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We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting
regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic field
approximation and find that after an initial regime of many-body Rabi-like oscillations between the
condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a pre-thermalized
nonequilibrium steady state. We explore the resulting state through its broad stationary momentum
distribution function, that exhibits a power-law high momentum tail. We study the dynamics and
steady-state form of the associated enhanced depletion, quench-rate dependent excitation energy,
Tan’s contact, structure function and radio frequency spectroscopy. We find these predictions to be
in a qualitative agreement with recent experiments.

PACS numbers: 67.85.De, 67.85.Jk

I. INTRODUCTION

A. Background and motivation

Degenerate atomic gases have radically expanded the
scope of quantum many-body physics beyond the tradi-
tional solid-state counter part, offering opportunity to
study highly coherent, strongly interacting, and well-
characterized, defects-free systems. Atomic field-tuned
Feshbach resonances (FRs) [1–4] have become a pow-
erful experimental tool that has been extensively uti-
lized to explore strong resonant interactions in these sys-
tems. Feshbach resonances have thus led to a seminal
realization of paired s-wave fermionic superfluidity, with
the associated BCS-to-Bose-Einstein condensate (BEC)
crossover [3–6] through a universal unitary regime [7–9],
and phase transitions driven by species imbalance [10, 11]
and by Mott-insulating physics in an optical lattice [12–
16]. Numerous other promising many-body states and
phase transitions, such a p-wave fermionic superfluidity
[17–19] and Stoner ferromagnetism [20] have been pro-
posed and continue to be explored.

Unmatched by their extreme coherence and high tun-
ability of system parameters, such as FR interactions and
single-particle (trap and lattice) potentials, atomic gases
have also enabled numerous experimental realizations of
highly nonequilibrium, strongly-interacting many-body
states and associated phase transitions [2, 6, 12].

This has motivated extensive theoretical studies [21–
23], with a particular focus on nonequilibrium dynamics

following a quench of Hamiltonian parameters, Ĥi → Ĥf .
In addition to studies of specific physical systems, ex-
periments on these closed and highly coherent systems
have driven theory to address fundamental questions in
quantum statistical mechanics. These include the con-
ditions for and nature of thermalization under unitary
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time evolution |ψ̂(t)〉 = eiĤf t|ψ̂i(0)〉 of a closed quan-
tum system vis-á-vis eigenstate thermalization hypoth-
esis [24, 25], role of conservation laws and obstruction
to full equilibration of integrable models argued to in-
stead be characterized by a generalized Gibb’s ensemble
(GGE), emergence of statistical mechanics under unitary
time evolution for equilibrated and nonequilibrium sta-
tionary states [26, 27]. These questions of post-quench
dynamics have been extensively explored in a large num-
ber of systems [28–43]

Early studies of a Feshbach-resonant Fermi gas pre-
dicted persistent coherent post-quench oscillations [30,
44] and, more recently found topological nonequilibrium
steady states and phase transitions [45, 46].

Resonant Bose gas quenched dynamics studies date
back to seminal experiments on 85Rb [47, 48], that
demonstrated coherent Rabi-like oscillations between
atomic and molecular condensates [49], enabling a mea-
surement of the molecular binding energy. More re-
cently, oscillations in the dynamic structure function
have also been observed in quasi-2D bosonic 133Cs [38]
and studied theoretically [37, 50] for shallow quenches be-
tween weakly-repulsive interactions (small gas parameter
na3

s � 1 where as is the s-wave scattering length).

Such resonant bosonic gases were also predicted to ex-
hibit distinct atomic and molecular superfluid phases,
separated by a quantum Ising phase transition (rather
than just a fermionic smooth BCS-BEC crossover) and
other rich phenomenology [51–55], thereby providing ad-
ditional motivation for their studies.

Important recent developments are experiments by
Makotyn, et al, [56], that explored dynamics of 85Rb fol-
lowing a deep quench to the vacinity of the unitary point
on the molecular (positive scattering length, as > 0) side
of the Feshbach resonance. It was discovered that even
near the unitary point, where a Bose gas is expected to be
unstable [57], the three-body decay rate γ3 (on the order
of an inverse milli-second) appears to be more than an
order of magnitude slower than the two-body equilibra-
tion rate γ2 (both measured to be proportional to Fermi
energy, as expected [58, 59]. This thereby opened a win-
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dow of time scales from a microsecond (a scale of the
quench) to a milli-second for observation of a metastable
strongly-interacting nonequilibrium dynamics.

Stimulated by these fascinating experimental develop-
ments and motivated by the aforementioned earlier work,
in a recent brief publication [39] we reported on results
for the upper-branch repulsive dynamics of a resonant
Bose gas following a deep-detuning quench close to the
unitary point on the molecular side (as > 0) of the FR
[56]. Taking the aforementioned slowness of γ3 � γ2 as
an empirical fact, consistent with experimental observa-
tions we predicted a fast evolution to a pre-thermalized
strongly-interacting stationary state, characterized by a
broad, power-law steady-state momentum distribution
function, nssk , with a time scale τk = ~/Ek for the pre-
thermalization of momenta k set by the inverse of the
excitation spectrum, Ek. The associated condensate de-
pletion was found to exhibit a monotonic growth to a
nonequilibrium value exceeding that of the correspond-
ing ground state. In the current manuscript we present
the details of the analyses that led to these results as well
as a large number of other predictions.

B. Outline

The rest of the paper is organized as follows. We con-
clude the Introduction with a summary of our key re-
sults. In Section II, starting with a one-channel model
of a Feshbach-resonant Bose gas, we develop its approxi-
mate Bogoluibov and self-consistent dynamic field forms.
In Section III, as a warmup we analyze the equilibrium
self-consistent model for the strongly interacting case and
compare its predictions to that of the Bogoluibov ap-
proximation. In Section IV we utilize the Bogoluibov
model to study the nonequilibrium dynamics following a
shallow-quench, computing the momentum distribution
function nk(t) probed in the time-of-flight, the radio-
frequency (RF) spectroscopy signal, I(ω, t), and the
structure function Sk(t) probed via Bragg spectroscopy.
Then in Section V we generalize the quench to a more
experimentally realistic case of a finite-rate ramp and
study the effect of ramp rate. In Section VI we employ
the self-consistent dynamic field theory to study these
and a number of other observables for deep quenches in
a strongly interacting regime relevant to JILA experi-
ments [56]. In Section VII we study excitation energy, an
important measure of long time nonequilibrium station-
ary state, for both sudden quench and finite ramp-rate
cases, and discuss its dependence on quench depth and
ramp rate. We generalize Tan’s Contact to nonequilib-
rium process and study its long time behavior in Section
VIII. Finally in Section IX we conclude with a discussion
of our predictions for experiments and of the future di-
rections for this work. We relegate the details of most
calculations to Appendices.

C. Summary of results

Before turning to the derivation and analysis, we
briefly summarize the key predictions of our work. Work-
ing within the upper-branch of a single-channel model of
a resonantly interacting Bose gas we studied an array
of nonequilibrium observables following its Feshbach res-
onance quench toward the unitary point. One central
quantity extensively studied in recent time of flight mea-
surements [38, 56] is the momentum distribution func-

tion, nk(t) = 〈gsi|a†k(t)ak(t)|gsi〉 at time t after a quench

from a ground state |gsi〉 of an initial Hamiltonian Ĥi to

a final Hamiltonian Ĥf . Motivated by experiments we
take |gsi〉 to be a superfluid BEC ground state in the up-
per branch of the repulsive Bose gas [61]. For a shallow
quench in the scattering length ai → af , away from the
immediate vicinity of the unitary point, the calculation is
controlled by an expansion in a small interaction param-
eter, na3

i,f � 1. Within the lowest, Bogoluibov approxi-
mation the momentum distribution function is given by
(choosing units where ~ = 1 and kB = 1 throughout) [37]

nk̂(t̂) =
k̂2 + σ + 2(1−σ)

k̂2+2
sin2(t̂

√
k̂2(k̂2 + 2))

2

√
k̂2(k̂2 + 2σ)

− 1

2
, (1.1)

where σ ≡ ai/af characterizes the “depth” of the quench,
and we have rescaled the momentum k and time t
with the coherence length ξ ≡ 1/

√
2mngf and pre-

thermalization timescale t0 = 1/ngf , as k̂ = kξ and

t̂ = t/t0, respectively. We start the system in a weakly
interacting state, characterized by a short positive scat-
tering length ai and quench it to af > ai (σ ≤ 1).
Following coherent oscillations, the gas then exhibits
pre-thermalization dynamics, where after a dephasing
time τk, set by the inverse of the excitation spectrum

1/Ek = 1/

√
k̂2(k̂2 + 2) consistent with experiments [56],

the initial narrow Bogoluibov momentum distribution
evolves to a stationary state, characterized by a broad-
ened distribution function

nss
k̂

=
1

2

 (k̂2 + σ)(k̂2 + 2) + 1− σ

(k̂2 + 2)

√
k̂2(k̂2 + 2σ)

− 1

 , (1.2a)

∼

 Css/k4, for kξ � 1,
1/k2, for σ � kξ � 1,
1/k, for kξ � σ,

(1.2b)

where we defined Css as the nonequilibrium analog of
Tan’s contact for the nonequilibrium steady state, given
by

Css = (4πafn)2[1 + (1− σ)2]. (1.3)

Within above approximation the quasi-particles do not
scatter, precluding full thermalization, and the above fi-
nal state remains nonequilibrium, completely determined
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by the depth-quench parameter σ, with the associated di-
agonal density matrix ensemble.

The associated condensate depletion nd(t) =
1
N

∑
k6=0 nk(t) is then straightforwardly computed and

monotonically pre-thermalizes to

nssd (σ) =
8

3
√
π

(
na3

f

)1/2 [
σ3/2 +

3

2

√
1− σ arccos(

√
σ)

]
,

(1.4)

a value exceeding that for the ground state of the final
scattering length af and greater than the initial ground

state depletion nid = nssd (σ = 1) = 8
3
√
π

(
na3

i

)1/2
at scat-

tering length ai.
With the goal of understanding deep quenches of a

strongly interacting Bose gas [39, 56, 62] near a Fesh-
bach resonance, we developed a self-consistent dynamic
field theory of coupled Gross-Petaevskii equation for the
condensate nc(t) and a Heisenberg equation for atoms
âk6=0(t) excited out of the condensate. It accounts for
strong time-dependent depletion of the condensate, with
feedback on dynamics of excitations. Within this nonper-
tubative (but uncontrolled) approximation this amounts
to solving for a Heisenberg evolution of âk(t) with a
time-dependent Bogoluibov-like Hamiltonian, parame-
terized by a condensate density nc(t). The latter is self-
consistently determined by the atom-number constraint
equation, nc(t) = n −

∑
k nk(t, [nc(t)]) [30, 39]. Our

treatment here is closely related to the analysis of post-
quench quantum coarsenning dynamics of the O(N) [36]
and Ising [35] models. The resulting momentum distri-
bution function, ñk⊥(t) (projected column density mea-
sured in experiments [56]) and the corresponding deple-
tion nd(t) are illustrated in Figs. 1,3.

We also studied the excitation energy after a constant
ramp rate γ between ai and af scattering lengths. As
illustrated in Fig. 4, we found that it displays a

√
γ form

Eexc(γ)

V
=

4(σ − 1)2n2af
m

afΛf(γ/EΛ), (1.5a)

∝ (1− σ)3/2√γ, for γ � EΛ,

∝ (1− σ)2afΛ , for γ � EΛ,

(1.5b)

for a ramp-rate below the microscopic energy cutoff EΛ =
Λ2/2m.

To further characterize the post-quench evolution
and the resulting pre-thermalized steady-state we have
also computed a time dependent structure function
S(q, t) = 〈gsi|n(−q, t)n(q, t)|gsi〉, a Fourier transform of
the density-density connected correlation function. For
the weakly interacting, shallow-quench regime, at tem-
perature 1/β it is given by

S(q, t) =
n0εq
E2
qf

coth(βEqi/2)

[
1 +

E2
qi − E2

qf

E2
qf

sin2(Eqf t)

]
,

(1.6)

t=0.1
t=0.5
t=1.0
t=6.0
t=10
t=∞
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FIG. 1: (Color online) Time evolution of the (column-density)
momentum distribution function, ñk⊥(t) ≡

∫
dkznk(t) fol-

lowing a deep scattering length quench knai = 0.01 →
knaf = 1 in a resonant Bose gas (where kn ≡ n1/3), com-
puted within a self-consistent dynamic field approximation.
Here momentum is rescaled by the coherence length ξ as
k̂ = kξ ≡ k/

√
2mngf . Lowest curve corresponds to earlier

time at t̂ ≡ t/t0 = 0.1 in units of pre-thermalization timescale
t0 = 1/ngf = m/(4πafn) while the dashed-thick black one
represents the asymptotic steady-state distribution. The fig-
ure illustrates the initial narrow momentum distribution (low-
est curve) evolving to a much broader momentum distribution
(highest curve), corresponding to a pre-thermalized steady
state. The grey region indicates a range of momenta not re-
solved in JILA experiments, due to initial inhomogeneous real
space density profile and finite trap size.

self-consistent

Bogoluibov

0.0 0.5 1.0 1.5 2.0 2.5 3.0knas0.0

0.2

0.4

0.6

0.8

1.0
nc/n

FIG. 2: (Color online) Ground state condensate fraction as
a function of a dimensionless measure of atom density and
interaction, knas(with kn ≡ n1/3), computed within a self-
consistent dynamic field approximation (solid red curve), as
compared to Bogoluibov approximation result (dashed blue
curve).

first computed and measured in Ref. [38], and after pre-
thermalization reduces to a time-independent form [39],

Sssq =
n0εq
2E2

qf

coth(βEqi/2)

(
1 +

E2
qi

E2
qf

)
. (1.7)

Utilizing our self-consistent dynamic field theory we
extended above calculation of S(q, t) to deep quenches of
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kn af =0.1

0.3

0.5
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1.0
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0.6

0.8
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nd/n

FIG. 3: (Color online) Time evolution of the condensate de-
pletion fraction nd(t)/n (treated within a self-consistent dy-
namic field analysis), following a scattering length quench
from knai = 0.01 to various knaf in a resonant Bose gas. Here
we normalize the time with the pre-thermalization timescale
t0 = 1/ngf = m/(4πafn) associated with knaf = 1 (where

kn ≡ n1/3).

●
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●
50 100 150 200 γ

1

2

3

εexc/ε0

FIG. 4: (Color online) Excitation energy (scaled by LHY
correction to the ground state energy) following a scatter-
ing length ramp as a function of ramp rate γ (as a “zoom-in”
for Fig. 22, see Sec. VII). The red data points are obtained
for each chosen γ at ai/af = 1/2, with scaled dimensionless

momentum cutoff Λ̂ = Λξ = 100 (ξ ≡ 1/
√

2mngf is the co-
herence length); the blue curve represents the fitting function
y = 0.26

√
x.

strongly interacting resonant condensates. The resulting
time-dependent structure function and its steady-state
form are illustrated in Fig. 5.

We also computed the RF spectroscopy signal I(ωRF )
[63, 64], that measures the transition rate of atoms from
two resonantly interacting hyperfine states into a third
weakly interacting hyperfine state, for the quench pro-
cess. Within the Bogoluibov approximation the response
is given by

I(ωRF ) =

√
2τV I2

0

4
√
πm

(4πnaf )2

ω
3/2
RF

, (1.8)

as measured experimentally, with the amplitude propor-

t=0
t=1
t=50
t=∞

0.5 1.0 1.5 2.0 2.5 qξ
20

40

60

80

100

Sq(t)

FIG. 5: (Color online) Time evolution of the structure func-
tion Sq(t) defined in the text following a scattering length

quench from 0.1af → af with knaf = 0.7 (where kn ≡ n1/3),
referring to Eq. (6.17) using quasi-adiabatic self-consistent ap-
proximation (see Sec. VI A). It illustrates the initial ground
state structure function (blue curve), that following the
quench develops oscillations and after a pre-thermalization
time approaches a steady-state distribution (dashed black
curve), which within-quasi-adiabatic approximation almost
collapses with the initial ground state curve. Here momentum
and time are rescaled with ξ ≡ 1/

√
2mngf and t0 ≡ 1/(ngf ),

respectively.

tional to Tan’s contact, that in the simplest Bogoluibov
approximation is given by C = (4πnaf )2.

We next turn to a single-channel Feshbach resonant
model, followed by its detailed analysis that led to above
and other results.

II. MODEL OF A RESONANT SUPERFLUID

A resonant gas of bosonic atoms can be modeled by
a single-channel grand-canonical Hamiltonian, (defining∫
r
≡
∫
d3r)

Ĥ =

∫
r

[ψ̂†(ε̂− µ)ψ̂ +
g

2
ψ̂†ψ̂†ψ̂ψ̂], (2.1)

where ψ̂(r) is a bosonic atom field operator, ε̂ = −∇
2

2m is a
single-particle Hamiltonian, µ is the chemical potential,
and the pseudo-potential g characterizes the atomic two-
body interaction on the scale longer than its microscopic
range r0 = 1/Λ, typically on the order of ten angstroms.
For simplicy, we have set ~ = 1.

As discussed in detail in Ref. [4] and references therein,
near a Feshbach resonance the magnetic field-dependent
coupling g(B) controls the s-wave scattering length as
through the renormalized coupling (T -matrix) g̃−1 =
g−1 +

∫
k

1
2εk

= g−1 +mΛ/(2π2),

g̃ =
g

1 + g/gc
, (2.2)

related to the scattering length via g̃ = 4πas/m. As
illustrated in Fig. 6, for a sufficiently strong attractive
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interaction, in a vacuum, the two-atom scattering length
diverges at gc = 2π2/(mΛ) = 2π2r0/m, as the two-body
bound state forms for g < −gc and as turns positive on
the so-called “BEC” side of the Feshbach resonance. r0

is the range of the potential and Λ is the corresponding
momentum cutoff. It is this scattering-length tunabil-
ity that enables studies of phase transitions in resonant
Bose [51–55] (and BCS-BEC crossover in Fermi [1–3, 3–
6]) gases and quenched dynamics [38, 39, 56, 62] that is
our focus here.

-gc 0

πr0 /2

g

as

FIG. 6: (Color online) A plot of the s-wave scattering length
as (renormalized coupling g̃) as a function of bare coupling g
in a Feshbach resonance. Here gc = 2π2r0/m is the critical
coupling strength at which as diverges.

To allow for dynamics within a Bose-condensed state
explored experimentally [38, 56], we decompose the

atomic field operator ψ̂(r) = 1√
V

∑
k âke

ik·r, into a c-

field condensate Ψ0 and a fluctuation field â(r),

ψ̂ = Ψ0 + â. (2.3)

Expressing the Hamiltonian, (2.1) in terms of the opera-
tor â, it decomposes into

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (2.4)

where

Ĥ0 =

∫
r

[Ψ∗0(ε̂− µ)Ψ0 +
g

2
|Ψ0|4], (2.5)

is the lowest order mean-field ground-state energy, and

Ĥ1 =

∫
r

[â†(ε̂+ g|Ψ0|2 − µ)Ψ0] + h.c., (2.6a)

Ĥ2 =

∫
r

[
â†
(
ε̂+ 2g|Ψ0|2 − µ

)
â+

g

2

(
Ψ∗0

2ââ+ Ψ2
0â
†â†
)]
,

(2.6b)

Ĥ3 = g

∫
r

[Ψ0â
†â†â+ Ψ∗0â

†ââ], (2.6c)

Ĥ4 =
g

2

∫
r

â†â†ââ. (2.6d)

are the operator components organized by respective or-
ders in the excitation â.

A. Bogoluibov approximation for weakly
interacting bosons

We set the stage for the study of dynamics following a
shallow quench [38] and of a self-consistent dynamic field
treatment [39] of a deep quench [56] by first briefly sum-
marizing the results for the ground state and excitations
in the Bogoluibov approximation [65, 66].

In the weakly interacting limit the atomic gas is char-
acterized by a small gas parameter na3

s � 1, well-
approximated by the Bogoluibov quadratic Hamiltonian,
neglecting the nonlinear Ĥ3,4 components of Ĥ. Focus-
ing on the uniform (bulk) condensate and eliminating the
chemical potential in favor the condensate density by re-
quiring the vanishing of the Ĥ1 component (equivalent

to a minimization of Ĥ0 over Ψ0), µ = g|Ψ0|2 ≈ gn,
neglecting the difference between the condensate density,
|Ψ0|2 ≡ nc and total atom density, n, the grand-canonical

Hamiltonian reduces to Ĥ ≈ − 1
2V gn

2 + ĤB ,

ĤB = −1

2

∑
k6=0

εk +
1

2

∑
k6=0

(
â†k â−k

)( εk gnc
gnc εk

)(
âk
â†−k

)
,

= −1

2

∑
k6=0

εk +
1

2

∑
k6=0

Φ̂†k,ihk,ijΦ̂k,j ,

= −1

2

∑
k6=0

εk +
1

2

∑
k6=0

EkΨ̂†k,sΨ̂k,s,

= −1

2

∑
k6=0

(εk − Ek) +
∑
k6=0

Ekα̂
†
kα̂k, (2.7)

where the quadratic Hamiltonian was straightforwardly
diagonalized in terms of the Bogoluibov quasi-particles

Ψ̂k = (α̂k, α̂
†
−k), related to the atomic Nambu spinor

Φ̂k = (âk, â
†
−k) by a pseudo-unitary transformation, Uk(

âk
â†−k

)
=

(
uk vk
v∗k u∗k

)(
α̂k,

α̂†−k,

)
(2.8a)

Φ̂k = UkΨ̂k. (2.8b)

Uk satisfies a pseudo eigenvalue equation hkUk =
Ekσ

zUk and preserves the canonical commutation re-

lation, [ak, a
†
k′ ] = δk,k′ , corresponding to [Φ̂ik, Φ̂

†
jk′ ] =

σzijδk,k′ , defined by

UσzU
† = σz, (2.9)

with |uk|2 − |vk|2 = 1 and σz the third Pauli matrix.
With εk = k2/2m + gn in (2.7), the Bogoluibov spec-

trum is given by a well-known gapless form,

Ek =
√
ε2
k − g2n2 =

√
ε2k + 2gnεk = ck

√
1 + ξ2k2/2,

(2.10)
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that interpolates between the low-momentum zeroth-
sound with velocity c =

√
gn/m (a Goldstone mode of

the U(1) symmetry breaking) and the high-momentum
quadratic dispersion, with crossover scale set by the cor-
relation length ξ = 1/

√
2mgn. The corresponding coher-

ence factors defining Uk are given by

u2
k =

1

2

(
εk
Ek

+ 1

)
, v2

k =
1

2

(
εk
Ek
− 1

)
. (2.11)

The ground state is a vacuum of Bogoluibov quasi-
particles, α̂k|gs〉 = 0, with the energy density Egs =

V −1〈gs|Ĥ|gs〉 given by

Egs =
1

2
gn2 − 1

V

∑
k6=0

Eknk, (2.12a)

=
2πas
m

n2

[
1 +

128

15
√
π

(na3
s)

1/2

]
, (2.12b)

where the T = 0 momentum distribution function

nk = 〈gs|â†kâk|gs〉 = |vk|2 ≈k→∞ C/k4, (2.13)

with Tan’s contact C = ∂Egs/∂a−1
s = 16π2n2a2

s[(1 +
64

3
√
π

(na3
s)

1/2] and

µ =
4πan

m

[
1 +

32

3
√
π

(na3
s)

1/2

]
. (2.14)

The interaction-driven condensate depletion, nd ≡ n−
nc is given by

nd =
1

V

∑
k 6=0

nk ≈
8

3
√
π

(
na3

s

)1/2
n, (2.15)

and provides an important measure of the validity of the
Bogoluibov approximation that neglects the difference
between n and nc.

Clearly, for a large gas parameter, na3
s � 1 the deple-

tion is substantial and must be accounted for. Although
there is no currently available systematic analysis in this
nonperturbative limit, as we will show in subsequent sec-
tions, an uncontrolled self-consistent method, akin to a
spherical, large-N model [35, 36, 59, 67, 68] captures im-
portant qualitative physics in this resonantly interacting
regime.

B. Generalization for large scattering length

To extend the analysis to a large na3
s we need to ac-

count (even if approximately) for the nonlinear compo-

nents of the Hamiltonian, Ĥ3,4 neglected in the Bogolui-
bov model. To this end, in the spirit of variational theory
or a spherical model [68], we replace these nonlinear op-
erators by their “best” approximation in terms of opera-
tors up to a quadratic order in fluctuation field â. Using

Wick’s theorem, we have

â†â†ââ → 4〈â†â〉â†â+ 〈â†â†〉ââ+ 〈ââ〉â†â†

−2〈â†â〉〈â†â〉 − 〈â†â†〉〈ââ〉,
≈ 4ndâ

†â− 2n2
d, (2.16a)

â†ââ → 2〈â†â〉â ≈ 2ndâ, (2.16b)

â†â†â → 2â†〈â†â〉 ≈ 2ndâ
†, (2.16c)

where we kept the depletion density nd = 〈â†â〉 and ne-
glected “anomalous” averages (e.g., 〈ââ〉 = 0) and high
order correlators (e.g., 〈â†ââ〉 = 0) that we expect to be
subdominant.

With these we approximate Ĥ3 and Ĥ4 by a linear and
quadratic forms

Ĥ3 = g

∫
r

[Ψ0â
†â†â+ Ψ∗0â

†ââ]→ δĤ1, (2.17)

where

δĤ1 = g

∫
r

(2Ψ0ndâ
† + h.c.), (2.18)

and

Ĥ4 =
g

2

∫
r

â†â†ââ→ δĤ0 + δĤ2, (2.19)

where

δĤ0 = −gV n2
d, (2.20a)

δĤ2 = 2g

∫
r

ndâ
†â. (2.20b)

The grand-canonical Hamiltonians now take the follow-
ing forms: Ĥ ≈ Ĥ ′0 + Ĥ ′1 + Ĥ ′2, where

Ĥ ′0 = Ĥ0 + δĤ0,

=

∫
r

[
Ψ∗0(ε̂− µ)Ψ0 +

g

2
n2
c − gn2

d

]
,

(2.21a)

Ĥ ′1 = Ĥ1 + δĤ1,

=

∫
r

[
â†(ε̂+ gnc + 2gnd − µ)Ψ0

]
+ h.c.,

(2.21b)

Ĥ ′2 = Ĥ2 + δĤ2,

=

∫
r

[
â†(ε̂+ 2g(nc + nd)− µ)â+

gnc
2

(ââ+ â†â†)
]
.

(2.21c)

Above, for simplicity, we have defined nc ≡ |Ψ0|2 and
nd ≡ 〈â†â〉 and in Eqs. (2.21a),(2.21b),(2.21c) have dis-
carded the ”anomalous average” term m̃ ≡ 〈ââ〉 to satisfy
the constraint of Goldstone theorem, which requires a
gapless excitation spectrum. This amounts to the widely
used Popov approximation [69].
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Following what was done in the last subsection, we fix
the chemical potential µ by requiring Ĥ ′1 = 0

(ε̂+ g|Ψ0|2 + 2gnd)Ψ0 = µΨ0. (2.22)

For a uniform system, this gives

µ = gnc + 2gnd. (2.23)

Thus we obtain the grand-canonical Hamiltonian

Ĥ =

∫
r

[
â†(ε̂+ gnc)â+

g

2
nc(ââ+ â†â†)

]
− E0

=
∑
k 6=0

[
(εk + gnc)â

†
kâk +

1

2
gnc(â

†
kâ
†
−k + âkâ−k)

]
− E0,

(2.24)

where E0/V = g
2n

2
c + 2gncnd + gn2

d. It exhibits the stan-
dard Bogoluibov form with gapless spectrum, but also
approximately accounts for a potentially strong deple-
tion through the condensate density nc replacing the full
density n as the self-consistently determined parameter
of the Hamiltonian.

III. SELF-CONSISTENT ANALYSIS FOR
STRONGLY INTERACTING GROUND STATE

Before turning to our main focus of nonequilibrium
post-quench dynamics, we examine the ground state
properties of a strongly interacting resonant Bose gas,
characterized by a large scattering length and gas pa-
rameter na3

s � 1. This regime lies beyond the scope of
the standard Bogoluibov theory. Nevertheless we expect
to be able to treat it qualitatively correctly (even if quan-
titatively uncontrolled) by taking into account the large
depletion n−nc > 0 through the Hamiltonian (2.24) and
the self-consistency condition through the atom number
conservation

n = nc +
1

V

∑
k 6=0

〈â†kâk〉, (3.1a)

= nc +
8

3
√
π

(
nca

3
s

)1/2
nc, (3.1b)

where in the second line we calculated the depletion by
diagonalizing (2.24) as in Sec. II A of the conventional Bo-
goluibov theory, but with nc replacing n. Such treatment
is quite close in spirit to the self-consistent Hartree-Fock
approximations, and the BCS and other mean-field gap
equations.

In the dimensionless form for n̂c = nc/n, the self-
consistency equation reduces to

1− n̂c − λn̂3/2
c = 0, (3.2)

where λ = 8(na3
s)

1/2/(3
√
π) ≡ 8(knas)

3/2/(3
√
π), with

kn ≡ n1/3 the mometum scale set by the boson density
n.

The solution to Eq. (3.2) is illustrated in Fig. 2. We
find that the self-consistency constraint suppresses con-
densate depletion, leading to a higher condensate frac-
tion nc than the Bogoluibov approximation for the same
strength of the interaction parameter knas. We also ob-
serve that, as expected the correction to Bogoluibov the-
ory from the self-consistency condition grows (from zero)
with increasing gas parameter knas, thereby avoiding the
spurious transition to a vanishing condensate state ap-
pearing in the Bogoluibov theory.

IV. DYNAMICS FOR SHALLOW QUENCH

We now turn to nonequilibrium dynamics following a
change in the scattering length as from its initial value ai
to the final value af , as can be realized experimentally in
a Feshbach resonant Bose gas by a change in the external
magnetic field [56]. Here we assume the change is instan-
taneous (sudden quench), allowing analytical analysis. In
this section, we focus on shallow quenches characterized
by both na3

i � 1 and na3
f � 1, so that the Bogoluibov

approximation remains rigorously valid.
For shallow quenches, the system is well approximated

by Hamiltonian (2.7) with gi and gf for the initial and
final Hamiltonians, respectively, with corresponding Bo-

goluibov quasi-particle bases (α̂k, α̂
†
k) prior to the quench

and (β̂k, β̂
†
k) post the quench. Focussing on a sudden

quench, the two sets of bases are related to the atomic

basis (âk, â
†
k) via a pseudo-unitary transformations(

âk
â†−k

)
=

(
u′k v′k
v′k u′k

)(
α̂k

α̂†−k

)
, (4.1a)

Φ̂k(0) = Uk(0−)Ψ̂k(0−), (4.1b)

and (
âk
â†−k

)
=

(
uk vk
vk uk

)(
β̂k
β̂†−k

)
, (4.2a)

Φ̂k(0) = Uk(0+)Ψ̂k(0+), (4.2b)

where

u′k =

√
1

2

(
εk + ngi
Eki

+ 1

)
, v′k = −

√
1

2

(
εk + ngi
Eki

− 1

)
,

(4.3a)

uk =

√
1

2

(
εk + ngf
Ekf

+ 1

)
, vk = −

√
1

2

(
εk + ngf
Ekf

− 1

)
,

(4.3b)

define Bogoluibov transformations for Hamiltonians Ĥi

(with interaction gi ≡ g(0−)) before and Ĥf (with inter-
action gf ≡ g(0+)) after the quench, respectively. The
corresponding excitation spectra are

Eki =
√
εk2 + 2ngiεk, Ekf =

√
εk2 + 2ngf εk, (4.4)
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and the two quasi-particle bases are related by(
β̂k
β̂†−k

)
= U−1

k (0+)Uk(0−)

(
α̂k

α̂†−k

)
,

=

(
cosh ∆θk sinh ∆θk
sinh ∆θk cosh ∆θk

)(
α̂k

α̂†−k

)
, (4.5)

with

∆θk =
1

2
cosh−1

[
1

2

(
Ekf
Eki

+
Eki
Ekf

)]
. (4.6)

We take the initial state |0−〉 to be the ground state of

the pre-quenched Hamiltonian Ĥi [61], and thus a vac-
uum of α̂ quasi-particles, α̂k|0−〉 = 0. At finite temper-
ature this generalizes to Bose-Einstein distribution of α̂
quasi-particle occupation,

〈α̂†kα̂k〉0− =
1

eEki/T − 1
. (4.7)

Because experiments probe physical observables ex-
pressed in terms of atomic operators, we need to com-

pute time evolution of Φ̂k(t) = (âk(t), â†k(t)). Using free

post-quench evolution of β̂ quasi-particles(
β̂k(t)

β̂†−k(t)

)
=

(
e−iEkf t 0

0 eiEkf t

)(
β̂k(0)

β̂†−k(0)

)
≡ Tk(t)Ψ̂k(0+),

(4.8)
the relation (4.5), together with the simplicity of matrix
elements of α̂ quasi-particles in the pre-quench ground
state (vacuum of α̂k), we find(

âk(t)

â†−k(t)

)
= Uk(0+)

(
β̂k(t)

β̂†−k(t)

)
, (4.9a)

= Uk(0+)Tk(t)

(
β̂k(0)

β̂†−k(0)

)
, (4.9b)

= Uk(0+)Tk(t)U−1
k (0+)Uk(0−)

(
α̂k(0)

α̂†−k(0)

)
,

(4.9c)

Φ̂k(t) = Uk(t)Ψ̂k(0−) = Rk(t)Uk(0−)Ψ̂k(0−),

(4.9d)

where the matrix

Rij(t) = UilTlm(t)U−1
mn, (4.10a)

= (cosEkf t)Iij + i
sinEkf t

Ekf

(
εk + gfn gfn
−gfn −εk − gfn

)
,

(4.10b)

evolves the initial Bogoluibov spinor (uk(0−), vk(0−))→
(uk(t), vk(t)), and

Uk(t) = Uk(0+)Tk(t)U−1
k (0+)Uk(0−), (4.11a)

=

(
uke
−iEkf t vke

iEkf t

vke
−iEkf t uke

iEkf t

)(
cosh ∆θk sinh ∆θk
sinh ∆θk cosh ∆θk

)
.

(4.11b)

Having derived the evolution of the atomic fields

Φ̂k(t) = (âk(t), â†k(t)), we can now compute the basic
atomic bilinear correlator (supressing the momentum k
argument on the right hand-side):

Cijk (t, t′) = 〈Φ̂†i (t)Φ̂j(t
′)〉,

= 〈Ψ̂†m(0−)U†mi(t)Ujn(t′)Ψ̂n(0−)〉,
= U†mi(t)NmnUjn(t′), (4.12)

in terms of the pre-quench (t = 0−) quasi-particle occu-
pation matrix

Nmn = 〈Ψ̂†m(0−)Ψ̂n(0−)〉, (4.13a)

=

(
〈α̂†kα̂k〉 〈α̂†kα̂

†
−k〉

〈α̂−kα̂k〉 〈α̂−kα̂†−k〉

)
mn

, (4.13b)

=

(
nk(0−) 0

0 n−k(0−) + 1

)
mn

, (4.13c)

=

(
0 0
0 1

)
mn

, for T = 0, (4.13d)

from which physical observables, such as the momen-
tum distribution function, structure function, RF spec-
troscopy signal, and many others can be obtained. We
turn to their computation in the following subsections.

A. Time of flight: momentum distribution function

Time of flight measurements, where a gas is released
from its trap and its density profile is measured at long
times, is one of the central experimental probes dating
back to the realization of BEC in dilute alkali gases [70,
71]. A straightforward analysis demonstrates [11], that
at long times the density profile is proportional to the
momentum distribution function. At T = 0, that is our
main focus here, we obtain

nk(t) = 〈0−|â†k(t)âk(t)|0−〉 = C11
k (t, t),

= |(uke−iEkf t sinh ∆θk + vke
iEkf t cosh ∆θk)|2,

=
εk + gin+

2gf (gf−gi)n2

εk+2gfn
sin2(Ekf t)

2
√
εk(εk + 2gin)

− 1

2
, (4.14)

at t = 0 reducing to the ground-state momentum distri-
bution Eq. (2.13), as expected by continuity of evolution.

Rescaling momentum as k̂ = kξ ≡ k/
√

2mngf and time

as t̂ = t/t0 ≡ tngf , we obtain the momentum distribution
in terms of dimensionless variables as

nk̂(t̂) =
[k̂2 + σ + 2(1−σ)

k̂2+2
sin2(t̂

√
k̂2(k̂2 + 2))]

2

√
k̂2(k̂2 + 2σ)

− 1

2
,

(4.15)

where the initial-to-final scattering length ratio, σ ≡
ai/af characterizes the “depth” of the quench.
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The column momentum distribution ñk̂(t̂) ≡∫
dk̂znk̂(t̂) is a more experimentally relevant quantity

that we plot at different times in Fig. 7. We observe

t=0.1
t=0.3
t=0.5
t=1.0
t=10
t=∞

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 7: (Color online) Time evolution of the column momen-
tum distribution defined in the text following a scattering
length quench from 0.1af → af , referring to Eq. (4.15) using
Bogoluibov approximation. It illustrates the initial narrow
momentum distribution (lowest curve) evolving to a much
broader momentum distribution (highest curve), correspond-
ing to a pre-thermalized steady state. Here momentum and
time are rescaled with ξ ≡ 1/

√
2mngf and t0 ≡ 1/(ngf ), re-

spectively. The grey region indicates a range of momenta not
resolved in JILA experiments, due to initial inhomogeneous
real space density profile and finite trap size.

that starting with a narrow BEC peak, the column mo-
mentum distribution function quickly broadens and de-
velops a large momentum tail. The momentum distribu-
tion approaches a pre-thermalized steady-state ñssk from
high momenta, with momenta k > kpth(t) taking time
tpth(k) ≈ 1/Ekf to pre-thermalize [61]. Thus we obtain

tpth(k̂) = 1/

√
k̂2(k̂2 + 2), (4.16)

consistent with experiments [56] scaling as 1/k and 1/k2

at small and large momenta, respectively.
The steady-state momentum distribution, nssk for a

ai = 0.1af → af is plotted in Fig. 8 and compared
to the ground state nk for the same af as well as
thermal state nk at finite temperature. We observe
that this steady-state momentum distribution lies above
the ground state one, indicating that even in the long
time limit the post-quench system remains in the ex-
cited states, as required by energy conservation. How-
ever, it also differs significantly from the correspond-
ing finite-temperature thermal-equilibrium distribution,

nTk = (u2
k + v2

k)〈α̂†kα̂k〉0− + v2
k = 1/(eEkf/T − 1) +

v2
k coth(Ekf/2T ), demonstrating that even in the long

time, stationary state limit the system is only pre-
thermalized. This is expected because of the quadratic,
fully integrable form of the Bogoluibov Hamiltonian. The
latter guarantees the absence of scattering of the Bogolui-

bov quasi-particles β̂k, with a conserved momentum dis-
tribution function, that is directly related to the initial
distribution by (4.5).

thermal state

quenched
state

adiabatic state

0.0 0.2 0.4 0.6 0.8 1.0kξ0

2

4

6

8

10
nk

FIG. 8: (Color online) Quenched steady-state momentum dis-
tribution function nss

k following a scattering length quench
ai = 0.1af → af (thick black curve), as compared to the
ground state momentum distribution at af (dash-dotted red)
and the corresponding Bogoluibov thermalized distribution
(dotted blue) at temperature T = 0.45ngf .

A simpler measure of the post-quench dynamics is the
evolution of the condensate depletion, obtained from the
momentum distribution function, nk(t), (4.14),

nd(t) =
∑
k

nk(t) = V

∫
d3k

(2π)3
nk(t),

= n0
dFd(σ, t), (4.17)

where n0
d = 8/(3

√
π)(na3

f )1/2 is the ground-state deple-
tion for as = af .

Fd(σ, t) = (σ)3/2 +
3

2

√
1− σArccos(

√
σ)

− 3
√

2

2

∫
ydy

(1− σ) cos(2ty
√
y2 + 2)

(y2 + 2)(y2 + 2σ)1/2
(4.18)

is the nonequilibrium depletion enhancement factor
above the corresponding ground state, that interpolates
between σ3/2 (giving the initial depletion at t = 0− for
as = ai) and the asymptotic depletion

F ssd (σ) ≡ Fd(σ, t→∞) = σ3/2 +
3

2

√
1− σArccos(

√
σ)

(4.19)

of the pre-thermalized state, plotted in Fig. 10.
As is clear from the asymptotics of Fd(σ, t) defined by

(4.19) and illustrated in Fig. 9, the depletion fraction
monotonically increases as

√
t over a characteristic time

tpth ≈
1

ngf
, (4.20)

approaching its asymptotic pre-thermalized value, that
is always higher than that of the ground state with the
same scattering length as = af . The quenched steady-
state depletion enhancement, F ssd (σ) monotonically in-
creasing with decreasing σ (deeper quench), reaching a
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quenched state

adiabatic state

1 2 3 4 5 t/t0

0.05

0.10

0.15

nd/n

FIG. 9: (Color online) Post quench dynamics of the conden-
sate depletion fraction as a function of rescaled time in units
of pre-thermalization timescale t0 = ~/(ngf ) = m/(4πafn~)
(solid black curve), following a scattering length quench from

0.1af → af with knaf = 0.1 (where kn ≡ n1/3), as compared
to the ground state depletion at knaf (dashed red line). For a
typical 85Rb experiment with n = 5×1012cm−3, af = 1100a0
(here a0 = 5.29× 10−11m is the Bohr radius), t0 ≈ 360µs.

minimum at σ = 1 (no quench), and exhibiting a maxi-
mum at σ = 0, corresponding to initially noninteracting
gas or a quench deep into unitary regime, where af →∞.
We note, however, that the latter strongly-interacting
resonant regime, clearly lies outside of the perturbative
Bogoluibov theory. We will treat this knaf � 1 non-
perturbative regime in a subsequent section, using an
approximate self-consistent treatment.

0.2 0.4 0.6 0.8 1.0 σ

1.5

2.0

2.5

Fd
ss(σ)

FIG. 10: (Color online) Quenched steady-state depletion en-
hancement factor F ss

d (σ) above the corresponding ground
state value as a function of σ = ai/af following a quench
from ai → af . The two dots coprrespond to the maximum
enhancement F ss

d (0) = 3π/4 (quenching a non-interacting
gas or quenching to unitarity) and minimum enhancement
F ss
d (1) = 1 (no quench), respectively.

B. Bragg spectroscopy: structure function

A two-time structure function Sq(t, t′) =
〈δn̂(−q, t)δn̂(q, t′)〉 is another central probe of the
nonequilibrium dynamics of degenerate atomic gases.
It can be measured via Bragg spectroscopy through
a stimulated two-photon transitions [72], and via a
correlation function of a measured density excitation,
δn̂(q, t) at momentum q and time t [38]. The former
thus allowed measurements of the excitation spectrum
of a strongly interacting (85Rb) BEC, near unitarity
(na3

s � 1), demonstrating a large deviation from the
Bogoluibov and Lee-Huang-Yang (LHY) prediction of
Sec. (II A). The latter technique was used to characterize
dynamics of a Feshbach-resonant Cesium gas, following
a shallow quench in its scattering length [38].

With current experiments in mind, for simplicity we
focus on the equal-time t = t′ structure function (non-
trivial for nonequilibrium dynamics),

Sq(t) = 〈δn̂(−q, t)δn̂(q, t)〉,

=
1

V

∫
r,r′

eiq·(r−r
′)〈ψ̂†(r, t)ψ̂(r, t)ψ̂†(r′, t)ψ̂(r′, t)〉c,

≈ S0
q(t) + δSBq (t), (4.21)

where

S0
q(t) = nc

[
〈â†q(t)âq(t)〉+ 〈â−q(t)â†−q(t)〉

+〈â−q(t)âq(t)〉+ 〈â†q(t)â†−q(t)〉
]
, (4.22a)

= nc
[
C11
q (t) + C22

q (t) + C21
q (t) + C12

q (t)
]
,

(4.22b)

and

δSBq (t) =
1

V

∑
k 6=0

[
〈â†k(t)âk(t)〉〈âk−q(t)â†k−q(t)〉

+〈â†k(t)â†−k(t)〉〈âk−q(t)â−k+q(t)〉
]
,

=
1

V

∑
k 6=0

[
C11
k (t)C22

−k+q(t) + C
(12)
k (t)C

(21)
−k+q(t)

]
,

(4.23)

are, respectively the quadratic and quartic contribution
to Sq(t), both computed within the Bogoluibov approx-
imation.

Utilizing the Bogoluibov analysis of the nonequilib-
rium quenched dynamics from the previous subsection,
(Eqs.(4.9), (4.10b), (4.11), (4.12), (4.13)) the leading
quadratic contribution to SBq (t) is given by [38]

S0
q(t) = S0

q

[
1 +

E2
qi − E2

qf

E2
qf

sin2(Eqf t)

]
, (4.24)

where as a check, at initial time S0
q(t = 0) and/or for

no-quench gi = gf above expression reduces to the pre-
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quench t = 0− structure function,

S0
q = n

εq
Eqi

coth

(
1

2
βEqi

)
, (4.25)

at temperature T = 1/β.

In dimensionless units q̂ = q/
√

2mngf , t̂ = ngf t and

β̂ = ngfβ, it is given by

S0
q̂ (t̂) =

q̂ coth(β̂q̂
√
q̂2 + 2σ)√

q̂2 + 2σ

[
1− 2(1− σ)

q̂2 + 2
sin2

(
t̂q̂
√
q̂2 + 2

)]
(4.26)

and plotted in Fig.(11).

t=0
t=1
t=10
t=∞

0.5 1.0 1.5 2.0 2.5 3.0 qξ
2

4

6

8

10

Sq(t)

FIG. 11: (Color online) Time evolution of the structure func-
tion Sq(t) defined in the text following a scattering length
quench from 0.5af → af , referring to Eq. (4.26) using Bo-
goluibov approximation. It illustrates, following the quench,
that the initial ground state structure function (highest curve)
develops oscillations and becomes lower, and after some pre-
thermalization timescale approaches the steady-state distri-
bution (lowest dashed black curve). Here momentum and
time are rescaled by ξ ≡ 1/

√
2mngf and t0 ≡ 1/(ngf ), re-

spectively. The temperature T = 10ngf , for a typical 85Rb
experiment with n = 5×1012cm−3, af = 1100a0, corresponds
to 16 nK.

Utilizing above Bogoluibov analysis, we have further
shown that the higher-order correction, δSBq (t) in 3d at
T = 0 is given by

δSBq (0) =

∫
k

[
ukivkiu−k+q,iv−k+q,i + u2

kiv
2
−k+q,i

]
,

=

∫
k

[
g2
i n

2 + (εki + Eki)(ε−k+q,i − E−k+q,i)

4EkiE−k+q,i

]
,

≈ g2
i n

2

2c2i

∫
k

[
1

k2 + ξ2
i k

4
+O(q)

]
,

∝ n(na3
i )

1/2 [1 +O(q)] , (4.27)

and for weak interaction (na3
s � 1) it is subdominant

to S0
q(t). It can, however, become important at finite

temperature, lower dimensions and strong interactions.

C. RF spectroscopy

Radio frequency (RF) spectroscopy is another impor-
tant probe that has been fruitfully utilized to study spec-
troscopy and dynamics of resonant Fermi [6] and Bose
[64] gases. Quite closely related to photoemission spec-
troscopy of solid state materials, the RF signal is the
number of atoms Nb(ωRF ), that undergoes a hyperfine
transition from the many-body state of interest, Ea to a
weakly interacting state Eb = Ea+ω0, in response to the
stimulated RF pulse at frequency ωRF .

For a weak RF pulse, the governing Hamiltonian

Ĥ = Ĥ(âk, â
†
k) +

∑
k

(εk + ω0)b̂†kb̂k +
∑
k

I(t)b̂†kâk + h.c.,

≡ Ĥ0 + ĤRF (t), (4.28)

is a sum of the interacting Hamiltonian for the system
of âk bosons studied in previous subsections, the non-

interacting vacuum Hamiltonian for the b̂k bosons, and
the RF pulse coupling operator ĤRF (t) that drives the
transitions between the two hyperfine states, allowing a

conversion of âk into b̂k.
The RF spectroscopy signal Nb(ω) measures the num-

ber of b̂ atoms transferred for an RF pulse at frequency
ω. It can be evaluated via Nb(ω) =

∫∞
0
dt〈Ĵ(t)〉, where

Ĵ(t) is the â→ b̂ “current” operator

Ĵ(t) ≡ ˙̂
Nb = −i

∑
k

[b̂†kb̂k, Ĥ],

= −i
∑
k

[
I(t)b̂†kâk − I

∗(t)â†kb̂k

]
. (4.29)

Appropriate for experiments, we focus on a weak RF
pulse and calculate the response signal perturbatively
in I(t), working in the interaction representation, with

ĴI(t) = ei
∫ t
0
dt′Ĥ0 Ĵe−i

∫ t
0
dt′Ĥ0 ,

〈Ĵ(t)〉 = −i
∫ t

0

dt′〈ψ|
[
ĴI(t), Ĥ

I
RF (t′)

]
|ψ〉, (4.30)

=

∫ t

0

dt′
∑
k

I∗(t′)I(t)〈α0|â†k(t′)âk(t)|α0〉

×ei(εk+ω0)(t−t′) + c.c.. (4.31)
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Guided by the experimental protocol [56], above we have
taken the initial t = 0− state |ψ〉 = |α0〉|0b〉 to be a prod-

uct of a vacuum of b̂ atoms, |0b〉 and a SF condensate of â
atoms, |α0〉, a vacuum of the Bogoluibov quasi-particles,
α̂k|α0〉 = 0 for the pre-quench interaction gi. The anal-
ysis can be straightforwardly generalized to other initial
conditions and finite temperature.

It is clear from (4.31) that the RF signal is not gener-
ically proportional to the momentum distribution func-

tion nk(t) = 〈â†k(t)âk(t)〉. The latter requires a suffi-
ciently narrow pulse so as to keep t ≈ t′. Furthermore,
a narrow excitation bandwidth is required. Under these
conditions indeed we expect that at time t the number

of atoms b̂k produced by the RF pulse is proportional to
the number of atoms âk with momentum k, such that
the resonance condition Ekf − εk−ω0 = ωRF is satisfied.

Following the experiment [64], we take the RF pulse to
be a real part of

I(t) = I0e
−(t−t0)2/τ2

e−iωRF t, (4.32)

with a carrier frequency ωRF and a Gaussian envelope

of width τ � 1/ωRF , ensuring that the excitation is at
a well-defined frequency. At the same time, in order to
probe the evolving condensate dynamics at a specific time
t, a short pulse that is narrow on the time scale of the
ramp time (that can be made as short as a few microsec-
onds) and on the characteristic many-body time scale
(experimentally on the order of few hundred microsec-
onds) that controls the condensate evolution, is required.
In JILA experiment [64], the width τ ranges from 25µs
to 200µs with ωRF ≈ 2π × 50kHz.

From the analysis of the previous section, the correla-
tor inside Eq. (4.31) is given by

〈â†k(t′)âk(t)〉 = C11
k (t′, t), (4.33)

= u2
k sinh2 ∆θke

iEkf (t′−t) + v2
k cosh2 ∆θke

−iEkf (t′−t)

+ukvk cosh ∆θk sinh ∆θk(eiEkf (t′+t) + e−iEkf (t′+t)).

Using it inside Eq. (4.31) and leaving the detailed anal-
ysis to Appendix D 3, in the limit of t� t0 � τ � ω−1

RF
we obtain

Nb(ωRF ) = 2πτ2I2
0

∑
k

[
e−

1
2 (εk+ω0−ωRF−Ek)2τ2

u2
k sinh2 ∆θk + e−

1
2 (εk+ω0−ωRF +Ek)2τ2

v2
k cosh2 ∆θk

+ukvk sinh 2∆θke
− 1

2 ((εk+ω0−ωRF )2+E2
k)τ2

cos 2Et0

]
. (4.34)

Although the general result is quite involved, it sim-
plies considerably in various important limits. For the
case of broad pulse τωRF � 1 with a well-defined fre-
quency, the Gaussian factors reduce to energy-conserving
δ-functions. In the simplest equilibrium case, where the
ground state’s nk (= v2

k in the Bogoluibov approxima-
tion) is probed, ∆θk = 0, and we find

Ngs
b (ωRF ) = (2π)3/2τI2

0

∑
k

δ(ωRF − ω0 − εk − Ek)nk

ωRF�ω0 =
τI2

0V√
2πm

Cgs
|ωRF − ω0|3/2

. (4.35)

In the last equality we focussed on the large frequency tail
probed in the experiments [64] and Cgs is Tan’s contact,
that in the Bogoluibov approximation is given by CBgs =

16π2n2a2
s.

For a measurement of the large frequency tail, ωRF �
ω0 following a quench at t = 0, it is clear from Eq. (4.34)

that only the second term contributes, giving

Nb(ωRF ) = (2π)3/2τI2
0

∑
k

δ(ωRF − ω0 − εk − Ek)

× nfk cosh2 ∆θk

ωRF�ω0 =
τI2

0V√
2πm

Cf
|ωRF − ω0|3/2

. (4.36)

where within Bogoluibov approximation

Cf = 16π2n2a2
f . (4.37)

This indicates that, while the overall momentum distri-
bution function nk(t) exhibits nontrivial post-quench dy-
namics, the large tail of RF spectrum is not affected by
the quench dynamics, and provides information about
short-scale correlations in the ground state of the final
state.

V. FINITE-RATE RAMP

Having studied the idealized case of a sudden gi → gf
quench, we now analyze the dynamics following a more
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experimentally realistic finite-rate ramp. We model it by
an idealized time-dependent coupling

g(t) =

{
gi + (gf − gi)t/τ, for t < τ,
gf , for t > τ,

(5.1)

with ramp time τ , illustrated in Fig. 12.

gi

gf

τ0 t

g

FIG. 12: (Color online) Protocol of a linear ramp of coupling
strength g. Starting with g = gi at t = 0, the coupling
strength is ramped to g = gf over ramp time τ .

To this end, we solve the corresponding Heisenberg
equations of motion

i

(
˙̂ak
− ˙̂a†−k

)
=

(
εk + ng(t) ng(t)
ng(t) εk(t) + ng(t)

)(
âk(t)

â†−k(t)

)
(5.2)

by expressing the atomic operators âk(t), â†k(t) in terms

of the Bogoluibov quasi-particles α̂k, α̂†k of Ĥ(t = 0) at
the start of the ramp(

âk
â†−k

)
=

(
uk(t) v∗k(t)
vk(t) u∗k(t)

)(
α̂k

α̂†−k

)
≡ Uk(t)

(
α̂k

α̂†−k

)
. (5.3)

The dynamics is then encoded in the time evolution of
a spinor (uk(t), vk(t)), with components satisfying

iu̇k̂ = (k̂2 + ĝ(t))uk̂ + ĝ(t)vk̂, (5.4a)

−iv̇k̂ = (k̂2 + ĝ(t))vk̂ + ĝ(t)uk̂, (5.4b)

where ĝ(t) ≡ g(t)/gf , t̂ ≡ ngf t and k̂2 ≡ k2/(2mngf ). In
term of above dimensionless variables, Eq. (5.1) becomes

ĝ(t̂) =

{
σ + γt̂, for t < τ,
1, for t > τ,

(5.5)

where we have defined a dimensionless ramp rate γ ≡
(1−σ)/(ngfτ). We then solve these numerically, subject
to the initial conditions

uk(0) =
1

21/2

 k̂2 + σ√
k̂2(k̂2 + 2σ)

+ 1

1/2

, (5.6a)

vk(0) = − 1

21/2

 k̂2 + σ√
k̂2(k̂2 + 2σ)

− 1

1/2

, (5.6b)

that diagonalize the initial Hamiltonian at t = 0.
We focus on the momentum distribution at T = 0

nk(t) = 〈0−|a†k(t)ak(t)|0−〉 = |vk(t)|2, (5.7)

and condensate fraction

nc(t) = 1− nd(t) = 1− V
∫

d3k

(2π)3
nk(t). (5.8)

We apply this analysis to interpret experiments by
Claussen, et al., [48], where dynamics of finite-rate ramp
pulse was studied as a function of ramp time τ and
heretofore remained unexplained.

In Fig. 13 we plot the time dependence of the result-
ing condensate fraction for two densities and fixed ramp
rate. Using the parameters reported in [48], we obtain
results in qualitative agreement with these experimental
measurement.

high density

low density

0.0 0.5 1.0 1.5 2.0t/t00.0

0.2

0.4

0.6

0.8

1.0
nc/n

FIG. 13: (Color online) Dynamics of the condensate fraction
nc(t)/n for high density n = 1.9×1013cm−3 (lower blue curve)
and low density n = 0.7× 1013cm−3 (upper red curve), after
a linear interaction ramp g(t) from gi = 0.001gf to gf with
dimensionless ramp rate γ̂ ≡ (1 − σ)/(τngf ) = 5. Following
the experiments in Ref.48 the final scattering length is af =
2700a0 and the corresponding pre-thermalization timescale
t0 = 150µs.

To explore the ramp rate dependence of the dynamics
as studied by Claussen, et al., [48], in Fig. 14 we plot
the condensate fraction as a function of ramp time τ (in-
verse ramp rate, in units of (1−σ)/(ngf )). As illustrated
there, we find that the dependence on the ramp time τ is
nonmonotonic and is a function of the hold time t. This
can be understood by noting that for a sudden quench
(vanishing τ) at long hold times, the condensate is de-
pleted more strongly than the ground state depletion for
gf . On the other hand, at short hold times the quenched
depletion is given by the ground state for gi. In contrast,
for a slow adiabatic ramp (large τ) the condensate frac-
tion asymptotes to the adiabatic limit corresponding to
that of a ground state for gf .

Thus, for short hold time the condensate fraction de-
creases from ngic to n

gf
c with increasing τ . For long
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t=0.01
t=0.1
t=0.2
t=0.3
t=0.5
t=2

1 2 3 4 τ/t0

0.2

0.4

0.6

0.8

1.0

nc/n

FIG. 14: (Color online) Dependence of condensate fraction
nc/n on the ramp duration τ for various hold time t in units of
pre-thermalization timescale t0 = ~/(ngf ) (From lowest curve
to highest one, the hold times are t̂ = 0.01, 0.1, 0.2, 0.3, 0.5, 2,
respectively). Following the experiments in Ref. 48 we take
the final scattering length to be af = 2700a0 with ai =
0.001af and n = 1.9 ∗ 1012cm−3.

hold times, the condensate fraction increases from pre-
thermalized value nssc to n

gf
c with increasing τ . This

behavior is qualitatively quite similar to that found in
experiments of Ref. [48].

VI. DYNAMICS FOR DEEP QUENCH

In the present and subsequent sections we study
the nonperturbative dynamics following a deep quench,
na3

f � 1, a regime of JILA recent experiment [56] that

is our main focus [39]. In contrast to the well-controlled,
perturbative dynamics of a shallow quench discussed in
Sec. IV, for deep quenches the condensate depletion dy-
namics is significant and cannot be neglected.

From the outset, we acknowledge that no rigorous so-
lution in such a nonperturbative regime is available even
for a purely repulsive Bose gas ground state. Neverthe-
less, to make progress we treat this strongly interacting
nonequilibrium dynamics utilizing a nonperturbative but
uncontrolled self-consistent Bogoluibov treatment. This
is analogous to a BCS dynamic mean-field theory [30, 44],
with the condensate fraction nc(t) playing the role of
the time-dependent order parameter. We thus reduce
the problem to a solution of the Bogoluibov dynamics
with a time-dependent condensate fraction that is self-
consistently determined. This is a dynamical generaliza-
tion of our analysis of the strongly interacting Bose gas
ground state in Sec. III.

Another challenge of this system is the resonant nature
of the Bose gas interaction. To handle this we employ
a second beyond-Bogoluibov approximation by replacing
the scattering length af by the density dependent scatter-

ing amplitude |f(kn, af )| = af/
√

1 + k2
na

2
f ≡ ãf , and the

Hartree interaction energy gfn by g̃fn ≡ 8πεF√
1/(knaf )2+1

.

This qualitatively captures the crossover from the two-
atom regime, af � n−1/3 to a finite density limit, when
af reaches inter-particle spacing and the scattering am-
plitude saturates at ∼ k−1

n . While the detailed nature
of this crossover is ad hoc, our qualitative predictions
are insensitive to these details and only depend on the
limiting values of the two regimes.

Motivated by the experiments [56], we focus on an ini-
tial state that is a well-established condensate. This al-
lows us to make progress in treating the resonant inter-
actions by expanding in finite-momentum quasi-particle
fluctuations about a macroscopically occupied k = 0
state. Following a sudden quench, gi → gf , we approx-
imate the Hamiltonian by a quadratic time-dependent
form,

Ĥf (t) =
1

2

∑
k6=0

(
â†k â−k

)(εk + gfnc(t) gfnc(t)
gfnc(t) εk + gfnc(t)

)(
âk
â†−k

)
≡ 1

2

∑
k6=0

Φ̂†k(t) · ĥkf (t) · Φ̂k(t). (6.1)

The key new ingredient (in contrast to Bogoluibov theory
of Sec. II A) is the nontrivial time-dependent condensate
density, that is self-consistently determined by the total
atom conservation,

nc(t) = n− 1

V

∑
k6=0

〈0−|â†k(t)âk(t)|0−〉, (6.2)

evaluated in the pre-quench state |0−〉 at t = 0−. In a
homogeneous case, this is equivalent to a solution of the
Gross-Petaevskii equation for the condensate order pa-
rameter Ψ0, coupled to the Heisenberg equation of mo-
tion for the finite momentum quasi-particles. Focussing
on zero temperature, we take the initial state |0−〉 to be
the vacuum with respect to the quasi-particles α̂k, that

diagonalize the initial Hamiltonian, Ĥi =
∑

kEkiα̂
†
kα̂k,

characterized by a pre-quench t = 0− scattering length,
ai.

The corresponding Heisenberg equation of motion

iσz∂tΦ̂k(t) = ĥkf (t) · Φ̂k(t) (6.3)

for Φ̂k(t) = (âk(t), â†−k(t)) is conveniently encoded in
terms of a time-dependent Bogoluibov transformation
Ukf (t),

Φ̂k(t) = Ukf (t)Ψ̂k, (6.4)

where

Ukf (t) =

(
ukf (t) v∗kf (t)
vkf (t) u∗kf (t)

)
(6.5)

and Ψ̂k = (β̂k, β̂
†
−k) are time-independent bosonic refer-

ence operators, that diagonalize the Hamiltonian at the
initial time t = 0+ after the quench, with Ĥf (0+) =∑

kEkf (0+)β̂†kβ̂k.
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Equivalently, U†kf (0+)hkf (0+)Ukf (0+) = Ekf (0+) =√
ε2k + 2gfnc(0+)εk, fixing the initial condition

ukf (0+) =

√
1

2

(
εk + gfnc(0+)

Ef (0+)
+ 1

)
, (6.6a)

vkf (0+) = −

√
1

2

(
εk + gfnc(0+)

Ef (0+)
− 1

)
, (6.6b)

for spinor ψkf (t) ≡ (ukf (t), vkf (t)), that evolves accord-
ing to

iσz∂tψkf (t) = ĥkf (t) · ψkf (t). (6.7)

As for the Bogoluibov analysis in Sec. II A, because
the initial state |0−〉 is a vacuum of α̂k, it is convenient

to further express Φ̂k(t) = (âk(t), â†−k(t)) in terms of the

pre-quench quasi-particle basis Ψ̂k(0−) = (α̂k, α̂
†
k),

Φ̂k(t) = Ukf (t)U−1
kf (0+)Uki(0

−)Ψ̂k(0−), (6.8a)

≡ Uk(t)Ψ̂k(0−). (6.8b)

The post-quench dynamics is thus fully determined
by the self-consistent solutions ψkf (t) of Eq. (6.7), to-
gether with the atom number conservation constraint,
(6.2). This can be obtained numerically in essentially
exact way, as we will demonstrate in Sec. VI B.

A. Quasi-adiabatic self-consistent approximation

Despite availability of the numerical solution, to gain
further physical insight it is of interest to obtain an ap-

proximate analytical solution. To this end we note that
for a given slowly evolving condensate density satisfying
ṅc(t)/n � E3

kf/(~ngεk) = (εk)1/2(εk + 2gnc)
3/2/(~ng)

(see Eq. (B8) and [39, 74]), Eq. (6.7) can be well-
approximated by an instantaneous, quasi-adiabatic Bo-
goluibov transformation of Ĥf (t) (see Appendix B),

Ukf (t) =

(
uk(t)e−i

∫ t
0
Ekf (t′) vk(t)ei

∫ t
0
Ekf (t′)

vk(t)e−i
∫ t
0
Ekf (t′) uk(t)ei

∫ t
0
Ekf (t′)

)
. (6.9)

In above, (uk(t), vk(t)) is the instantaneous eigenstate of

the single-particle Hamiltonian ĥkf (t), with time depen-
dence entering only through the time dependent conden-
sate density, nc(t). Such approximation is in the spirit
of the WKB quasi-local treatment of a smoothly varying
potential [73].

More specifically the solution is given by

uk(t) =

√
1

2

(
εk + gfnc(t)

Ekf (t)
+ 1

)
,

vk(t) = −

√
1

2

(
εk + gfnc(t)

Ekf (t)
− 1

)
,

Ekf (t) =
√
εk(εk + 2gfnc(t)),

(6.10)

with initial condition given by (6.6a)(6.6b).

After a tedious but conceptually straightforward cal-
culation that utilizes above relations, we obtain the mo-
mentum distribution function

nk(t) = 〈0−|â†k(t)âk(t)|0−〉

=
ε2k + εk(gin+ gfn+ gfnc(t)) + 2gfginc(t)n+ 2gfnc(t)n(gf − gi) sin2(

∫ t
0

√
εk(εk + 2gfnc(t′))dt

′)

2
√
εk(εk + 2gfnc(t))

√
(εk + 2gin)

√
(εk + 2gfn)

− 1

2
,

(6.11)

with the condensate density nc(t) self-consistently deter-
mined according to nc(t) = n−

∑
k 6=0 nk(t).

By construction, the above expression for nk(t = 0)
reduces to the pre-quench momentum distribution func-
tion

nk(t = 0) =
1

2

[
εk + ginc(0)

Eki
− 1

]
= nki, (6.12)

as required by continuity. Furthermore for gf = gi, i.e.,
in the absence of a quench, the time-dependent part of

nk drops out and again reduces to nki.
Using (6.11) the self-consistency condition reduces to

a dimensionless form

1− n̂c = n0
dFd(n̂c, σ), (6.13)

where n0
d = 8/(3

√
π)(na3

f )1/2 is the depletion corre-
sponding to the ground state of quenched Hamiltonian,
q ≡

√
k2/(2mngf ) and n̂c(t) ≡ nc(t)/n are dimensionless

variables, and
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F (n̂c, σ, t) = 3
√

2

∫
dqq2

[
(q4 + q2(σ + 1 + n̂c) + 2σn̂c + 2n̂c(1− σ) sin2(

∫ t
0
ngt
√
q2(q2 + 2n̂c)))

2
√
q2(q2 + 2n̂c)

√
(q2 + 2σ)

√
(q2 + 2)

− 1

2

]
, (6.14)

is the quench-induced depletion-enhancement factor.
We solve Eqs.(6.13),(6.14) numerically and plot the de-

pletion fraction n̂d(t) = 1− n̂c(t) as a function of time in
Fig. 15.

kn af =0.1

0.3

0.5

0.7

0.5 1.0 1.5 2.0 t/t0
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0.8

1.0

nd/n

FIG. 15: (Color online) Time evolution of the condensate de-
pletion fraction nd(t)/n (treated within a quasi-adiabatic self-
consistent dynamic field analysis, referring to Eq. (6.13)), fol-
lowing a scattering length quench from knai = 0.01 to various
knaf in a resonant Bose gas. Here we normalize the time with
the pre-thermalization timescale t0 = 1/ngf = m/(4πafn)

associated with knaf = 1 (where kn ≡ n1/3).

We observe that the depletion fraction increases
smoothly with time on the scale t0 = m/(4πafn), reach-
ing a stationary steady-state nssd , that is an increasing
function of the quench depth knaf . Even for a deep
quench to a unitary point, the self-consistent treatment
ensures that the depletion, always remains below the to-
tal atom density. The slow time dependence of nd(t)
justifies the quasi-static approximation for the high mo-
menta (k & 1/ξ) quasi-particles, but fails for the low-
momenta (k . 1/ξ) Goldstone modes. We further note
that the asymptotic depletion nssd always significantly ex-
ceeds the depletion for the ground state corresponding to
the quenched scattering length af . Thus not surprisingly
the thermal equilibrium is never reached in our effectively
integrable harmonic model.

Having computed the condensate depletion and the
associated condensate density, nc(t), Eq. (6.11) immedi-
ately gives us the momentum distribution function nk(t),
that we illustrate in Fig. 16. Following a quench, the
initially narrow (for gi � gf ) momentum distribution
function (corresponding to pre-quench BEC state) dis-
plays rich dynamics. Within 2-body interaction scale it
quickly develops a large momentum tail corresponding to
the strong atom-atom interaction gf . With time, the sud-
denly turned on interaction promotes an increasing num-

t=0.1
t=0.3
t=0.5
t=1.0
t=10
t=∞

0.2 0.4 0.6 0.8 1.0 1.2 1.4 kξ
0.2
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0.6

0.8
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ñk(t)

FIG. 16: (Color online) Time evolution of the (column-
density) momentum distribution function, ñk⊥(t) ≡∫
dkznk(t) following a scattering length quench knai =

0.01 → knaf = 0.5 (where kn ≡ n1/3) in a resonant
Bose gas, computed with quasi-adiabatic self-consistent ap-
proximation. Here we normalize the time with the pre-
thermalization timescale t0 = 1/ngf = m/(4πafn) associated
with knaf = 1. Here momentum and time are rescaled with
ξ ≡ 1/

√
2mngf and t0 ≡ 1/(ngf ), respectively. The grey

region indicates a range of momenta not resolved in JILA
experiments, due to initial inhomogeneous real space density
profile and finite trap size.

ber of atom pairs from the condensate to finite momen-
tum excitations. The momentum distribution tail fills in
from high to low momenta as pair-excitation dynamics
at momentum k dephases with frequency 2Ekf . Thus,
at time t, nk(t) establishes a pre-thermalized power-
law steady-state for momenta k > kpth(t), latter set by
Ekpth,f t ≈ 1. Equivalently, it takes time

tpth ≈
1

Ekpth,f
, (6.15a)

∼
{

1/k2, for k � 1/ξ,
1/k, for k � 1/ξ,

(6.15b)

for the pre-thermalization to reach a stationary state
down to momentum k, a distinctive feature that is con-
sistent with JILA experiments [56].

As illustrated in Fig. 17, in the long time limit (around
170µ-sec in 85Rb experiments [56]) a quenched Bose gas
approaches a pre-thermalized stationary state, as re-
flected by a time-independent power-law momentum dis-
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tribution

nk(t) =
k̂4 + k̂2(σ + 1 + n̂ssc ) + n̂ssc (1 + σ)

2

√
k̂2(k̂2 + 2n̂ssc )

√
(k̂2 + 2σ)

√
(k̂2 + 2)

− 1

2
,

∼ Css/k4, for kξ � 1, (6.16)

where Css = (4πafn)2
[
nssc /n+ (1− σ)2

]
is the nonequi-

librium analog of Tan’s contact [75]. Within the above
self-consistent Bogoluibov approximation the quasi-
particles do not scatter, precluding full thermalization.
The resulting final state remains nonequilibrium, com-
pletely determined by the depth-quench parameter σ,
characterized by a diagonal density matrix ensemble.
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FIG. 17: (Color online) A long-time nonequilibrium steady-
state momentum distribution function nss

k of a resonant Bose
gas following a scattering length quench knai = 0.01 →
knaf = 0.5 (solid black curve), as compared to ground state
momentum distribution at knaf (red dashed curve). The in-
set illustrates the emergence of a 1/k4 large momentum tail,
corresponding to a steady-state “contact”.

With the above solution of the self-consistent post-
quench dynamics, we can now also calculate other phys-
ical observables, such as, for example the structure func-
tion measured in Bragg spectroscopy. Using above anal-
ysis for Sq(t) in Eq. (4.21) we find

Sq̂(t) = coth(β̂q̂
√
q̂2 + 2σ)

q̂√
q̂2 + 2σ

×
( √

q̂2 + 2√
q̂2 + 2n̂c(t)

−
2(1− σ) sin2(q̂t

√
q̂2 + 2n̂c(t))√

q̂2 + 2
√
q̂2 + 2n̂c(t)

)
,

(6.17)

where q̂ = q/
√

2mngf , t̂ = ngf t and β̂ = ngfβ.
The results are then illustrated in Fig. 5 and 18. The

role of self-consistency is clear: in Fig. 5, as compared
with Fig. 11, self-consistency exchanges the relative po-
sition of initial and final asymptotic steady-state curve;
while in Fig. 18 it shifts the phase as well as modifies
the frequency of the structure function oscillation. We

self-consistency

Bogoluibov

2 4 6 8 10 t
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15
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30

35

40

Sq(t)

FIG. 18: (Color online) Oscillation of structure function Sq(t)
(treated within a quasi-adiabatic self-consistent dynamic field
analysis, thick black curve, referring to Eq. (6.17)) as a
function of time, following a scattering length quench from
0.1af → af with knaf = 0.7 (where kn ≡ n1/3) at momentum
kξ = 0.5, as compared to Bogoluibov approximation (dashed
red curve).
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FIG. 19: (Color online) Quenched steady state condensate
fraction nc/n as a function of knaf (solid black curve, treated
with quasi-adiabatic self-consistent dynamic field, referring
to Eq.(6.13)), as compared with the ground state condensate
fraction at knaf (dashed red curve), both calculated with self-
consistency on nc.

expect these features to be experimentally testable by
going to a deep quench regimes, knaf � 1.

We emphasize that above analysis utilizes a
quasi-adiabatic approximation, valid for ṅc(t)/n �
E3
kf/(~ngεk). As mentioned above we expect it to break

down for sufficiently small momenta for slow Goldstone
modes as well as large knaf value, where ṅc(t)/n is
large.

B. Exact numerical solution to post quench
dynamics

In this subsection we test the validity of above quasi-
adiabatic approximation by analyzing the post-quench
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dynamics through an essentially exact numerical solution
of the Heisenberg equation of motion (6.7). Consistent
with our expectations we find that while the former pro-
vides an accurate description for a shallow quench and
high momenta, it fails quantitatively (though not quali-
tatively) for knaf � 1 and low momenta, k � 1/ξ.

As derived in previous subsection, the dynamics is gov-
erned by Eq. (6.7) for ψk(t) = (ukf (t), vkf (t)), that relate

atomic excitations, âk to Bogoluibov quasi-particles β̂k.
Here we solve Eq. (6.7) numerically together with the
number conservation condition on the condensate frac-
tion. In dimensionless form, the equations of motion are
given by

iu̇k = (k̂2 + n̄(t))uk + n̄(t)vk,

−iv̇k = (k̂2 + n̄(t))vk + n̄(t)uk,
(6.18)

with the initial conditions fixed by a requirement that at
t = 0, ψ(0+) diagonalizes Ĥf (0+),

uk(t = 0) =

√
1

2
[E−1
kf (εk + nc(0)gf ) + 1],

=

√√√√√1

2

 k̂2 + 1√
k̂2(k̂2 + 2)

+ 1

, (6.19a)

vk(t = 0) = −
√

1

2
[E−1
kf (εk + nc(0)gf )− 1],

= −

√√√√√1

2

 k̂2 + 1√
k̂2(k̂2 + 2)

− 1

, (6.19b)

where t̂ ≡ ngf t, k̂2 ≡ k2/(2mngf ) and n̄(t) ≡ nc(t)/n.
Decoupling the uk(t) and vk(t) components

ü = [−k2(k2 + 2n̄(t)) + i
˙̄n(t)

n̄(t)
(k2)]u+

˙̄n(t)

n̄(t)
u̇,

v̈ = [−k2(k2 + 2n̄(t))− i
˙̄n(t)

n̄(t)
(k2)]v +

˙̄n(t)

n̄(t)
v̇,

(6.20)

more clearly reveals the relation of these exact equa-
tions to the quasi-adiabatic approximation of previous
subsection. Indeed the latter is obtained by neglecting
˙̄n(t)/n̄(t) relative to the instantaneous Bogoluibov dis-
persion Ekf (t), clearly only possible for sufficiently large
momenta.

To fully account for the self-consistent dynamics of
nc(t), here we solve iteratively the full set of equations
(6.20) (or equivalently Eqs.(6.18), (6.19a)(6.19b)) and
(6.22). With this solution in hand we can compute an
arbitrary physical quantity.

Focussing on experimentally accessible momentum dis-
tribution, we compute

nk(t) = 〈0−|â†k(t)âk(t)|0−〉
= |(uk(t) sinh ∆θk − v∗k(t) cosh ∆θk)|2,

(6.21)

together with the atom number self-consistency condition

n̄(t) = 1− 8√
π

(2na3
f )1/2

∫
dk̂k̂2|(uk(t) sinh ∆θk

− v∗k(t) cosh ∆θk)|2.
(6.22)

We illustrate the results in Figs. 1,3, from which we ob-
serve that the numerically computed nk(t) and nd(t)
quite closely qualitatively resemble the approximate
quasi-adiabatic counterparts. Yet, they differ quanti-
tively, particularly in the case of deep quench and for
small momenta. The asymptotic time-averaged value
of nd(t) always considerably exceeds the corresponding
ground state depletion and thus the pre-thermalized sys-
tem remains out of equilibrium.
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FIG. 20: (Color online) Quenched steady-state condensate
fraction (dash-dotted blue curve) as a function of knaf , fol-

lowing a quench from knai = 0.01→ knaf (where kn ≡ n1/3),
as compared to the ground state condensate fraction at knaf
(solid red curve, same as in Fig. 2), both calculated within
self-consistent dynamic field approximation.

In Fig. 21 we compare the numerical solution with
corresponding quantities obtained via various approxi-
mate approaches of previous sections. We find that for
knaf � 1, both the quasi-adiabatic self-consistent so-
lution and numerical self-consistent solution, reduce to
that of a straight Bogoluibov approximation, but deviate
with increasing depth of the quench, knaf . We observe
that in contrast to the adiabatic approximation, the full
numerical solution predicts that the condensate fraction
remains finite for arbitrary large knaf , arguing that our
earlier conjecture of a nonequilibrium phase transition to
a “normal” state is likely incorrect [39].

C. Generalized Gibbs Ensemble

In the analysis above we found that following a scat-
tering length quench a nonequilibrium state, character-
ized by a stationary momentum distribution function of
atoms emerges in the long time limit. It is thus natu-
ral to explore whether this state can be captured by a
Generalized Gibbs Ensemble (GGE) [25, 27].
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FIG. 21: (Color online) Comparison of results from three dif-
ferent approaches to computation of the post-quench steady
state condensate fraction nc/n: numerical self-consistency
(dash-dotted blue), quasi-adiabatic self-consistency (solid
red) and Bogoluibov (dashed grey).

At the simplest level of harmonic Bogoluibov descrip-
tion, the final stationary state is completely determined
by the initial post-quench momentum distribution func-

tion of the quasi-particles β̂k. The latter is in turn spec-
ified by the initial, ai and final af scattering lengths,
i.e., by the initial ground state |0−〉 (vacuum of α̂k) and

the post-quench Hamiltonian Ĥ(0+), through the rela-
tion (4.5) derived in Sec. IV.

Since at this harmonic level the energy eigenvalues Ekf
for each momentum are separately conserved, the distri-

bution of β̂k occupations can clearly be captured with
GGE

ρ̂GGE = Z−1
GGEe

−
∑

k λkEkf β̂
†
kβ̂k , (6.23)

where ZGGE = Tr
[
e−

∑
k λkEkf β̂

†
kβ̂k

]
and λk are the La-

grange multipliers (inverse of effective temperatures) for
each conserved mode k. These are fixed by requiring

nβk ≡ 〈0
−|β̂†kβ̂k|0

−〉 = 〈β̂†kβ̂k〉GGE ≡ Tr(β̂
†
kβ̂kρ̂GGE).

(6.24)

The analysis from Sec. IV gives the left hand side

nβk =
1

4

(
Ekf
Eki

+
Eki
Ekf

)
− 1

2
, (6.25)

determing

λk =
1

Ekf
ln

(
nβk + 1

nβk

)
. (6.26)

We now want to see if the long-time atomic momentum
distribution function nk(t→∞) can be characterized by
the GGE.

1. shallow quench

For a shallow quench, captured by purely harmonic
Bogoluibov approximation we have

nk(t) = 〈0−|â†k(t)âk(t)|0−〉,

= v2
k + (u2

k + v2
k)〈β̂†k(t)β̂k(t)〉

− ukvk〈β̂k(t)β̂−k(t) + β̂†k(t)β̂†−k(t)〉.

(6.27)

In the long time limit, the time-dependence of the off-
diagonal last terms dephases away, and only first two
terms survive. The steady-state momentum distribution
nssk then becomes

nssk = v2
k + (u2

k + v2
k)〈β̂†kβ̂k〉 (6.28)

Since 〈β̂†kβ̂k〉 = 〈β̂†kβ̂k〉GGE , it is clear that in this
purely harmonic approximation the GGE does describe
the steady-state distribuition.

2. deep quench

As we demonstrated in previous subsections, for a deep
quench, a self-consistency of condensate density must be
implemented. This results to an effective time dependent
Hamiltonian. In the simplest quasi-adiabatic approxima-
tion, we find

nk(t) = v2
k(t) + (u2

k(t) + v2
k(t))〈β̂†kβ̂k〉

− uk(t)vk(t)〈β̂k(t)β̂−k(t) + β̂†k(t)β̂†−k(t)〉.
(6.29)

This leads to a steady-state distribution

nssk = (vssk )2 + ((ussk )2 + (vssk )2)〈β̂†kβ̂k〉, (6.30)

where

ussk =

√
1

2

(εk + nssc gf
Ekf

+ 1
)
, (6.31a)

vssk = −

√
1

2

(εk + nssc gf
Ekf

− 1
)
, (6.31b)

Ekf =
√
εk2 + 2nssc gf εk, (6.31c)

and nssc the steady-state condensate density determined
by the self-consistency condition. The latter spoils the
GGE description of the long-time distribution even in
this approximation.

Indeed beyond the quasi-adiabatic approximation the
inability of GGE to capture the long-time distribution is
clear from the avoided sharp phase transition from su-
perfluid phase to normal phase, illustrated in Fig. 21.
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VII. EXCITATION ENERGY

We now turn to a study of the excitation energy Eexc
following a quench, defined by

Eexc = 〈0−|Ĥf |0−〉 − 〈0f |Ĥf |0f 〉, (7.1)

as the difference between the expectation value of the
post-quench Hamiltonian in the initial state and the
ground state energy of the same Hamiltonian. For a
closed system and unitary energy conserving dynamics,
this quantity is an important measure of the long time
nonequilibrium stationary state, and in particular the re-
sulting temperature for the equilibrated state.

Below, we first study Eexc within perturbative Bo-
goluibov approximation valid for a shallow sudden
quench and a dilute gas characterized by na3

s � 1.
Within this approximation the ground state energy with
repulsive interactions (i.e., here for a resonant problem
ignoring the bound molecular state [54, 60]) is given by
the LHY result

Egs = 〈0f |Ĥf |0f 〉 =
2πnaf
m

[
1 +

128

15
√
π

(na3
f )1/2

]
.

(7.2)

Our focus is then on the calculation of 〈0−|Ĥf |0−〉.
We will then generalize this analysis to arbitrary

strength interactions, relating the excitation energy to
Tan’s contact [75]. We then conclude by studying the
excitation energy for a finite-rate ramp.

A. Sudden quench

1. Bogoluibov approximation

Within a sudden quench Bogoluibov approximation a
straightforward analytical treatment is possible. To this
end, leaving details to Appendix C, we expand the Hamil-
tonian about the condensed state,

Ĥf ≈
gf
2V

N2 +
1

2

∑
k 6=0

[
(εk + gfn)â†kâk + gfnâ−kâk + h.c.

]
,

(7.3)

that to quadratic order can be diagonalized as analyzed
in Sec. II A, giving

Ĥf =
1

2
gfn

2V −
∑
k 6=0

[
εk + gfnc(0

+)− Ekf (0+)
]

+
∑
k 6=0

Ekf (0+)β̂†kβ̂k. (7.4)

The first two constant terms give the LHY ground-
state energy (with UV cutoffs in the second term can-
celled by the cutoff dependent terms coming from gf in

the first term after it is expressed in terms of scatter-
ing length, af as detailed in Appendix C.). They clearly
cancel in the subtraction in Eq. (7.1), giving excitation
energy density Eexc ≡ Eexc/V

Eexc =
1

V

∑
k6=0

Ekf (0+)
[
〈0−|β̂†kβ̂k|0

−〉 − 〈0f |β̂†kβ̂k|0f 〉
]
.

(7.5)

The last term vanishes at T = 0, since by definition |0f 〉
is a vacuum of β̂k. Given that |0−〉 is a vacuum of the
Bogoluibov quasi-particles α̂k associated with the pre-

quench Hamiltonian, Ĥi, it is convenient to express β̂k
in terms of α̂k, using the relations (4.5), (4.6) worked out
in Sec. IV. Evaluating the expectation value

〈0−|β̂†kβ̂k|0
−〉 = sinh2 ∆θ, (7.6)

=
1

2

[
εk + (gf + gi)n√

(εk + 2gin)(εk + 2gfn)
− 1

]
,

gives

Eexc =
1

2

∫
d3k

(2π)3

√
ε2k + 2gfnεk

×

[
εk + (gf + gi)n√

(εk + 2gin)(εk + 2gfn)
− 1

]
. (7.7)

Simple analysis shows that Eexc exhibits a (UV divergent)
contribution

EΛ
exc =

1

2

∫ Λ d3k

(2π)3

(gf − gi)2n2

2εk
,

=
mn2

4π2
(gf − gi)2Λ. (7.8)

set by the microscopic range r0 ∼ 1/Λ of the two-body
potential. This remains the case even when the cou-
plings gi,f are eliminated in favor of the physical scat-
tering lengths ai,f , using

g =
g̃

1− m
2π2 g̃Λ

=
4π

m

as

1− 2
πasΛ

, (7.9a)

≈ 4π

m
as(1 +

2

π
asΛ), (7.9b)

and to first order of asΛ (assuming asΛ� 1)

EΛ
exc = 4(1− σ)2n

2af
m

afΛ. (7.10)

The remaining finite part of Eexc is then given by
Ẽexc = Eexc − EΛ

exc,

Ẽexc = −128π1/2afn
2

15m
(na3

f )1/2
[
σ3/2(3σ − 5) + 2

]
.

(7.11)
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It is negative for all σ = gi/gf and leads to

Eexc = 4(1− σ)2n
2af
m

afΛ

− 128π1/2

15

n2af
m

(na3
f )1/2

[
σ3/2(3σ − 5) + 2

]
,

(7.12)

This expression vanishes as (σ−1)2 in no quench σ = 1

limit. Although a negative finite correction Ẽexc is discon-
certing, the total excitation energy density Eexc is indeed
positive in the dilute regime (na3

f )1/2 � 1 � afΛ, re-
quired for the validity of the Bogoluibov approximation
[76].

The potential-range (UV cutoff) dependence of Eexc
may at first sight appear surprising (even when expressed
in terms of the physical scattering lengths, that renders

all equilibrium properties finite). However, as we will
see below, this result arises from an unphysical feature
of the model protocol, namely an infinitely fast quench.
We reexamine this UV dependence below by studying a
more physical model with a finite-rate ramp.

2. beyond Bogoluibov approximation and relation to Tan’s
contact

Below we present a more general analysis of the excita-
tion energy, without relying on the expansion about the
condensed state, by relating it to other physical quanti-
ties like the ground state energy and Tan’s contact [75].

We begin with the basic model Hamiltonian of resonant
bosons

Ĥf =
∑
k 6=0

εkâ
†
kâk +

gf
2V

∑
k1,k2,q

â†−k1+q/2â
†
k1+q/2â−k2+q/2âk2+q/2,

= Ĥi +
gf − gi

2V

∑
k1,k2,q

â†−k1+q/2â
†
k1+q/2â−k2+q/2âk2+q/2,

(7.13)

where the bare interaction coupling g is expressible
in terms of the renormalized coupling g̃−1 = g−1 +
mΛ/(2π2), related to the scattering length as(g),

g̃ =
4πas
m

=
g

1 +mΛg/(2π2)
. (7.14)

With the initial (pre-quench) state |0−〉 ≡ |0i〉 the vac-

uum of the pre-quench Hamiltonian, Ĥi, the excitation
energy density is then given by

Eexc = 〈0i|Ĥi|0i〉 − 〈0f |Ĥf |0f 〉+
gf − gi

2V

∑
k1,k2,q

〈0i|â†−k1+q/2â
†
k1+q/2â−k2+q/2âk2+q/2|0i〉,

= Eigs − Efgs +
gf − gi

2V

∑
k1,k2,q

〈0i|â†−k1+q/2â
†
k1+q/2â−k2+q/2âk2+q/2|0i〉. (7.15)

For a dilute weakly interacting gas, na3
s � 1, we can

evaluate the first two (ground state energy) terms within
Bogoluibov approximation for the initial and final Hamil-
tonians, using the LHY result, Eq. (2.14) for gi, gf . The
last term can be related to Tan’s contact.

To this end, we first note that the expectation value of
the quartic interaction is related to Tan’s contact [75, 78],

C = (mg)2〈ψ̂†ψ̂ψ̂†ψ̂〉, (7.16)

that in Bogoluibov approximation is given by

C ≈ (4πnas)
2

(
1 +

64

3
(na3

s/π)1/2

)
, (7.17)

and is UV cutoff Λ = 1/r0 independent. The ground
state energy density is also expressible in terms of the
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contact

Egs =
1

V

∑
k

εk

(
nk −

C

k4

)
+

C

8πmas
, (7.18a)

≈ 2πn2as
m

(
1 +

128

15
(na3

s/π)1/2

)
, (7.18b)

with the last equality computed within the Bogoluibov
limit.

Using Eq. (7.15) and (7.16), the excitation energy den-
sity is thus given by:

Eexc = E igs − Efgs +
1

2
(gf − gi)〈0i|ψ̂†ψ̂ψ̂†ψ̂|0i〉,

= E igs − Efgs +
(gf − gi)
2m2g2

i

Ci. (7.19)

Recalling from scattering analysis, that the micro-
scopic UV cuttoff-dependent interaction g is given by

g =
4πa

m

(
1− 2

π
as/r0

)−1

, (7.20)

allows us to express Eexc in terms of the more physical
scattering lengths

Eexc = E igs − Efgs +
Ci

8πma2
i

(af − ai)
1− 2

πai/r0

1− 2
πaf/r0

. (7.21)

As is clear from as(g) in (7.14) plotted in Fig. 6, the scat-
tering length falls into two distint ranges 0 < |as| < 1

2πr0

and |as| > 1
2πr0, where from (7.14) the latter is only

accessible for attractive interactions, g < 0. Analyzing
above expression in the first range and within the Bo-
goluibov approximation (using (7.17),(7.18b)), to lowest
order we recover the UV cutoff dependent result (7.10)
of the previous subsection,

Eexc ≈
2πn2

m
(ai − af )

[
1−

1− 2
πai/r0

1− 2
πaf/r0

]
, (7.22)

≈ 4n2

m
(ai − af )2/r0 (7.23)

In the complementary more physically interesting
regime |as| > 1

2πr0, we instead have

Eexc = E igs − Efgs +
Ci

8πm
(a−1
i − a

−1
f ),

(7.24)

that in the Bogoluibov limit na3
s � 1 (i.e., r0 � |as| �

n−1/3) reduces to

Eexc ≈
4πn2ai
m

[
1− 1

2

(
af
ai

+
ai
af

)]
. (7.25)

For weak (no bound state) attractive interactions ai < 0
this expression is positive and as required vanishes for
the case of no-quench, σ = af/ai = 1.

For a strong resonant interactions, beyond Bogoluibov
regime, excitation energy reduces to

Eexc =
1

V

∑
k

εk

(
δnik − δn

f
k

)
+

1

4πm

[
Ci
ai
− 1

2

Ci + Cf
af

]
,

(7.26)

where δnk ≡ nk − C/k4 is the momentum distribution
with large momentum tail subtracted off.

We observe, that for as > 0 the excitation energy ap-
pears to be negative. However, in this regime, as >

1
2πr0,

for as > 0 the interaction g is necessarily attractive (see
(7.14) showing that for g > 0, as is limited below 1

2πr0)
and exhibits a molecular bound state that lies below
atomic BEC continuum. Thus the initial purely atomic
condensate state with as > 0 is therefore not a ground
state (the molecular bound state is) and thus there is no
a priori reason to expect for the change in energy to be
positive under a quench. We thus conjecture that the
negative excitation energy εexc < 0 is a reflection of such
resonant interaction.

Finally, as we will show next, the UV cutoff dependent
excitation energy, (7.23) is a reflection of the unphysical
infinitely fast quench, a divergence that in a more phys-
ical situation of a finite-rate ramp is cut off by the ramp
rate.

B. Finite-rate ramp

In this subsection we analyze the excitation energy
following a finite-rate ramp of the coupling strength,
for simplicity focussing on a linear ramp, defined by
Eq. (5.1), (5.5) in Sec. V, characterized by a dimension-
less rate γ and related ramp time τ ≡ (1 − σ)/(ngfγ).
Below we will show that above short-scale divergence for
a sudden quench is regularized by a finite ramp rate γ.

1. scaling analysis

To this end we first conjecture that for a finite-rate
ramp (nonzero ramp time) the dominant singular part of
excitation energy is generalized to

EΛ
exc(γ) =

4(σ − 1)2n2af
m

afΛf(EΛτ), (7.27)

=
4(σ − 1)2n2af

m
afΛf (EΛ(1− σ)/(ngfγ)) ,

where EΛ = Λ2/2m ≈ 1/(2mr2
0) is the UV cutoff energy

scale (corresponding to range of the potental r0 ∼ Λ−1),
that sets the ramp rate scale.

We can deduce the asymptotic form of the scaling func-
tion f(x) from the knowledge of the behavior of EΛ

exc(γ)
in sudden quench and adiabatic limits. In the former case
of γ →∞, cleary f(x) = 1 so that (7.10) is recovered. In
the latter case of γ → 0, we expect the system to track
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the ground state and thus EΛ
exc(τ →∞)→ 0, and require

for the UV cutoff Λ to drop out.
The latter condition thus requires that f(x → ∞) =

κ/
√
x (κ is a dimensionless constant), so that

EΛ
exc(γ) =

γ→0
κ

8
√

2πn2af
m

(na3
f )1/2(1− σ)3/2√γ, (7.28a)

≡ 1

4
κE0(1− σ)3/2√γ, (7.28b)

scaling as the square-root of the ramp rate, with E0 ≡
32
√

2π
n2af
m (na3

f )1/2. This is consistent with the general

predictions [77], with the specific exponent of 1/2 ap-
pearing here.

Before turning to a more microscopic analysis, we note
that an estimate of experimental ramp rate is γ ≈ 10−10

eV and of UV energy cutoff EΛ ≈ 10−7 eV [56]. Thus, in
JILA experiments EΛ/γ � 1, with the finite ramp rate
expecting to cutoff the dependence on the microscopic
cutoff Λ, and the excitation energy scaling proportional
to Eexc ∼

√
γ.

2. microscopic and numerical analysis

As a complementary approach, we can use a micro-
scopic model of a finite-rate ramp protocol, Sec. V, to-
gether with a numerical analysis to compute the resulting
excitation energy.

Leaving the detailed calculations to Appendix C we
find that the energy right after the finite-rate ramp is
given by

Etotal = 2π
n2af
m

+ 32
√

2π
n2af
m

(na3
f )1/2

∫
dkk2

[
(k2 + 1)|vk(τ)|2 − 1

2
(uk(τ)v∗k(τ) + vk(τ)u∗k(τ)) +

1

4k2

]
, (7.29)

where uk(t), vk(t) are solutions of Eqs.(5.4a)(5.4b) (see
Eq. (C9)). Subtracting the LHY ground state energy
density Egs (7.2), the excitation energy density is then
given by

Eexc = Etotal − Egs = E0f(σ,Λ, γ), (7.30)

where

f(σ,Λ, γ) =

∫
dkk2

[
(k2 + 1)|vk(τ)|2

− 1

2
(uk(τ)v∗k(τ) + vk(τ)u∗k(τ)) +

1

4k2

]
− 4
√

2

15
(7.31)

is a dimensionless function that can be evaluated using
numerical solutions for uk(τ) and vk(τ).

Displaying the results in Fig. 22, we observe that for
a small ramp rate γ, the cutoff dependence drops out of
the excitation energy, as curves with different cutoffs Λ
collapse. In the opposite limit of γ → ∞, the excitation
energy recovers the linear cutoff-depedence displayed for
the sudden quench case, in Eq. (7.10).

We also verify the square-root prediction of the scal-
ing theory for slow ramp rate, Eq.(7.28b), in Fig. 4, by
“zooming-in” Fig. 22. The σ (quench depth) dependence
in Eq. (7.28b) is also confirmed by inspecting Fig. 23.

With this we conclude our analysis of the excitation
energy and turn to the study of the dynamic analog of
Tan’s contact [75].

Λ�=30

Λ�=40

Λ�=50

Λ�=60

2000 4000 6000 8000 10000γ

5

10

15

εexc/ε0

FIG. 22: (Color online) Excitation energy (scaled by LHY
correction to the ground state energy) following a scattering
length ramp 0.5af → af as a function of ramp rate γ for dif-

ferent scaled momentum cutoff Λ̂ = Λξ (here ξ ≡ 1/
√

2mngf
is the coherence length). For large ramp rate γ (fast ramp),
the excitation energy Eexc (defined in the text) grows linearly
with the UV cutoff Λ, while for small rate (slow ramp) the
cutoff dependence drops out and is replaced by a square-root
of the ramp rate γ.

VIII. CONTACT

A. Ground state contact

Contact, C is a remarkable physical parameter intro-
duced by Tan [75], that enters in a large variety of physi-
cal observables. Most notably, it appears as a coefficient
of the universal large momentum tail of the ground-state
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FIG. 23: (Color online) Excitation energy (scaled by LHY
correction to the ground state energy) following a scattering
length ramp from ai → af as a function of quench depth
σ = ai/af . The blue data points are obtained for each chosen
σ at dimensionless ramp γ̂ ≡ (1− σ)/(τngf ) = 10 and scaled

momentum cutoff Λ̂ = Λξ = 60; the red curve represents
fitting function y = 0.58(1− x)3/2.

momentum distribution function

C = lim
k→∞

k4nk (8.1)

and as a response of the ground-state energy density
Egs ≡ Egs/V to the tuning of the scattering length, the
so-called adiabatic theorem,

C = −8πm
dEgs
da−1
s

, (8.2a)

= (mg)
2 〈ψ̂†ψ̂†ψ̂ψ̂〉, (8.2b)

with the second relation to the interaction energy (al-
ready noted in the previous section) obtained via the
Hellmann-Feynman theorem [73]. As we show in Ap-
pendix D 1, above can be straightforwardly evaluated
in the ground state within the dilute Bogoluibov ap-
proximation [79]. Though contact is quite different for
fermions and bosons, in equilibrium, these relations are
expected to hold independent of statistics.

The contact was first successfully measured in the
ground state of stable fermionic gases, with relations ex-
perimentally verified [63]. More recently, the contact was
studied in a resonant bosonic gas via Bragg spectroscopy,
utilizing the adiabatic theorem, (8.2a)) [64] and more di-
rectly from the large frequency 1/ω3/2 tail (frequency
analog of 1/k4 momentum tail, (8.1); see (4.35)) of the
RF spectroscopy signal [64]. However, because a reso-
nant Bose gas is fundamentally unstable and evaporates
through the three-body decay, these measurements are
intrinsically nonequilibrium, requiring a dynamical anal-
ysis of the contact.

B. Dynamical contact

We thus examine the contact and its associated re-
lations for a resonant Bose gas dynamics following a
quench. Immediately after the quench the states remain
unchanged |0−〉 = |0+〉 and only the coupling changes,
gi → gf . Thus, the relation between two forms of C
defined in (8.2a) and (8.2b) remains valid,

CdE(0+) = −8πm
dEf
da−1
f

= (mgf )
2 〈0+|ψ̂†ψ̂†ψ̂ψ̂|0+〉

=

(
gf
gi

)2

CE(0−), (8.3)

despite the fact that |0+〉 is not an eigenstate of Ĥ(0+) ≡
Ĥf and thus Hellmann-Feynman theorem no longer ap-
plies.

However, the contact CdE is then clearly not continu-
ous across the quench, and using (7.14),(7.20) acquires a
UV cutoff dependence Λ = 1/r0, that drops out only in
the ai,f � r0 limit

CdE(0+) =

(
gf
gi

)2

CE(0−), (8.4a)

= CE(0−), ai,f � r0, (8.4b)

=

(
af
ai

)2(
1 +

4

πr0
(af − ai)

)
CE(0−), ai,f � r0

. (8.4c)

This is consistent with cutoff dependence found in the
excitation energy, (7.23). On the other hand the momen-
tum distribution function only depends on the state and
is thus continuous across the quench. Thus, the contact
Cn, defined by the large momentum tail of the distribu-
tion function, (8.1) is continuous across the quench and
is therefore distinct from CE .

Utilizing the analysis of Sec. IV, we next compute these
contact quantities at time t after the quench. We first
study the contact CE(t) defined by the quartic interac-
tion, (8.2b). Relegating the calculation details to Ap-
pendix D 2, within the Bogoluibov approximation we find

CE(t) = (4πnaf )2 + FC(σ, t)CfLHY , (8.5)

where the CfLHY is the LHY correction to the ground
state contact for quenched Hamiltonian with af

CfLHY = (4πnaf )2 64

3
√
π

(na3
f )1/2 (8.6)

and the time-dependent enhancement factor due to the
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quench is given by

FC(σ, t) =
σ3/2 + 3

√
σ + 3

√
1− σarccos

√
σ

4

+
3
√

2

8

∫
dyy2 y(1− σ)

(y2 + 2)
√
y2 + 2σ

× cos[2t̂
√
y2(y2 + 2)]

(8.7)

and illustrated in Fig. 24.
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FIG. 24: (Color online) Contact enhancement factor FC(σ, t)
above the corresponding ground state value as a function of
time following a scattering length quench 0.1af → af , in units
of pre-thermalization time scale t0 = ~/ngf = m/(4πafn~).
For a typical 85Rb experiment with n = 5× 1012cm−3, as =
1100a0, t0 ≈ 360µs.

Immediately after the quench, at t = 0+, the quantity
FC(σ, t) can be evaluated analytically, giving the contact

CE(0+) = (4πnaf )2

[
1 +

64

3
√
π

(na3
i )

1/2

]
+ 64πa2

fn
2Λ(af − ai),

(8.8)

which is the Bogoluibov limit of the general result in
Eq. (8.4c). This UV cutoff-dependence is reflected in
the large value of the numerically evaluated contact near
t = 0+, in Fig. 24. As time evolves after a quench, the
contact decreases dramatically within a short window of
time, with the cutoff-dependence quickly vanishing. Af-
ter reaching a minimum it then slowly grows to a finite
steady-state value, Css.

At long times, the sinusoid in (8.7) averages out and
contact reaches a steady-state value

h(σ) ≡ FC(σ, t→∞) =
σ3/2 + 3

√
σ + 3

√
1− σarccos

√
σ

4
(8.9)

plotted in Fig. 25. This steady-state contact is greater
than the contact in the ground state for the same scat-
tering length af .

Finally, we examine the contact associated with the tail
of the momentum distribution function after the quench,
which is given by Eq. (6.11) following a deep quench and

0.2 0.4 0.6 0.8 1.0 σ

1.05

1.10

1.15

h(σ)

FIG. 25: (Color online) Asymptotic Contact enhancement
factor h(σ) ≡ FC(σ, t → ∞) following a scattering length
quench ai → af as a function of quench depth σ = ai/af .
Two dots correspond to maximum enhancement h(0) = 3π/8
(non-interacting initial state or unitarity final state) and min-
imum enhancement h(1) = 1 (no quench), respectively.

Eq. (4.14) for a shallow quench, respectively. From these
we straightforwardly obtain

Cn = lim
k→∞

k4nk = (4πafn)2

[
nssc
n

+ (1− σ)2

]
(8.10)

and the shallow quench result is obtained by setting
nss = n using Bogoluibov approximation. Clearly, this
is also independent of time. Thus, out of equilibrium,
the three forms of the contact, Cn, CE , CdE no longer
coincide, like they do in the ground state.

Above analysis of various forms of contact in the
nonequilibrium state thus shows that no direct relation of
the coefficient of the 1/ω3/2 tail in RF spectroscopy [64]
to the equilibrium contact and its other ground state re-
lations can be made.

IX. SUMMARY AND OPEN DIRECTIONS

In this manuscript we studied the dynamics of a res-
onant Bose gas following shallow and deep scattering
length quenches and ramps, confining to a metastable
regime of a positive scattering length. Utilizing a dy-
namic field theory extension of the Bogoluibov theory,
which self-consistently accounts for a large depletion and
a time-dependent condensate density, we approximately
solved for the full post-quench evolution of the system.
From this we then computed a variety of physical ob-
servables, such as the evolution of the momentum dis-
tribution function, the associated condensate depletion,
the time-dependent structure function, the RF spec-
troscopy signal, the excitation energy and various forms
of a “nonequilibrium contact”. We found, that following
initial transient dynamics, the Bose gas exhibits a pre-
thermalization to a stationary state (characterized e.g.,
by a stationary momentum distribution function) that
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differs qualitatively from the corresponding ground state.
Because of integrability of the approximate model, that
does not include quasi-particles scattering, the system
never exhibits full thermalization to a ground state. De-
spite the simplicity of our model and approximate anal-
ysis, our results are in reasonable qualitative agreement
with recent JILA experiments [56].

Although we made significant progress in understand-
ing the post-quench dynamics of a resonant Bose system,
our work leaves a number questions for a future investiga-
tion. Our present study utilized a single-channel model
and focussed on the upper-branch physics with a tunable
positive scattering length, thereby neglecting the closed
molecular channel. The latter may in fact be quite signif-
icant, enriching the dynamics by allowing coherent con-
densate oscillations not only into pairs of atomic quasi-
particles in the upper branch, but also into molecular
condensate and molecular quasi-particles. This exten-
sion can be quite naturally treated within a two-channel
model, where the closed molecular channel is explicitly
included. It would allow one to address the dynamics
not only within the superfluid phase but across quantum
and classical phase transitions, most notably across the
quantum Ising transition between atomic and molecular
superfluids and throughout the atomic-molecular phase
diagram [51–53].

Another crucial ingredient missing in our model is the
quasi-particle scattering. This is responsible for a time-
independent quasi-particle momentum distribution func-
tion, that is completely fixed by the initial state, charac-
terized by ai and the final scattering length af . This fea-
ture is responsible for the absence of thermalization of the
system. It is thus desirable to extend the present model
to include quasi-particle scattering, that can be handled
through the Boltzmann equation for the quasi-particle
distribution function. In such a generalized model, the
dynamics of the atomic observables (e.g., atomic momen-
tum distribution and structure functions) will consist of
two contributions, Heisenberg evolution of atoms due to
quasi-particle unitary dynamics, coupled to the evolu-
tion of the quasi-particle momentum distribution func-
tion governed by the Boltzmann equation with collision
integrals. We expect that such dynamics will exhibit a
second, longer time scale, set by the quasi-particle scat-
tering that will lead to true long-time thermalization.

Finally, to treat the effects of interactions more sys-
tematically, it is desirable to have a full nonequilibrium
Schwinger-Keldysh field theoretic formulation. We leave
these and a number of other open question for future
research [59].
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Appendix A: Energy conservation

In this appendix we study the time evolution of the
total energy following a deep quench. Although energy
is conserved under exact unitary evolution of a closed
system, it is less clear whether it remains so for the time-
dependent self-consistent Bogoluibov approximation em-
ployed in deep quenches. We demonstrate below that
within this approximation, that neglects anomalous av-
erages of finite momentum excitations, the total energy
is indeed conserved.

To this end we study the time derivative of the
full time-dependent Hamiltonian, including the constant
mean-field parts derived in Sec. II, (2.24). It is given by

Ĥtotal =
∑
k6=0

[
(εk + gnc(t))â

†
kâk +

g

2
nc(t)(âkâ−k + â†kâ

†
−k)

]
+ g[nc(t)nd(t) +

1

2
n2
c(t) + n2

d(t)],

(A1)

where g is the final interaction gf to which the system is
quenched, and the energy is evaluated as

Etotal(t) = 〈0−|Ĥtotal(t)|0−〉 = E1(t) + E2(t) + E3(t).
(A2)

The time derivative of last mean-field term, E3 is given
by

dE3

dt
= g[ṅcnd + ncṅd + ncṅc + 2ndṅd],

= gndṅd,
(A3)

where we used the atom conservation constraint n =
nc(t) + nd(t), giving ṅc(t) + ṅd(t) = 0.

A time derivative of the first term E1(t) is

dE1

dt
≡ d

dt

∑
k6=0

(εk + gnc(t)) 〈0−|â†k(t)âk(t)|0−〉,

=
∑
k 6=0

gṅc〈â†kâk〉+ (εk + gnc(t))〈 ˙̂a†kâk + â†k
˙̂ak〉,

(A4)

and of the second term E2(t)

dE2

dt
≡ g

2

d

dt

∑
k6=0

nc(t)〈0−|âk(t)â−k(t) + â†k(t)â†−k(t)|0−〉,

=
∑
k 6=0

g

2
ṅc〈âkâ−k + â†kâ

†
−k〉+

g

2
nc〈 ˙̂akâ−k + âk ˙̂a−k

+ ˙̂a†kâ
†
−k + â†k

˙̂a†−k〉.
(A5)
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Using the Heisenberg equation of motion to eliminate
time derivatives of atom operators we find

˙̂ak =
1

i
[(εk + gnc)âk + gncâ

†
−k],

˙̂a−k =
1

i
[(εk + gnc)â−k + gncâ

†
k].

(A6)

With this (A4) and (A5) reduce to

dE1

dt
= gṅcnd +

1

i

∑
k 6=0

gnc(εk + gnc)〈â†kâ
†
−k − âkâ−k〉

(A7)

and

dE2

dt
=
∑
k 6=0

g

2
ṅc〈âkâ−k + â†kâ

†
−k〉

+
gnc
i

((εk + gnc)〈âkâ−k − â†kâ
†
−k〉.

(A8)

For the total energy we then obtain,

dEtotal
dt

=
∑
k6=0

g

2
ṅc[〈âkâ−k〉+ 〈â†kâ

†
−k〉] ≈ 0, (A9)

where in the last approximation we neglected anoma-
lous correlator of excited atoms. More precisely, follow-
ing Sotiriadis and Cardy [35], we observe that while the
conventional definition of the energy is not conserved,
the shifted one Eshifted ≡ Etotal − g

2

∫
dtṅc[〈âkâ−k〉 +

〈â†kâ
†
−k〉] approximately is.

Appendix B: U(t) for quasi-adiabatic approximation

In this seciton, we fill in the technical details leading
to U(t) for quasi-adiabatic approximation in Eq. (6.9).
The operator part of time-dependent Hamiltonian is

Ĥ(t) =
1

2

∑
k6=0

((εk + nc(t)gf )(â†kâk + â†−kâ−k)

+ nc(t)gf (â†kâ
†
−k + âkâ−k)).

(B1)

It can be instantaneously diagonalized by

(
âk(t)

â†−k(t)

)
=

(
uk(t) vk(t)
vk(t) uk(t)

)(
γ̂k(t)

γ̂†−k(t)

)
, (B2)

and rewritten as

Ĥ(t) = −1

2

∑
k6=0

(εk + nc(t)g − Ekf (t))

+
1

2

∑
k 6=0

Ekf (t)(γ̂†kγ̂k + γ̂†−kγ̂−k),

(B3)

where

uk(t) =

√
1

2
(
εk + gfnc(t)

Ek(t)
+ 1),

vk(t) = −

√
1

2
(
εk + gfnc(t)

Ek(t)
− 1),

Ekf (t) =
√
εk(εk + 2gfnc(t)).

(B4)

The time-dependence of γ̂†k(t) and γ̂k(t) is obtained from
the Heisenberg equation of motion,

dγ̂k
dt

= i[γ̂k, Ĥ] +
∂γ̂k
∂t

, (B5)

where the last term accounts for the explicit time-
dependence in Hamiltonian. To compute it we first ex-

press γ̂†k(t) and γ̂k(t) in terms of â†k(t) and âk(t).

(
γ̂k(t)

γ̂†−k(t)

)
=

(
uk(t) −vk(t)
−vk(t) uk(t)

)(
âk(t)

â†−k(t)

)
, (B6)

Then

∂

∂t

(
γ̂k(t)

γ̂†−k(t)

)
=

(
u̇k(t) −v̇k(t)
−v̇k(t) u̇k(t)

)(
âk(t)

â†−k(t)

)
,

=

(
u̇k(t) −v̇k(t)
−v̇k(t) u̇k(t)

)(
uk(t) vk(t)
vk(t) uk(t)

)(
γ̂k(t)

γ̂†−k(t)

)
,

=

 0 gṅc(t)εk
2E2

kf
gṅc(t)εk

2E2
kf

0

( γ̂k(t)

γ̂†−k(t)

)
.

(B7)
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Now the equation of motions become

d

dt

(
γ̂k(t)

γ̂†−k(t)

)
=

−iEkf (t) gṅc(t)εk
2E2

kf
gṅc(t)εk

2E2
kf

iEkf (t)

( γ̂k(t)

γ̂†−k(t)

)
. (B8)

Assuming ṅc(t) changes slowly compared to other timescales (or more explicitly ṅc(t)/n � E3
kf/(~ngεk)), we can

ignore the off-diagonal terms in (B8) and have

d

dt

(
γ̂k(t)

γ̂†−k(t)

)
≈
(
−iEkf (t) 0

0 iEkf (t)

)(
γ̂k(t)

γ̂†−k(t)

)
, (B9)

from which we can solve γ̂†k(t) and γ̂k(t) as

γ̂k(t) = γ̂ke
−i

∫ t
0
dt′Ekf (t′), γ̂†−k(t) = γ̂†−ke

i
∫ t
0
dt′Ekf (t′), (B10)

thus (
âk(t)

â†−k(t)

)
=

(
uk(t) vk(t)
vk(t) uk(t)

)(
e−i

∫ t
0
dtEkf (t′) 0

0 ei
∫ t
0
dtEkf (t′)

)(
γ̂k
γ̂†−k

)
,

=

(
uk(t)e−i

∫ t
0
dtEkf (t′) vk(t)ei

∫ t
0
dtEkf (t′)

vk(t)e−i
∫ t
0
dtEkf (t′) uk(t)ei

∫ t
0
dtEkf (t′)

)(
γ̂k
γ̂†−k

)
.

(B11)

Comparing this with Eq. (6.4) , we find

U(t) =

(
uk(t)e−i

∫ t
0
dtEkf (t′) vk(t)ei

∫ t
0
dtEkf (t′)

vk(t)e−i
∫ t
0
dtEkf (t′) uk(t)ei

∫ t
0
dtEkf (t′)

)
. (B12)

Appendix C: Energy after quench

In this section we evaluate the total energy of the system after the sudden quench. Separating the energy into
kinectic part and interaciton part

〈0−|Ĥf |0−〉 = 〈0−|Ĥf
KE |0

−〉+ 〈0−|Ĥf
int|0

−〉, (C1)

with

Ĥf
KE =

1

2

∑
k 6=0

ε0k(â†kâk + â†−kâ−k), (C2)

Ĥf
int =

1

2
V gfn

2 +
1

2

∑
k6=0

[ngf (â†kâk + â†−kâ−k) + ngf (â†kâ
†
−k + âkâ−k)], (C3)

we then use Bogoluibov transformation to evaluate them respectively by expressing âk in terms of pre-quench basis
α̂k, obtaining

ĤKE =
∑
k 6=0

εkâ
†
kâk =

∑
k 6=0

εk

(
|uk|2α̂†kα̂k − u∗kvkα̂

†
kα̂
†
−k − ukv

∗
kα̂−kα̂k + |vk|2α̂−kα̂†−k

)
, (C4)

and

Ĥint =
1

2
V gfn

2 + ngf
∑
k6=0

[|vk|2 −
1

2
(u∗kvk + ukv

∗
k)]

+
1

2
ngf

∑
k6=0

[(
|u2
k|+ |v2

k| − (u∗kvk + ukv
∗
k)
)

(α̂†kα̂k + α̂†−kα̂−k) + (u2
k + v2

k − 2ukvk)(α̂†kα̂
†
−k + α̂kα̂−k)

]
.

(C5)
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Since α̂k|0−〉 = 0, we have

〈0−|ĤKE |0−〉 =
∑
k6=0

εk|vk|2, (C6)

and

〈0−|Ĥf
int|0

−〉 =
1

2
V g̃fn

2 + ng̃f
∑
k6=0

[
|vk|2 −

1

2
(u∗kvk + ukv

∗
k) +

ng̃f
4εk

]
, (C7)

during which coupling g has been expanded to second order

g =
4πa

m
+

(4πa)2

m2V

∑
k6=0

1

2εk
≡ g̃ +

g̃2

V

∑
k6=0

1

2εk
. (C8)

Therefore, the total energy is

Etot(t = 0+) = 〈0−|ĤKE + Ĥint|0−〉,

=
1

2
V g̃fn

2 + ng̃f
∑
k 6=0

[(
εk
ng̃

+ 1

)
|vk|2 −

1

2
(u∗kvk + ukv

∗
k) +

ng̃f
4εk

]
,

=
2πnaf
m

+
32
√

2πnaf
m

(na3
f )1/2

∫
dkk2

[
(k2 + 1)|vk|2 −

1

2
(ukv

∗
k + vku

∗
k) +

1

4k2

]
.

(C9)

For a sudden quench, the expressions for uk and vk are simple

uk =

√
1

2
(

εk + ng̃i√
εk(εk + 2ng̃i)

+ 1),

vk = −
√

1

2
(

εk + ng̃i√
εk(εk + 2ng̃i)

− 1).

(C10)

Plugging Eq. (C10) into (C6) and (C7), we obtain the kinetic energy as

〈0−|ĤKE |0−〉 =
∑
k6=0

1

2
εk(

εk + ng̃i√
εk(εk + 2ng̃i)

− 1),

=
1

2
ng̃i(2mg̃in)3/2 4πV

(2π)3

∫
dyy2

[
y2 + 1√
y2(y2 + 2)

− 1

]
,

= N
4ain

m
Λai −

128
√
πain

5m
N(na3

i )
1/2,

(C11)

the interaction energy as

〈0−|Ĥf
int|0

−〉 =
1

2
V g̃fn

2 +
1

2
ng̃f

∑
k 6=0

(εk/
√
εk(εk + ng̃f )− 1 + ng̃f/2εk),

=
1

2
V n2g̃f +

1

2
ng̃f (2mg̃fn)

3
2

4πV

(2π)3

∫
dyy2

(
y√

y2 + 2σ
− 1 +

1

2y2

)
,

=
2πafn

m
N

[
1 +

64

3
(
na3

i

π
)

1
2

]
+ (1− 2σ)N

4afn

m
Λaf ,

(C12)

and the total energy as

Etot = 〈0−|ĤKE + Ĥint|0−〉 =
4(1− σ)2naf

m
NafΛ− 128

√
πnai

5m
N(na3

i )
1/2 +

2πnaf
m

N

[
1 +

64

3
√
π

(na3
i )

1/2

]
, (C13)

which is Eq. (7.12) in the text. The ground state energy can be easily obtained by setting σ = 1, and one obtains

Etot =
2πasn

m
N [1 +

128

15
(
na3

s

π
)

1
2 ]. (C14)

as the cutoff dependences of kinetic energy and interaction energy cancel each other, recovering the LHY result as
expected.
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Appendix D: Contact

1. Ground state contact

In this paper, we follow E. Braaten et.al [78] and take the working definition of contact to be

C = (mg)2〈
∫
drψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t))〉 = 2m2g〈Ĥint〉/V. (D1)

At T = 0 for na3
s � 1, the interaction energy of Bose gas is given in Appendix C. For ground state, 〈O|Ĥint|O〉 can

be evaluated by applying σ = 1 to Eq. (C12), which gives

〈O|Ĥint|O〉 =
2πasNn

m

[
1 +

64

3
√
π

(na3
s)

1/2

]
− 4Λa2

sNn

m
,

= 2Nn/m

[
asπ

(
1 +

64

3
√
π

(na3
s)

1/2

)
− 2a2

sΛ

]
.

(D2)

The last term contains the same divergence as the bare interaction g, and we show below they exactly cancel each
other to give a finite contact.

C = 2m2g〈O|Ĥint|O〉/V,

= 2m2

(
4πas
m

+
8Λa2

s

m

)
〈O|Ĥint|O〉/V,

= 8m(πas + 2Λa2
s)〈O|Ĥint|O〉/V,

= (4πas)
2n2

[
1 +

64

3
√
π

(na3
s)

1/2 +
128

3π3/2
asΛ(na3

s)
1/2 +O(Λ2a2

s)

]
.

(D3)

Thus to the order of (na3
s)

1/2, the contact value for ground state at T = 0 is

C = (4πas)
2nN

[
1 +

64

3
√
π

(na3
s)

1/2

]
. (D4)

For bosons in thermal equilibrium, one central Tan’s relation is the adiabatic theorem, which relates the energy
change with respect to scattering length to the contact. The theorem states the following thing

C = 8πma2
s

dEgs
das

. (D5)

Since the ground state energy is given by Eq. (7.2), it is straightforward to show that

8πma2
s

dEgs
das

= (4πasn)2

[
1 +

64

3
√
π

(na3
s)

1
2

]
. (D6)

Thus we have verified the adiabatic theorem in ground state.
Another important Tan’s relation is the momentum theorem, which relates contact to the high momentum tail of

the momentum distribution function

C = lim
k→∞

k4nk. (D7)

For ground state at T = 0, momentum distribution nk is given by Eq. (2.13), giving

lim
k→∞

k4nk = C0 +O(1/k2), (D8)

with C0 = (4πasn)2. Thus we recover the lowest order of contact obtained in Eq. (D4).
We can also generalize the contact to large na3

s case. From Eq. (2.24), the ground state energy is modified as

Egs = 〈O|Ĥtotal|O〉

=
2πasV n

2

m

[
1 +

(nd
n

)2

+
128(na3

s)
1/2

15
√
π

(nc
n

)5/2
]
.

(D9)
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Then the adiabatic theorem gives

C = 8πma2
s

dEgs
das

= (4πasn)2

[
1 +

(nd
n

)2

+
64(na3

s)
1/2

3
√
π

(nc
n

)5/2
]
.

(D10)

It is straightforward to verify that this also agrees with contact obtained via Eq. (D1). Here, condensate density nc
and depletion density nd are determined self-consistently by Eq. (3.2).

2. Dynamical contact

An important quantity to determine dynamical contact is the interaction energy 〈0−|Ĥf
int|0−〉. In this section, still

assuming a sudden quench, we further study the dynamics of interaction energy and focus on its asymptotic long
time limit, and use it to construct the dynamical contact as in Eq. (D1). Using Eq. (4.2a) to decompose âk into

post-quench basis β̂k(t), as β̂k(t) evolve simply according to Eq. (4.8), combined with Eq. (C3), we obtain

〈0−|Ĥf
int|0

−〉

=
1

2
V gfn

2 − 1

2

∑
k 6=0

ng
εk + 2ngf −

√
εk(εk + 2ngf )

εk + 2ngf
+

1

2

∑
k 6=0

εkgn√
εk(εk + 2ngf )

[〈β†kβk〉+ 〈β†−kβ−k〉

+ 〈β†kβ
†
−k〉e

2iEkt + 〈βkβ−k〉e−2iEkt, ]

=
1

2
V gfn

2 +
(ng̃f )2

4εk
− 1

2

∑
k 6=0

ngf
εk + 2ngf −

√
εk(εk + 2ngf )

εk + 2ngf
+
∑
k6=0

1

2
εkngf [

εk + ngf + ngi −
√

(εk + 2ngi)(εk + 2ngf )

(εk + 2ngf )
√
εk(εk + 2ngi)

,

+
n(gf − gi)

(εk + 2ngf )
√
εk(εk + 2ngi)

cos[2t
√
εk(εk + 2ngf )].

(D11)

Rescaling time and momentum and taking the integral, we obtain

〈0−|Ĥf
int|0

−〉 =
1

2
Ngfn+

1

2
ngf (2mgfn)

3
2

4πV

(2π)3

∫
dyy2

× [y
y2 + 1 + σ −

√
(y2 + 2σ)(y2 + 2)

(y2 + 2)
√
y2 + 2σ

+
y√

y2 + 2σ
− 1 +

1

2y2
+

y(1− σ)

(y2 + 2)
√
y2 + 2σ

cos(2t̂
√
y2(y2 + 2)]

=
2Nnafπ

m
[1 + FC(σ, t)

64

3
√
π

(na3
f )1/2)]−

4Nna2
fΛ

m
,

(D12)

where FC(σ, t) = h(σ) + T (t, σ,Λ) and

h(σ) =
σ3/2 + 3

√
σ + 3

√
1− σarccos

√
σ

4
, (D13)

T (t, σ,Λ) =
3
√

2

8

∫
dyy2 y(1− σ)

(y2 + 2)
√
y2 + 2σ

× cos[2t̂
√
y2(y2 + 2)]. (D14)

Following Eq. (D3), to the order of (na3)1/2 we obtain the dynamical contact after a quench,

CE(t) = (4πnaf )2 + FC(σ, t)CfLHY , (D15)

given in Eq. (8.5) of the main text. In the asymptotically long time limit, T (t→∞, σ,Λ)→ 0.
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3. RF spectroscopy

In this appendix, we dervie Eq. (4.34) of Sec. IV C. With ĴI(t) = ei
∫ t
0
dt′Ĥ0 Ĵe−i

∫ t
0
dt′Ĥ0 ,

〈Ĵ(t)〉 = 〈ψ|Ĵ(t)|ψ〉,

= 〈ψ|ei
∫ t
0
dt′(Ĥ0+Ĥ1(t′))Je−i

∫ t
0
dt′(Ĥ0+Ĥ1(t′))|ψ〉,

= 〈ψI(t)|ĴI(t)|ψI(t)〉,

= 〈ψ|ei
∫ t
0
dt′(Ĥ0+ĤRF (t′))e−i

∫ t
0
dt′Ĥ0 ĴI(t)e

i
∫ t
0
dt′Ĥ0e−i

∫ t
0
dt′(Ĥ0+ĤRF (t′))|ψ〉,

= 〈ψ|T ∗
[
ei

∫ t
0
dt′ĤI

RF (t′)
]
ĴI(t)T

[
e−i

∫ t
0
dt′ĤI

RF (t′)
]
|ψ〉,

= −i
∫ t

0

dt′〈ψ|
[
ĴI(t), Ĥ

I
RF (t′)

]
|ψ〉. (D16)

The state |ψ〉 = |α0, 0b〉 a product state of a vacuum of b atoms, |0b〉 and a SF condensate of a atoms, |α0〉,
corresponding to the t = 0− state (ground state for T = 0: α̂k|α0〉 = 0) before the ramp (quench) to a new scattering
length, which we will take to be a vacuum of Bogoluibov quasi-particles for t = 0− interactions at T = 0.

Plugging the expressions for ĴI(t) and Ĥ1(t) into above equation, we obtain the current as

〈Ĵ(t)〉 =

∫ t

0

dt′
∑
k,k′

〈ψ|
[
I(t)b̂†k(t)âk(t)− I∗(t)â†k(t)b̂k(t)

+ ign0

∑
k

(â−k(t)âk(t)− â†k(t)â†−k(t)), I(t′)b̂†k′(t
′)âk′(t

′) + I∗(t′)â†k′(t
′)b̂k′(t

′)

]
|ψ〉,

=

∫ t

0

dt′
∑
k,k′

I(t)I∗(t′)〈ψ|(âk(t)â†k′(t
′)b̂†kb̂k′ − â

†
k′(t
′)âk(t)b̂k′ b̂

†
k)|ψ〉eiεkt−iεk′ t

′+iω0(t−t′) + c.c.,

= −
∫ t

0

dt′
∑
k

I∗(t′)I(t)〈α0|â†k(t′)âk(t)|α0〉ei(εk+ω0)(t−t′) + c.c.,

(D17)

Now the RF spectroscopy signal can be evaluated as

Nb(ωRF ) = −
∫ ∞

0

dt〈Ĵ(t)〉

=

∫ ∞
0

dt

∫ t

0

dt′
∑
k

I∗(t′)I(t)〈α0|â†k(t′)âk(t)|α0〉ei(εk+ω0)(t−t′) + c.c.,

=
1

2

∫ ∞
0

dt

∫ ∞
0

dt′
∑
k

I∗(t′)I(t)〈α0|â†k(t′)âk(t)|α0〉ei(εk+ω0)(t−t′) + c.c..

(D18)

where we utilized the t→ t′ symmetry to simplify the integral.
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Plugging the correlator in Eq. (4.12) into Eq. (D18), we obtain

Nb(ωRF ) =
1

2

∫ ∞
0

dt

∫ ∞
0

dt′
∑
k

I∗(t′)I(t)〈α0|â†k(t′)âk(t)|α0〉 × ei(εk+ω0)(t−t′) + c.c.,

=
1

2

∫ ∞
0

dt

∫ ∞
0

dt′
∑
k

I2
0e
−(t′−t0)2/τ2

e−(t−t0)2/τ2

× [ei(εk+ω0−ωRF−Ek)(t−t′)u2
k(sinh ∆θk)2 + ei(εk+ω0−ωRF +Ek)(t−t′)

× v2
k(cosh ∆θk)2 +

1

2
ukvk sinh 2∆θk(ei(εk+ω0−ωRF +Ek)te−i(εk+ω0−ωRF−Ek)t′ + ei(εk+ω0−ωRF−Ek)te−i(εk+ω0−ωRF +Ek)t′)] + c.c.,

= πτ2I2
0

∑
k

[e−
1
2 (εk+ω0−ωRF−Ek)2τ2

u2
k(sinh ∆θk)2 + e−

1
2 (εk+ω0−ωRF +Ek)2τ2

v2
k(cosh ∆θk)2 +

1

2
ukvk sinh 2∆θk

× (e−
1
4 (εk+ω0−ωRF−Ek)2τ2− 1

4 (εk+ω0−ωRF +Ek)2τ2

) cos(2Et0)],

= πτ2I2
0

∑
k

[e−
1
2 (εk+ω0−ωRF−Ek)2τ2

u2
k(sinh ∆θk)2 + e−

1
2 (εk+ω0−ωRF +Ek)2τ2

v2
k(cosh ∆θk)2

+
1

2
ukvk sinh 2∆θk × (e−

1
2 ((εk+ω0−ωRF )2+E2

k)τ2

cos(2Et0))],

(D19)

which gives Eq. (4.34) of the main text. In above deriva-

tion we have used b̂k(t) = b̂ke
iεkt for atoms in the non-

interacting hyperfine state, dropped the number non-

conserving b̂†b̂†,b̂b̂ terms, neglecting a weak condensation

that is always in principle induced by the linear coupling
to the a-Bose condensate during the time that the RF
coupling pulse is on.
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