arXiv:1601.01405v1 [cs.CR] 7 Jan 2016

BitAV: Fast Anti-Malware by Distributed Blockchain
Consensus and Feedforward Scanning

Charles Noyes, cnoyes@usc.edu

Synopsis—In the age of information, of the Internet,
the protection of our most vital infrastructure becomes
increasingly important. Moores law continues to prove
accurate, with the number of transistors on standard
integrated circuits doubling about every two years, but
virus scanning applications have not innovated on the same
level and development has stagnated. Thus, the attack
surfaces become larger and the targets more lucrative,
while the defensive mechanisms are failing to improve at
a comparable rate.

I present the design and implementation of a novel anti-
malware environment called BitAV. BitAV allows for the de-
centralization of the update and maintenance mechanisms
of the software, traditionally performed by a central host,
and uses a staggered scanning mechanism in order to im-
prove performance. The peer-to-peer network maintenance
mechanism lowered the average update propagation speed
by 500% and is far less susceptible to targeted denial-
of-service attacks. The feedforward scanning mechanism
significantly improved end-to-end performance of the mal-
ware matching system, to a degree of an average 14x
increase, by decomposing the file matching process into
efficient queries that operate in verifiably constant (O(1))
time.

I. INTRODUCTION

As the use of the Internet, and other massively
networked systems like it, becomes increasingly
widespread, the ease with which viruses proliferate
grows with it. The result is the need for tech-
nologies designed to block these viruses, generi-
cally called malware (malicious software), at all
major network stops, but especially at the terminal
end-user point. The throughput of most end-user’s
network connections, and thus the amount of po-
tential data consumption, is greatly increasing as
well. While network-based detection systems have
reached speeds of over 1Gb/s, the speed of actual
virus scanning and malware preventive systems has
not kept pace.

The amount of new malware released onto the
public Internet is exploding [1]. As most anti-
virus software currently filters suspect files through
string matching against pseudo-unique identifiers,

each new malware sample, and variant sub-sample,
requires its own signature [2]. Thus the size of
a anti-virus’s signature set S is related to v, the
number of all known malware samples, S oc 7.
Please do note that ’signature’ is used interchange-
ably with ’identifier,” both of which mean the unique
value resulting from the inputting of the candidate
malware sample into a cryptographic hash function
(a function which maps an arbitrary input to a set-
length output with uniform distribution).

Because virtually all anti-malware programs de-
vote most of their resources to the matching of
these signatures S to some arbitrary input stream,
usually with an exact matching algorithm, the two
main factors that determine the effectiveness of
a solution are the ratio of detected to undetected
inputs (possibly taking into account the rate of
false-positives, although this is only a problem in
solutions that utilize regular-expression-based multi-
pattern algorithms) and the scalability of the signa-
ture set. The second factor is due to the possibility
of seemingly highly efficient implementations that
are really only efficient in-memory, as they rely
heavily on constant (very expensive) disk accesses,
and therefore degrade user experience elsewhere in
the system.

Obviously all of these possible pattern matching
schemes rely on having a known pattern set that acts
as the corpus that inputs are matched against. In this
case, it is the known malware identifiers. Thus, any
anti-virus solution that aims to protect its users from
future malware types and variants must have update
mechanisms in place which are able to update the
known pattern set. The apparent solution is just to
have a centralized update server, but this is sub-
optimal, especially for open-source efforts, because
of the cost associated with it and the fact that it acts
as an obvious and openly-facing target for malicious
attackers.

An ideal anti-malware system would be wholly
efficient and extremely fast, but the two are gen-



erally at odds with one another, and thus trade-
offs must be made in the search for an acceptable
middle-ground. Really the aim of this project is to
find that middle-ground.

Objective evaluation shows that our solution,
BitAV, is an effective architecture that is more
optimal than any currently available commercial
or researched/published solution. Specifically, we
show:

e Fast scanning speed with less memory
usage: By layering a cache-efficient bloom
filter on top of the more costly bloomier
filter, BitAV manages to increase end-to-end
throughput of the average-case input by 14x,
and requires less memory to do so than tradi-
tional algorithms.

e Scalability: BitAV can handle large numbers
of signatures with ease, and further space-
efficiency improvements in order-and-match
construction within our data structures will
further improve scalability.

e Decentralized updates and maintenance:
The community of users using and maintain-
ing BitAV are provided a trustable, timeless
conduit by which to work together that is
not dependent on any centralized authority or
schema other than cryptographic verification.
This is accomplished through the use of a
novel blockchain variant.

e Easily implementable on all types of de-
vices: BitAV should work on any architecture,
provided that it has enough RAM and disk
space to store the identifiers and load them
into the memory. The low memory and disk
space usage contributes to this.

A. Virus Scanning Techniques Overview

Signature Matching: checking if a file is a known
virus, or contains bytecode known to be mali-
cious, by searching for the hash of the identi-
fier.

Heuristic Analysis: testing for polymorphism by
executing the virus and searching for known
malicious identifiers in-memory.

Behavioral Analysis: checking if a file contains a
completely unknown virus by running the file
in an emulated environment; the downside is
the large overhead of the emulation.

While this paper explores novel methods to apply

the first type of scanning mechanism, signature

matching, the others should not be discounted. In
the future, when computational resources are so vast
as to render their cost moot, they will likely be the
best choice. They are not currently because of the
associated reduction in end-to-end speed. Thus, this
paper really focuses on the creation of a bridge be-
tween the currently used, and increasingly outdated,
method and the likely future of anti-malware. The
fostered debate around this transitional period [3],
[4], is ongoing, but the consensus view seems to be
that, for the time being, signature matching is the
best option.

There are two main approaches to signature
matching: exact and rolling. Exact signatures are of
whole files, whereas rolling signatures ’roll’ over
some sections n of the file F', such that n = F/k
where k£ is the size of each section. Rolling signa-
tures are useful because if even one bit is flipped
in a malware sample that codes for an identifier,
the corresponding exact signature will change dra-
matically (as a result of the waterfall effect of hash
function computation), while the rolling signatures
will remain mostly the same (perhaps only one
section will be divergent) [5]. Thus, exact signatures
are more precise, whereas the rolling signatures are
more likely to detect slightly modified variants.

II. METHODS/DESIGN

This paper centers around the design and im-
plementation of ’BitAV, an anti-malware system
that uses novel techniques to propagate malware
identifiers along a network of users in conjunction
with an extremely efficient pattern-matching scheme
of my own design to create the optimal anti-malware
solution. The scanning mechanism utilizes a bloom
filter [6] and one of its derivative data structures,
the bloomier filter [7], to create a structure that
allows for constant time key-value queries, without
the high probability of false-positives that comes
with probabilistic data stores.

This is not the first use of bloom filters to speed
up pattern matching ( [8], [9]), nor the first to use
tiered look-up systems based on stratified bloom
filter layering ( [10], [11]). This is, however, the
first implementation that takes advantage of cheap
hash functions, feedforward logical flow, and cache-
resident (or in the case of systems that run a
dedicated processor, texture memory-resident and
massively parallelized) architecture. This module is



Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public key Public key Public key

.._j/eﬁ& "'k@r/@.
Owner 0's "N owner 1's "M Owner 2's
Signature "1 Signature "’ Signature
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

Fig. 1: Currency Blockchain [15]

a more final refinement of previous works, namely
[5] and [10].

The networking module acts as a way for users
across a decentralized [12] network to both receive
and transmit information trustlessly, and works to
improve the reliability and efficiency of the update
network. It does this using blockchain architecture
that allows for distributed anonymous consensus
among peers, with the ’vote’ (an abstracted rep-
resentation of influence) weighting being a result
of computational power expended. Thus, in order
to overpower the rest of the network, a user (or
a group of malicious actors) would need > 50%
network power to gain control [13]. This solves the
Byzantine Generals’ problem nicely, as the expen-
diture of computational power scales directly with
the amount of capital required to obtain it (either
through hardware or, more often, electricity costs)
[14]. This network model is very similar, and is
actually derived from, the core Bitcoin protocol, laid
out by the pseudonymous Satoshi Nakamoto in [15].

A. Blockchain Architecture Overview

Originally created by the visionary Satoshi
Nakamoto, Bitcoin has revolutionized the business
of digital currencies [16]. Bitcoin is, however, only
one of the innumerable number of potential applica-
tions of the blockchain (illustrated in Fig. 1). It has
the potential to completely decentralize data storage,
reputation systems, even democratic voting. These
are all done through the creation of self-executing
digital contracts that are backed by intelligent assets
(cryptocurrency ’coins’). Because there is monetary

Fig. 2: Orphan Chain Competition

value associated with these contracts, there is an in-
centive to make sure that they are ’correct,” and this
(coupled with the proof-of-work [15] system present
in these applications) allows for the coordination of
networks that control valuable information over an
anonymous network (in this case the information is
the transactions that determine currency ownership).
Prior the invention of these mechanisms, it was
simply not possible to coordinate large numbers of
individual activities into a cohesive network with-
out a centralized governing body to watch over
and verify the proceedings [17]. This problem of
coordination is a well-known problem in the field
of distributed networking, originally outlined in the
80’s [18] and more recently encapsulated by the um-
brella ’'Byzantine Generals Problem’ [19], alluded to
earlier.

The Generals problem questions how individual
computer systems can come to a consensus without
a method of omniscient verification (which a central
body would provide), in such a way that the network
is resilient to attacks by bad actors'. It posits that
three divisions of the Byzantine army are camped
outside an enemy city in hopes of conquering it; an
independent commander directs each division and,
in order to be successful, all three must attack at the
same time [19]. The generals can only communicate
through an unreliable messenger, which may be
influenced by a traitor in the group who is actively
trying to derail the generals’ efforts.

A blockchain solves this problem by forcing
transparency among the groups using it, and uses
cryptographic measures to allow for independent
verification of transmitted information by all groups

"The Byzantine Generals Problem seems deceptively simple. Its
difficulty is indicated by the surprising fact that if the generals can
send only oral messages, then no solution will work unless more than
two-thirds of the generals are loyal. In particular, with only three
generals, no solution can work in the presence of a single traitor.”
[19]



Block 1
Header

Prev. Hash
Time
Version

Genesis Block

Merkle Root

Block 1 Transactions

New Invalidated
Signatures Signatures

v894kjf...
fkr8g8s...
b62jf16...

fk58gurj...
ap5gb3...
c82kf06...
w09weO... 0a3kdf9...
20er0fj3... 1g95ksO0...
wq0er80... t4dv86j...
209w9g. .. 05kd9g5...

woieOer... h58fkjd3...

Fig. 3: BitAV Blockchain

in the network. In order to send a new message
(or 'mine’ a new block), significant computational
power must be expended; this makes it both expen-
sive and cumbersome for a bad actor to coordinate
an attack against the network. Blockchain protocols
thus ensure that transactions (included in each block,
and the truly ’valuable’ part of the system) are
valid and secure, as long as > 50% of the network
is non-malicious [14], [16], [20]. The possibility
of multiple competing chains being extended at
once, illustrated in Fig. 2, is addressed by having
each individual select the longest chain they know
of; as long as the proof-of-work computations are
accurate, the longest chain is verifiably the most
difficult to compute, and therefore the least likely
to have been compromised or be a false chain.

B. BitAV Blockchain

The BitAV blockchain is similar to the core
Bitcoin implementation’s, in that it uses crypto-
graphic proofs to extend and verify the chain, but
it radically differs in the way that the transaction
field works. Traditionally, the transaction (’tx’) field
houses a forward-flowing narrative of all known
state-changes for the currency it is recording [21].
BitAV replaces the tx field with two information
stores: the identifier and invalidation fields. The

identifier field allows for the addition of novel
malware identifiers; this does not mean 'new’ sig-
natures, just those not currently present on the chain
in some other block. This is illustrated in Fig. 3.

Each field in the block header (essentially the
meta-data section) is needed to ensure verifiability
and consensus. First, the version number is needed
to prevent errors resulting from hard forks (updates
that would break compatibility with previous ver-
sions). The time is the approximate creation time
of the block and must be within the calculated
acceptable range for each new block; BitAV uses
the timestamp both to recalculate difficulty (for
use in the proof-of-work verification ['mining’ in
Bitcoin’s terminology]) and in some checks that
work to ensure chronological sanity and canonicity.
The previous hash field is what really makes the
blockchain a ’chain,” as it necessitates the inclusion
of the most recent block’s hash in the next block
to be created; because of the difficulty of reverse-
engineering the has function used (SHA256, in this
case), the longer the chain the more difficult it is
to recreate a verifiable blockchain. For reference,
the difficulty in recreating the current Bitcoin chain
is approximately i, where n is the current
blockchain length. Note that this is the worst-case
time when attempting to recreate the exact hashes
of all current blocks using falsified transactions;
individual blocks would reduce it to W, where
k is the depth of the recreation attempt from the
‘top” of the chain. Additionally, this is assuming
SHA-256 is used as a hash function; should another
hash function of digest length d be used, the ap-
proximate odds of finding a collision are 2% Finally,
not pictured is the ’nonce’ that is included in the
header so that the hash of said header can be quickly
modified by changing the nonce. Users extend the
chain by finding a nonce that results in the hash
of the blocks header being a lower value than the
calculated difficulty level [15].

This architecture can actually be used for any
networks whose aim is to share inherently valuable
information across a network of users. The only
stipulation is that the information have some unique
characteristics. In this case, BitAV peers working to
extend the chain can leverage open-source databases
to check whether a submitted identifier is known to
be good or bad; in either case, it allows for some
level of pre-screening. There is still the possibility
of attack by the submission of identifiers that are



Signing

101100110101
Hash

Data

Encrypt hash
using signer's
private key

mO

% a
111101101110

Certificate Signature

______

Digitally signed data

Fig. 4: Cryptographic Signing of Data [22]

currently unknown to be good or bad, or more
generally the submission of universally unknown
identifiers for some malicious purpose.

This vector of attack is mitigated, almost in its
entirety, by a novel voting scheme that we call
’minority transaction consensus.” This is perhaps the
most innovative feature of our network’s design,
and it is what drives the ’invalidation’ field of our
blockchain. To fully appreciate the significance of
this scheme one must understand why it is that
this would never work on a currency network, such
as Bitcoin (we theorize this is the reason that no
other organization has though to implement such a
protocol). When dealing with immutable currencies,
the ability to just ‘rewind’ transactions and return
currency to an entity that had appeared to have
spent it is not allowable, as it opens the door for
far too much fraud and actually would turn Bitcoin
into an even more abusable version of credit card
chargebacks (the preclusion of which Bitcoin touts
as one of its greatest strengths). In our network,
however, each signature is not actually valuable to
an individual, but to the network as a whole in a
more probabilistic sense. Allowing individuals to
reclaim currency which they have appeared to have
spent, and is accepted into the network as canon and
shown to have been validated to all peers, is harmful

on a case-by-case level, whereas the possibility of
0.5% of all malware identifier invalidations being
malicious would only marginally effect the network
as a whole.

We understand that given the newness of the
blockchain architecture and the nature of these prob-
lems being less scientific and more game-theory
oriented, the authors encourage all interested parties
to read up more fully on these concepts in [13]-[15],
and especially [17], which is far more approachable
than many of the more highly specialized studies.

Each new identifier submission holds the general
format of:

[Identifier] [Pubkey] [Signature]

The signature is the cryptographically signed hash
of the identifier, and to verify that the submission is
not a forgery. Verification can take place by using
the included public key to decrypt the signature,
hashing the decrypted value, and then checking
the hash of the identifier against the digest of the
decrypted value’s hash [23], [24]. It is a very simple
and well established procedure, and the signature
step is illustrated in Fig. 4.

Because we are able to ensure that all of the
submissions under a specific key-pair are, in fact,
generated by using that key-pair to sign the sub-
mission, we can ’track’ a user through the network
by search from all the occurrences of their public
key in the 'new identifiers’ transaction field of each
block on the chain. Knowing this, we posited that a
user’s relative “trust’ could be evaluated by counting
these occurrences and using the number of times
they have altruistically added value to the network
(in the form of new identifier submissions) as the
weighting factor in deciding their trust.

When users trying to extend the chain are actively
broadcasting their status as current miners, they re-
ceive both requests to add new identifiers and "votes’
from users attempting identifiers they believe are
invalid. Invalidations are only possible for signatures
added within the last 10 (note that this is an arbitrary
limit and can be easily modulated once large-scale
testing is done) blocks, so that the backbone of the
blockchain is unmanageably canonical. A nice side
effect of using new blocks to change the state of
identifiers in older blocks is that the data within
those older blocks is never changed (and thus the
hash remains constant), so the prev. hash field is
not compromised.

The actual calculation done by a miner in deter-



Block 1 Transactions Block 2 Transactions
>
New Invalidated New Invalidated
Information | Information Information | Information
v894kjf fke8gurj. Ow09wb.. v894kjf.
fkr8g85... ap5gb3 kdp439... 320dlsd...
dffsg8r4.. c82kf06.. w435yb dffsg8rd...
w09we0. 0a3kdf9. 4mfgsas w09we0.
20er0fj3... 1g95ksO0... 45ufgjks. 2asdlfk3...
wq0er80... t4dv8ej... muwedf... 389dfjsd...
209w9g... 05kd9g5 29qiucm 209w9g...
[woieoer ] | ssiias. igrfids. .

[TX]ID: woieOer...JPubkey: pNy3Gik[sig: ... ] [ID: wOieQer...[Pubkeys: nV2d3km,.. [ Sigs: .. |

Increase Trust of pNy3Gik Proportionally Decrease Trust of nV2d3km,.

\Dejzﬁe Trust of pNy3Gik

Fig. 5: BitAV Trust Determination Scheme

mining if an invalidation is allowable is simply:

Z Trust of Invalidators — Z Trust of Submitter
(1)

If the result of this is > 0, the invalidation
goes through. There is no punishment for a failed
invalidation vote because it would bloat the chain. If
the outcome is of an invalidation, the submitter loses
trust equal to that of the result of the subtraction,
and the invalidators lose trust proportionally to their
own trust level. For example, if an invalidation with
10 voters 10 trust total, and they have equal initial
trust, they will all lose one ’trust.” However, if one
has one more trust initially, they will lose more than
the rest. While it may not seem intuitively ’fair’ to
give penalties for invalidations to the voters, it is
necessary to ensure that a bad actor who has accrued
lots of trust does not take over the network by inval-
idating the submissions of any opposers. Note that
the trust points here are simplified for the example
and are abstracted from the real implementation;
never the less, the core ideas hold true.

Bit-AV exploits the knowledge that most input
files are not malicious by using probabilistic data
structures with exactly precise no-match accuracy to
greatly speed up the process of file scanning. It first
constructs a counting bloom filter [6] (a probabilistic
data structure that uses bit vectors to efficiently
map data [25]), illustrated in Fig. 6 from the set
of known identifiers S. We start with an integer
vector (as we want to allow for deletions [26]) of
size m buckets, all of which are set to 0 during
creation. For each identifier, £ hash functions are
applied to its each signature o € S, resulting in hash

{x y, 2}

[o]1]oJ1[1[1]oJofJofofoJ1]o1[0oJ0[1]0]

w

Fig. 6: Bloom Filter [9]

digests hy(a), ho(hi(o) + ), ... hy((hp—1 () + ).
Note the use of the result of the first hash digest
in the second, and the second in the third, etc., as
this allows us to use just one hash function while
still being able to efficiently modulate k. To ensure
the digests hi(a), ... hg((hk—1(e)) + «) are within
the bounds of 1,...m, the result of each digest is
modulated by m.

C. BitAV Scanning Mechanism

Because of the possibility of hash collisions, in
which two inputs result in the same output digest,
we must consider the possibility of false positives.
Given that after inserting n keys into our table of
size m, the probability of a specific bit being 0 is

exactly
1
(1— =), 2)

m
the probability of a false positive p is exactly

1 —kn
—(1-(1-2)"ex(1—em). @
p=(—(= )"~ (1) )
Finally, we can derive that given a target false
probability p, the minimum value of k that will

produce this probability is:
k="1In2. (4)
n

After construction of this bloom filter, we are
left with a basic probabilistic data structure that can
perform lookups in constant time while residing in
the level 2 (L2) CPU cache. This filter will never
produce a false-negative result, assuming proper
implementation, but each lookup has the probability
of being falsely positive p.

In a bloom filter’s worst case scenario, the entire
known set of data must be looked up in the filter
to confirm an uncertain match from the hashing
operation; this scenario can occur when a filter is
too small for the number of elements it contains



(and thus the false-positive rate would be extremely
high). Hash collisions that result even before the
table size modulation operation can occur, but they
are far less likely.

Bloomier filters [7] solve this problem well in
this case, as they allow for key-value lookups using
a vector structure similar to those in bloom filters.
The query runs in constant time and the space
requirement is only O(n), where 7 is the size of the
bucket used in the order-and-match finder operation
[11], [27].

k
Info = P knownPatterns(Hash;(Suspect))

i=1
&)

Equation 5 denotes the method by which informa-
tion is returned from the bloomier structure. An n-
ary XOR operation (symbolized by the € operator)
is performed on the hash digests, 1 to &, of the
suspect string(s). The digests hi(a),...hg(«) are
used as indices in the bloomier index table (for
example, the first position would be at h(«)). The
data in the index table at all of these positions,
collectively, is XORed with the total index table,
returning the information.

Because of the ease and efficiency with which
Eq. 5 performs simple key-value lookups, and the
usage of index table XORing, many parallels can
be draw between our bloomier filters and structures
like IBLT’s [28], KBF’s [29], and other bloomier-
like data stores. While it is possible that one of these
similar data structures outperforms a bloomier filter,
our model can be easily adapted should that prove
to be the case. As of now no clear consensus exists
on the matter.

The integration of these two filtering methods
naturally leads to a system in which information
flows downward, stopping when it hits an impassible
junction, but sometimes slipping through the cracks
in the form of false-positives. I call this mechanism a
feedforward bloom-bloomier filter (FBBF) because
of the preclusion of a feedback loop developing
and the necessitation of downward flow in the data
stream. The only modifications come from the input
disturbances caused by the networking module.

The full FBBF mechanism is illustrated in Fig. 7.
The general format of the scanning algorithm is
derived from [10], which uses a two-tiered bloom
filtering mechanism. Unlike in our filter, their last
step was a full pattern matching against a sub-

Suspect

Files 3F

Target File F, Target File F,
(Filter Hit) (Filter Miss)
,’I‘\

PV I
v

=
=
-

|2 ¥
[ofs]1]ofof2]o]3fofr]o]o]of20]0]

XOR Operation l XOR Operation

1fofo]1fofo]1]o]o]o]ofo]1]0
01011 1f110]0f0]0]10f0f0]1]0

v

i —
HeoNe}

Signatures for Exact
Matching

Fig. 7: Feedforward Bloom-Bloomier Filter

set of the larger signature set (that was still fairly
substantial). Our mechanism doesn’t require this
step, as it operates in constant time throughout.

BitAV-Hash(}") — § takes the set of signatures )
and outputs an integer vector 0 that contains the
hash digests (signatures) of all known malware.

BitAV-Screen(d, F') — (A, Fisyspect) constructs
a feedforward filtering mechanism from ¢
and a bloomier filter. Each file f € F is
scanned using ¢. The tuple (A, Fg,qpect), Where
Foyspect € F, is the list of files matched
by 9, and A is string that the indices of the
signatures actually matched in Fiyspect.

BitAV-HitScan(\,>>) — > takes A and outputs
the set of signatures > C 3" that were matched
during BitAV-Screen by querying our bloomier
filter.

BitAV-HitMatch (>, Fsyspect) — Frnatware takes in
the set of signatures ', the set of files Fouspects
and outputs the set of files Fuipare © Fouspect
matching >’ @ Feuspect-

Note that the entire operation, including the final
string matching, runs in constant time. The final
“exact matching’ stage does not actually utilize an
exact matching algorithm, as they run in linear time
and would reduce the worst-case run to O(n), but
actually just XOR’s the hash of the suspect file with
the bloomier output. If the result is not 0 (as the



End-to-End Speed vs. Industry Solutions

Throughput (MB/s)

Fig. 8: Throughput Graph

XOR of two exactly similar objects is always 0),
then the result was a false positive. Otherwise, the
file is recognized as malicious and deleted.

III. RESULTS

My anti-virus implementation was, on average,
1,400% faster at the process of scanning files than
the mean of the industry solutions tested against my
implementation. This is including test data sets that
were largely cache-misses or not already in the set of
known malware for BitAV. I considered my average
speed to be the mean of the ’average case’ end-to-
end speed tests ( 70% clean files, 30% malware
binaries), with all of the end-to-end throughput
test results represented in Fig. 8. Eliminating those
cases brings the average speed increase to 8,500%,
twice the average performance gain of [5] without
optimizations for cache residency.

One of the main improvements on my original
design was the parallelization of the signature gener-
ation for cases in which bulk file buffers were passed
to BitAV. This was done through a simple CUDA

400 i
300 Ii i
200 I
100 II II Fig. 9: Social Network Analysis of Real-World
Simulation
0
4 4 (4} . . . .
(NN O &S > e L MD35 implementation that was significantly faster at
YR SV FS & » & 8 p g y
%@0 ‘b@z X SEE A hashing large buffers than CPU-driven mechanisms.
It was not, however, faster when the input stream
IiBest |IAverage Worst was inconsistent (which would translate to on-access

in the real world). Disk I/O speeds are increasing
fast enough that within the next decade they will
most likely not be the limiting factor for these kinds
of pattern matching schemes.

Measurements of propagation time were much
more difficult to obtain than scanning speed. To
measure it, a network of servers (mostly AWS
micro instances or virtual machines in accessible
datacenters) was constructed to run my software.
I set up a honeypot server on my own remote
machine, and piped all of the garnered binaries
into a test blockchain (which was shared with all
of the other servers). I measured the difference
between VirusTotal’s first sample seen history and
the time it took me to identify the sample (all
of which I had to manually check to make sure
they were, in fact, malicious); this yielded BitAVs
data, and the data of the industry solutions was
done by periodically checking VirusTotal’s report
API to monitor the detection status. The reason
that most of my results are clustered into tiers is
because VirusTotal’s database of provider results for
each sample is only updated periodically, leading
to highly clustered results. Once again BitAV ran
significantly faster than the tested industry solutions,
500% on average, and our results were even more
statistically significant.



The last measurement I took was of the con-
nections made between test network servers. The
relationships are represented in a social network
analysis graph in figure 4 (note that the Open-
Ord ranking algorithm was used to arrange the
nodes). The graph clearly shows that the nodes natu-
rally clustered into a P2P-structured network. There
are quite a few advantages to a networks hosting
and maintenance being decentralized, namely the
preclusion of denial-of-service attacks (assuming the
protocol is not inherently vulnerable),

IV. CONCLUSION

My findings showed that the implementation of
the proposed design exceeded expectations in all
areas of performance. When fully optimized for
cache residency and with manually tuned bytecode
our anti-virus was able to scan at a speed of over
350MB/s, making it a viable solution for network
based scanning. Yes, it is very possible that an
entire network could be secured through deep packet
inspection by way of BitAV’s revolutionary scanning
mechanisms. The propagation speed tests similarly
showed BitAV’s clear preeminence over ’industry
standard’ solutions.

As more devices are brought online it becomes in-
creasingly important to make sure that all networks
are able to be secured with relative ease and no other
solution provides as much modularity as one that is
hosted by a community of its own users. Adaptation
is limited only by the enthusiasm of the network’s
users to contribute to development, and previous
open-source software development efforts in similar
areas have shown this to be the least likely limiting
factor. Furthermore, with the advent of malware
that is developed and spread by a bad actor with
influence over the institutions built around cyber
defense (e.g. NSA’s REGIN and SIGINT malware
campaigns, whose identifiers have still not been
added to a majority of the commercially available
solutions), it is advantageous to users to know that
there is no bias associated with the addition of new
malware identifiers.

To be clear, my blockchain-based consensus
scheme is the only one in existence that works for
unvalidatable data across an anonymous network.
The potential applications of this architecture are
innumerable. I believe that once atomic binding of
currency networks to informatory networks becomes

a reality (most likely before the year is out), my
networking architecture will have the potential to
disrupt every industry based around valuable, time-
critical data.

V. ACKNOWLEDGEMENTS

I would like to thank prof. Chi So, information
security department at the Viterbi School of Engi-
neering at the University of Southern California, for
introducing me to the field. In addition I would
like to thank Pei Cao, Ozgun Erdogan, Sungmin
Cho, prof. David Brumley, and Sang Kil Cha for
providing useful discussion and source code for
their implementations of Hash-AV and SplitScreen,
respectively. Finally, VirusTotal provided access to
their private research A.P.I. to gather data for the
propagation speed test and malware samples for the
scanning speed tests.

REFERENCES

[1] M. Garetto, W. Gong, and D. Towsley, “Modeling malware
spreading dynamics,” IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (IEEE Cat. No.03CH37428), vol. 3, 2003.

[2] T. Chen and J. Robert, “The evolution of viruses and worms,”
Statistical Methods in Computer, pp. 1-16, 2004.

[3] W. Grossman, “Does antivirus have a future?”’ The Guardian,
vol. 20, 2007.

[4] M. Fitzgerald, “The future of antivirus.”

[5]1 O. Erdogan and P. Cao, “Hash-AV: Fast virus signature scan-
ning by cache-resident filters,” GLOBECOM - IEEE Global
Telecommunications Conference, vol. 3, pp. 1767-1772, 2005.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” pp. 422-426, 1970.

[7]1 B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The
Bloomier filter: an efficient data structure for static support
lookup tables,” Proceedings of the fifteenth ..., 2004.

[8] K. Huang, D. Zhang, and Z. Qin, “Accelerating the bit-split
string matching algorithm using Bloom filters,” Computer
Communications, vol. 33, no. 15, pp. 1785-1794, 2010.

[91 D. Eppstein and M. T. Goodrich, “Straggler Identification
in Round-Trip Data Streams via Newton’s Identities and
Invertible Bloom Filters,” Knowledge and Data Engineering,

.., pp. 1-18, Apr. 2007.

[10] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and
D. G. Andersen, “SplitScreen: Enabling efficient, distributed
malware detection,” Journal of Communications and Networks,
vol. 13, pp. 187-200, 2011.

[11] N. Tuan, B. Hieu, and T. Thinh, “High performance pattern
matching using bloom-bloomier filter,” ...and Information
Technology ( ..., pp. 04, 2010.

[12] J. F. Buford, H. Yu, and E. K. Lua, P2P Networking and
Applications, 2009.

[13] F. Reid and M. Harrigan, “An Analysis of Anonymity in the
Bitcoin System,” Jul. 2011.



[14]

[15]

[16]
[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]
[26]

(27]

(28]

[29]

J. Kroll, I. Davey, and E. Felten, “The economics of Bitcoin
mining, or Bitcoin in the presence of adversaries,” Proceedings
of WEIS, no. Weis, pp. 1-21, 2013.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” Consulted, pp. 1-9, 2008.

K. Okupski, “Bitcoin Developer Reference,” 2014.

A. Wright and P. De Filippi, “Decentralized blockchain tech-
nology and the rise of lex cryptographia,” Available at SSRN
2580664, 2015.

B. Preneel and M. Lowry, “Analysis and Design of
Cryptographic Hash Functions,” Doct Dissertation KULeuven,
2003.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 4, no. 3, pp. 382-401, 1982.

G. Fox, “Deanonymistion of clients in Bitcoin P2P Network,”
Computing in Science & Engineering, pp. 15-29, 2010.

V. Buterin, “A next-generation smart contract and decentralized
application platform,” Etherum, pp. 1-36, 2014.

Acdx, “Digital Signature diagram,” 2008.

D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve
Digital Signature Algorithm (ECDSA),” International Journal
of Information Security, vol. 1, pp. 36-63, 2001.

A. Juels, M. Luby, and R. Ostrovsky, “Security of blind
digital signatures,” Advances in CryptologyCRYPTO’97, pp.
150-164, 1997.

E. Karpilovsky, “Bloom Filters,” in COS598E, 2005, p. 106.

F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese, “An improved construction for counting bloom
filters,” in Algorithms—ESA 2006. Springer, 2006, pp. 684—
695.

D. Charles and K. Chellapilla, “Bloomier filters: A second
look,” in Algorithms-ESA 2008. Springer, 2008, pp. 259-270.

M. T. Goodrich and M. Mitzenmacher, “Invertible bloom
lookup tables,” in 2011 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). 1EEE,
Sep. 2011, pp. 792-799.

S. Xiong, Y. Yao, Q. Cao, and T. He, “kBF: A Bloom Filter
for key-value storage with an application on approximate state
machines,” INFOCOM, 2014 Proceedings ..., pp. 1150-1158,
Apr. 2014.

10



