the unity $\mathbf{1}$ and $\nabla = \{e \in \mathcal{A} : e^2 = e\}$ be a set of all idempotents in \mathcal{A} . For all $e, f \in \nabla$ we write $e \leq f$ if ef = e. It is well known (see, for example [10, Prop. 1.6]) that this binary relation is partial order in ∇ and ∇ is a Boolean algebra with respect to this order. Moreover, we have the following equalities: $e \lor f = e + f - ef$, $e \land f = ef$, $Ce = \mathbf{1} - e$ with respect to the lattice operations and the complement Ce in ∇ .

The commutative unital algebra \mathcal{A} is called regular if the following equivalent conditions hold [12, §2, item 4]:

- 1. For any $a \in \mathcal{A}$ there exists $b \in \mathcal{A}$ such that $a = a^2 b$;
- 2. For any $a \in \mathcal{A}$ there exists $e \in \nabla$ such that $a\mathcal{A} = e\mathcal{A}$.

A regular algebra \mathcal{A} is a regular semigroup with respect to the multiplication operation [3, Ch. I, §1.9]. In this case all idempotents in \mathcal{A} commute pairwisely. Therefore, \mathcal{A} is a commutative inverse semigroup, i.e. for any $a \in \mathcal{A}$ there exists an unique element $i(a) \in \mathcal{A}$, which is an unique solution of the system: $a^2x = a$, $ax^2 = x$ [3, Ch. I, §1.9]. The element i(a) is called an inversion of the element a. Obviously, $ai(a) \in \nabla$ for any $a \in \mathcal{A}$. In this case the map $i : \mathcal{A} \to \mathcal{A}$ is a bijection and an automorphism (by multiplication) in semigroup \mathcal{A} . Moreover, i(i(a)) = a and i(g) = g for all $a \in \mathcal{A}, g \in \nabla$.

Let \mathcal{A} be a commutative unital regular algebra and ∇ be a Boolean algebra of all idempotents in \mathcal{A} . Idempotent $s(a) \in \nabla$ is called the support of an element $a \in \mathcal{A}$ if s(a)a = a and ga = a, $g \in \nabla$ imply $s(a) \leq g$. It is clear that s(a) = ai(a) = s(i(a)). In particular, s(e) = ei(e) = efor any $e \in \nabla$.

It is easy to show that supports of elements in a commutative regular unital algebra \mathcal{A} satisfy the following properties:

Proposition 2.1. Let $a, b \in A$, then

- (i). s(ab) = s(a)s(b), in particular, $ab = 0 \Leftrightarrow s(a)s(b) = 0$;
- (*ii*). If ab = 0, then i(a + b) = i(a) + i(b) and s(a + b) = s(a) + s(b).

Two elements a and b in a commutative unital regular algebra \mathcal{A} are called *disjoint elements*, if ab = 0, which equivalent to the equality s(a)s(b) = 0 (see Proposition 2.1 (i)). If the Boolean algebra ∇ of all idempotents in \mathcal{A} is complete, $a \in \mathcal{A}$ and $r(a) = \sup\{e \in \nabla : ae = 0\}$, then

$$s(a)r(a) = s(a) \wedge r(a) = s(a) \wedge (\sup\{e : ae = 0\}) =$$
$$= \sup\{s(a) \wedge e : ae = 0\} = \sup\{s(a)e : ae = 0\} = 0.$$

Hence $s(a) \leq 1 - r(a)$. If q = (1 - r(a) - s(a)), then aq = as(a)q = 0, thus $q \leq r(a)$. This yields that q = 0, i.e. s(a) = 1 - r(a). This implies the following

Proposition 2.2. Let \mathcal{A} be a commutative unital regular algebra and let ∇ be complete Boolean algebra of idempotents in \mathcal{A} . If $\{e_i\}_{i \in I}$ is a partition of unity in ∇ , $a, b \in \mathcal{A}$ and $ae_i = be_i$ for all $i \in I$, then a = b.

Proof. Since $(a - b)e_i = 0$ for any $i \in I$, then $\mathbf{1} = \sup_{i \in I} e_i \leq r(a - b)$, i.e. $r(a - b) = \mathbf{1}$. Hence, s(a - b) = 0, i.e. a = b.

Commutative unital regular algebra \mathcal{A} is called *laterally complete* (*l-complete*) if the Boolean algebra of its idempotents is complete and for any set $\{a_i\}_{i\in I}$ of pairwise disjoint elements in \mathcal{A} there exists an element $a \in \mathcal{A}$ such that $as(a_i) = a_i$ for all $i \in I$. The element $a \in \mathcal{A}$ such that $as(a_i) = a_i, i \in I$, in general, is not uniquely determined. However, by Proposition 2.2, it follows that the element a is unique in the case, when $\sup_{i\in I} s(a_i) = 1$. In general case, due to the equality $as(a_i) = a_i = bs(a_i)$ for all $i \in I$ and $a, b \in \mathcal{A}$, it follows that $a \sup_{i\in I} s(a_i) = b \sup_{i\in I} s(a_i)$.

Let us give examples of *l*-complete and not *l*-complete commutative regular algebras. Let Δ be an arbitrary set and K^{Δ} be a Cartesian product of Δ copies of the field K, i.e. the set of all K-valued functions on Δ . The set K^{Δ} is a commutative unital regular algebra with respect to pointwise algebraic operations, moreover, the Boolean algebra ∇ of all idempotents in K^{Δ} is an isomorphic atomic Boolean algebra of all subsets in Δ . In particular ∇ is complete Boolean algebra. If $\{a_j = (\alpha_q^{(j)})_{q \in \Delta}, j \in J\}$ is a family of pairwise disjoint elements in K^{Δ} , then setting $\Delta_j = \{q \in \Delta : \alpha_q^{(j)} \neq 0\}, j \in J$ and $a = (\alpha_q)_{q \in \Delta} \in K^{\Delta}$, where $\alpha_q = \alpha_q^{(j)}$ for any $q \in \Delta_j$, $j \in J$, and $\alpha_q = 0$ for $q \in \Delta \setminus \bigcup_{j \in J} \Delta_j$, we obtain that $as(a_j) = a_j$ for all $j \in J$. Hence, K^{Δ} is a *l*-complete algebra.

Now let \mathcal{A} be an arbitrary commutative unital regular algebra over the field K and ∇ be a Boolean algebra of all idempotents in \mathcal{A} . An element $a \in \mathcal{A}$ is called a *step element* in \mathcal{A} if it has the following form $a = \sum_{k=1}^{n} \lambda_k e_k$, here $\lambda_k \in K$, $e_k \in \nabla$, $k = 1, \ldots, n$. The set $K(\nabla)$ of all step elements is the smallest subalgebra in \mathcal{A} , which contains ∇ . Any nonzero element $a = \sum_{k=1}^{n} \lambda_k e_k$ in $K(\nabla)$ can be represented as $a = \sum_{l=1}^{m} \alpha_l g_l$, here $g_l \in \nabla$, $g_l g_k = 0$ when $l \neq k$, $0 \neq \alpha_k \in K$, $l, k = 1, \ldots, m$. Setting $b = \sum_{l=1}^{m} \alpha_l^{-1} g_l \in K(\nabla)$, we obtain $a^2 b = a$. Hence, $K(\nabla)$ is a regular subalgebra in \mathcal{A} . Since $\nabla \subset K(\nabla)$, the Boolean algebra of idempotents in $K(\nabla)$ coincides with ∇ . Assume that card $(K) = \infty$ and card $(\nabla) = \infty$. We choose a countable set $K_0 = \{\lambda_n\}_{n=1}^{\infty}$ of pairwise different nonzero elements in K and a countable set $\{e_n\}_{n=1}^{\infty}$ of nonzero pairwise disjoint elements in ∇ . Let us consider a set $\{\lambda_n e_n\}_{n=1}^{\infty}$ of pairwise disjoint elements in $K(\nabla)$. Assume that there exists $b = \sum_{l=1}^{m} \alpha_l g_l \in K(\nabla)$, $0 \neq \alpha_l \in K$, $g_l \in \nabla$, $g_l g_k = 0$ and $l \neq k$, $l, k = 1, \ldots, m$, such that $be_n = bs(\lambda_n e_n) = \lambda_n e_n$. In this case for any positive integer n there exists natural number l(n), such that $\alpha_{l(n)}g_{l(n)}e_n = \lambda_n g_{l(n)}e_n \neq 0$, i.e. $\alpha_{l(n)} = \lambda_n$. This implies that the set $\{\lambda_n\}_{n=1}^{\infty}$ is finite, which is not true. Hence, the commutative unital regular algebra $K(\nabla)$ is not l-complete.

Let ∇ be complete Boolean algebra and let $Q(\nabla)$ be a Stone compact corresponding to ∇ .

An algebra $C_{\infty}(Q(\nabla))$ of all continuous functions $a : Q(\nabla) \to [-\infty, +\infty]$, taking the values $\pm \infty$ only on nowhere dense sets in $Q(\nabla)$ [9, 1.4.2], is an important example of a *l*-complete commutative regular algebra.

An element $e \in C_{\infty}(Q(\nabla))$ is an idempotent if and only if $e(t) = \chi_V(t), t \in Q(\nabla)$, for some clopen set $V \subset Q(\nabla)$, where

$$\chi_V(t) = \begin{cases} 1, & t \in V; \\ 0, & t \notin V, \end{cases}$$

i.e. $\chi_V(t)$ is a characteristic function of the set V. In particular, the Boolean algebra ∇ can be identified with the Boolean algebra of all idempotents in algebra $C_{\infty}(Q(\nabla))$.

If $a \in C_{\infty}(Q(\nabla))$, then $G(a) = \{t \in Q(\nabla) : 0 < |a(t)| < +\infty\}$ is open set in the Stone compact set $Q(\nabla)$. Hence, the closure $V(a) = \overline{G(a)}$ in $Q(\nabla)$ of the set G(a) is an elopen set, i.e. $\chi_{V(a)}$ is an idempotent in the algebra $C_{\infty}(Q(\nabla))$. We consider a continuous function b(t), given on the dense open set $G(a) \cup (Q(\nabla) \setminus V(a))$ and defines by the following equation

$$b(t) = \begin{cases} \frac{1}{a(t)}, & t \in G(a), \\ 0, & t \in Q(\nabla) \setminus V(a). \end{cases}$$

This function uniquely extends to a continuous function defined on $Q(\nabla)$ with values in $[-\infty, +\infty]$ [14, Ch.5, §2] (we also denote this extension by b(t)). Since $ab = \chi_{V(a)}$, then $a^2b = a$ and $s(a) = \chi_{V(a)}$. Hence, $C_{\infty}(Q(\nabla))$ is a commutative unital regular algebra over the field of real numbers **R**. In this case, the Boolean algebra of all idempotents in $C_{\infty}(Q(\nabla))$ is complete.

It is known that (see, for example [9, 1.4.2]) $C_{\infty}(Q(\nabla))$ is an extended complete vector lattice. In particular, for any set $\{a_j\}_{j\in J}$ of pairwise disjoint positive elements in $C_{\infty}(Q(\nabla))$ there exists the least upper bound $a = \sup_{j\in J} a_j$ and $as(a_j) = a_j$ for all $j \in J$. It follows that the commutative regular algebra $C_{\infty}(Q(\nabla))$ is laterally complete.

In the case, when ∇ is a complete atomic Boolean algebra and Δ is the set of all atoms in ∇ , then $C_{\infty}(Q(\nabla))$ is isomorphic to the algebra \mathbf{R}^{Δ} .

The following examples of laterally complete commutative regular algebras are variants of algebras $C_{\infty}(Q(\nabla))$ for any topological fields, in particular, for the field \mathbf{Q}_p of *p*-adic numbers.

Let K be an arbitrary field and t be the Hausdorff topology on K. If operations $\alpha \to (-\alpha)$, $\alpha \to \alpha^{-1}$ and operations $(\alpha, \beta) \to \alpha + \beta$, $(\alpha, \beta) \to \alpha\beta$, $\alpha, \beta \in K$, are continuous with respect to this topology, we say that (K, t) is a *topological field* (see, for example, [13, Ch.20, §165]).

Let (K, t) be a topological field, (X, τ) be any topological space and $\nabla(X)$ be a Boolean algebra of all clopen subsets in (X, τ) . A map $\varphi : (X, \tau) \to (K, t)$ is called *almost continuous* if there exists a dense open set U in (X, τ) such that the restriction $\varphi|_U : U \to (K, t)$ of the map φ on the subset U is continuous in U. The set of all almost continuous maps from (X, τ) to (K, t) we denote by AC(X, K).

We define pointwise algebraic operations in AC(X, K) by

$$(\varphi + \psi)(t) = \varphi(t) + \psi(t);$$
$$(\alpha \varphi)(t) = \alpha \varphi(t);$$
$$(\varphi \cdot \psi)(t) = \varphi(t)\psi(t)$$

for all $\varphi, \psi \in AC(X, K), \alpha \in K, t \in X$.

Since an intersection of two dense open sets in (X, τ) is a dense open set in (X, τ) , then $\varphi + \psi, \ \varphi \cdot \psi \in AC(X, K)$ for any $\varphi, \psi \in AC(X, K)$. Obviously, $\alpha \varphi \in AC(X, K)$ for all $\varphi \in AC(X, K), \ \alpha \in K$. It can be easily checked that AC(X, K) is a commutative algebra over K with the unit element $\mathbf{1}(t) = \mathbf{1}_K$ for all $t \in X$, where $\mathbf{1}_K$ is the unit element of K. In this case, the algebra C(X, K) of all continuous maps from (X, τ) to (K, t) is a subalgebra in AC(X, K).

In the algebra AC(X, K) consider the following ideal

 $I_0(X,K) = \{ \varphi \in AC(X,K) : \text{ interior of preimage } \varphi^{-1}(0) \text{ is dense in } (X,\tau) \}.$

By $C_{\infty}(X, K)$ denote the quotient algebra $AC(X, K)/I_0(X, K)$ and by

$$\pi: AC(X, K) \to AC(X, K)/I_0(X, K)$$

denote the corresponding canonical homomorphism.

Theorem 2.3. The quotient algebra $C_{\infty}(X, K)$ is a commutative unital regular algebra over the field K. Moreover, if (X, τ) is a Stone compact set, then algebra $C_{\infty}(X, K)$ is laterally complete, and the Boolean algebra ∇ of all its idempotents is isomorphic to the Boolean algebra $\nabla(X)$.

Proof. Since AC(X, K) is a commutative unital algebra over K, then $C_{\infty}(X, K)$ is also a commutative unital algebra over K with unit element $\pi(\mathbf{1})$. Now we show that $C_{\infty}(X, K)$ is a regular algebra, i.e. for any $\varphi \in AC(X, K)$ there exists $\psi \in AC(X, K)$, such that $\pi^2(\varphi)\pi(\psi) = \pi(\varphi)$.

We fix an element $\varphi \in AC(X, K)$ and choose a dense open set $U \in \tau$, such that the restriction $\varphi|_U : U \to (K, t)$ is continuous. Since $K \setminus \{0\}$ is an open set in (K, t), then the set

 $V = U \cap \varphi^{-1}(K \setminus \{0\})$ is open in (X, τ) . Clearly, the set $W = X \setminus \overline{V}^{\tau}$ is also open in (X, τ) , in this case $V \cup W$ is a dense open set in (X, τ) .

We define a map $\psi : X \to K$, as follow: $\psi(x) = (\varphi(x))^{-1}$ if $x \in V$, and $\psi(x) = 0$ if $x \in X \setminus V$. It is clear that $\psi \in AC(X, K)$ and $\varphi^2 \psi - \varphi \in I_0(X, K)$, i.e. $\pi^2(\varphi)\pi(\psi) = \pi(\varphi)$. Hence, the algebra $C_{\infty}(X, K)$ is regular.

For any clopen set $U \in \nabla(X)$ its characteristic function χ_U belongs to AC(X, K), in this case, $\pi(\chi_U)^2 = \pi(\chi_U^2) = \pi(\chi_U)$, i.e. $\pi(\chi_U)$ is an idempotent in the algebra $C_{\infty}(X, K)$.

Assume that (X, τ) is a Stone compact and we show that for any idempotent $e \in C_{\infty}(X, K)$ there exists $U \in \nabla(X)$ such that $e = \pi(\chi_U)$.

If $e \in \nabla$, then $e = \pi(\varphi)$ for some $\varphi \in AC(X, K)$ and

$$\pi(\varphi) = e^2 = \pi(\varphi^2),$$

i.e. $(\varphi^2 - \varphi) \in I_0(X, K)$. Hence, there exists a dense open set V in X such that $\varphi^2(t) - \varphi(t) = 0$ for all $t \in V$. Denote by U a dense open set in X such that the restriction $\varphi|_U : U \to K$ is continuous. Put $U_0 = \varphi^{-1}(\{0\}) \cap (U \cap V)$, $U_1 = \varphi^{-1}(\{1_K\}) \cap (U \cap V)$. Since $U_0 \cap U_1 =$ $\emptyset, U_0 \cup U_1 = U \cap V \in \tau$ and the sets U_0, U_1 are closed in $U \cap V$ with respect to the topology induced from (X, τ) , it follows that $U_0, U_1 \in \tau$. Hence, the set $U_{\varphi} = \overline{U_1}$ belongs to the Boolean algebra $\nabla(X)$, besides, $U_{\varphi} \cap U_0 = \emptyset$.

Since $U_0 \cup U_1 = U \cap V$ is a dense open set in (X, τ) and $\varphi(t) = \chi_{U_{\varphi}}(t)$ for all $t \in U_0 \cup U_1$, it follows that $e = \pi(\varphi) = \pi(\chi_{U_{\varphi}})$. Thus, the mapping $\Phi : \nabla(X) \to \nabla$ defined by the equality $\Phi(U) = \pi(\chi_U), U \in \nabla(X)$, is a surjection.

Moreover, for $U, V \in \nabla(X)$ the following equalities hold

$$\Phi(U \cap V) = \pi(\chi_{U \cap V}) = \pi(\chi_U \chi_V) = \pi(\chi_U)\pi(\chi_V) = \Phi(U)\Phi(V),$$
$$\Phi(X \setminus U) = \pi(\chi_{X \setminus U}) = \pi(\mathbf{1} - \chi_U) = \Phi(X) - \Phi(U).$$

Furthermore, the equality $\Phi(U) = \Phi(V)$ implies that the continuous mappings χ_U and χ_V coincide on a dense set in X. Therefore $\chi_U = \chi_V$, that is U = V.

Hence, Φ is an isomorphism from the Boolean algebra $\nabla(X)$ onto the Boolean algebra ∇ of all idempotents from $C_{\infty}(X, K)$, in particular, ∇ is a complete Boolean algebra.

Finally, to prove *l*-completeness of the algebra $C_{\infty}(X, K)$ we show that for any family $\{\pi(\varphi_i) : \varphi \in AC(X, K)\}_{i \in I}$ of nonzero pairwise disjoint elements in $C_{\infty}(X, K)$ there exists $\varphi \in AC(X, K)$ such that $\pi(\varphi)s(\pi(\varphi_i)) = \pi(\varphi_i)$ for all $i \in I$. For any $i \in I$ we choose a dense open set U_i such that the restriction $\varphi_i|_{U_i}$ is continuous and put $V_i = U_i \cap \varphi_i^{-1}(K \setminus \{0\})$, $i \in I$. It is not hard to prove that $s(\pi(\varphi_i)) = \Phi(\overline{V_i})$. In particular, $V_i \cap V_j = \emptyset$ when $i \neq j$,

 $i, j \in I$. Define the mapping $\varphi : X \to K$, as follows $\varphi(t) = \varphi_i(t)$ if $t \in V_i$ and $\varphi(t) = 0$ if $t \in X \setminus \left(\bigcup_{i \in I} V_i\right)$. Clearly, $\varphi \in AC(X, K)$ and $\pi(\varphi)s(\pi(\varphi_i)) = \pi(\varphi\chi_{\overline{V_i}}) = \pi(\varphi_i\chi_{\overline{V_i}}) = \pi(\varphi_i)$ for all $i \in I$.

3 Laterally complete regular modules

Let \mathcal{A} be a laterally complete commutative regular algebra and let ∇ be a Boolean algebra of all idempotents in \mathcal{A} . Let X be a left \mathcal{A} -module with algebraic operations x + y and ax, $x, y \in X, a \in \mathcal{A}$. Since the algebra \mathcal{A} is commutative, then a left \mathcal{A} -module X becomes a right \mathcal{A} -module, if we put $xa := ax, x \in X, a \in \mathcal{A}$. Hence, we can assume, that X is a bimodule over \mathcal{A} , where the following equality ax = xa holds for any $x \in X, a \in \mathcal{A}$. Next, an \mathcal{A} -bimodule Xwe shall call an \mathcal{A} -module.

An \mathcal{A} -module X is called faithful, if for any nonzero $e \in \nabla$ there exists $x \in X$ such that $ex \neq 0$. Clearly, for a faithful \mathcal{A} -module X the set $X_e := eX$ is a faithful \mathcal{A}_e -module for any $0 \neq e \in \nabla$, where $\mathcal{A}_e := e\mathcal{A}$.

An \mathcal{A} -module X is said to be a regular module, if for any $x \in \mathcal{A}$ the condition ex = 0 for all $e \in L \subset \nabla$ implies $(\sup L)x = 0$. In this case, for $x \in X$ the idempotent

$$s(x) = \mathbf{1} - \sup\{e \in \nabla : ex = 0\}$$

is called the support of an element x. In case, when $X = \mathcal{A}$, the notions of support of an element in an \mathcal{A} -module X and of support of an element in \mathcal{A} coincide. If X is a regular \mathcal{A} -module, then X_e is also a regular \mathcal{A}_e -module for any nonzero $e \in \nabla$.

We need the following properties of supports of elements in a regular \mathcal{A} -module X.

Proposition 3.1. Let X be a regular A-module, $x, y \in X$, $a \in A$. Then

(i). s(x)x = x;
(ii). if e ∈ ∇ and ex = x, then e ≥ s(x);
(iii). s(ax) = s(a)s(x).

Proof. (i). If $r(x) = \sup\{e \in \nabla : ex = 0\}$, then s(x) = 1 - r(x) and r(x)x = 0. Hence, x = (s(x) + r(x))x = s(x)x.

(*ii*). As ex = x, then (1 - e)x = 0, and therefore $1 - e \le r(x)$. Thus $e \ge 1 - r(x) = s(x)$.

(*iii*). Since $(s(a)s(x)) \cdot (ax) = (s(a)a) \cdot (s(x)x) = ax$, then by (*ii*) we have $s(ax) \le s(a)s(x)$.

If $g = s(a)s(x) - s(ax) \neq 0$, then $ga \neq 0$, $g \leq s(a)$ and gs(ax) = 0. Hence gax = 0 and

 $0 = i(ga)(gax) = (i(g)i(a)ga)x = (gi(a)a)x = gs(a)x = gx \neq 0$. This contradiction implies g = 0, i.e. s(ax) = s(a)s(x).

We say that a regular \mathcal{A} -module X is laterally complete (*l*-complete), if for any set $\{x_i\}_{i\in I} \subset X$ and for any partition $\{e_i\}_{i\in I}$ of unity of the Boolean algebra ∇ there exists $x \in X$ such that $e_i x = e_i x_i$ for all $i \in I$. In this case, the element x is called mixing of the set $\{x_i\}_{i\in I}$ with respect to the partition of unity $\{e_i\}_{i\in I}$ and denote by $\min_{i\in I}(e_i x_i)$. Mixing $\min_{i\in I}(e_i x_i)$ is defined uniquely, whereas the equalities $e_i x = e_i x_i = e_i y, x, y \in X, i \in I$, implies $e_i (x - y) = 0$ for all $i \in I$, and, by regularity of the \mathcal{A} -module X, we obtain x = y.

Let $\{x_i\}_{i\in I} \subset E \subset X$ and let $\{e_i\}_{i\in I}$ be a partition of unity in ∇ . The set of all mixings $\min_{i\in I}(e_ix_i)$ is called a cyclic hull of the set E in X and denotes by $\min(E)$. Obviously, the inclusion $E \subset \min(E)$ is always true. If $E = \min(E)$, then E is called a cyclic set in X (compare with [8], 1.1.2).

Thus, a regular \mathcal{A} -module X is a l-complete \mathcal{A} -module if and only if X is a cyclic set. In particular, in any l-complete \mathcal{A} -module X its submodule X_e is also a l-complete \mathcal{A}_e -module for any nonzero idempotent e in \mathcal{A} .

We need the following properties of cyclic hulls of sets.

Proposition 3.2. Let X be a l-complete A-module and let E be a nonempty subset in X, $a \in A$. Then

- (i). $\min(\min(E)) = \min(E);$
- (*ii*). $\min(aE) = a\min(E);$

(iii). If Y is an A-submodule in X, then mix(Y) is a l-complete A-submodule in X;

(iv). If U is an isomorphism from \mathcal{A} -module X onto \mathcal{A} -module Z, then Z is a l-complete \mathcal{A} -module and $\min(U(E)) = U(\min(E))$.

Proof. (i). It is sufficient to show that $\min(\min(E)) \subset \min(E)$. If $x \in \min(\min(E))$, then $x = \min_{i \in I}(e_i x_i)$, where $x_i \in \min(E)$, $i \in I$. Since $x_i \in \min(E)$, then $x_i = \min_{j \in J(i)} (e_j^{(i)} x_j^{(i)})$, where $x_j^{(i)} \in E$, $j \in J(i)$ and $\{e_j^{(i)}\}_{j \in J(i)}$ is a partition of unity in the Boolean algebra ∇ for all $i \in I$. Fix $i \in I$ and put $g_j^{(i)} := e_i e_j^{(i)}$. It is clear that $\{g_j^{(i)}\}_{j \in J(i)}$ is a partition of the idempotent e_i . Hence, $\{g_j^{(i)}\}_{j \in J(i), i \in I}$ is a partition of unity **1**. Besides,

$$g_j^{(i)}x = g_j^{(i)}e_ix = g_j^{(i)}e_ix_i = e_ie_j^{(i)}x_i = e_ie_j^{(i)}x_j^{(i)} = g_j^{(i)}x_j^{(i)}.$$

This yields that $x = \min_{j \in J(i), i \in I} (g_j^{(i)} x_j^{(i)}) \in \min(E).$

(*ii*). If $x \in \min(aE)$, then $x = \min_{i \in I}(e_i a y_i)$, where $y_i \in E, i \in I$. Since X is a *l*-complete \mathcal{A} -module, then there exists $y = \min_{i \in I}(e_i y_i) \in \min(E)$ and $e_i x = a e_i y_i = e_i(ay)$ for all $i \in I$.

Hence, $e_i(x - ay) = 0$, and regularity of the \mathcal{A} -module X implies the equality x = ay. Thus, $\min(aE) \subset \min(E)$.

Conversely, if $x \in amix(E)$, then x = az, where $z = \min_{i \in I} (e_i z_i), z_i \in E, i \in I$. Since $az_i \in aE$ and $e_i x = e_i(az) = e_i ae_i z = e_i(az_i)$ for all $i \in I$, we have that $x = \min_{i \in I} (e_i(az_i)) \in mix(aE)$. Hence, $amix(E) \subset mix(aE)$.

(*iii*). Let $x, y \in \min(Y)$, $x = \min_{i \in I}(e_i x_i)$, $y = \min_{j \in J}(g_j y_j)$, where $x_i, y_j \in Y$, $i \in I$, $j \in J$, $\{e_i\}_{i \in I}$, $\{g_j\}_{j \in J}$ are partitions of unity in ∇ . Clearly, that $p_{ij} = e_i g_j$, $i \in I$, $j \in J$, is also a partition of unity in ∇ and $p_{ij}(x+y) = p_{ij}(x_i+y_j)$, where $x_i + y_j \in Y$ for all $i \in I$, $j \in J$. This means that $(x+y) \in \min(Y)$.

Since $aY \subset Y$, then by (ii) we have that $ax \in amix(Y) = mix(aY) \subset mix(Y)$. Hence, mix(Y) is an \mathcal{A} -submodule in X, and by regularity of the \mathcal{A} -module X, it is a regular \mathcal{A} -module. The equality mix(Y) = mix(mixY) (see (i)) implies that mixY is a *l*-complete \mathcal{A} -module.

(*iv*). If $U(x) = y \in Z$, $x \in X$, $\emptyset \neq L \subset \nabla$ and ey = 0 for all $e \in L$, then U(ex) = eU(x) = ey = 0. Since U is a bijection, then ex = 0 for any $e \in L$. By regularity of the \mathcal{A} -module X, we have that $(\sup L)x = 0$, and, therefore, $(\sup L)y = U((\sup L)x) = 0$. Hence, Z is a regular \mathcal{A} -module. In the same way we show that Z is a *l*-complete \mathcal{A} -module and the equality $\min(U(E)) = U(\min(E))$ holds.

Let ∇ be an arbitrary complete Boolean algebra. For any nonzero element $e \in \nabla$ we put $\nabla_e = \{q \in \nabla : q \leq e\}$. The set ∇_e is a Boolean algebra with the unity e with respect to partial order, induced from ∇ .

We say that a set B in ∇ is a minorant subset for nonempty set $E \subset \nabla$, if for any nonzero $e \in E$ there exists nonzero $q \in B$ such that $q \leq e$. We need the following property of complete Boolean algebras.

Theorem 3.3. ([9], 1.1.6) If ∇ is a complete Boolean algebra, e is a nonzero element in ∇ and B is a minorant subset for ∇_e , then there exists a disjoint subset $L \subset B$ such that $\sup L = e$.

We say that a Boolean algebra ∇ has a countable type or is σ -finite, if any nonfinite family of nonzero pairwise disjoint elements in ∇ is a countable set. A complete Boolean algebra ∇ is called *multi-\sigma-finite*, if for any nonzero element $g \in \nabla$ there exists $0 \neq e \in \nabla$ such that $e \leq g$ and the Boolean algebra ∇_e has a countable type. By theorem 3.3, a multi- σ -finite Boolean algebra ∇ always has a partition $\{e_i\}_{i\in I}$ of unity **1** such that the Boolean algebra ∇_{e_i} has a countable type for all $i \in I$.

By theorem 3.3 we set the following useful properties of l-complete \mathcal{A} -modules.

Proposition 3.4. Let X be an arbitrary l-complete A-module and ∇ be a complete Boolean algebra of all idempotents in A. Then

(i). If X is a faithful A-module, then there exists an element $x \in X$ such that s(x) = 1;

(ii). If Y is a l-complete A-submodule in a regular A-module X and for any nonzero $e \in \nabla$ there exists a nonzero $g_e \in \nabla$ such that $g_e \leq e$ and $g_e Y = g_e X$, then Y = X.

Proof is in the same way as the proof of Proposition 2.4 in [2].

We need a representation of a faithful *l*-complete \mathcal{A} -module X as the Cartesian product of a faithful *l*-complete \mathcal{A}_{e_i} -modules family, where $\{e_i\}_{i \in I}$ is a partition of unity in the Boolean algebra ∇ of all idempotents in \mathcal{A} . In the Cartesian product

$$\prod_{i \in I} e_i X = \{\{y_i\}_{i \in I} : y_i \in e_i X\}$$

of \mathcal{A} -submodules $e_i X$ we consider coordinate-wise algebraic operations. It is clear that $\prod_{i \in I} e_i X$ is a faithful *l*-complete \mathcal{A} -module. We define a map $U : X \to \prod_{i \in I} e_i X$ given by $U(x) = \{e_i x\}_{i \in I}$. Obviously, U is a homomorphizm from X onto $\prod_{i \in I} e_i X$. If U(x) = U(y), then $e_i x = e_i y$ for all $i \in I$, and by regularity of the \mathcal{A} -module X, it follows that x = y.

If $z = \{x_i\}_{i \in I} \in \prod_{i \in I} e_i X$, where $x_i \in e_i X \subset X$, $i \in I$, then *l*-completeness of the \mathcal{A} -module X implies that there exists an element $x \in X$ such that $e_i x = e_i x_i = x_i$ for all $i \in I$. Hence, U(x) = z, i.e. U is a surjection.

Thus, the following proposition holds.

Proposition 3.5. If X is a faithful l-complete \mathcal{A} -module, $\{e_i\}_{i \in I}$ is a partition of unity of the Boolean algebra ∇ of all idempotents in \mathcal{A} , then $\prod_{i \in I} e_i X$ is also a faithful l-complete \mathcal{A} -module and U is an isomorphism from X onto $\prod_{i \in I} e_i X$.

4 Homogenous A-modules

Let \mathcal{A} be a laterally complete commutative regular algebra, let ∇ be a complete Boolean algebra of all idempotents in \mathcal{A} , let X be a faithful \mathcal{A} -module. The following \mathcal{A} -submodule in X is called \mathcal{A} -linear hull of a nonempty subset $Y \subset \mathcal{A}$

$$\operatorname{Lin}(Y,\mathcal{A}) = \left\{ \sum_{i=1}^{n} a_i y_i : a_i \in \mathcal{A}, y_i \in Y, i = 1, \dots, n, n \in \mathcal{N} \right\},\$$

where \mathcal{N} is the set of all natural numbers. If X is a *l*-complete \mathcal{A} -module, then by proposition 3.2 (*iii*), mix(Lin(Y, \mathcal{A})) is also a *l*-complete \mathcal{A} -submodule in X.

A set $\{x_i\}_{i \in I}$ in an \mathcal{A} -module X is called \mathcal{A} -linearly independent, if for any $a_1, \ldots, a_n \in \mathcal{A}$, $x_{i_1}, \ldots, x_{i_n} \in \{x_i\}_{i \in I}, n \in \mathcal{N}$, the equality $\sum_{k=1}^n a_k x_{i_k} = 0$ implies equalities $a_1 = \ldots = a_n = 0$.

Proposition 4.1. If $Y = \{x_1, \ldots, x_k\}$ is a finite \mathcal{A} -linearly independent subset in a l-complete \mathcal{A} -module X, then $\min(\operatorname{Lin}(Y, \mathcal{A})) = \operatorname{Lin}(Y, \mathcal{A})$.

Proof. It is sufficient to show the following inclusion mix(Lin(Y, A)) ⊂ Lin(Y, A). Let $x \in mix(Lin(Y, A))$, $\{e_i\}_{i \in I}$ be a partition of unity in the Boolean algebra ∇ and let $\{y_i\}_{i \in I} \subset Lin(Y, A)$ be such that $e_i x = e_i y_i$ for all $i \in I$. Since $e_i x = e_i y_i \in Lin(Y, A)$, then $e_i x = \sum_{j=1}^k a_j^{(i)} x_j$ for some $a_j^{(i)} \in A$, j = 1, ..., k. Hence, $e_i x = e_i (e_i x) = \sum_{j=1}^k e_i a_j^{(i)} x_j$. Since A is a *l*-complete commutative regular algebra and $\{e_i\}_{i \in I}$ is a partition of unity in ∇ , then there exists a unique element $\beta_j \in A$ such that $e_i \beta_j = e_i a_j^{(i)}$ for all $i \in I$, where $j \in \{1, ..., k\}$. Thus, $e_i x = \sum_{j=1}^k e_i \beta_j x_j = e_i \left(\sum_{j=1}^k \beta_j x_j\right)$ for any $i \in I$, and this implies the equality $x = \sum_{j=1}^k \beta_j x_j \in Lin(Y, A)$.

We say that an \mathcal{A} -linearly independent system $\{x_i\}_{i \in I}$ from a *l*-complete \mathcal{A} -module X is \mathcal{A} -Hamel basis, if

$$\min(\operatorname{Lin}(\{x_i\}_{i\in I}, \mathcal{A})) = X.$$

In the case when an \mathcal{A} -Hamel basis is a finite set, we say that it is an \mathcal{A} -basis in X.

Theorem 4.2. If $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^k$ are \mathcal{A} -basises in an \mathcal{A} -module X, then n = k.

Proof. First we shall show the following \mathcal{A} -variant of one known fact from the linear algebra.

Lemma 4.3. Let $\{z_i\}_{i=1}^n \subset X, \{y_j\}_{j=1}^k \subset X, \{ey_j\}_{j=1}^k \subset \operatorname{Lin}(\{ez_i\}_{i=1}^n, \mathcal{A}_e)$ for nonzero $e \in \nabla$. If the set $\{ey_1, \ldots, ey_k\}$ is \mathcal{A}_e -linearly independent, then $k \leq n$.

Proof. We use the mathematical induction. Let us suppose that for n = 1, k > 1 the equalities $ey_1 = a_1ez_1, \ldots, ey_k = a_kez_1$ hold, where $a_i \in \mathcal{A}_e, i = 1, \ldots, k$. Since $a_2ey_1 + (-a_1)ey_2 = 0$, then $ea_1 = ea_2 = 0$, i.e. $ey_1 = ey_2 = 0$, this contradicts to \mathcal{A}_e -linear independence of the elements ey_1 and ey_2 . Hence, k = 1.

Now assume that the lemma holds for n = l-1. Let $\{z_i\}_{i=1}^l \subset X$ and the following equalities hold

$$ey_j = \sum_{i=1}^{l} a_{ji}ez_i, a_{ji} \in \mathcal{A}_e, \quad j = 1, \dots, k, i = 1, \dots, l.$$
 (1)

Let $a_{j_0l}ex_l \neq 0$ for some $j_0 \in \{1, \ldots, k\}$. By reindexing $\{y_j\}_{j=1}^k$, we can assume that $a_{kl}ex_l \neq 0$, in particular $p = s(a_{kl}e) \neq 0$, wherein $p \leq e$. Since the set $\{ey_j\}_{j=1}^k$ is \mathcal{A}_e -linearly independent, then the set $\{py_j\}_{j=1}^k$ is \mathcal{A}_p -linearly independent, wherein, by (1), we have

$$py_j = \sum_{i=1}^l a_{ji} pz_i, \quad j = 1, \dots, k.$$
 (2)

Since \mathcal{A} is a regular algebra, then for the inversion $h = i(a_{kl}) \in \mathcal{A}$ the equality $ha_{kl} = s(a_{kl})$ holds. Therefore the following equality

$$py_k = \sum_{i=1}^{l-1} a_{ki} pz_i + a_{kl} pz_l$$

implies

$$pz_{l} = hpy_{k} - \sum_{i=1}^{l-1} a_{ki}hpz_{i}.$$
(3)

Substitute pz_l from (3) in the first (k-1) equalities from (2) and collect similar terms, we obtain

$$py_j - ha_{jl}py_k = \sum_{i=1}^{l-1} \beta_{ji}pz_i \in \operatorname{Lin}(\{pz_i\}_{i=1}^{l-1}, \mathcal{A}_p)$$

for some $\beta_{ji} \in \mathcal{A}_p, i = 1, ..., l - 1, j = 1, ..., k - 1.$

Let us show that the elements $u_j = py_j - ha_{jl}py_k$, j = 1, ..., k - 1 are \mathcal{A}_p -linearly independent. Let

$$\sum_{j=1}^{k-1} \gamma_j p y_j - \left(\sum_{j=1}^{k-1} \gamma_j h a_{jl}\right) p y_k = \sum_{j=1}^{k-1} \gamma_j u_j = 0,$$

where $\gamma_j \in \mathcal{A}_p$, j = 1, ..., k - 1. Since $\{py_j\}_{j=1}^k$ is \mathcal{A}_p -linearly independent, then $p\gamma_1 = p\gamma_2 = ... = p\gamma_{k-1} = 0$, i.e. the set $\{u_j\}_{j=1}^{k-1}$ is \mathcal{A}_p -linearly independent in pX. By the assumption of the mathematical induction we have that $k - 1 \leq l - 1$, and thus $k \leq l$. The Lemma 4.3 is proved.

Return to the proof of Theorem 4.2. As $\{x_i\}_{i=1}^n$ is an \mathcal{A} -basis in X, then by Proposition 4.1 we obtain that $X = \text{Lin}(\{x_i\}_{i=1}^n, \mathcal{A})$. On the other hand, $\{y_j\}_{j=1}^k \subset X$ and $\{y_j\}_{j=1}^k$ is an \mathcal{A} -linearly independent set. Therefore, by Lemma 4.3 it follows that $k \leq n$.

Similarly, we show that $n \leq k$, and thus n = k.

Next we need the following characterization of \mathcal{A} -Hamel basises.

Proposition 4.4. For an \mathcal{A} -linearly independent set $\{x_i\}_{i \in I}$ in a l-complete \mathcal{A} -module X the following conditions are equivalent:

(i). $\{x_i\}_{i\in I}$ is an \mathcal{A} -Hamel basis;

(ii). For any $x \in X$ and any nonzero idempotent $e \in \mathcal{A}$ there exists a nonzero idempotent $g \leq e$, such that $gx \in gLin(\{x_i\}_{i \in I}, \mathcal{A})$.

Proof. $(i) \Rightarrow (ii)$. If $X = \min(\operatorname{Lin}(\{x_i\}_{i \in I}, \mathcal{A}))$, then for $x \in X$ there exists a partition $\{e_j\}_{j \in J}$ of unity, such that $e_j x \in e_j \operatorname{Lin}(\{x_i\}_{i \in I}, \mathcal{A})$. Since $\sup_{j \in J} e_j = \mathbf{1}$, then for $0 \neq e \in \nabla$ there exists an element $j_0 \in J$ such that $g = e_{j_0} e \neq 0$, wherein $gx \in g\operatorname{Lin}(\{x_i\}_{i \in I}, \mathcal{A})$.

 $(ii) \Rightarrow (i)$. Fix $0 \neq x \in X$ and for any nonzero idempotent $e \in \nabla$ choose a nonzero idempotent $g(e, x) \leq e$ such that $g(e, x)x \in g(e, x)\text{Lin}(\{x_i\}_{i\in I}, \mathcal{A})$. By Theorem 3.3, there exists a set $\{q_j\}_{j\in J}$ of pairwise disjoint idempotents in \mathcal{A} such that $\sup_{\substack{j\in J\\ j\in J}} q_j = 1$ and $q_j x \in q_j \text{Lin}(\{x_i\}_{i\in I}, \mathcal{A})$ for all $j \in J$. This means that $x \in \min(\text{Lin}(\{x_i\}_{i\in I}, \mathcal{A}))$, which implies the equality $X = \min(\text{Lin}(\{x_i\}_{i\in I}, \mathcal{A}))$.

Fix some cardinal number γ . A faithful *l*-complete \mathcal{A} -module X is called γ -homogeneous, if there exists an \mathcal{A} -Hamel basis $\{x_i\}_{i\in I}$ in X with card $I = \gamma$. We say that \mathcal{A} -module Xhomogeneous, if it is a γ -homogeneous \mathcal{A} -module for some cardinal number γ .

If X is a γ -homogeneous \mathcal{A} -module, then obviously, eX is also γ -homogeneous \mathcal{A}_e -module for any nonzero idempotent $e \in \mathcal{A}$. Besides, by Proposition 3.2 (*iv*) it follows that, if \mathcal{A} -module Y is isomorphic to a γ -homogeneous \mathcal{A} -module X, then Y is also a γ -homogeneous module.

By repeating the proof of Theorem 3.8 from [2], we establish the following proposition on isomorphisms of γ -homogeneous \mathcal{A} -modules.

Proposition 4.5. If X and Y are γ -homogeneous A-modules, then X and Y are isomorphic.

Let us give examples of γ -homogeneous \mathcal{A} -modules for an arbitrary cardinal number γ and for any *l*-complete commutative regular untally algebra \mathcal{A} . Consider an arbitrary set of indexes I with card $I = \gamma$. Since the algebra \mathcal{A} is *l*-complete, then the Cartesian product

$$Y = \prod_{i \in I} \mathcal{A} = \{ \hat{\alpha} = \{ \alpha_i \}_{i \in I} : \alpha_i \in \mathcal{A}, i \in I \}$$

is a l-complete \mathcal{A} -module with coordinate-wise algebraic operations.

For any $j \in I$ consider an element $\hat{g}_j = \{g_i^{(j)}\}_{i \in I}$ from Y, where $g_i^{(j)} = 0$, $i \neq j$ and $g_i^{(i)} = 1$, $i \in I$. Clearly, that the set $\{\hat{g}_j\}_{j \in I}$ is \mathcal{A} -linearly independent, and, therefore, the \mathcal{A} -submodule $X = \min(\operatorname{Lin}(\{\hat{g}_j\}_{j \in I}, \mathcal{A}))$ in Y is a γ -homogeneous \mathcal{A} -module.

If γ is a positive integer n, then for the faithful l-complete \mathcal{A} -module $Y = \prod_{i=1}^{n} \mathcal{A} = \mathcal{A}^{n}$ and for $\hat{g}_{j} = \{g_{i}^{(j)}\}_{i=1}^{n}$, $j = 1, \ldots, n$ we have that $\operatorname{Lin}(\{\hat{g}_{j}\}_{j=1}^{n}, \mathcal{A}) = Y$, i.e. the set $\{\hat{g}_{j}\}_{j=1}^{n}$ is an \mathcal{A} -Hamel basis in Y. Thus, Proposition 4.5 implies the following **Corollary 4.6.** For any positive integer n there exists a unique, up to isomorphism, n-homogeneous \mathcal{A} -module, which is isomorphic to \mathcal{A}^n .

Let X be a faithful *l*-complete \mathcal{A} -module, which is γ -homogeneous and λ -homogeneous simultaneously. There is a natural question, whether in this case the equality $\gamma = \lambda$ holds. Similar question was studied in classification of Kaplansky-Hilbert modules (KHM) X over a commutative AW^* -algebra \mathcal{A} with the Boolean algebra of projections ∇ (see [6]). In the case, when ∇ is a multi- σ -finite Boolean algebra in [6] it is proved that for a KHM X the equality $\lambda = \gamma$ is always true. However, for an arbitrary complete Boolean algebra ∇ this equality cannot be established. Thereby, in ([9], 7.4.6) the notion of *strictly* γ -homogeneous KHM X is defined, and this gave an opportunity to classify KHM X over an arbitrary commutative AW^* algebra \mathcal{A} . For the same reason, below we introduce the notion of strictly γ -homogeneous faithful *l*-complete modules over laterally complete algebras \mathcal{A} . With this notion we obtain necessary and sufficient conditions for *l*-complete \mathcal{A} -modules to be isomorphic.

Let X be a faithful *l*-complete \mathcal{A} -module, $0 \neq e \in \nabla$. By $\varkappa(e) = \varkappa_X(e)$ we denote the smallest cardinal number γ such that the \mathcal{A}_e -module X_e is γ -homogeneous. If the \mathcal{A} -module X is homogeneous, then the cardinal number $\varkappa(e)$ is defined for all nonzero $e \in \nabla$. Further, by ([9], 7.4.7), we assume that $\varkappa(0) = 0$.

We say that an \mathcal{A} -module X is strictly γ -homogeneous (compare with [9], 7.4.6), if X is γ homogeneous and $\gamma = \varkappa(e)$ for all nonzero $e \in \nabla$. If an \mathcal{A} -module X is strictly γ -homogeneous for some cardinal number γ , then such \mathcal{A} -module X is called *strictly homogeneous*.

Clearly, any strictly γ -homogeneous \mathcal{A} -module is a γ -homogeneous \mathcal{A} -module. By Lemma 4.3 it follows that every *n*-homogeneous \mathcal{A} -module X is a strictly *n*-homogeneous module. By Proposition 3.2 (*iv*) every \mathcal{A} -module Y, which is isomorphic to a strictly γ -homogeneous \mathcal{A} -module X, is also strictly γ -homogeneous.

The following theorem holds.

Theorem 4.7. Let λ and γ be infinite cardinal numbers and let the Boolean algebra ∇ of all idempotents in a l-complete commutative regular algebra \mathcal{A} has countable type. If a faithful l-complete \mathcal{A} -module X is λ -homogeneous and γ -homogeneous simultaneously, then $\gamma = \lambda$.

Proof of Theorem 4.7 is similar to that of Theorem 3.4 in [2].

Using Theorem 4.7 to the \mathcal{A}_e -module X_e , we have, that Theorem 4.7 holds in the case, when in the Boolean algebra ∇ of idempotents in \mathcal{A} there exists nonzero element e, which has a countable type. Thus, repeating the proof of Corollary 3.7 in [2], we obtain the following necessary and sufficient conditions for coincidence of strictly γ -homogeneous and γ -homogeneous notions for \mathcal{A} -modules.

Proposition 4.8. Let a Boolean algebra ∇ of all idempotents on a l-complete commutative regular algebra \mathcal{A} be multi- σ -finite. If γ is an infinite cardinal number and X is a γ -homogeneous \mathcal{A} -module, then the module X is strictly γ -homogeneous.

The following proposition enables to "glue" γ -homogeneous (strictly γ -homogeneous) \mathcal{A} -modules.

Proposition 4.9. Let \mathcal{A} be a *l*-complete commutative regular algebra, let X be a *l*-complete \mathcal{A} -module and let $\{e_i\}_{i\in I}$ be a set of pairwise disjoint nonzero idempotents in \mathcal{A} and $e = \sup_{i\in I} e_i$. If X_{e_i} is a γ -homogeneous (respectively, strictly γ -homogeneous) \mathcal{A}_{e_i} -module for all $i \in I$, then the \mathcal{A}_e -module X_e is also γ -homogeneous (respectively, strictly γ -homogeneous).

Proof is similar to that of Proposition 3.10 in [2].

5 Classification of faithful *l*-complete *A*-modules

In this section it is proved that every faithful laterally complete \mathcal{A} -module is isomorphic to a Cartesian product of strictly homogeneous \mathcal{A} -modules. The important step in obtaining such an isomorphism is the following theorem.

Theorem 5.1. Let \mathcal{A} be a *l*-complete commutative regular algebra, let ∇ be a Boolean algebra of all idempotents in \mathcal{A} and let X be a faithful *l*-complete \mathcal{A} -module. Then there exists a nonzero idempotent $p \in \nabla$ such that X_p is a strictly homogeneous \mathcal{A}_p -module.

Proof. Using Proposition 3.4 (i), we choose $x_0 \in X$ such that $s(x_0) = 1$. If $X = \text{Lin}(x_0, \mathcal{A})$, then X is a strictly 1-homogeneous module and Theorem 5.1 is proved.

Assume that $X \neq \min(\{x_0\})$. We consider in X the following nonempty family of subsets

 $\mathscr{E} = \{ B \subset X : x_0 \in B, B - \mathcal{A}\text{-linearly independent set} \}.$

We introduce in \mathscr{E} a partial order by $B \leq C \Leftrightarrow B \subset C$. By Zorn's lemma there exists maximal element D in \mathscr{E} . If D is an \mathcal{A} -Hamel basis in X, then X is (card D)-homogeneous \mathcal{A} -module.

Assume that $X \neq \min(\operatorname{Lin}(D, \mathcal{A}))$. If for any nonzero $e \in \nabla$ there exists $0 \neq q_e \in \nabla$ such that $q_e \min(\operatorname{Lin}(D, \mathcal{A})) = q_e X$, then from Proposition 3.2 (*iii*) and Proposition 3.4 (*ii*) it follows that $X = \min(\operatorname{Lin}(D, \mathcal{A}))$, which contradicts our assumption. Hence, there exists nonzero $e \in \nabla$ such that the following condition holds:

$$g \min(\operatorname{Lin}(D, \mathcal{A})) \neq gX$$
 for all non zero $g \in \nabla_e$. (1)

Denote by \mathscr{L} a set of all nonzero $e \in \nabla$ with property (1). Put $e_0 = \sup \mathscr{L}$ and show that the equality $e_0 = \mathbf{1}$ fails.

Assume that $e_0 = \mathbf{1}$. In this case for every nonzero $q \in \nabla$ there exists $e \in \mathscr{L}$ such that $g = qe \neq 0$. Hence, $gX \neq gmix(\text{Lin}(D, \mathcal{A}))$ (see (1)), which implies

$$qX \neq q \min\left(\operatorname{Lin}\left(D,\mathcal{A}\right)\right). \tag{2}$$

Show that for any nonzero $q \in \nabla$ there exists a nonzero idempotent $r \leq q$ such that for any $0 \neq g \in \nabla_r$ the following property holds:

There exists
$$x_g \in gX$$
 such that $s(x_g) = g$ and $lx_g \notin \text{Lin}(D, \mathcal{A})$ for all $0 \neq l \in \nabla_g$. (3)

If this is not true, then there exists a nonzero $q \in \nabla$ such that for every $0 \neq r \in \nabla_q$ there exists a nonzero idempotent $g_r \in \nabla_r$ without property (3), i.e. for any $x \in g_r X$ with $s(x) = g_r$ there exists a nonzero idempotent $e(x_g, r) \leq g_r \leq q$ such that

$$e(x_g, r)x \in e(x_g, r)$$
Lin $(D, \mathcal{A}) \subset$ Lin (D, \mathcal{A}) .

Show that, in this case, $g_q X = g_q \min(\operatorname{Lin}(D, \mathcal{A}))$. Let x be a nonzero element in $g_q X$, in particular, $0 \neq s(x) \leq g_q$. For any nonzero idempotent $a \leq s(x)$ there exists a nonzero idempotent $e(ax, a) \leq a$ such that $e(ax, a)x \in \operatorname{Lin}(D, \mathcal{A})$. By Theorem 3.3, there exists a partition $\{e_i\}_{i\in I}$ of support s(x) such that $e_i x \in s(x)\operatorname{Lin}(D, \mathcal{A})$ for all $i \in I$. This means that $x \in \min(s(x)\operatorname{Lin}(D, \mathcal{A})) = s(x)\operatorname{mix}(\operatorname{Lin}(D, \mathcal{A}))$ (see Proposition 3.2 (*ii*)). Since $s(x) \leq g_q$, we have that $x \in g_q \operatorname{mix}(\operatorname{Lin}(D, \mathcal{A}))$, which implies the inclusion $g_q X \subset g_q \operatorname{mix}(\operatorname{Lin}(D, \mathcal{A}))$. On the other hand, by *l*-completeness of an \mathcal{A}_{g_q} -module $g_q X$ we have that

$$g_q \min(\operatorname{Lin}(D, \mathcal{A})) \subset g_q \min(X) = \min(g_q X) = g_q X.$$

Hence, $g_q X = g_q \min(\operatorname{Lin}(D, \mathcal{A}))$, which contradicts to (2).

Thus, for every nonzero $q \in \nabla$ there exists a nonzero idempotent $r \leq q$ such that for any $0 \neq g \in \nabla_r$ property (3) holds.

Again by Theorem 3.3, we choose a partition $\{g_j\}_{j\in J}$ of the idempotent r and a set $\{x_{g_j}\}_{j\in J}$ in rX, such that $s(x_{g_j}) = g_j$ and $lx_{g_j} \notin \text{Lin}(D, \mathcal{A})$ for all $0 \neq l \in \nabla_{g_i}$. Since rX is a *l*-complete \mathcal{A}_r -module, then there exists $x \in rX$ such that $g_j x = x_{g_j}$. In particular, s(x) = r, wherein $lx \notin \text{Lin}(D, \mathcal{A})$ for all $0 \neq l \in \nabla_r$.

Again by Theorem 3.3 we choose a partition $\{r_k\}_{k\in K}$ of the unity **1** in the Boolean algebra ∇ and a set $\{x_k\}_{k\in K}$ in X, such that $s(x_k) = r_k$ and $lx_k \notin \text{Lin}(D, \mathcal{A})$ for any $0 \neq l \in \nabla_{r_k}$. By l-completeness of the \mathcal{A} -module X there exists $\hat{x} \in X$ such that $r_k \hat{x} = x_k$ for all $k \in K$. In this case $s(\hat{x}) = \mathbf{1}$ and $l\hat{x} \notin \text{Lin}(D, \mathcal{A})$ for any $0 \neq l \in \nabla$.

Show that the set $D \cup \{\hat{x}\}$ is \mathcal{A} -linearly independent. Let $a_0 \hat{x} + \sum_{i=1}^n a_i x_i = 0$, where $a_0, a_i \in \mathcal{A}$, $x_i \in D, i = 1, \dots, n$. If $a_0 = 0$, then $\sum_{i=1}^n a_i x_i = 0$ and by \mathcal{A} -linear independence of the set D it follows that $a_i = 0$ for all $i = 1, \dots, n$. If $a_0 \neq 0$, then $s(a_0) \neq 0$ and for $i(a_0) = h \in \mathcal{A}$ we have that $ha_0 = s(a_0)$ and $s(a_0)\hat{x} = -\sum_{i=1}^n a_i hx_i \in \text{Lin}(D, \mathcal{A})$, which is not true. Hence, the set

 $D \cup \{\hat{x}\}$ is \mathcal{A} -linearly independent in X, which contradicts to maximality of the set D.

Thus the equality $e_0 = \mathbf{1}$ is impossible. This means that $e = \mathbf{1} - e_0 \neq 0$. By construction of the idempotent e_0 , every nonzero idempotent $r \leq e$ does not have property (1). Hence, for any $0 \neq r \in \nabla_e$ there exists a nonzero idempotent $p_r \leq r$ such that

$$p_r X = p_r \min\left(\operatorname{Lin}\left(D, \mathcal{A}\right)\right) = \min\left(\operatorname{Lin}\left(p_r D, \mathcal{A}_{p_r}\right)\right) = p_r \min\left(\operatorname{Lin}\left(eD, \mathcal{A}_e\right)\right).$$

From Propositions 3.2 (*iii*) and 3.4 (*ii*) it follows that

$$eX = \min(\operatorname{Lin}(eD, \mathcal{A}_e)).$$

Since eD is an \mathcal{A}_e -linearly independent subset in the \mathcal{A}_e -module eX, then eD is an \mathcal{A}_e -basis in eX, i.e. eX is a γ -homogeneous \mathcal{A}_e -module, where $\gamma = \operatorname{card}(eD)$. In particular, a cardinal number $\varkappa(p)$ is defined for all nonzero $p \in \nabla_e$. Let γ_e be the smallest cardinal number in the set of cardinal numbers { $\varkappa(p) : 0 \neq p \leq e$ }, i.e. $\gamma_e = \varkappa(p)$ for some nonzero $p \leq e$. By the choice of the idempotent p it follows that $\gamma_e = \varkappa(p) = \varkappa(q)$ for all $0 \neq q \in \nabla_p$. This means that the \mathcal{A}_p -module X_p is strictly homogeneous.

Now everything is ready to obtain the isomorphism from the faithful laterally complete \mathcal{A} -module to the Cartesian product of strictly homogeneous \mathcal{A} -modules.

Theorem 5.2. Let \mathcal{A} be a *l*-complete commutative regular algebra, let ∇ be a Boolean algebra of all idempotents in \mathcal{A} and let X be a faithful *l*-complete \mathcal{A} -module. Then there exist a uniquely defined set of pairwise disjoint nonzero idempotents $\{e_i\}_{i\in I} \subset \nabla$ and a set of pairwise different cardinal numbers $\{\gamma_i\}_{i\in I}$ such that $\sup_{i\in I} e_i = \mathbf{1}$ and X_{e_i} is a strictly γ_i -homogeneous \mathcal{A}_{e_i} -module for all $i \in I$. In this case, the \mathcal{A} -modules X and $\prod_{i\in I} X_{e_i}$ are isomorphic. Proof. By Theorem 5.1 for every nonzero idempotent $e \in \mathcal{A}$ there exists a nonzero idempotent $g \leq e$ such that X_g is a strictly homogeneous \mathcal{A}_g -module. By Theorem 3.3, choose a set of pairwise disjoint nonzero idempotents $\{q_j\}_{j\in J}$ such that $\sup_{j\in J} q_j = 1$ and $q_j X$ is a strictly λ_j -homogeneous \mathcal{A}_{q_j} -module for all $j \in J$. We decompose the set of cardinal numbers $A = \{\lambda_j\}_{j\in J}$ as a union of disjoint subsets A_i in such a way that every A_i consists of equal cardinal numbers from A. By γ_i denote an element in A_i . By Proposition 4.9, for $e_i = \sup\{q_j : \lambda_j \in A_i\}$ we have that the \mathcal{A}_{e_i} -module X_{e_i} is strictly γ_i -homogeneous. Moreover, by Proposition 3.5, the \mathcal{A} -module X and $\prod e_i X$ are isomorphic.

Assume, that there exist other sets of pairwise disjoint nonzero idempotents $\{g_j\}_{j\in J}$ and pairwise different cardinal numbers $\{\mu_j\}_{j\in J}$, such that $\sup_{\substack{j\in J\\ j\in J}} g_j = \mathbf{1}$ and X_{g_j} is a strictly μ_j homogeneous \mathcal{A}_{g_j} -module for all $j \in J$. For any fixed $j \in J$, by the equality $\sup_{i\in I} e_i = \mathbf{1}$, we have that $g_j = \sup_{i\in I} e_i g_j$. If there exist two different indexes $i_1, i_2 \in I$ such that $e_{i_1}g_j \neq 0$ and $e_{i_2}p_j \neq 0$, then

$$\mu_j = \varkappa(g_j) = \varkappa(e_{i_1}g_j) = \varkappa(e_{i_1}) = \gamma_{i_1} \neq \gamma_{i_2} = \varkappa(e_{i_2}) = \varkappa(e_{i_2}g_j) = \mu_j.$$

By this contradiction, it follows that $e_i g_j = 0$ for all $i \in I$ except one index, which we denote by i(j). Since $e_{i(j)}g_j \neq 0$, we have that

$$\mu_j = \varkappa(g_j) = \varkappa(e_{i(j)}g_j) = \varkappa(e_{i(j)}) = \gamma_{i(j)}.$$

If $g_j \neq e_{i(j)}$, then by the equality $\sup_{j \in J} g_j = 1$, there exists index $j_1 \in J$, $j_1 \neq j$ such that $e_{i(j)}g_{j_1} \neq 0$. Hence,

$$\mu_j = \gamma_{i(j)} = \varkappa(e_{i(j)}) = \varkappa(e_{i(j)}g_{j_1}) = \varkappa(g_{j_1}) = \mu_{j_1},$$

which is not true. Thus, $g_j = e_{i(j)}$ and $\mu_j = \gamma_{i(j)}$.

For the same reason, for any $i \in I$ there exists the unique index j(i) such that $e_i = g_{j(i)}$ and $\gamma_i = \mu_{j(i)}$.

The partition $\{e_i\}_{i\in I}$ of unity in a Boolean algebra of idempotents in \mathcal{A} and the set of cardinal numbers $\{\gamma_i\}_{i\in I}$ in Theorem 5.2 are called a passport for a faithful laterally complete \mathcal{A} -module X and denoted by $\Gamma(X) = \{(e_i(X), \gamma_i(X))\}_{i\in I(X)}$.

Thus, a passport $\Gamma(X) = \{(e_i(X), \gamma_i(X))\}_{i \in I(X)}$ for a faithful *l*-complete \mathcal{A} -module X means that $X = \prod_{i \in I(X)} e_i(X)X$ (up to an isomorphism), where $e_i(X)X$ is a strictly $\gamma_i(X)$ -homogeneous \mathcal{A}_{e_i} -module for all $i \in I(X)$, $e_i(X) \neq 0$, $e_i(X)e_j(X) = 0$, $\gamma_i(X) \neq \gamma_j(X)$, $i \neq j$, $i, j \in I(X)$, $\sup_{i \in I(X)} e_i(X) = \mathbf{1}$. The following theorem gives a criterion for isomorphism between faithful *l*-complete \mathcal{A} -modules, by using the notion of passport for these \mathcal{A} -modules.

Theorem 5.3. Let \mathcal{A} be a *l*-complete commutative regular algebra, X and Y be a faithful *l*-complete \mathcal{A} -modules. The following conditions are equivalent:

- (i) $\Gamma(X) = \Gamma(Y);$
- (ii) A-modules X and Y are isomorphic.

Proof. (i) \Rightarrow (ii). Let $\{(e_i(X), \gamma_i(X))\}_{i \in I(X)} = \Gamma(X) = \Gamma(Y) = \{(e_i(Y), \gamma_i(Y))\}_{i \in I(Y)}$, i.e. I(X) = I(Y) := I, $e_i(X) = e_i(Y) := e_i$ and $\gamma_i(X) = \gamma_i(Y) := \gamma_i$ for all $i \in I$. By Theorem 5.2, there exists an isomorphism U from \mathcal{A} -module X onto \mathcal{A} -module $\prod_{i \in I} e_i X$ (respectively an isomorphism V from \mathcal{A} -module Y onto \mathcal{A} -module $\prod_{i \in I} e_i Y$), where $U(x) = \{e_i x\}_{i \in I}$ (respectively, $V(y) = \{e_i y\}_{i \in I}$) for every $x \in X$ (respectively, for every $y \in Y$).

Since $e_i X$ (respectively, $e_i Y$) is a strictly γ_i -homogeneous \mathcal{A}_{e_i} -module, then by Proposition 4.5, for all $i \in I$ there exists an isomorphism U_i from the \mathcal{A}_{e_i} -module $e_i X$ onto the \mathcal{A}_{e_i} -module $e_i Y$. It is clear that a map $\Phi : X \to Y$, defined by the equality

$$\Phi(x) = V^{-1}(\{U_i(e_i x)\}_{i \in I}).$$

is an isomorphism from the \mathcal{A} -module X onto the \mathcal{A} -module Y.

 $(ii) \Rightarrow (i)$. Let Ψ be an isomorphism from X onto Y and $\Gamma(X) = \{(e_i(X), \gamma_i(X))\}_{i \in I(X)}$ be a passport for a faithful *l*-complete \mathcal{A} -module X. By Proposition 3.2 (*iv*), the following $\mathcal{A}_{e_i(X)}$ -module

$$Y_i = \Psi(e_i(X)X) = e_i(X)\Psi(X) = e_i(X)Y$$

is strictly $\gamma_i(X)$ -homogeneous. This means that $\{(e_i(X), \gamma_i(X))\}_{i \in I}$ is a passport for the faithful *l*-complete \mathcal{A} -module Y, i.e. $\Gamma(X) = \Gamma(Y)$.

Let \mathcal{A} be a *l*-complete commutative regular algebra, let ∇ be a Boolean algebra of all idempotents in \mathcal{A} . A faithful *l*-complete \mathcal{A} -module X is called finitely-dimensional, if there exist a finite partition $\{e_i\}_{i=1}^k$ of unity in the Boolean algebra ∇ ($e_i \neq 0, i = 1, \ldots, k$) and a finite set $\{n_i\}_{i=1}^k$ of natural numbers ($n_1 < n_2 < \ldots < n_k$) such that X_{e_i} is an n_i -homogeneous \mathcal{A}_{e_i} -module for all $i = 1, \ldots, k$.

This means that any finitely-dimensional \mathcal{A} -module X has a passport of the following form

$$\Gamma(X) = \{(e_i(X), n_i(X))\}_{i=1}^k,\$$

where

$$e_1(X) + \ldots + e_k(X) = \mathbf{1}, n_1(X) < \ldots < n_k(X) < \infty.$$

Theorem 5.4. For a faithful *l*-complete *A*-module *X* the following conditions are equivalent: (*i*). *X* is a finitely-dimensional module;

(ii). X is a finitely-generated module, i.e. there exists a finite set $\{x_i\}_{i=1}^m$ of elements in X such that $X = \text{Lin}(\{x_i\}_{i=1}^m, \mathcal{A});$

(iii). There exists a positive integer m such that for any nonzero idempotent $e \in \mathcal{A}$ any \mathcal{A}_e -linearly independent set in X_e consists of not more than m elements.

Proof. (i) \Rightarrow (ii). Let $\Gamma(X) = \{(e_i(X), n_i(X))\}_{i=1}^k$ be a passport for the \mathcal{A} -module X. For every $i = 1, \ldots, k$ we choose the \mathcal{A}_{e_i} -basis $\{x_j^{(i)}\}_{j=1}^{n_i}$ in X_{e_i} . If $x \in X$, then $e_i x = \sum_{j=1}^{n_i} a_j^{(i)} x_j^{(i)}$, where $a_j^{(i)} \in \mathcal{A}_{e_i}$. Hence,

$$x = \sum_{i=1}^{k} e_i x = \sum_{i=1}^{k} \sum_{j=1}^{n_i} a_j^{(i)} g_j^{(i)} \in \operatorname{Lin}\left(\{x_j^{(i)}\}_{j=\overline{1,n_i,i=\overline{1,k}}},\mathcal{A}\right).$$

This means that \mathcal{A} -module X is finitely-generated.

 $(ii) \Rightarrow (iii)$. If $X = \text{Lin}(\{x_i\}_{i=1}^m, \mathcal{A})$, e is a nonzero idempotent in \mathcal{A} and $\{y_j\}_{j=1}^l$ is an \mathcal{A}_e -linearly independent set in X_e , then by Lemma 4.3, it follows that $l \leq m$.

 $(iii) \Rightarrow (i)$. By Theorem 5.2, there exist a set of pairwise disjoint nonzero idempotents $\{e_i\}_{i\in I}$ and a set of pairwise different cardinal numbers $\{\gamma_i\}_{i\in I}$ such that $\sup_{i\in I} e_i = 1$ and X_{e_i} is a strictly γ_i -homogeneous \mathcal{A}_{e_i} -module for all $i \in I$. If $\gamma_i > m$, then in X_{e_i} there exists a finite set $\{x_i\}_{i=1}^l$, which consist of \mathcal{A}_e -linearly independent elements, and besides l > m, which contradicts to condition (iii). Hence, $\gamma_i \leq m$ for all $i \in I$. Since natural numbers $\{\gamma_i\}_{i\in I}$ are pairwise different, then I is a finite set, i.e. $\{\gamma_i\}_{i\in I} = \{n_i\}_{i=1}^k$, where $n_1 < n_2 < \ldots n_k$. Hence, the \mathcal{A} -module X is finitely-dimensional.

The following description of finitely-dimensional \mathcal{A} -modules follows directly from Theorem 5.2 and Corollary 4.6.

Corollary 5.5. If X is a finitely-dimensional \mathcal{A} -module, then there exist an uniquely defined finite partition $\{e_i\}_{i=1}^k$ of unity in the Boolean algebra of all idempotents in \mathcal{A} and a finite set of positive integers $n_1 < \ldots < n_k$ such that the \mathcal{A} -module X is isomorphic to the \mathcal{A} -module $\prod_{i=1}^k \mathcal{A}_{e_i}^{n_i}$ (here $e_i \neq 0$ for all $i = 1, \ldots, k$). A faithful *l*-complete \mathcal{A} -module X is called σ -finitely-dimensional, if there exist a countable partition $\{e_i\}_{i=1}^{\infty}$ of unity in the Boolean algebra of all idempotents in \mathcal{A} ($e_i \neq 0, i = 1, 2, ...$) and a countable set $\{n_i\}_{i=1}^{\infty}$ of positive integers ($n_1 < n_2 < ...$) such that X_{e_i} is an n_i -homogeneous \mathcal{A}_{e_i} -module for all i = 1, 2, ...

By Theorem 5.2 and Corollary 4.6 we obtain the following description of σ -finitely-dimensional \mathcal{A} -modules.

Corollary 5.6. If X is a σ -finitely-dimensional A-module, then there exist a uniquely defined countable partition $\{e_i\}_{i=1}^{\infty}$ of unity in the Boolean algebra of all idempotents in A and a countable set of positive integers $n_1 < n_2 < \ldots$ such that the A-module X is isomorphic to the A-module $\prod_{i=1}^{\infty} A_{e_i}^{n_i}$ (here $e_i \neq 0$ for all $i = 1, 2, \ldots$).

References

- Chilin V.I. Partially ordered Baire's involutive algebras. Modern problems of Mathematics: The latest trends, VINITI, Moscow, 27 (1985), 99-128. (in Russian)
- [2] Chilin V.I., Karimov J.A. Laterally complete $C_{\infty}(Q)$ -modules. Vladikavkaz math J., **16(2)** (2014), 69-78. (in Russian)
- [3] Clifford A.N., Preston G.B. The algebraic theory of semigroup. Amer. Math. Soc., Mathematical Surveys, Number 7, Vol.I (1964).
- [4] Kaplansky J. Projections in Banach algebras. Ann. Math, 53 (1951), 235-249.
- [5] Kaplansky J. Algebras of type I. Ann. Math, 56 (1952), 450-472.
- [6] Kaplansky J. Modules over operator algebras. Amer. J. Math, 75(4) (1953), 839-858.
- [7] Karimov, J.A. Kaplansky-Hilbert modules over the algebra of measurable functions. Uzbek math. J., 4 (2010), 74-81. (in Russian)
- [8] Kusraev, A.G. Vector duality and its applications. Nauka, Novosibirsk (1985). (in Russian)
- [9] Kusraev, A.G. Dominated operators. Springer, Netherlands (2000).
- [10] Maeda F. Kontinuierliche Geometrien. Berlin (1958).
- [11] Muratov M.A., Chilin V.I. Algebra of measurable and locally measurable operators. Proceedings of Mathematics institute of NAS Ukraine, **69** (2007). (in Russian)

- [12] Skornyakov L.A. Dedekind's lattices with complements and regular rings. Fizmatgiz, Moscow (1961). (in Russian)
- [13] Van Der Waerden B.L. Algebra. Volueme II. Springer-Verlag New York (1991).
- [14] Vulikh B.Z. Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Sci. Publ., Groningen (1967).

National University of Uzbekistan, 100174, Vuzgorodok, Tashkent, Uzbekistan; e-mail: chilin@ucd.uz, vladimirchil@gmail.com; karimovja@mail.ru