Cyclability of *id*-cycles in graphs^{*}

Ruonan Li¹, Bo Ning²[†], Shenggui Zhang^{1‡}

¹Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China ²Center for Applied Mathematics, Tianjin University,

Tianjin 300072, P.R. China

Abstract

Let G be a graph on n vertices and $C' = v_0 v_1 \cdots v_{p-1} v_0$ a vertex sequence of G with $p \geq 3$ ($v_i \neq v_j$ for all $i, j = 0, 1, \ldots, p-1, i \neq j$). If for any successive vertices v_i, v_{i+1} on C', either $v_i v_{i+1} \in E(G)$ or both of the first implicit-degrees of v_i and v_{i+1} are at least n/2 (indices are taken modulo p), then C' is called an *id*-cycle of G. In this paper, we prove that for every *id*-cycle C', there exists a cycle C in G with $V(C') \subseteq V(C)$. This generalizes several early results on the Hamiltonicity and cyclability of graphs.

Keywords: degree, implicit-degree, Hamiltonicity, cyclability **Mathematics Subject Classification:** 05C38, 05C45

1 Introduction

All graphs considered in this paper are finite, simple and undirected. For terminology and notation not defined here we refer the reader to [1].

Let G be a graph. The vertex set and edge set of G are denoted by V(G) and E(G), respectively. For a vertex v and a subgraph H of G, the *neighborhood* of v in H is defined as $N_H(v) = \{u : u \in V(H), uv \in E(G)\}$ and the *degree* of v in H is defined as $d_H(v) = |N_H(v)|$. If there is no ambiguity, we write N(v) for $N_G(v)$ and d(v) for $d_G(v)$.

In the study of the existence of Hamilton cycles in graphs, degree conditions play very important roles. Among the many results of this direction, the following two are well known.

Theorem 1 (Dirac [2]). Let G be a graph on $n \ge 3$ vertices. If $d(v) \ge n/2$ for every vertex $v \in V(G)$, then G is Hamiltonian.

Theorem 2 (Ore [4]). Let G be a graph on $n \ge 3$ vertices. If $d(u) + d(v) \ge n$ for every pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.

For a vertex v of a graph G, denote by $N_2(v)$ the vertices which are at distance of 2 from v in G. In order to weaken the condition in Theorem 2 (Ore's condition), Zhu et al. [6] gave the definition of the first implicit-degree of the vertex v based on the degrees of vertices in $N(v) \cup N_2(v) \cup \{v\}$.

^{*}Supported by NSFC (No. 11271300).

[†]E-mail address: bo.ning@tju.edu.cn (B. Ning)

[‡]Corresponding author. E-mail address: sgzhang@nwpu.edu.cn (S. Zhang)

Definition 1 (Zhu et al. [6]). Let G be a graph on n vertices and v a vertex in G. If $N_2(v) \neq \emptyset$, then let d(v) = k + 1, $M_2 = \max\{d(u)|u \in N_2(v)\}$. Denote by $d_1 \leq d_2 \leq \cdots \leq d_{k+1} \leq d_{k+2} \leq \cdots$ the nondecreasing degree sequence of vertices in $N(v) \cup N_2(v)$. Then the first implicit-degree of v is defined as

$$d_1(v) = \begin{cases} \max\{d_{k+1}, k+1\}, & \text{if } d_{k+1} > M_2; \\ \max\{d_k, k+1\}, & \text{otherwise.} \end{cases}$$
(1)

If $N_2(v) = \emptyset$, then d(v) = n - 1. In this case, let $d_1(v) = d(v) = n - 1$.

It is clear that $d_1(v) \ge d(v)$ for every vertex $v \in V(G)$. Zhu et al. [6] obtained the following result as a generalization of Theorem 2.

Theorem 3 (Zhu et al. [6]). Let G be a 2-connected graph on $n \ge 3$ vertices. If $d_1(u) + d_1(v) \ge n$ for every pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.

Let G be a graph and X a subset of V(G). If there exists a cycle C in G with $X \subseteq V(C)$, then we say X is cyclable in G. A subgraph H of G is called cyclable if V(H) is cyclable. Apparently, G is Hamiltonian if and only if every spanning subgraph of G is cyclable.

For a graph G, a vertex of degree at least |V(G)|/2 is called *heavy*. In 1992, Shi [5] proved the following result.

Theorem 4 (Shi [5]). Let G be a 2-connected graph on $n \ge 3$ vertices and $S = \{v : d(v) \ge n/2, v \in V(G)\}$. Then S is cyclable in G.

It is clear that Theorem 4 implies Theorems 1 and 2.

Recently Li et al. [3] gave another generalization of Ore's condition.

Definition 2 (Li et al. [3]). Let G be a graph on n vertices and $C' = v_0 v_1 \cdots v_{p-1} v_0$ a vertex sequence in G with $p \ge 3$ ($v_i \ne v_j$ for all $i, j = 0, 1, \ldots, p-1, i \ne j$). If for any successive vertices v_i, v_{i+1} on C', either $v_i v_{i+1} \in E(G)$ or $d(v_i) + d(v_{i+1}) \ge n$ (indices are taken modulo p), then C' is called an *Ore-cycle* of G or briefly, an *o-cycle* of G.

Theorem 5 (Li et al. [3]). Let C' an o-cycle of a graph G. Then C' is cyclable in G.

Obviously, Theorem 5 implies Theorems 2 and 4. Our aim in this paper is to consider whether Theorem 5 can be generalized to the first implicit-degree condition.

Definition 3. Let G be a graph on n vertices and $C' = v_0 v_1 \cdots v_{p-1} v_0$ a vertex sequence in G with $p \ge 3$ ($v_i \ne v_j$ for all $i, j = 0, 1, \ldots, p-1, i \ne j$). If for any successive vertices v_i, v_{i+1} on C', either $v_i v_{i+1} \in E(G)$ or $d_1(v_i) + d_1(v_{i+1}) \ge n$ (indices are taken modulo p), then we call C' an *implicit-Ore-cycle* of G or briefly, an *io-cycle* of G. Specifically, if either $v_i v_{i+1} \in E(G)$ or $d_1(v_i) \ge n/2$ and $d_1(v_{i+1}) \ge n/2$ for all $i = 0, 1, \ldots, p-1$, then we call C' an *implicit-Dirac-cycle* of G or briefly, an *id-cycle* of G.

Problem 1. Is every *io*-cycle cyclable ?

Although we are unable to solve Problem 1, we can show that every *id*-cycle is cyclable.

Theorem 6. Let C' an id-cycle of a graph G. Then C' is cyclable in G.

Note that in Definition 2, if either $v_i v_{i+1} \in E(G)$ or $d(v_i) \ge n/2$ and $d(v_{i+1}) \ge n/2$ for all $i = 0, 1, \ldots, p-1$, then we can similarly call C' a *Dirac-cycle* of G or briefly, a *d-cycle* of G. It is clear that a *d*-cycle is a special *o*-cycle and we can regard an *id*-cycle as a generalization of a *d*-cycle.

Fact 1. Theorem 6 implies Theorem 3.

Proof. Let $A = \{a : d_1(a) < n/2, a \in V(G)\}$. For any vertices $u, v \in A$ $(u \neq v)$, we have $d_1(u) + d_1(v) < n$. So $uv \in E(G)$. This implies that $G[A] \cong K_{|A|}$. Let $B = \{b : d_1(b) \ge n/2, b \in V(G)\}$. Now, consider the size of |A| and |B|, respectively.

If |B| = 0 or |A| = 0, then any vertex sequence of length n is an *id*-cycle in G. By Theorem 6, G is Hamiltonian.

If |A| = 1, then let $A = \{a\}$ and $B = \{b_1, b_2, \dots, b_{n-1}\}$. Since G is 2-connected, there are at least two neighbors of a in B, say b_1 and b_2 . Thus $b_1ab_2b_3\cdots b_{n-1}b_1$ is an *id*-cycle of length n. By Theorem 6, G is Hamiltonian. The proof is similar when |B| = 1.

If $|A| \ge 2$ and $|B| \ge 2$, since G is 2-connected, there exist $a_1, a_2 \in A$ $(a_1 \ne a_2)$ and $b_1, b_2 \in B$ $(b_1 \ne b_2)$ such that $a_1b_1, a_2b_2 \in E(G)$. Let $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_{n-k}\}$. Then $b_1a_1a_3a_4\cdots a_ka_2b_2b_3\cdots b_{n-k}b_1$ is an *id*-cycle of length n in G. By Theorem 6, G is Hamiltonian.

Fact 2. Let G be a 2-connected graph on $n \ge 3$ vertices and $S = \{v : d_1(v) \ge n/2, v \in V(G)\}$. Then S is cyclable in G.

Obviously, Fact 2 is a generalization of Theorem 4 and can be directly obtained from Theorem 6.

2 Definitions and Lemmas

In this section, we will give some additional definitions and useful lemmas.

Let G be a graph and $C' = v_0 v_1 \cdots v_{p-1} v_0$ $(p \ge 3)$ an *id*-cycle in G with a fixed orientation. For vertices $x, y \in V(C')$, let xC'y be the segment on C' from x to y along the direction of C' and $x\overline{C'}y$ the segment on C' along the reverse direction. For a vertex $v_i \in V(C')$, if $v_{i-1}v_i$ or $v_iv_{i+1} \notin E(G)$, then we call v_i a break-vertex on C'. Denote by Bre(C') the set of break-vertices on C'. Let

$$Bre^+(C') = \{v_i : v_i v_{i+1} \notin E(G)\}$$
 and $Bre^-(C') = \{v_i : v_{i-1} v_i \notin E(G)\}.$

Then $Bre(C') = Bre^+(C') \cup Bre^-(C')$. Note that $Bre^+(C') \cap Bre^-(C')$ is not necessarily empty. For a vertex $v_i \in V(C')$, let $v_i^+ = v_{i+1}$ and $v_i^- = v_{i-1}$. Then v_i^+ and v_i^- represent the immediate successor and predecessor of v_i on C', respectively. Denote by $N_{C'}(v_i)^$ the predecessors of vertices in $N_{C'}(v_i)$. To measure the gap between C' and a cycle, we define the *deficit-degree* of C' as

$$def(C') = |\{i : v_i v_{i+1} \notin E(G)\}|.$$

If $def(C') \leq def(C)$ for any *id*-cycle C satisfying $V(C') \subseteq V(C)$, then we say C' is *def-minimal*. Let u be a break-vertex on C'. We say u is a *heavy-break-vertex* if $d(u) \geq |V(G)|/2$. Denote by Hb(C') the set of heavy-break-vertices on C'. To measure the difference between C' and a *d*-cycle, we define the *heavy-index* of C' as

$$hb(C') = |Hb(C') \cap Bre^+(C')| + |Hb(C') \cap Bre^-(C')|.$$

If $hb(C') \ge hb(C)$ for any *id*-cycle C satisfying $V(C') \subseteq V(C)$ and def(C') = def(C), then we say C' is *hb-maximal*.

Let $P = u_0 u_1 \cdots u_{t-1}$ be a path in G. Then we call u_0 and u_{t-1} the *end-vertices* of P. For vertices $a, b \in V(P)$, denote by aPb the segment on P from a to b. If a = b, then $aPb = \{a\}$. Apparently, an *id*-cycle C' in G is composed of some vertex-disjoint paths and we can write $C' = x_1 P_1 y_1 x_2 P_2 y_2 \cdots x_s P_s y_s x_1$, where x_i and y_i are the end-vertices of P_i satisfying $d_1(x_i) \geq |V(G)|/2$ and $d_1(y_i) \geq |V(G)|/2$ for all $i = 1, 2, \ldots, s$. Hence, the set of break-vertices on C' can be regarded as the set of end-vertices of P_i $(i = 1, 2, \ldots, s)$.

Let $C' = v_0 v_1 \cdots v_{p-1} v_0$ be an *id*-cycle in a graph G. Then we have $def(C') \ge 0$ and $hb(C') \le 2def(C')$. If def(C') = 0, then C' is a cycle. If hb(C') = 2def(C'), then C' is a *d*-cycle and cyclable. In this paper, we mainly consider the case that def(C') > 0 and hb(C') < 2def(C'). In order to make the paper easy to follow, we name a specific kind of break-vertex as "strange-vertex".

Definition 4. Let G be a graph on $n \ge 3$ vertices and $C' = x_1 P_1 y_1 x_2 P_2 y_2 \cdots x_s P_s y_s x_1$ an *id*-cycle in G. Let R be the subgraph of G induced by $V(G) \setminus V(C')$ and u an end-vertex of P_i . If the following conditions hold:

(a) d(u) < n/2;

(b) $d(v) < d_1(u)$ for every vertex $v \in N_R(u)$;

(c)
$$N(u) \cap V(P_j) = \emptyset$$
 $(j = 1, 2, \dots, s, j \neq i)$

(d) $|V(P_i)| \ge 3$ and $uw \in E(G)$ (w is the other end-vertex of P_i),

then we call u a strange-vertex on C'. Denote by Str(C') the set of strange-vertices on C'.

Lemma 1. Let G be a graph on $n \ge 3$ vertices and $C' = v_0v_1 \cdots v_{p-1}v_0$ an id-cycle in G. If $v_0v_{p-1} \notin E(G)$ and $d(v_0) + d(v_{p-1}) \ge n$, then there exists an id-cycle C such that $V(C') \subseteq V(C)$ and def(C) < def(C').

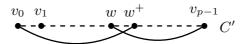


Figure 1

Proof. Let R be the subgraph of G induced by $V(G)\setminus V(C')$. If there exists a vertex $w \in N_R(v_0) \cap N_R(v_{p-1})$, then construct a new *id*-cycle as $C = wv_0v_1 \cdots v_{p-1}w$. Obviously, def(C) = def(C') - 1 < def(C'). If $N_R(v_0) \cap N_R(v_{p-1}) = \emptyset$, then $|N_R(v_0)| + |N_R(v_{p-1})| \le |R|$. Since $d(v_0) + d(v_{p-1}) \ge n$, we have $|N_{C'}(v_0)| + |N_{C'}(v_{p-1})| \ge |C'|$. Note that $|N_{C'}(v_0)^-| = |N_{C'}(v_0)|$, so

$$|N_{C'}(v_0)^-| + |N_{C'}(v_{p-1})| \ge |C'|.$$

Since $v_0 v_{p-1} \notin E(G)$, we have

$$|N_{C'}(v_0)^- \cup N_{C'}(v_{p-1})| \le |C'| - 1.$$

This implies that $N_{C'}(v_0)^- \cap N_{C'}(v_{p-1}) \neq \emptyset$. Choose a vertex $w \in N_{C'}(v_0)^- \cap N_{C'}(v_{p-1})$, then $w^+ \in N_{C'}(v_0)$. Construct an *id*-cycle as $C = v_0 w^+ C' v_{p-1} w \overline{C'} v_0$ (see Fig. 1). Apparently, $V(C') \subseteq V(C)$ and def(C) < def(C'). **Lemma 2.** Let G be a graph on $n \ge 3$ vertices and $C' = v_0v_1 \cdots v_{p-1}v_0$ a def-minimal id-cycle in G with $v_0v_{p-1} \notin E(G)$. Let R be the subgraph of G induced by $V(G) \setminus V(C')$. If v_0 satisfies the following conditions:

- (a) $N_{C'}(v_0)^- \subseteq N(v_0) \cup N_2(v_0) \cup \{v_0\};$
- (b) $N_2(v_0) \not\subseteq N_{C'}(v_0)^-;$

(c) $d(v_0) < n/2$ and $d(v) < d_1(v_0)$ for any $v \in N_R(v_0)$,

then there must exist a vertex $u \in N_{C'}(v_0)^-$ such that $d(u) \ge d_1(v_0)$ and C' is not hbmaximal.

Proof. Suppose that $d(v_0) = k+1$. Denote by $d_1 \leq d_2 \leq \cdots \leq d_{k+1} \leq d_{k+2} \leq \cdots$ the nondecreasing degree sequence of $N(v_0) \cup N_2(v_0)$. Let $M_2 = \max\{d(u)|u \in N_2(v_0)\}$. Since $N_{C'}(v_0)^- \subseteq V(C')$ and $N_R(v_0) \subseteq V(R)$, we have $N_{C'}(v_0)^- \cap N_R(v_0) = \emptyset$. Furthermore, $|N_{C'}(v_0)^-| = |N_{C'}(v_0)|$, so $|N_{C'}(v_0)^- \setminus \{v_0\} \cup N_R(v_0)| \geq d(v_0) - 1$ (the equation holds if and only if $v_0v_1 \in E(G)$). Thus we get

$$|N_{C'}(v_0)^- \setminus \{v_0\} \cup N_R(v_0)| \ge k.$$
(2)

By (a), we have

$$N_{C'}(v_0)^{-} \setminus \{v_0\} \cup N_R(v_0) \subseteq N(v_0) \cup N_2(v_0).$$
(3)

Since $d_1(v_0) \ge n/2 > d(v_0), d_1(v_0) = d_k$ or $d_1(v_0) = d_{k+1}$.

If $d_1(v_0) = d_k$, then there are at most k - 1 vertices in $N(v_0) \cup N_2(v_0)$ having degrees smaller than $d_1(v_0)$. By (2) and (3), there exists a vertex $u \in N_{C'}(v_0)^- \setminus \{v_0\} \cup N_R(v_0)$ such that $d(u) \ge d_1(v_0)$.

If $d_1(v_0) = d_{k+1} > d_k$, then by Definition 1, $d_{k+1} > M_2$. By (b), there is a vertex $w \in N_2(v_0)$ and $w \notin N_{C'}(v_0)^- \setminus \{v_0\} \cup N_R(v_0)$ satisfying $d(w) \le M_2 < d_{k+1}$. Similarly, by (2) and (3), there exists at least one vertex $u \in N_{C'}(v_0)^- \setminus \{v_0\} \cup N_R(v_0)$ such that $d(u) \ge d_{k+1} = d_1(v_0)$.

Recall that $d(v) < d_1(v_0)$ for any $v \in N_R(v_0)$. In all cases, there is a vertex $u \in N_{C'}(v_0)^-$ satisfying $d(u) \ge d_1(v_0)$.

Let $u = v_s$ and $C = v_s v_{s-1} \cdots v_0 v_{s+1} v_{s+2} \cdots v_{p-1}$. Thus V(C) = V(C') and $def(C) \leq def(C')$. Note that C' is definitional, we have def(C) = def(C').

Now, we will prove that hb(C) > hb(C'). Considering the construction of C, we know that

$$Bre^{+}(C) = \{v_t : v_t \in Bre^{-}(C'), t \le s\} \cup \{v_t : v_t \in Bre^{+}(C'), t > s\},\$$

and

$$Bre^{-}(C) = \{v_t : v_t \in Bre^{+}(C'), t \le s\} \cup \{v_t : v_t \in Bre^{-}(C'), t > s\} \cup \{v_s\} \setminus \{v_0\}$$

Thus we have

$$\begin{aligned} hb(C) &= |Hb(C) \cap Bre^+(C)\}| + |Hb(C) \cap Bre^-(C)\}| \\ &= |\{v_t : v_t \in Hb(C') \cap Bre^-(C'), t \le s\}| \\ &+ |\{v_t : v_t \in Hb(C') \cap Bre^+(C'), t \ge s\}| \\ &+ |\{v_t : v_t \in Hb(C') \cap Bre^+(C'), t \le s\}| \\ &+ |\{v_t : v_t \in Hb(C') \cap Bre^-(C'), t \ge s\}| + |\{v_s\} \\ &= hb(C') + 1. \end{aligned}$$

Hence, C' is not hb-maximal. The proof is complete.

Lemma 3. Let G be a graph on $n \ge 3$ vertices and $C' = x_1P_1y_1x_2P_2y_2\cdots x_sP_sy_sx_1$ a def-minimal and then hb-maximal id-cycle in G with $def(C') \ge 1$. Then the following statements hold:

(1) $x_i x_j, x_i y_j, y_i y_j \notin E(G)$ for any $i, j = 1, 2, \dots, s, i \neq j$; (2) $P_{mo}(C') = Hb(C') + Str(C')$

(2) $Bre(C') = Hb(C') \cup Str(C').$

Proof. (1) By contradiction. Assume that $x_i x_j \in E(G)$. Combine P_i and P_j into a new path $P' = y_i P_i x_i x_j P_j y_j$. Note that although we change the orders or orientations of P_i and P_j in C', it always produces an *id*-cycle. We can assume that C is an arbitrary permutation of $\{P_1, P_2, \ldots, P_s\} \setminus \{P_i, P_j\} \cup \{P'\}$. Thus $def(C) \leq def(C') - 1 < def(C')$. This contradicts that C' is a def-minimal. Similarly, we can prove that $x_i y_j, y_i y_j \notin E(G)$.

(2) By contradiction. Assume that there is a break-vertex x_i which is neither a strangevertex nor a heavy-break-vertex. Then $d(x_i) < n/2$. Let R be the subgraph of G induced by $V(G) \setminus V(C')$. By Definition 4, at least one of the following statements fails:

(a) $d(v) < d_1(x_i)$ for every vertex $v \in N_R(x_i)$;

(b) $N(x_i) \cap V(P_j) = \emptyset$ for any $j = 1, 2, \dots, s, j \neq i$;

(c) $|V(P_i)| \ge 3$ and $x_i y_i \in E(G)$.

Without loss of generality, let $C' = x_i P_i y_i x_{i+1} P_{i+1} y_{i+1} \cdots x_{i-1} P_{i-1} y_{i-1} x_i$. Denote by $v_0 v_1 \cdots v_{p-1} v_0$ the vertex sequence of C' with $v_0 = x_i$. Let $l(x_i) = \max\{t | v_t v_0 \in E(G)\}$. By (1), we have $N_{C'}(x_i)^- \subseteq N(x_i) \cup N_2(x_i) \cup \{x_i\}$.

Now, we will discuss the following three cases.

Case 1. (a) fails.

In this case, there is a vertex $v \in N_R(x_i)$ such that $d(v) \ge d_1(x_i) \ge n/2$. Let $C = vv_0v_1 \cdots v_{p-1}v$. Then $V(C') \subseteq V(C)$ and $def(C) \le def(C')$. Since C' is a def-minimal *id*-cycle, we have def(C) = def(C') and $vv_{p-1} \notin E(G)$. Thus $Bre^+(C) = Bre^+(C')$, $Bre^-(C) = Bre^-(C') \cup \{v\} \setminus \{x_i\}$ and hb(C) = hb(C') + 1. This contradicts that C' is hb-maximal.

Case 2. (a) holds and (b) fails.

In this case, there exists a path P_j $(j = 1, 2, ..., s, j \neq i)$ such that $N(x_i) \cap V(P_j) \neq \emptyset$. By (1), $x_j, y_j \notin N(x_i)$. Thus $v_{l(x_i)}v_{l(x_i)+1} \in E(G)$. This implies that $v_{l(x_i)+1} \in N_2(x_i)$. Since $v_{l(x_i)+1} \notin N_{C'}(x_i)^-$, we have $N_2(x_i) \notin N_{C'}(x_i)^-$. Thus, the vertex x_i on the *id*-cycle C' suffices the conditions in Lemma 2. Hence, C' is not hb-maximal, a contradiction.

Case 3. (a), (b) hold and (c) fails.

In this case, $|V(P_i)| \leq 2$ or $|V(P_i)| \geq 3$ and $x_iy_i \notin E(G)$. If $|V(P_i)| \leq 2$, then $N_{C'}(x_i)^- \subseteq \{x_i\}$. So $N_2(x_i) \cap N_{C'}(x_i)^- = \emptyset$. Since $N_2(x_i) \neq \emptyset$, we have $N_2(x_i) \notin N_{C'}(x_i)^-$. If $|V(P_i)| \geq 3$ and $x_iy_i \notin E(G)$, then $N_{C'}(x_i) \neq \emptyset$ and $v_{l(x_i)+1} \in N_2(x_i)$. Furthermore, we know that $v_{l(x_i)+1} \notin N_{C'}(x_i)^-$, so $N_2(x_i) \notin N_{C'}(x_i)^-$. No matter $|V(P_i)| \leq 2$ or $|V(P_i)| \geq 3$, the vertex x_i on the *id*-cycle C' suffices the conditions in Lemma 2. Thus, C' is not hb-maximal, a contradiction.

Now, each break-vertex x_i on C' is either is strange-vertex or a heavy-break-vertex. Similarly, we can prove this conclusion for every break-vertex y_i by analyzing the reversion of C'.

The proof is complete.

Lemma 4. Let G be a graph on $n \ge 3$ vertices and $C' = x_1P_1y_1x_2P_2y_2\cdots x_sP_sy_sx_1$ a def-minimal and then hb-maximal id-cycle in G with $def(C') \ge 1$. If $x_i \in Str(C')$, then $N_2(x_i) \subseteq N_{C'}(x_i)^- \subseteq V(P_i)$.

Proof. Without loss of generality, assume $C' = v_0 v_1 \cdots v_{p-1} v_0$ starts at $v_0 = x_i$ with $v_0 v_{p-1} \notin E(G)$. First, we will prove that $N_2(x_i) \subseteq N_{C'}(x_i)^-$.

By contradiction. Assume that $N_2(x_i) \notin N_{C'}(x_i)^-$. Recall the definition of strangevertex. We know that the vertex x_i on the *id*-cycle C' suffices the conditions of Lemma 2. Thus, C' is not hb-maximal, a contradiction.

Furthermore, by the definition of strange-vertex, we have $N_{C'}(x_i)^- \subseteq V(P_i)$. So $N_2(x_i) \subseteq N_{C'}(x_i)^- \subseteq V(P_i)$.

3 Proof of Theorem 6

By contradiction. Assume that |V(G)| = n. Let C_1 be a def-minimal and then hb-maximal counterexample with $def(C_1) \ge 1$. By Lemma 3, we have $Bre(C_1) = Str(C_1) \cup Hb(C_1)$.

Claim 1. $def(C_1) \ge 2$.

Proof. Assume that $def(C_1) = 1$. Then C_1 is a path in G. Let $C_1 = v_0v_1 \cdots v_{p-1}$ and $v_0v_{p-1} \notin E(G)$. By the definition of strange-vertex, we have $v_0, v_{p-1} \notin Str(C_1)$. This implies that $d(v_0) \ge n/2$ and $d(v_{p-1}) \ge n/2$. By Lemma 1, there must exist an *id*-cycle C_2 in G such that $V(C_1) \subseteq V(C_2)$ and $def(C_2) < def(C_1)$, a contradiction.

Now, let $C_1 = x_1 P_1 y_1 x_2 P_2 y_2 \cdots x_s P_s y_s x_1$. By Claim 1, we have $s \ge 2$. Let i, j be arbitrary integers satisfying $1 \le i < j \le s$.

Claim 2. $x_i \in Str(C_1)$ or $x_j \in Str(C_1)$.

Proof. By contradiction. Assume that $x_i \in Hb(C_1)$ and $x_j \in Hb(C_1)$. Then by changing the orders and orientations of the paths in C_1 appropriately we can construct a new *id*cycle C_2 such that x_i and x_j are successive on C_2 . Since $d(x_i) + d(x_j) \ge n$, by Lemma 1, there exists an *id*-cycle C_3 satisfying $V(C_1) = V(C_2) \subseteq V(C_3)$ and $def(C_3) < def(C_2) =$ $def(C_1)$, a contradiction.

Claim 3. $x_i \in Hb(C_1)$ or $x_j \in Hb(C_1)$.

Proof. By contradiction. Assume that $x_i \in Str(C_1)$ and $x_j \in Str(C_1)$. By the definitions of strange-vertex and implicit-degree, there must exist vertices $u_i \in V(P_i) \cap N(x_i)$ and $u_j \in V(P_j) \cap N(x_j)$ satisfying $d(u_i) \ge d_1(x_i) \ge n/2$ and $d(u_j) \ge d_1(x_j) \ge n/2$, respectively. Thus we have $d(u_i) + d(u_j) \ge n$. So either $u_i u_j \in E(G)$ or $N(u_i) \cap N(u_j) \ne \emptyset$.

Case 1. $u_i u_j \in E(G)$

In this case, $x_i u_i u_j$ is a shortest path from x_i to u_j in G. So $u_j \in N_2(x_i)$ and $N_2(x_i) \notin V(P_i)$. This contradicts to Lemma 4.

Case 2. $u_i u_j \notin E(G)$

In this case, there is a vertex $w \in N(u_i) \cap N(u_j)$.

If $w \in V(P_i)$ (or $V(P_j)$), then it follows from the definition of strange-vertex that $w \in N_2(x_j)$ (or $N_2(x_i)$). So $N_2(x_j) \nsubseteq V(P_j)$ (or $N_2(x_i) \nsubseteq V(P_i)$). This contradicts to Lemma 4.

If $w \in V(P_k)$ and $k \neq i, j$, then it follows from the definition of strange-vertex that $w \in N_2(x_i)$ and $N_2(x_i) \notin V(P_i)$. This contradicts to Lemma 4.

If $w \in V(G) \setminus V(C_1)$, then consider the relation between w and x_i . If $wx_i \in E(G)$, then $x_i w u_j$ is a shortest path from x_i to u_j . Thus $u_j \in N_2(x_i)$. If $wx_i \notin E(G)$, then $w \in N_2(x_i)$. So, in all cases, we have $N_2(x_i) \notin V(P_i)$. This contradicts to Lemma 4. \Box

Claim 4. $def(C_1) = 2$.

Proof. By contradiction. Assume that $def(C_1) \neq 2$. By Claim 1, $def(C_1) \geq 3$. For any integers i, j, k satisfying $1 \leq i < j < k \leq s$, we have $|\{x_i, x_j, x_k\} \cap Str(C_1)| \geq 2$ or $|\{x_i, x_j, x_k\} \cap Hb(C_1)| \geq 2$. This contradicts to Claim 2 or Claim 3.

Now, we can assume that $C_1 = x_1 P_1 y_1 x_2 P_2 y_2 x_1$. Without loss of generality, let $x_1 \in Str(C_1)$ and $x_2 \in Hb(C_1)$. By the definitions of strange-vertex and implicit-degree, there must exist an vertex $u \in V(P_1) \cap N(x_1)$ such that $d(u) \ge d_1(x_1) \ge n/2$. Since $d(x_2) \ge n/2$, we have $ux_2 \in E(G)$ or $N(u) \cap N(x_2) \ne \emptyset$.

If $ux_2 \in E(G)$, then $x_2 \in N_2(x_1)$ and $N_2(x_1) \nsubseteq V(P_1)$. This contradicts to Lemma 4. So there exists a vertex $w \in N(u) \cap N(x_2)$.

If $w \in V(P_2)$, then $w \in N_2(x_1)$ and $N_2(x_1) \nsubseteq V(P_1)$, a contradiction. If $w \in V(G) \setminus V(C_1)$, then consider the relation between w and x_1 . If $wx_1 \notin E(G)$, then $w \in N_2(x_1)$ and $N_2(x_1) \nsubseteq V(P_1)$, a contradiction. If $wx_1 \in E(G)$, then $x_2 \in N_2(x_1)$ and $N_2(x_1) \nsubseteq V(P_1)$, a contradiction. So the only possible situation is that $w \in V(P_1)$ and $wx_1 \notin E(G)$. Thus $w \in N_2(x_1)$. Furthermore, by Lemma 4, we have $N_2(x_1) \subseteq N_{C_1}(x_1)^-$ and $w \in N_{C_1}(x_1)^-$. So $w^+ \in N(x_1)$ (see Fig. 2).

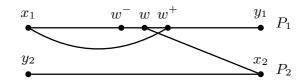


Figure 2

Let $C_2 = y_2 P_2 x_2 w w^- P_1 x_1 w^+ P_1 y_1 y_2$. Apparently, C_2 is an *id*-cycle, $Bre(C_2) = \{y_1, y_2\}$, $V(C_1) = V(C_2)$ and $def(C_2) = 1 < def(C_1)$. This contradicts that C_1 is a def-minimal *id*-cycle.

The proof is complete.

References

- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan and Elsevier, London, New York, (1976).
- [2] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 3 (1952) 69-81.

- [3] B. Li, Z. Ryjáček, Y. Wang, S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 1088–1103.
- [4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly (1960) 55–55.
- [5] R. Shi, 2-Neighborhoods and Hamiltonian conditions, J. Graph Theory 16 (3) (1992) 267–271.
- [6] Y. Zhu, H. Li, X. Deng, Implicit-degree and circumference, *Graphs Combin.* 5 (1989) 283–290.