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Abstract

Let G be a graph on n vertices and C′ = v0v1 · · · vp−1v0 a vertex sequence of G

with p ≥ 3 (vi 6= vj for all i, j = 0, 1, . . . , p − 1, i 6= j). If for any successive vertices

vi, vi+1 on C′, either vivi+1 ∈ E(G) or both of the first implicit-degrees of vi and

vi+1 are at least n/2 (indices are taken modulo p), then C′ is called an id-cycle of

G. In this paper, we prove that for every id-cycle C′, there exists a cycle C in G

with V (C′) ⊆ V (C). This generalizes several early results on the Hamiltonicity and

cyclability of graphs.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. For terminology and

notation not defined here we refer the reader to [1].

Let G be a graph. The vertex set and edge set of G are denoted by V (G) and E(G),

respectively. For a vertex v and a subgraph H of G, the neighborhood of v in H is

defined as NH(v) = {u : u ∈ V (H), uv ∈ E(G)} and the degree of v in H is defined as

dH(v) = |NH(v)|. If there is no ambiguity, we write N(v) for NG(v) and d(v) for dG(v).

In the study of the existence of Hamilton cycles in graphs, degree conditions play very

important roles. Among the many results of this direction, the following two are well

known.

Theorem 1 (Dirac [2]). Let G be a graph on n ≥ 3 vertices. If d(v) ≥ n/2 for every

vertex v ∈ V (G), then G is Hamiltonian.

Theorem 2 (Ore [4]). Let G be a graph on n ≥ 3 vertices. If d(u) + d(v) ≥ n for every

pair of nonadjacent vertices u, v ∈ V (G), then G is Hamiltonian.

For a vertex v of a graph G, denote by N2(v) the vertices which are at distance of 2

from v in G. In order to weaken the condition in Theorem 2 (Ore’s condition), Zhu et al.

[6] gave the definition of the first implicit-degree of the vertex v based on the degrees of

vertices in N(v) ∪N2(v) ∪ {v}.
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†E-mail address: bo.ning@tju.edu.cn (B. Ning)
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Definition 1 (Zhu et al. [6]). Let G be a graph on n vertices and v a vertex in G. If

N2(v) 6= ∅, then let d(v) = k+1, M2 = max{d(u)|u ∈ N2(v)}. Denote by d1 ≤ d2 ≤ · · · ≤

dk+1 ≤ dk+2 ≤ · · · the nondecreasing degree sequence of vertices in N(v) ∪ N2(v). Then

the first implicit-degree of v is defined as

d1(v) =

{

max{dk+1, k + 1}, if dk+1 > M2;

max{dk, k + 1}, otherwise.
(1)

If N2(v) = ∅, then d(v) = n− 1. In this case, let d1(v) = d(v) = n− 1.

It is clear that d1(v) ≥ d(v) for every vertex v ∈ V (G). Zhu et al. [6] obtained the

following result as a generalization of Theorem 2.

Theorem 3 (Zhu et al. [6]). Let G be a 2-connected graph on n ≥ 3 vertices. If d1(u) +

d1(v) ≥ n for every pair of nonadjacent vertices u, v ∈ V (G), then G is Hamiltonian.

Let G be a graph and X a subset of of V (G). If there exists a cycle C in G with

X ⊆ V (C), then we say X is cyclable in G. A subgraph H of G is called cyclable if V (H)

is cyclable. Apparently, G is Hamiltonian if and only if every spanning subgraph of G is

cyclable.

For a graph G, a vertex of degree at least |V (G)|/2 is called heavy. In 1992, Shi [5]

proved the following result.

Theorem 4 (Shi [5]). Let G be a 2-connected graph on n ≥ 3 vertices and S = {v : d(v) ≥

n/2, v ∈ V (G)}. Then S is cyclable in G.

It is clear that Theorem 4 implies Theorems 1 and 2.

Recently Li et al. [3] gave another generalization of Ore’s condition.

Definition 2 (Li et al. [3]). Let G be a graph on n vertices and C ′ = v0v1 · · · vp−1v0 a

vertex sequence in G with p ≥ 3 (vi 6= vj for all i, j = 0, 1, . . . , p − 1, i 6= j). If for any

successive vertices vi, vi+1 on C ′, either vivi+1 ∈ E(G) or d(vi) + d(vi+1) ≥ n (indices are

taken modulo p), then C ′ is called an Ore-cycle of G or briefly, an o-cycle of G.

Theorem 5 (Li et al. [3]). Let C ′ an o-cycle of a graph G. Then C ′ is cyclable in G.

Obviously, Theorem 5 implies Theorems 2 and 4. Our aim in this paper is to consider

whether Theorem 5 can be generalized to the first implicit-degree condition.

Definition 3. Let G be a graph on n vertices and C ′ = v0v1 · · · vp−1v0 a vertex sequence

in G with p ≥ 3 (vi 6= vj for all i, j = 0, 1, . . . , p − 1, i 6= j). If for any successive vertices

vi, vi+1 on C ′, either vivi+1 ∈ E(G) or d1(vi) + d1(vi+1) ≥ n (indices are taken modulo

p), then we call C ′ an implicit-Ore-cycle of G or briefly, an io-cycle of G. Specifically, if

either vivi+1 ∈ E(G) or d1(vi) ≥ n/2 and d1(vi+1) ≥ n/2 for all i = 0, 1, . . . , p − 1, then

we call C ′ an implicit-Dirac-cycle of G or briefly, an id-cycle of G.

Problem 1. Is every io-cycle cyclable ?

Although we are unable to solve Problem 1, we can show that every id-cycle is cyclable.

Theorem 6. Let C ′ an id-cycle of a graph G. Then C ′ is cyclable in G.
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Note that in Definition 2, if either vivi+1 ∈ E(G) or d(vi) ≥ n/2 and d(vi+1) ≥ n/2

for all i = 0, 1, . . . , p − 1, then we can similarly call C ′ a Dirac-cycle of G or briefly, a

d-cycle of G. It is clear that a d-cycle is a special o-cycle and we can regard an id-cycle

as a generalization of a d-cycle.

Fact 1. Theorem 6 implies Theorem 3.

Proof. Let A = {a : d1(a) < n/2, a ∈ V (G)}. For any vertices u, v ∈ A (u 6= v), we have

d1(u) + d1(v) < n. So uv ∈ E(G). This implies that G[A] ∼= K|A|. Let B = {b : d1(b) ≥

n/2, b ∈ V (G)}. Now, consider the size of |A| and |B|, respectively.

If |B| = 0 or |A| = 0, then any vertex sequence of length n is an id-cycle in G. By

Theorem 6, G is Hamiltonian.

If |A| = 1, then let A = {a} and B = {b1, b2, . . . , bn−1}. Since G is 2-connected, there

are at least two neighbors of a in B, say b1 and b2. Thus b1ab2b3 · · · bn−1b1 is an id-cycle

of length n. By Theorem 6, G is Hamiltonian. The proof is similar when |B| = 1.

If |A| ≥ 2 and |B| ≥ 2, since G is 2-connected, there exist a1, a2 ∈ A (a1 6= a2)

and b1, b2 ∈ B (b1 6= b2) such that a1b1, a2b2 ∈ E(G). Let A = {a1, a2, . . . , ak} and

B = {b1, b2, . . . , bn−k}. Then b1a1a3a4 · · · aka2b2b3 · · · bn−kb1 is an id-cycle of length n in

G. By Theorem 6, G is Hamiltonian.

Fact 2. Let G be a 2-connected graph on n ≥ 3 vertices and S = {v : d1(v) ≥ n/2, v ∈

V (G)}. Then S is cyclable in G.

Obviously, Fact 2 is a generalization of Theorem 4 and can be directly obtained from

Theorem 6.

2 Definitions and Lemmas

In this section, we will give some additional definitions and useful lemmas.

Let G be a graph and C ′ = v0v1 · · · vp−1v0 (p ≥ 3) an id-cycle in G with a fixed

orientation. For vertices x, y ∈ V (C ′), let xC ′y be the segment on C ′ from x to y along

the direction of C ′ and xC ′y the segment on C ′ along the reverse direction. For a vertex

vi ∈ V (C ′), if vi−1vi or vivi+1 6∈ E(G), then we call vi a break-vertex on C ′. Denote by

Bre(C ′) the set of break-vertices on C ′. Let

Bre+(C ′) = {vi : vivi+1 6∈ E(G)} and Bre−(C ′) = {vi : vi−1vi 6∈ E(G)}.

Then Bre(C ′) = Bre+(C ′)∪Bre−(C ′). Note that Bre+(C ′)∩Bre−(C ′) is not necessarily

empty. For a vertex vi ∈ V (C ′), let v+i = vi+1 and v−i = vi−1. Then v+i and v−i represent

the immediate successor and predecessor of vi on C ′, respectively. Denote by NC′(vi)
−

the predecessors of vertices in NC′(vi). To measure the gap between C ′ and a cycle, we

define the deficit-degree of C ′ as

def(C ′) = |{i : vivi+1 6∈ E(G)}|.

If def(C ′) ≤ def(C) for any id-cycle C satisfying V (C ′) ⊆ V (C), then we say C ′ is

def-minimal. Let u be a break-vertex on C ′. We say u is a heavy-break-vertex if d(u) ≥

|V (G)|/2. Denote by Hb(C ′) the set of heavy-break-vertices on C ′. To measure the

difference between C ′ and a d-cycle, we define the heavy-index of C ′ as

hb(C ′) = |Hb(C ′) ∩Bre+(C ′)|+ |Hb(C ′) ∩Bre−(C ′)|.
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If hb(C ′) ≥ hb(C) for any id-cycle C satisfying V (C ′) ⊆ V (C) and def(C ′) = def(C),

then we say C ′ is hb-maximal.

Let P = u0u1 · · · ut−1 be a path in G. Then we call u0 and ut−1 the end-vertices of

P . For vertices a, b ∈ V (P ), denote by aPb the segment on P from a to b. If a = b, then

aPb = {a}. Apparently, an id-cycle C ′ in G is composed of some vertex-disjoint paths

and we can write C ′ = x1P1y1x2P2y2 · · · xsPsysx1, where xi and yi are the end-vertices of

Pi satisfying d1(xi) ≥ |V (G)|/2 and d1(yi) ≥ |V (G)|/2 for all i = 1, 2, . . . , s. Hence, the

set of break-vertices on C ′ can be regarded as the set of end-vertices of Pi (i = 1, 2 . . . , s).

Let C ′ = v0v1 · · · vp−1v0 be an id-cycle in a graph G. Then we have def(C ′) ≥ 0 and

hb(C ′) ≤ 2def(C ′). If def(C ′) = 0, then C ′ is a cycle. If hb(C ′) = 2def(C ′), then C ′ is

a d-cycle and cyclable. In this paper, we mainly consider the case that def(C ′) > 0 and

hb(C ′) < 2def(C ′). In order to make the paper easy to follow, we name a specific kind of

break-vertex as “strange-vertex”.

Definition 4. Let G be a graph on n ≥ 3 vertices and C ′ = x1P1y1x2P2y2 · · · xsPsysx1 an

id-cycle in G. Let R be the subgraph of G induced by V (G)\V (C ′) and u an end-vertex

of Pi. If the following conditions hold:

(a) d(u) < n/2;

(b) d(v) < d1(u) for every vertex v ∈ NR(u);

(c) N(u) ∩ V (Pj) = ∅ (j = 1, 2, . . . , s, j 6= i);

(d) |V (Pi)| ≥ 3 and uw ∈ E(G) (w is the other end-vertex of Pi),

then we call u a strange-vertex on C ′. Denote by Str(C ′) the set of strange-vertices on C ′.

Lemma 1. Let G be a graph on n ≥ 3 vertices and C ′ = v0v1 · · · vp−1v0 an id-cycle in

G. If v0vp−1 6∈ E(G) and d(v0) + d(vp−1) ≥ n, then there exists an id-cycle C such that

V (C ′) ⊆ V (C) and def(C) < def(C ′).

v0 v1 w w+ vp−1

C′

Figure 1

Proof. Let R be the subgraph of G induced by V (G)\V (C ′). If there exists a vertex

w ∈ NR(v0)∩NR(vp−1), then construct a new id-cycle as C = wv0v1 · · · vp−1w. Obviously,

def(C) = def(C ′)−1 < def(C ′). If NR(v0)∩NR(vp−1) = ∅, then |NR(v0)|+ |NR(vp−1)| ≤

|R|. Since d(v0) + d(vp−1) ≥ n, we have |NC′(v0)| + |NC′(vp−1)| ≥ |C ′|. Note that

|NC′(v0)
−| = |NC′(v0)|, so

|NC′(v0)
−|+ |NC′(vp−1)| ≥ |C ′|.

Since v0vp−1 6∈ E(G), we have

|NC′(v0)
− ∪NC′(vp−1)| ≤ |C ′| − 1.

This implies that NC′(v0)
− ∩NC′(vp−1) 6= ∅. Choose a vertex w ∈ NC′(v0)

− ∩NC′(vp−1),

then w+ ∈ NC′(v0). Construct an id-cycle as C = v0w
+C ′vp−1wC ′v0 (see Fig. 1).

Apparently, V (C ′) ⊆ V (C) and def(C) < def(C ′).

4



Lemma 2. Let G be a graph on n ≥ 3 vertices and C ′ = v0v1 · · · vp−1v0 a def-minimal

id-cycle in G with v0vp−1 6∈ E(G). Let R be the subgraph of G induced by V (G)\V (C ′).

If v0 satisfies the following conditions:

(a) NC′(v0)
− ⊆ N(v0) ∪N2(v0) ∪ {v0};

(b) N2(v0) * NC′(v0)
−;

(c) d(v0) < n/2 and d(v) < d1(v0) for any v ∈ NR(v0),

then there must exist a vertex u ∈ NC′(v0)
− such that d(u) ≥ d1(v0) and C ′ is not hb-

maximal.

Proof. Suppose that d(v0) = k+1. Denote by d1 ≤ d2 ≤ · · · ≤ dk+1 ≤ dk+2 ≤ · · · the non-

decreasing degree sequence of N(v0) ∪ N2(v0). Let M2 = max{d(u)|u ∈ N2(v0)}. Since

NC′(v0)
− ⊆ V (C ′) and NR(v0) ⊆ V (R), we have NC′(v0)

− ∩ NR(v0) = ∅. Furthermore,

|NC′(v0)
−| = |NC′(v0)|, so |NC′(v0)

−\{v0} ∪ NR(v0)| ≥ d(v0) − 1 (the equation holds if

and only if v0v1 ∈ E(G)). Thus we get

|NC′(v0)
−\{v0} ∪NR(v0)| ≥ k. (2)

By (a), we have

NC′(v0)
−\{v0} ∪NR(v0) ⊆ N(v0) ∪N2(v0). (3)

Since d1(v0) ≥ n/2 > d(v0), d1(v0) = dk or d1(v0) = dk+1.

If d1(v0) = dk, then there are at most k − 1 vertices in N(v0) ∪N2(v0) having degrees

smaller than d1(v0). By (2) and (3), there exists a vertex u ∈ NC′(v0)
−\{v0} ∪ NR(v0)

such that d(u) ≥ d1(v0).

If d1(v0) = dk+1 > dk, then by Definition 1, dk+1 > M2. By (b), there is a vertex

w ∈ N2(v0) and w 6∈ NC′(v0)
−\{v0} ∪ NR(v0) satisfying d(w) ≤ M2 < dk+1. Similarly,

by (2) and (3), there exists at least one vertex u ∈ NC′(v0)
−\{v0} ∪ NR(v0) such that

d(u) ≥ dk+1 = d1(v0).

Recall that d(v) < d1(v0) for any v ∈ NR(v0). In all cases, there is a vertex u ∈

NC′(v0)
− satisfying d(u) ≥ d1(v0).

Let u = vs and C = vsvs−1 · · · v0vs+1vs+2 · · · vp−1. Thus V (C) = V (C ′) and def(C) ≤

def(C ′). Note that C ′ is def-minimal, we have def(C) = def(C ′).

Now, we will prove that hb(C) > hb(C ′). Considering the construction of C, we know

that

Bre+(C) = {vt : vt ∈ Bre−(C ′), t ≤ s} ∪ {vt : vt ∈ Bre+(C ′), t > s},

and

Bre−(C) = {vt : vt ∈ Bre+(C ′), t ≤ s} ∪ {vt : vt ∈ Bre−(C ′), t > s} ∪ {vs}\{v0}.

Thus we have

hb(C) = |Hb(C) ∩Bre+(C)}| + |Hb(C) ∩Bre−(C)}|

= |{vt : vt ∈ Hb(C ′) ∩Bre−(C ′), t ≤ s}|

+|{vt : vt ∈ Hb(C ′) ∩Bre+(C ′), t > s}|

+|{vt : vt ∈ Hb(C ′) ∩Bre+(C ′), t ≤ s}|

+|{vt : vt ∈ Hb(C ′) ∩Bre−(C ′), t > s}|+ |{vs}|

= hb(C ′) + 1.

Hence, C ′ is not hb-maximal. The proof is complete.
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Lemma 3. Let G be a graph on n ≥ 3 vertices and C ′ = x1P1y1x2P2y2 · · · xsPsysx1 a

def-minimal and then hb-maximal id-cycle in G with def(C ′) ≥ 1. Then the following

statements hold:

(1) xixj , xiyj, yiyj 6∈ E(G) for any i, j = 1, 2, . . . , s, i 6= j;

(2) Bre(C ′) = Hb(C ′) ∪ Str(C ′).

Proof. (1) By contradiction. Assume that xixj ∈ E(G). Combine Pi and Pj into a new

path P ′ = yiPixixjPjyj. Note that although we change the orders or orientations of Pi

and Pj in C ′, it always produces an id-cycle. We can assume that C is an arbitrary

permutation of {P1, P2, . . . , Ps}\{Pi, Pj} ∪ {P ′}. Thus def(C) ≤ def(C ′) − 1 < def(C ′).

This contradicts that C ′ is a def-minimal. Similarly, we can prove that xiyj , yiyj 6∈ E(G).

(2) By contradiction. Assume that there is a break-vertex xi which is neither a strange-

vertex nor a heavy-break-vertex. Then d(xi) < n/2. Let R be the subgraph of G induced

by V (G)\V (C ′). By Definition 4, at least one of the following statements fails:

(a) d(v) < d1(xi) for every vertex v ∈ NR(xi);

(b) N(xi) ∩ V (Pj) = ∅ for any j = 1, 2, . . . , s, j 6= i;

(c) |V (Pi)| ≥ 3 and xiyi ∈ E(G).

Without loss of generality, let C ′ = xiPiyixi+1Pi+1yi+1 · · · xi−1Pi−1yi−1xi. Denote by

v0v1 · · · vp−1v0 the vertex sequence of C ′ with v0 = xi. Let l(xi) = max{t|vtv0 ∈ E(G)}.

By (1), we have NC′(xi)
− ⊆ N(xi) ∪N2(xi) ∪ {xi}.

Now, we will discuss the following three cases.

Case 1. (a) fails.

In this case, there is a vertex v ∈ NR(xi) such that d(v) ≥ d1(xi) ≥ n/2. Let C =

vv0v1 · · · vp−1v. Then V (C ′) ⊆ V (C) and def(C) ≤ def(C ′). Since C ′ is a def-minimal

id-cycle, we have def(C) = def(C ′) and vvp−1 6∈ E(G). Thus Bre+(C) = Bre+(C ′),

Bre−(C) = Bre−(C ′) ∪ {v}\{xi} and hb(C) = hb(C ′) + 1. This contradicts that C ′ is

hb-maximal.

Case 2. (a) holds and (b) fails.

In this case, there exists a path Pj (j = 1, 2, . . . , s, j 6= i) such that N(xi)∩V (Pj) 6= ∅.

By (1), xj, yj 6∈ N(xi). Thus vl(xi)vl(xi)+1 ∈ E(G). This implies that vl(xi)+1 ∈ N2(xi).

Since vl(xi)+1 6∈ NC′(xi)
−, we have N2(xi) * NC′(xi)

−. Thus, the vertex xi on the id-cycle

C ′ suffices the conditions in Lemma 2. Hence, C ′ is not hb-maximal, a contradiction.

Case 3. (a), (b) hold and (c) fails.

In this case, |V (Pi)| ≤ 2 or |V (Pi)| ≥ 3 and xiyi 6∈ E(G). If |V (Pi)| ≤ 2, then

NC′(xi)
− ⊆ {xi}. So N2(xi) ∩ NC′(xi)

− = ∅. Since N2(xi) 6= ∅, we have N2(xi) *
NC′(xi)

−. If |V (Pi)| ≥ 3 and xiyi 6∈ E(G), then NC′(xi) 6= ∅ and vl(xi)+1 ∈ N2(xi). Fur-

thermore, we know that vl(xi)+1 6∈ NC′(xi)
−, soN2(xi) * NC′(xi)

−. No matter |V (Pi)| ≤ 2

or |V (Pi)| ≥ 3, the vertex xi on the id-cycle C ′ suffices the conditions in Lemma 2. Thus,

C ′ is not hb-maximal, a contradiction.

Now, each break-vertex xi on C ′ is either is strange-vertex or a heavy-break-vertex.

Similarly, we can prove this conclusion for every break-vertex yi by analyzing the reversion

of C ′.

The proof is complete.
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Lemma 4. Let G be a graph on n ≥ 3 vertices and C ′ = x1P1y1x2P2y2 · · · xsPsysx1 a

def-minimal and then hb-maximal id-cycle in G with def(C ′) ≥ 1. If xi ∈ Str(C ′), then

N2(xi) ⊆ NC′(xi)
− ⊆ V (Pi).

Proof. Without loss of generality, assume C ′ = v0v1 · · · vp−1v0 starts at v0 = xi with

v0vp−1 6∈ E(G). First, we will prove that N2(xi) ⊆ NC′(xi)
−.

By contradiction. Assume that N2(xi) * NC′(xi)
−. Recall the definition of strange-

vertex. We know that the vertex xi on the id-cycle C ′ suffices the conditions of Lemma

2. Thus, C ′ is not hb-maximal, a contradiction.

Furthermore, by the definition of strange-vertex, we have NC′(xi)
− ⊆ V (Pi). So

N2(xi) ⊆ NC′(xi)
− ⊆ V (Pi).

3 Proof of Theorem 6

By contradiction. Assume that |V (G)| = n. Let C1 be a def-minimal and then hb-maximal

counterexample with def(C1) ≥ 1. By Lemma 3, we have Bre(C1) = Str(C1) ∪Hb(C1).

Claim 1. def(C1) ≥ 2.

Proof. Assume that def(C1) = 1. Then C1 is a path in G. Let C1 = v0v1 · · · vp−1 and

v0vp−1 6∈ E(G). By the definition of strange-vertex, we have v0, vp−1 6∈ Str(C1). This

implies that d(v0) ≥ n/2 and d(vp−1) ≥ n/2. By Lemma 1, there must exist an id-cycle

C2 in G such that V (C1) ⊆ V (C2) and def(C2) < def(C1), a contradiction.

Now, let C1 = x1P1y1x2P2y2 · · · xsPsysx1. By Claim 1, we have s ≥ 2. Let i, j be

arbitrary integers satisfying 1 ≤ i < j ≤ s.

Claim 2. xi ∈ Str(C1) or xj ∈ Str(C1).

Proof. By contradiction. Assume that xi ∈ Hb(C1) and xj ∈ Hb(C1). Then by changing

the orders and orientations of the paths in C1 appropriately we can construct a new id-

cycle C2 such that xi and xj are successive on C2. Since d(xi) + d(xj) ≥ n, by Lemma 1,

there exists an id-cycle C3 satisfying V (C1) = V (C2) ⊆ V (C3) and def(C3) < def(C2) =

def(C1), a contradiction.

Claim 3. xi ∈ Hb(C1) or xj ∈ Hb(C1).

Proof. By contradiction. Assume that xi ∈ Str(C1) and xj ∈ Str(C1). By the definitions

of strange-vertex and implicit-degree, there must exist vertices ui ∈ V (Pi) ∩ N(xi) and

uj ∈ V (Pj)∩N(xj) satisfying d(ui) ≥ d1(xi) ≥ n/2 and d(uj) ≥ d1(xj) ≥ n/2, respectively.

Thus we have d(ui) + d(uj) ≥ n. So either uiuj ∈ E(G) or N(ui) ∩N(uj) 6= ∅.

Case 1. uiuj ∈ E(G)

In this case, xiuiuj is a shortest path from xi to uj in G. So uj ∈ N2(xi) and

N2(xi) * V (Pi). This contradicts to Lemma 4.

Case 2. uiuj 6∈ E(G)

7



In this case, there is a vertex w ∈ N(ui) ∩N(uj).

If w ∈ V (Pi) (or V (Pj)), then it follows from the definition of strange-vertex that

w ∈ N2(xj) (or N2(xi)). So N2(xj) * V (Pj) (or N2(xi) * V (Pi)). This contradicts to

Lemma 4.

If w ∈ V (Pk) and k 6= i, j, then it follows from the definition of strange-vertex that

w ∈ N2(xi) and N2(xi) * V (Pi). This contradicts to Lemma 4.

If w ∈ V (G)\V (C1), then consider the relation between w and xi. If wxi ∈ E(G),

then xiwuj is a shortest path from xi to uj . Thus uj ∈ N2(xi). If wxi 6∈ E(G), then

w ∈ N2(xi). So, in all cases, we have N2(xi) * V (Pi). This contradicts to Lemma 4.

Claim 4. def(C1) = 2.

Proof. By contradiction. Assume that def(C1) 6= 2. By Claim 1, def(C1) ≥ 3. For

any integers i, j, k satisfying 1 ≤ i < j < k ≤ s, we have |{xi, xj , xk} ∩ Str(C1)| ≥ 2 or

|{xi, xj , xk} ∩Hb(C1)| ≥ 2. This contradicts to Claim 2 or Claim 3.

Now, we can assume that C1 = x1P1y1x2P2y2x1. Without loss of generality, let x1 ∈

Str(C1) and x2 ∈ Hb(C1). By the definitions of strange-vertex and implicit-degree, there

must exist an vertex u ∈ V (P1)∩N(x1) such that d(u) ≥ d1(x1) ≥ n/2. Since d(x2) ≥ n/2,

we have ux2 ∈ E(G) or N(u) ∩N(x2) 6= ∅.

If ux2 ∈ E(G), then x2 ∈ N2(x1) and N2(x1) * V (P1). This contradicts to Lemma 4.

So there exists a vertex w ∈ N(u) ∩N(x2).

If w ∈ V (P2), then w ∈ N2(x1) and N2(x1) * V (P1), a contradiction. If w ∈

V (G)\V (C1), then consider the relation between w and x1. If wx1 6∈ E(G), then w ∈

N2(x1) and N2(x1) * V (P1), a contradiction. If wx1 ∈ E(G), then x2 ∈ N2(x1) and

N2(x1) * V (P1), a contradiction. So the only possible situation is that w ∈ V (P1) and

wx1 6∈ E(G). Thus w ∈ N2(x1). Furthermore, by Lemma 4, we have N2(x1) ⊆ NC1
(x1)

−

and w ∈ NC1
(x1)

−. So w+ ∈ N(x1) (see Fig. 2).

x1

y2

y1

x2

w w+w−

P1

P2

Figure 2

Let C2 = y2P2x2ww
−P1x1w

+P1y1y2. Apparently, C2 is an id-cycle, Bre(C2) =

{y1, y2}, V (C1) = V (C2) and def(C2) = 1 < def(C1). This contradicts that C1 is a

def-minimal id-cycle.

The proof is complete.
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