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An adaptive gradient method for
computing generalized tensor eigenpairs
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Abstract

High order tensor arises more and more often in signal processing, data analysis,
higher-order statistics, as well as imaging sciences. In this paper, an adaptive gra-
dient (AG) method is presented for generalized tensor eigenpairs. Global conver-
gence and linear convergence rate are established under some suitable conditions.
Numerical results are reported to illustrate the efficiency of the proposed method.
Comparing with the GEAP method, an adaptive shifted power method proposed
by Tamara G. Kolda and Jackson R. Mayo [SIAM J. Matrix Anal. Appl., 35
(2014), pp. 1563-1581], the AG method is much faster and could reach the largest
eigenpair with a higher probability.

Keywords: Higher order Tensor, Eigenvalue, Eigenvector, Gradient method,
Power method.

1 Introduction

A mth-order n-dimensional real tensor A consists of nm entries in real numbers:

A = (ai1i2···im), ai1i2···im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n.
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A is called symmetric if the value of ai1i2···im is invariant under any permutation of its
indices i1, i2, . . . , im. Recall the definition of tensor product, Axm−1 is a vector in R

n

with its ith component as

(Axm−1)i =
n

∑

i2,...,im=1

aii2···imxi2 · · ·xim . (1)

A real symmetric tensor A of order m dimension n uniquely defines a mth degree homo-
geneous polynomial function h with real coefficient by

h(x) := Axm = xT (Axm−1) =

n
∑

i1,...,im=1

ai1···imxi1 · · ·xim . (2)

We call that the tensor A is positive definite if Axm > 0 for all x 6= 0.
In 2005, Qi [34] and Lim [27] proposed the definition of eigenvalues and eigenvectors

for higher order tenors, independently. Furthermore, in [5], these definitions were unified
by Chang, Person and Zhang. Let A and B be real-valued, mth-order n-dimensional
symmetric tensors. Assume further that m is even and B is positive definite. we call
(λ, x) ∈ R× R

n\{0} is a generalized eigenpair of (A,B) if

Axm−1 = λBxm−1. (3)

When the tensor B is an identity tensor ε such that εxm−1 = ‖x‖m−2x for all x ∈ R
n

[5], the eigenpair reduces to Z-eigenpair [34, 27] which is defined as a pair (λ, x) ∈
R× R

n\{0} satisfying
Axm−1 = λx and ‖x‖2 = 1. (4)

Another special case is that when B = I with (I)i1i2···im = δi1i2···im [5], the real scalar
λ is called an H-eigenvalue and the real vector x is the associated H-eigenvector of the
tensor A [34].

In the last decade, tensor eigenproblem has received much attention in the literature
[7, 13, 25, 42, 43, 45, 46, 47], which has numerous applications in magnetic resonance
imaging [41, 2, 38, 36, 39, 40, 9], image analysis [50], data fitting [32, 33], quantum
information [31], automatic control [29], higher order Markov chains [26, 8], spectral
graph theory [24, 48], multi-label learning [44], and so on. In [39], a positive semidefinite
diffusion tensor (PSDT) model was proposed to approximate the apparent diffusion
coefficient (ADC) profile for high-order diffusion tensor imaging, where the smallest Z-
eigenvalue need to be nonnegative to guarantee the positive definiteness of the diffusivity
function. Based on all of the Z-eigenvalues, a generalized fractional anisotropy (GFA) was
proposed to characterize the anisotropic diffusion profile for PSDT. GFA is rotationally
invariant and independent from the choice of the laboratory coordinate system. In
automatic control [29], the smallest eigenvalue of tensors could reflect the stability of
a nonlinear autonomous system. In [40], the principal Z-eigenvectors can depict the
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orientations of nerve fibers in the voxel of white matter of human brain. Recently,
a higher order tensor vessel tractography was proposed for segmentation of vascular
structures, in which the principal directions of a 4-dimensional tensor were used in vessel
tractography approach [3].

In general, it is NP-hard to compute eigenvalues of a tensor [17]. In [37], a direct
method to calculate all of Z-eigenvalues was proposed for two and three dimensional
symmetric tensors. For general symmetric tensors, a shifted higher order power method
was proposed for computing Z-eigenpairs in [22]. Recently, in [21], an adaptive version of
higher order power method was presented for generalized eigenpairs of symmetric tensor.
In order to guarantee the convergence of power method, they need a shift to force the
objective to be (locally) concave/convex. In this case, the power method is a monotone
gradient method with unit-stepsize. By using fixed-point analysis, linear convergence
rate is established for the shifted higher order power method [22]. However, similarly to
the case of Matrix, when the largest eigenvalue is close to the second dominant eigenvalue,
the convergence of power method will be very slow [11].

In the recent years, there are various optimization approaches were proposed for ten-
sor eigenvalue problem [14, 18, 15, 16, 30, 49]. In [14], Han proposed an unconstrained
optimization model for computing generalized eigenpair of symmetric tensors. By using
BFGS method to solve the unconstrained optimization, the sequence will be convergent
superlinearly. A subspace projection method was proposed in [15] for Z-eigenvalues of
symmetric tensors. Recently, in [16], Hao, Cui and Dai proposed a trust region method
for Z-eigenvalues of symmetric tensor and the sequence enjoys a locally quadratic con-
vergence rate. In [49], Ni and Qi employed Newton method for the KKT system of
optimization problem, and obtained a quadratically convergent algorithm for finding the
largest eigenvalue of a nonnegative homogeneous polynomial map. In [10], an inexact
steepest descent method was proposed for computing eigenvalues of large scale Hankel
tensors. Since nonlinear optimization methods may stop at a local optimum, a sequen-
tial semi-definite programming method was proposed by Hu et al. [19] for finding the
extremal Z-eigenvalues of tensors. Moreover, in [12], a Jacobian semi-definite relaxation
approach was presented to compute all of the real eigenvalues of symmetric tenors.

In practice, one just need to compute extremal eigenvalues or all of its local maximal
eigenvalues, for example in MRI [39, 40]. On the other hand, when the order or the
dimension of a tensor grows larger, the optimization problem will become large-scale
or huge-scale. Therefore, we would like to investigate one simple and low-complexity
method for finding tensor eigenpairs. In this paper, we consider an adaptive gradient
method for solving the following nonlinear programming problem:

max f(x) =
Axm

Bxm
subject to x ∈ S

n−1. (5)

Where S
n−1 denote the unit sphere, i.e., Sn−1 = {x ∈ R

n|‖x‖2 = 1}, ‖ · ‖ denotes the
Euclidean norm. By some simple calculations, we can get its gradient and Hessian, as
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follows [21, 10]:

g(x) ≡ ∇f(x) = m

Bxm
(Axm−1 − Ax

m

Bxm
Bxm−1), (6)

and its Hessian is

H(x) ≡∇2f(x)

=
m(m− 1)Axm−2

Bxm
− m(m− 1)AxmBxm−2 +m2(Axm−1 ⊚ Bxm−1)

(Bxm)2

+
m2Axm(Bxm−1 ⊚ Bxm−1)

(Bxm)3
,

where x⊚ y = xyT + yxT , and Axm−2 is a matrix with its component as

(Axm−2)i1i2 =

n
∑

i3,...,im=1

ai1i2i3···imxi3 · · ·xim for all i1, i2 = 1, · · · , n.

According to (6), we can derive an important property for the nonlinear programming
problem (5) that the gradient g(x) is located in the tangent plane of Sn−1 at x [10], since

xT g(x) =
m

Bxm
(xTAxm−1 − Ax

m

Bxm
xTBxm−1) = 0. (7)

Let x is a constrained stationary point of (5), i.e., that 〈g(x), x− x〉 ≤ 0 for all x ∈
S
n−1. Then we can claim that every constrained stationary point of (5) must be a

stationary point of f(x) since 〈g(x), x〉 ≤ 0 should be hold for all x ∈ S
n−1. Otherwise,

if ‖g(x)‖ 6= 0, we could choose x = g(x)
‖g(x)‖ , and then ‖g(x)‖ ≤ 0.

Suppose x ∈ S
n−1 and denote λ = Axm

Bxm . By g(x) = 0, we know that any KKT point
of (5) will be a solution of the system of equations (3). Before end of this section, we
would like to state the following theorem and its proof is omitted.

Theorem 1 If the gradient g(x) at x vanishes, then λ = f(x) is a generalized eigenvalue
and the vector x is the associated generalized eigenvector.

The rest of this paper is organized as follows. In the next section, we introduce
some existed gradient methods for tensor eigenvalue problems. In Section 3, based on
a curvilinear search scheme, we present a inexact gradient method. Then, we establish
its global convergence and linear convergence results under some suitable assumptions.
Section 4 provides numerical experiments to show the efficiency of our gradient method.
Finally, we have a conclusion section.
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2 Some exist gradient methods for tensor eigenpairs

2.1 Gradient method with fixed stepsize–power method

The symmetric higher-order power method (S-HOPM) was introduced by De Lathauwer,
De Moor, and Vandewalle [23] for solving the following optimization problem:

max f(x) = Axm subject to x ∈ S
n−1. (8)

This problem is equivalent to finding the largest Z-eigenvalue of A [34] and is related to
finding the best symmetric rank-1 approximation of a symmetric tensor A ∈ S

[m,n] [23].

Algorithm 1: Symmetric higher order power Method (S-HOPM) [23]

Given a tensor A ∈ S
[m,n], an initial unit iterate x0. Let λ0 = Axm

0 .
for k = 0, 1, . . . do
1: x̂k+1 ← Axm−1

k

2: xk+1 ← x̂k+1/‖x̂k+1‖
3: λk+1 = Axm

k+1

End for

The cost per iteration of power method is O(mnm), mainly for computing Axm−1
k .

Let g(xk) = ∇f(xk) =
1
m
Axm−1

k . Set dk = g(xk) − xk, x̂k+1 = xk + dk, then the main

iteration could be reformulated as xk+1 =
xk+dk

‖xk+dk‖ , which is a projected gradient method

with unit-stepsize. Kofidis and Regalia [20] pointed out that S-HOPM method can not
guarantee to converge. By using convexity theory, they show that S-HOPM method
could be convergent for even-order tensors under the convexity assumption on Axm. For
general symmetric tensors, a shifted S-HOPM (SS-HOPM) method was proposed by
Kolda and Mayo [22] for computing Z-eigenpairs. One shortcoming of SS-HOPM is that
its performance depended on choosing an appropriate shift. Recently, Kolda and Mayo
extended SS-HOPM for computing generalized tensor eigenpairs, called GEAP method
which is an adaptive, monotonically convergent, shifted power method for generalized
tensor eigenpairs (3). They showed that GEAP method is much faster than the SS-
HOPM method due to its adaptive shift choice.

Algorithm 2: GEAP Method [21]

Given tensors A ∈ S
[m,n] and B ∈ S

[m,n]
+ , and an initial guess x̂0. Let β = 1 if we want

to find the local maxima; otherwise, let β = −1 for seeking local minima. Let τ > 0 be
the tolerance on being positive/negative definite.
for k = 0, 1, . . . do
1: Precompute Axm−2

k ,Bxm−2
k ,Axm−1

k ,Bxm−1
k ,Axm

k , Bxm
k

2: λk = Axm
k /Bxm

k

3: Hk ← H(xk) = ∇2f(xk)

5



4: αk ← βmax{0, (τ − λmin(βHk))/m
5: x̂k+1 ← β(Axm−1

k − λkBxm−1
k + (αk + λk)Bxm

k xk)
6: xk+1 ← x̂k+1/‖x̂k+1‖
End for

In [28], Ng, Qi and Zhou proposed a power method for finding the largest H-eigenvalue
of irreducible nonnegative tensors. It is proved in [6] that NQZ’s power method is
convergent for primitive nonnegative tensors. Further, Zhang et. al [51, 52] established
its linear convergence result and presented some updated version for essentially positive
tensors and weakly positive tensors, respectively. However, similarly to the case of
Matrix, when the largest eigenvalue is close to the second dominant eigenvalue, the
convergence of power method will be very slow [11].

2.2 Gradient method with optimal stepsize

In [15], Hao, Cui and Dai proposed a sequential subspace projection method (SSPM) for
Z-eigenvalue of symmetric tensors. In each iteration of SSPM method, one need to solve
the following 2-dimensional subproblem:

max
x∈span{xk,Ax

m−1

k
}
f(x) = Axm subject to x ∈ S

n−1. (9)

Let gk , Axm−1
k . The point in S

n−1 ∩ span{xk, gk} can be expressed as

x(α) =
√

1− α2‖gk‖2xk + αgk, −
1

‖gk‖
≤ α ≤ 1

‖gk‖
.

If αk ≡ 1
‖gk‖ , then SSPM method will reduce to the power method. For simplicity, if

αk 6= 1
‖gk‖ , the iterate can be expressed as x(α) = xk+σgk with σ = α√

1−α2‖gk‖2
. In order

to solve (9), one need to solve a equation like ∇f(xk+σgk)
Tgk = (A(xk+σgk)

m−1)Tgk =
0. For each iteration, the computational cost of SSPM method is m times than that of
power method. As shown in [15], the main computational cost of SSPM is the tensor-
vector multiplications Axm−1

k andAk (defined in [15]), which requires O(mnm) operations
and O(m2nm) operations, respectively.

3 Inexact gradient method

Indicated by the idea in [15], we can present a gradient method with optimal stepsize for
computing the generalized tensor eigenpairs problem (5). But we don’t want to present it
here, since the computational cost per iterate is more expensive than Power method. In
this section, we firstly present the following inexact gradient method, and then establish
its global convergence and linear convergence results under some suitable assumptions.
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Algorithm 3: Adaptive Gradient (AG) method for (5)

Given tensors A ∈ S
[m,n] and B ∈ S

[m,n]
+ , an initial unit iterate x0, parameter ρ ∈ (0, 1).

Let ǫ > 0 be the tolerance. Set k=0; Calculate gradient g(xk) .
While ‖g(xk)‖ > ǫ do
1: Generate a stepsize 1

‖gk‖ ≥ αk > 0 such that xk(α) =
√

1− α2‖gk‖2xk+αgk satisfying

f(xk(α)) ≥ f(xk) + ρα‖g(xk)‖2 (10)

2: Update the iterate xk+1 = xk(αk), calculate g(xk+1).
End while

It is clear that xk+1 ∈ S
n−1 ∩ span{xk, gk}. Moreover, by using (7), we can show

the first-order gain per iterate is gTk (xk+1 − xk) = αk‖gk‖2. Since the spherical feasible
region S

n−1 is compact, Bxm is positive and bounds away from zero, we can get that all
the functions and gradients of the objective (5) at feasible points are bounded [10], i.e.,
there exists a constant M > 0 such that for all x ∈ S

n−1,

|f(x)| ≤M, and ‖g(x)‖ ≤M. (11)

The following theorem indicates that the Algorithm 3 is convergent to the KKT point
of the problem (5). The constructive proof is motivated by the idea in [15].

Theorem 2 Suppose that the gradient g(x) is Lipschitz continuous on the unit shpere.
Let {xk} is generated by Algorithm 3. Then the inexact curvilinear search condition
defined in (10) is well-defined and there exists a positive constant c > 0 such that

f(xk+1)− f(xk) ≥ c‖gk‖2. (12)

Furthermore,
lim
x→∞
‖gk‖ = 0.

Proof. Firstly, we have

x′
k(α) =

−α‖gk‖2
√

1− α2‖gk‖2
xk + gk. (13)

Furthermore, we can obtain

df(xk(α))

dα
|α=0 = g(xk(α))

Tx′
k(α)|α=0 = ‖gk‖2. (14)

Let dk(α) = xk(α)− xk, using (7), we can derived that for any constant ρ ∈ (0, 1), there
exists a positive scalar ᾱ ≤ 1

‖gk‖ such that for all α ∈ (0, ᾱ],

f(xk(α))− f(xk) ≥ ρ〈gk, dk(α)〉 = ρα‖g(xk)‖2.
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Considering the gap between f(xk(α)) and f(xk), similarly to the proof of Lemma
4.2 in [15], we can get

f(xk(α))− f(xk) =

∫ α

0

g(xk(t))
Tx′

k(t)dt

=αg(xk(0))
Tx′

k(0) +

∫ α

0

g(xk(t))
T [x′

k(t)− x′
k(0)]dt

+

∫ α

0

[g(xk(t))− g(xk(0))]
Tx′

k(0)dt

(Using (13), (14), and Lipschitz condition)

≥α‖gk‖2 −M

∫ α

0

‖x′
k(t)− x′

k(0)‖dt− L‖gk‖
∫ α

0

‖xk(t)− xk(0)‖dt

≥α‖gk‖2 −M‖gk‖2
∫ α

0

t
√

1− t2‖gk‖2
dt− L‖gk‖

∫ α

0

√

2− 2
√

1− t2‖gk‖2dt

Without loss of generality, assume that αk ≤ α̃ ,
√
3

2‖gk‖ , then for t ≤ α ≤ α̃, we have

1
√

1− t2‖gk‖2
≤ 1

√

1− α̃2‖gk‖2
= 2,

and
√

2− 2
√

1− t2‖gk‖2 ≤ 2t‖gk‖.
So, we can obtain that

f(xk(α))− f(xk) ≥ (α−Mα2 − Lα2)‖gk‖2 = (1−Mα− Lα)α‖gk‖2. (15)

Set ᾱ = 1
2(M+L)

, we have 1 > 1 −Mα − Lα ≥ 1
2
for all α ∈ (0, ᾱ]. It follows from

(15) that (10) holds for all α ∈ (0, ᾱ] with ρ = 1
2
. So, by using a backward strategy

in curvilinear search, one can claim that the stepsize αk is bounded from below. That
is to say, there exists a positive constant c (e.g. c = 1

4(M+L)
) such that (12) holds. As

f(x) is bounded on the unit sphere, by (12), it is easy to prove that
∑

k ‖gk‖2 < +∞.
Therefore, limx→∞ ‖gk‖ = 0; namely, the Algorithm 3 is globally convergent. �

In the rest of this section, we would like to establish the linear convergence rate of the
Algorithm 3 under the assumption of second order sufficient condition. For convenience,
rewrite (5) as

max f(x) =
Axm

Bxm
subject to c(x) = xTx− 1 = 0. (16)

The Lagrangian function is L(x, µ) = f(x)− µc(x), and its gradient and Hessian are

∇xL(x, µ) = ∇f(x)− µx, and ∇2
xL(x, µ) = ∇2f(x)− µIn.
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At the KKT point (x∗, µ∗), we have ∇xL(x
∗, µ∗) = 0. So, ∇f(x∗)Tx∗ − µ∗‖x∗‖2 = 0.

By (7), we know µ∗ = ∇f(x∗)Tx∗ = 0. We can formulate the sufficient conditions for x∗

being a strict local maximizer of (16) as: g(x∗) = 0 and

vTH(x∗)v < 0, ∀v ∈ ∇c(x∗)⊥ ∩ S
n−1, (17)

where g(x) = ∇f(x), H(x) = ∇2f(x), and x⊥ ≡ {y ∈ ℜn|x ⊥ y}. By Theorem 2, the
sequence {xk} generated by Algorithm 3 is convergent to a KKT point x∗ with g(x∗) = 0.
If we further assume that the assumption of second sufficient condition (17) holds at x∗,
then the following linear convergence theorem could be established for Algorithm 3.

Theorem 3 Let {xk} is generated by Algorithm 3. Suppose that the gradient g(x) is
Lipschitz continuous on the unit sphere and the second sufficient condition (17) holds at
the KKT point x∗. Then {f(xk)} converges to f(x∗) linearly.

Proof. In order to show {f(xk)} converges to f(x∗) linearly, we need to prove

0 < lim
k→∞

f(x∗)− f(xk+1)

f(x∗)− f(xk)
= 1− lim

k→∞

f(xk+1)− f(xk)

f(x∗)− f(xk)
< 1. (18)

To end of this, we firstly deduce that f(x∗)−f(xk) > 0. Project xk−x∗ on the orthogonal
space of ∇c(x∗) = 2x∗, we get

vk = xk − x∗ − ((xk − x∗)T∇c(x∗))∇c(x∗) = xk − x∗ − 4((xk − x∗)Tx∗)x∗.

It is clear that vk ∈ S
n−1, since ‖xk‖2 = ‖x∗‖2 = 1. Notice that −(xk − x∗)Tx∗ =

1− xT
k x

∗ = 1
2
(xk − x∗)T (xk − x∗), we can obtain that

xk − x∗ = vk − 2‖xk − x∗‖2x∗ = vk +O(‖xk − x∗‖2).

By the Taylor expansion, and the second order sufficient condition (17), we have

f(x∗)− f(xk) =−
1

2
(xk − x∗)TH(x∗)(xk − x∗) + o(‖xk − x∗‖2)

=− 1

2
(vk +O(‖xk − x∗‖2))TH(x∗)(vk +O(‖xk − x∗‖2)) + o(‖xk − x∗‖2)

=− 1

2
vTk H(x∗)vk + o(‖xk − x∗‖2) > 0.

Secondly, let us consider the following limitation:

lim
k→∞

‖gk‖2
f(x∗)− f(xk)

= lim
k→∞

‖H(x∗)(xk − x∗)‖2
−1

2
vTk H(x∗)vk

= lim
k→∞

2‖H(x∗)vk‖2
−vTk H(x∗)vk

.
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Let U ∈ ℜn×(n−1) be the orthogonal complement of the vector ∇c(x∗). For any v ∈
∇c(x∗)⊥, there exist w ∈ ℜn−1 such that v = Uw. Suppose that the Cholesky decompo-
sition of the positive definite matrix −UTH(x∗)U is DTD. Denoting y = Dw. Notice
that ‖U‖2 =

√

‖UTU‖ = 1, we can derive that:

2‖H(x∗)v‖2
−vTH(x∗)v

=
2‖H(x∗)Uw‖2
−wTUTH(x∗)Uw

=
2‖U‖‖H(x∗)Uw‖2
−wTUTH(x∗)Uw

≥ 2‖UTH(x∗)Uw‖2
−wTUTH(x∗)Uw

=
−2yTUTH(x∗)Uy

yTy

≥2λn−1,

where λn−1 is the smallest eigenvalue of the matrix −UTH(x∗)U . Therefore, we have

lim
k→∞

‖gk‖2
f(x∗)− f(xk)

≥ 2λn−1. (19)

It follows from (12) and (19) that

lim
k→∞

f(x∗)− f(xk+1)

f(x∗)− f(xk)
=1− lim

k→∞

f(xk+1)− f(xk)

f(x∗)− f(xk)

≤1− lim
k→∞

c‖gk‖2
f(x∗)− f(xk)

≤1− 2cλn−1

≤1.

The proof is completed. �

4 Numerical experiments

In this section, we present some numerical results to illustrate the effectiveness of the
proposed adaptive gradient (AG) method, which was compared with the GEAP method–
an adaptive shifted power method proposed by Tamara G. Kolda and Jackson R. Mayo
[21]. The experiments were done on a laptop with Intel Core 2 Duo CPU with a 4GB
RAM, using MATLAB R2014b, and the Tensor Toolbox [1]. We set the parameter

ρ = 0.001 and initial guess of the stepsize α in (10) is generated by min( 1
‖gk‖ ,

‖△xk‖
‖△gk‖ ). If
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Figure 1: Comparison with GEAP algorithm for computing Z-eigenvalues of A from
Example 1, and the starting point is x0 = [0.0417 − 0.5618 0.6848]

this initial guess can not satisfy the line search condition (10), then we truncate it as
α = 0.5 ∗ α, and try it again. Generally, once or twice is enough in our experiments.

In all numerical experiments, we stop the iterates once |λk+1 − λk| ≤ 10−10. The
maximum iterations is 500.

4.1 Comparison with GEAP for computing Z-eigenpairs

The following example is originally from [20] and was used in evaluating the SS-HOPM
algorithm in [22] and the GEAP algorithm in [21] for computing Z-eigenpairs.

Example 1 (Kofidis and Regalia [20]). Let A ∈ S
[4,3] be the symmetric tensor defined

by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,
a1223 = 0.1862, a1133 = 0.3847, a1222 = 0.2972, a1123 = −0.2939,
a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

To compare the convergence in terms of the number of iterations. Figure 1 shows
the results for computing Z-eigenvalues of A from Example 1, and the starting point is
x0 = [0.0417 − 0.5618 0.6848]. In this case, both of Adaptive Gradient (AG) method
and GEAP method can find the largest Z-eigenvalue 0.8893. AG method just need run
19 iterations in 0.168521 seconds while GEAP method need run 63 iterations in 0.469648
seconds.

We used 1000 random starting guesses, each entry selected uniformly at random from
the interval [−1, 1]. For each set of experiments, the same set of random starts was used.
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For the largest eigenpair, we list the number of occurrences in the 1000 experiments. We
also list the median number of iterations until convergence, the average error and the
average run time in the 1000 experiments in Tables 1-4. As we can see from Tables 1-4,
Adaptive Gradient (AG) method is much faster than GEAP method and could reach
the largest eigenpair with a higher probability.

Table 1. Comparison results for computing Z-eigenvalues of A from Example 1.
Alg. Occ. λ Its. Error Time (sec.)

GEAP 49.9% 0.8893 27.06 5.69e-11 0.1632
AG 56.6% 0.8893 13.81 1.74e-11 0.1205

Example 2 (Nie and Wang [12]). Let A ∈ S
[4,n] be the symmetric tensor defined by

aijkl = sin(i+ j + k + l) (1 ≤ i, j, k, l ≤ n).

For the case of n = 5, there are five real Z-eigenvalues which are respectively

λ1 = 7.2595, λ2 = 4.6408, λ3 = 0.0000, λ4 = −3.9204, λ5 = −8.8463.

Table 2. Comparison results for computing Z-eigenvalues of A from Example 2.
Alg. Occ. λ Its. Error Time (sec.)

GEAP 48.2% 7.2595 50.01 7.68e-11 0.3235
AG 54.6% 7.2595 24.85 4.72e-11 0.2286

Example 3 (Nie and Wang [12]). Let A ∈ S
[4,n] be the symmetric tensor defined by

aijkl = tan(i) + tan(j) + tan(k) + tan(l) (1 ≤ i, j, k, l ≤ n).

For the case of n = 5, there are five real Z-eigenvalues which are respectively

λ1 = 34.5304, λ2 = 0.0000, λ3 = −101.1994.

Table 3. Comparison results for computing Z-eigenvalues of A from Example 3.
Alg. Occ. λ Its. Error Time (sec.)

GEAP 64.0% 34.5304 28.07 5.84e-11 0.1701
AG 83.9% 34.5304 17.70 3.17e-11 0.1544

Example 4 (Nie and Wang [12]). Let A ∈ S
[4,n] be the symmetric tensor defined by

aijkl = arctan((−1)i i
n
) + arctan((−1)j j

n
) + arctan((−1)k k

n
) + arctan((−1)l l

n
)

Table 4. Comparison results for computing Z-eigenvalues of A from Example 4 (n=5).
Alg. Occ. λ Its. Error Time (sec.)

GEAP 65.2% 13.0779 22.43 5.64e-11 0.1453
AG 87.7% 13.0779 13.88 2.66e-11 0.1242
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Figure 2: Comparison with GEAP algorithm for computing H-eigenvalues of A from
Example 5 (n=5), and the starting point is x0 = [−0.8181 − 0.4264 − 0.0163 0.1198 −
0.1574]

4.2 Comparison with GEAP for computing H-eigenpairs

In this subsection, we test the proposed AG method with comparison to GEAP method
on finding H-eigenpairs.

To compare the convergence in terms of the number of iterations. Figure 2 shows the
results for computing H-eigenvalues of A from Example 5(n=5), and the starting point
is x0 = [−0.8181 − 0.4264 − 0.0163 0.1198 − 0.1574]. In this case, GEAP fails to stop
in 500 iterations. But Adaptive Gradient (AG) method can find the largest H-eigenvalue
0.8 after running 25 iterations in 0.2183 seconds.

Example 5. Let A ∈ S
[4,n] be the diagonal tensor defined by aiiii =

i−1
i
.

Table 5. Comparison results for computing H-eigenvalues of A from Example 5 (n=5).

Alg. Occ. λ Its. Error Time (sec.)

GEAP 81% 0.8 500 4.04e-05 2.6941
AG 94% 0.8 14.48 4.34e-11 0.0872

Example 6 (Nie and Wang [12]). Let A ∈ S
[4,n] be the tensor defined by

aijkl =
(−1)i
i

+
(−1)j
j

+
(−1)k
k

+
(−1)l
l

, (1 ≤ i, j, k, l ≤ n).

Table 6. Comparison results for computing H-eigenvalues of A from Example 6 (n=5).
Alg. Occ. λ Its. Error Time (sec.)

GEAP 61% 34.3676 20.94 5.32e-11 0.1209
AG 100% 34.3676 15.71 1.93e-11 0.2650
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The computed H-eigenvalues by GEAP and AG method in the 100 runs for Example 5
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Figure 3: The computed H-eigenvalues by GEAP and AG method in the 100 runs on
the A from Example 5 (n=5).

The computed H-eigenvalues by GEAP and AG in the 100 runs for Example 6
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Figure 4: The computed H-eigenvalues by GEAP and AG method in the 100 runs on
the A from Example 6 (n=5).
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The computed H-eigenvalues by GEAP and AG method in the 100 runs for Example 7
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Figure 5: The computed H-eigenvalues by GEAP and AG method in the 100 runs on
the A from Example 7 (n=3,b=1).

Example 7. Let A ∈ S
[4,n] be the tensor defined by

aiiii = 2i, (1 ≤ i ≤ n) and a1123 = 4b,

here b is a parameter. Then use the symmetrize function in the Matlab Tensor Toolbox
to symmetrize it.

Table 7. Comparison results for computing H-eigenvalues of A from Example 7 (n = 3, b = 1).
Alg. Occ. λ Its. Error Time (sec.)

GEAP 71% 6.112 179.01 1.99e-08 0.9536
AG 100% 6.112 50.52 5.94e-11 0.5198

We used 100 random starting guesses to test AG method and GEAP method for
computing H-eigenvalues of A from Examples 5-7. For each set of experiments, the
same set of random starts was used. For the largest eigenpair, we list the number of
occurrences in the 100 experiments. We also list the median number of iterations until
convergence, the average error and the average run time in the 100 experiments in Tables
5-7. As we can see from Table 5, GEAP method fails to stop in 500 iterations for all of
the 100 test experiments for Example 5. But GEAP can slowly approach to the largest
H-eigenvalue in 81 test experiments as shown in Figure 3. Adaptive Gradient (AG)
method much faster than GEAP method and could reach the largest eigenpair with a
higher probability. Especially, for Examples 6 and 7, Adaptive Gradient (AG) method
could find the largest H-eigenvalue in all of the 100 experiments.
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5 Conclusion

In this paper, we introduced an adaptive gradient (AG) method for generalized tensor
eigenpairs, which could be viewed as an inexact version of the gradient method with
optimal stepsize for finding Z-eigenvalues of tensor in [15]. What we have done is to use
an inexact curvilinear search condition to replace the constraint on optimal stepsize. So,
the computational complexity of AG method is much cheaper than SSPM method in
[15]. Global convergence and linear convergence rate are established for the AG method
for computing generalized eigenpairs of symmetric tensor. Some numerical experiments
illustrated that the AG method is faster than GEAP and could reach the largest eigenpair
with a higher probability.
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