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We study Majorana bound states in a disordered chain of semiconductor quantum dots connected
to each other by s-wave superconductors. By calculating its topological quantum number, based
on the scattering matrix method in the framework of a tight-binding model, we can identify the
topological property of such an inhomogeneous one dimensional system. We study the robustness of
Majorana bound states against disorder in both the spin-independent terms (including the chemical
potential and the regular spin-conserving hopping) and the spin-dependent term, i.e., the spin-
flip hopping due to the Rashba spin-orbit coupling. We find that the Majorana bound states
are not completely immune to the spin-independent disorder, especially when the latter is strong.
Meanwhile, the Majorana bound states are relatively robust against the spin-dependent disorder,
as long as the spin-flip hopping is sign-ordered. Nevertheless, when the disorder induces sign-flip
in spin-flip hopping, the topological-nontopological phase transition tends to take place in the low
chemical potential region.

PACS numbers: 71.10.Pm, 74.78.Na

I. INTRODUCTION

Majorana bound states (MBS)1,2 in solid-state systems
are recently attracting increasing interest, both theoret-
ically and experimentally. Being first proposed by Ki-
taev more than 10 years ago in a spinless toy model,1

these zero-energy bound states are expected to exist in
several structures with spin, including nanowires with
spin-orbit coupling (SOC) in proximity to a superconduc-
tor (SC),3,4 ferromagnetic atom chains on top of a SC,5

topological insulator/SC hybrid structures,6–11 quantum
dot (QD)-SC chains,12–14 as well as cold-atom systems.15

Experimentally, possible signatures of MBS have been re-
ported in nanowires,16–18 atom chains,19 and topological
insulator/SC structures.20

Majorana bound states attract considerable attention
partly due to their future potential applications in quan-
tum information.2,21–23 One attractive possibility would
be to construct Majorana qubits based on MBS.21 Ma-
jorana qubits, among various qubit candidates,24–30 are
suggested to be robust against local perturbations and
hence promising to store quantum information.12,21,31

Moreover, arbitrary qubit rotations are expected to
be implemented, by means of topologically-protected
braiding operations22,32 in combination with other non-
topological operations assisted by, e.g., nanomechani-
cal resonators.33,34 However, recent studies reveal that
the MBS are not completely robust against disorder in
both the Kitaev’s spinless model and the systems with
spin,35–40 and the Majorana qubit is also not totally pro-
tected from decoherence.41–44 Note that the studies in-
vestigating so far the effect of disorder on MBS focus
solely on the spin-independent disorder, without consid-
ering the spin-depenent one. In fact, the spin-dependent
disorder, e.g., the fluctuation in SOC, can be present
inevitably in many solid-state systems and play an im-
portant role in the spin-related dynamics.45,46 Therefore,

the effect of spin-dependent disorder on the existence of
MBS deserves to be investigated.

In this work, we systematically study the robustness
of MBS against disorder, based on a concrete structure,
i.e., a QD-SC chain.12–14 Experimentally, such a QD-SC
chain system might have the advantage to be adaptively
tuned, as suggested in Refs. 12 and 13. However, in
the absence of precise control, this system is also very
likely to be disordered due to, e.g., the inhomogeneity in
QD/SC sizes or QD confining potentials. Therefore, we
take a QD-SC chain as an ideal platform to look into the
influence of disorder. Concretely, we calculate the topo-
logical quantum number by means of the scattering ma-
trix method based on a tight-binding model, to identify
the topological property of a disordered chain in a rela-
tively large parameter region. Apart from the disorder
in the spin-independent terms (including the chemical
potential and the regular spin-conserving hopping), we
also consider the disorder in the spin-dependent term,
i.e., the spin-flip hopping due to the Rashba SOC. We
find that the MBS are not completely immune to the
disorder in spin-independent terms, especially when the
disorder is strong. Meanwhile, the MBS are relatively
robust against the disorder in spin-flip hopping, as long
as the spin-flip hopping is sign-ordered. Nevertheless,
when the disorder induces sign-flip in spin-flip hopping,
a topological-nontopological phase transition in the QD-
SC chain tends to take place in the low chemical potential
region.

This paper is organized as follows. First, we de-
scribe the inhomogeneous QD-SC chain in a tight-binding
model. Then we present the scattering matrix method
utilized to calculate the topological quantum number.
Afterwards, we numerically study the robustness of the
MBS against disorder in the QD-SC chain. Finally, we
summarize our results.
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II. MODEL AND HAMILTONIAN

QDSCB

FIG. 1: (Color online) Schematic diagram of a disordered
chain of semiconductor quantum dots (shown in blue) cou-
pled by s-wave superconductors (in red), under a transverse
magnetic field B. The on-site chemical potentials, spin-
independent hopping terms, as well as the spin-flip hopping
terms due to the Rashba SOC, can be disordered.

A QD-SC chain, as studied in, e.g., Refs. 12–14, is
schematically shown here in Fig. 1. We assume that the
QDs can be approximately treated as one dimensional
along the chain-direction due to the strong transverse
confinement. By further assuming that the orbital level
splitting in the QDs is much larger than both the Zeeman
splitting and Rashba SOC, we consider only the Kramers
doublet closest to the chemical potential energy in each
QD. The general form of the tight-binding Hamiltonian
describing such a chain of single-level QDs is written as13

H =
1

2

∑
nαβ

[µnδαβ +B(σz)αβ ]f†nαfnβ + ∆
∑
n

f†n↑f
†
n↓

+
∑
nαβ

[tnδαβ + itson (σy)αβ ]f†nαfn+1β + H.c.. (1)

In the Bogoliubov-de Gennes basis Ψn =

(fn↑, fn↓, f
†
n↓,−f

†
n↑), this Hamiltonian can be rewritten

as5

H =
1

2

∑
n

[Ψ†nĥnΨn + (Ψ†nt̂nΨn+1 + H.c.)], (2)

where

ĥn = µnσ0τz +Bσzτ0 + ∆σ0τx, (3)

t̂n = tnσ0τz + itson σyτz. (4)

In the above equations, f†nα is the creation operator for a
spin-α electron in the nth QD. The Pauli matrices σx,y,z
and τx,y,z act on the spin and particle-hole spaces, respec-
tively. The chemical potential is labeled as µn. The term
proportional to B is the Zeeman splitting while ∆ stands
for the superconducting pairing due to the proximity ef-
fect. The nearest-neighbour hopping term has two parts,
i.e., the spin-conserving (tn) and spin-flip (tson ) ones. The
spin-flip hopping can be caused by the SOC which sup-
plies an effective magnetic field during hopping. Here
we only consider the Rashba type SOC, with its effective
magnetic field along the y-axis. Due to the inhomogene-
ity in the QD confining potentials and/or QD/SC sizes,
as well as other disorder sources such as the charged im-
purities, both the spin-conserving terms, µn and tn, and
the spin-flip term, tson , can be QD-site dependent.

III. SCATTERING MATRIX METHOD

To identify the topological property of the QD-SC
chain, we study the scattering matrix S relating the
incoming and outgoing wave amplitudes at the Fermi
level,47

S =

(
R T ′

T R′

)
. (5)

In the above the 4×4 subblocks {R, R′} and {T , T ′} are
the reflection and transmission matrices at the two ends
of the QD-SC chain, respectively. The Z2 topological
quantum number Q is given by47

Q = sgn Det(R) = sgn Det(R′). (6)

Here, sgn denotes the sign of the determinant Det. The
MBS arise at the ends of the QD-SC chain only when
Q = −1.47

The scattering matrix can be obtained by the trans-
fer matrix scheme. Based on Hamiltonian (2), the zero-
energy Schrödinger equation gives5(

t̂†nΦn
Φn+1

)
= M̃n

(
t̂†n−1Φn−1

Φn

)
, (7)

where

M̃n =

(
0 t̂†n
−t̂−1n −t̂−1n ĥn

)
. (8)

Here Φn is a four-component vector of wave amplitudes
on the nth site. The above recursive relation indicates
that waves at the two ends (n = 1 and N) of the nanowire
are related by the transfer matrix

M̃ = M̃NM̃N−1...M̃2M̃1. (9)

In the basis with right-moving and left-moving waves
separated in the upper and lower four components, the
transfer matrix transforms as

Mn = U†M̃nU, (10)

where

U =
1√
2

(
I I
iI −iI

)
. (11)

In this basis, the reflection matrices R (R′) and trans-
mission matrices T (T ′) in the scattering matrix S [refer
to Eq. (5)] can be obtained via the relations(

T
0

)
= M

(
I
R

)
,

(
R′

I

)
= M

(
0
T ′

)
, (12)

where

M = MNMN−1...M2M1. (13)

Finally, the calculation of the topological quantum
number Q is reduced to that of the transfer matrix M .
In Appendix A, we present the numerical scheme for cal-
culating M .
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IV. RESULTS

We now numerically study the topological property of
the QD-SC chain. For comparison, we first look into an
ideal homogeneous QD-SC chain and reproduce the topo-
logical phase reported in the literature, and then take
into account disorder to investigate the robustness of the
MBS.

A. Homogeneous QD-SC chain

For a homogeneous QD-SC chain, we label µn = µ,
tn = t and tson = tso. In Fig. 2(a) we plot the phase di-
agram, Det(R) [refer to Eqs. (5) and (6)] versus µ and
B, of a homogeneous QD-SC chain typically with t = ∆
and tso = 0.5∆. The blue region in this figure, with
Det(R) = −1, stands for the topological phase support-
ing MBS. It is found that this region is nicely enclosed
by the white curve plotted in the figure, which defines
the topological region of a single-band homogeneous su-
perconducting nanowire as48,49√

(2t− |µ|)2 + ∆2 < |B| <
√

(2t+ |µ|)2 + ∆2. (14)

In Fig. 2(b), we further show the energy spectrum (for
clarity, we present only the lowest four states close to
the zero energy) of this QD-SC chain versus µ when B
is fixed. It is clearly indicated that when the QD-SC
chain enters the topological region, the zero-energy states
(localized at the two ends of the QD-SC chain) separated
from the higher-energy bulk states arise. Note that when
varying the spin-flip hopping tso, the topological phase
space in Fig. 2(a) remains invariant, consistent with the
feature that tso is absent from Eq. (14).

B. Inhomogeneous QD-SC chain with disordered
chemical potential and spin-conserving hopping

From Eq. (14), one may infer that when the disor-
der is induced into the chemical potential µ or the spin-
conserving hopping tn, the topological phase space might
change in the parameter space. Now we take into ac-
count such disorder to investigate the robustness of MBS
in the QD-SC chain. We first consider disorder in the
chemical potential, which is modeled to perturb the µn’s
independently within a uniform distribution in the in-
terval (µ − δµ, µ + δµ), where µ is now the mean value
of the chemical potential and δµ stands for the fluctua-
tion magnitude. Our calculations indicate that the topo-
logical phase is not completely immune to disorder. In
Figs. 3(a) and (b), we present the phase diagrams of the
inhomogeneous QD-SC chain calculated with δµ/∆ = 0.5
and δµ/∆ = 1.5, respectively. The comparison between
these two figures indicates the effect of stronger disorder
on the formation of the topological phase. To qualita-
tively present the effect of increasing disorder, we further
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FIG. 2: (Color online) (a) The determinant Det(R) of the
reflection matrix R as a function of the chemical potential µ
and the Zeeman splitting B, in a homogeneous QD-SC chain
with t = ∆ and tso = 0.5∆. The blue region with Det(R) =
−1 stands for the topological phase supporting MBS. (b) The
energy spectrum (with only the lowest four eigenstates close
to zero energy plotted) versus the chemical potential µ, when
the Zeeman splitting B is fixed as 2∆.

study the ratio of the area of the topological region with
disorder [such as the blue regions in Figs. 3(a) and (b)]
to that without disorder [the region defined by Eq. (14)],
labeled as λ, versus the fluctuation magnitude δµ. This is
a qualitative study because it is performed in a finite pa-
rameter region, e.g., 0 ≤ µ ≤ 5∆ and 0 ≤ B ≤ 5∆ here.
The result is plotted by the solid curve with squares in
Fig. 3(e). This curve shows that when the fluctuation
magnitude of the chemical potential δµ is larger than the
superconducting gap ∆, the topological phase can be ef-
fectively destroyed.

We then consider disorder in the spin-conserving hop-
ping, with the other terms treated as uniform. We as-
sume that the disorder causes the spin-conserving hop-
ping to fluctuate in an interval (t − δt, t + δt) with a
uniform distribution (δt < t). Our calculations indicate
that disorder in the spin-conserving hopping can also be
detrimental to the topological phase (especially when the
disorder is strong), as shown by the phase diagrams in
Figs. 3(c) and (d). In Fig. 3(e), by the blue curve with
circles, we also plot the ratio λ of the area of the topo-
logical region for a disordered system to the one for a
clean system, versus the fluctuation magnitude δt. Also,
the stronger the disorder is, the smaller the topological
phase area becomes.

C. Inhomogeneous QD-SC chain with disordered
spin-flip hopping

We now focus on the robustness of the topological
phase against disorder in the spin-flip hopping. Again,
for simplicity, we assume that due to disorder, the spin-
flip hopping fluctuates in an interval (tso− δtso , tso + δtso)
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FIG. 3: (Color online) (a) and (b) [(c) and (d)] Phase dia-
grams of disordered QD-SC chains, where the chemical poten-
tials µn (spin-conserving hoppings tn) fluctuate in an interval
(µ − δµ, µ + δµ) [(t − δt, t + δt)] with a uniform distribution.
Note that δµ/∆ is set as 0.5 and 1.5, respectively, in (a) and
(b), and δt/t is set as 0.2 and 0.6, respectively, in (c) and
(d). (e) The ratio of the area of the topological region for
a disordered system [such as the blue regions in (a)-(d)] to
the one for a clean system [the region defined by Eq. (14),
or, enclosed by the white curves in (a)-(d)], labeled as λ, ver-
sus the fluctuation magnitude δµ of the chemical potential µ
(red curve with squares), and the fluctuation magnitude δt
of spin-conserving hopping t (blue curve with circles). The
calculations for each curve in (e) are carried out by averaging
over ten disordered samples.

with a uniform distribution. We find that the topological
phase is relatively robust against disorder in the spin-flip
hopping, as long as the spin-flip hopping is sign-ordered
(i.e., δtso < tso). Nevertheless, when the disorder induces
sign-flip in spin-flip hopping (δtso > tso), a topological-
nontopological phase transition in the QD-SC chain tends
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FIG. 4: (Color online) The phase diagrams of disordered QD-
SC chains where the spin-flip hoppings tson fluctuate in an
interval (tso−δtso , tso +δtso) with a uniform distribution. The
fluctuation magnitude δtso increases from (a) 0.1∆ to (d) ∆.

to take place in the low chemical potential region. This
feature can be observed from Fig. 4, which presents the
phase diagrams of disordered QD-SC chains with increas-
ing δtso .

When the spin-flip hopping changes sign along the QD-
SC chain, a pair of zero-energy fermionic bound states39

arise at the interface between the neighboring domains
with different signs of spin-flip hopping. These interface
fermionic bound states can couple to other nearby bound
states, including the MBS originally present at the ends
of the QD-SC chain. These couplings can destroy the
zero-energy MBS. To obtain a clear view of the interface
fermionic bound states and their coupling to the MBS,
we further consider a simple case where a short QD-SC
chain possesses a constant spin-flip hopping on one half
of the chain but a varying spin-flip hopping on the other
half. Typically, we study a chain with 51 QDs connected
by s-wave SCs. We set the spin-flip hopping between the
neighboring QDs from the 1st to 26th sites as a constant
tso, and adjust the spin-flip hopping taso on the remaining
part from tso to −tso. In Fig. 5(a), we present the energy
spectrum of such an inhomogeneous system versus the
variation of the parameter taso, with the lowest six eigen-
states close to zero plotted by curves. It is clearly shown
that with the decrease and eventually the sign-inversal of
taso, the bulk gap in the QD-SC chain gradually closes and
the zero-energy fermionic bound states located around
the 26th QD arise. Accordingly, the topological quan-
tum number, Q, changes from −1 to 1 [refer to the open
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FIG. 5: (Color online) (a) Curves: energy spectrum (with
only the lowest six eigenstates close to zero energy plotted)
in an inhomogeneous QD-SC chain with a finite length (in
the calculation we set the total number of QDs N to be 51),
versus the variation of spin-flip hopping in one half of the
QD chain taso. Circles: the topological quantum number Q [in
Eq. (6)] of this inhomogeneous QD-SC chain (with the scale
on the right-hand side of the frame), versus the variation of
spin-flip hopping in one half of the QD chain taso. The spin-
flip hopping in the other half of the QD-SC chain remains
invariant as tso = 0.5∆. (b) Wave amplitude |Ψ|2 of the state
with its energy closest to zero. The solid curve stands for the
weakly-coupled MBS in a homogeneous QD-SC chain where
tso = taso = 0.5∆, while the dashed curve stands for the state
where the MBS have disappeared due to their coupling to the
interface fermionic bound states in an inhomogeneous QD-SC
chain. For the homogeneous QD-SC chain, tso = taso = 0.5∆;
while for the inhomogeneous QD-SC chain: tso = −taso =
0.5∆.

circles in Fig. 5(a)], indicating the disappearance of MBS
due to their coupling to the fermionic bound states. In
Fig. 5(b), we further present the wave amplitude of the
lowest eigenstate, respectively for the cases with taso = tso
and taso = −tso. It is found that when taso = tso, i.e., the
QD-SC chain is homogeneous, two weakly-coupled MBS
are present. However, when taso = −tso, a state resulting
from the coupling between MBS and the interface bound
state replaces the original MBS.

V. CONCLUSION

In this work, we have studied the MBS in a disordered
QD chain connected by s-wave SCs. We describe this
one dimensional system by a tight-binding model. By
calculating the topological quantum number based on the
scattering matrix method, we can identify the topological
property of such a QD-SC chain. In our study, we take
into account disorder in both the spin-independent terms
(including the chemical potential and the regular spin-
conserving hopping) and the spin-independent term, i.e.,
the spin-flip hopping due to the Rashba SOC.

We find that the MBS are not completely immune
to disorder in spin-independent terms, especially when
the disorder is strong. Meanwhile, the Majorana bound
states are relatively robust against disorder in the spin-
flip hopping, as long as the spin-flip hopping is sign-
ordered. Nevertheless, when the disorder induces sign-
flip in spin-flip hopping, a topological-nontopological
phase transition in the quantum dot chain tends to take
place in the low chemical potential region. This study
may provide insight into the search of MBS in solid-state
systems.
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Appendix A: Numerical scheme

As shown in Sec. III, the topological quantum num-
ber Q is determined by the reflection matrix R, which
can be obtained by the transfer matrix M via Eq. (12).
However, the recursive construction [i.e., Eq. (13)] is nu-
merically unstable.5,50 We stabilize it using the method
described in Ref. 50. We briefly introduce this process
here.

We label

Mn =

(
an bn
cn dn

)
(A1)

and define

Mn =

(
An Bn

Cn Dn

)
= MnMn−1...M2M1. (A2)

Here {an, bn, cn, dn} and {An,Bn,Cn,Dn} are 4×4 sub-
block matrices. In such framework, M = MN . Fur-
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ther according to Eq. (12), we have R = −D−1N CN and

T = AN −BND−1N CN .
Based on Eqs. (8) and (10), one finds that

M†nΣzMn = Σz, Σz =

(
I 0
0 −I

)
. (A3)

Therefore, one can construct a unitary matrix Wn from
the non-unitary matrix Mn as

Wn =

(
un vn
rn sn

)
=

(
−d−1n cn d−1n

an − bnd−1n cn bnd
−1
n

)
. (A4)

Now let us define

Wn =

(
Un Vn
Rn Sn

)
= Wn �Wn−1...W2 �W1, (A5)

where the operation � is performed as(
u2 v2
r2 s2

)
�
(
u1 v1
r1 s1

)
=

(
u1 + v1(1− u2s1)−1u2r1 v1(1− u2s1)−1v2

r2(1− s1u2)−1r1 s2 + r2(1− s1u2)−1s1v2

)
.

(A6)

In this way, Wn is the unitary counterpart of Mn, i.e.,

(
Un Vn
Rn Sn

)
=

(
−D−1n Cn D−1n

An −BnD−1n Cn BnD−1n

)
. (A7)

As a result, for numerical stability, instead of calculating
Mn by Eq. (A2), one can calculate the unitary matrix
Wn based on Eq. (A5).

Finally, the topological quantum number Q can be ob-
tained via the relation

Q = sgn Det(R) = sgn Det(−D−1N CN ) = sgn Det(UN ).
(A8)
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