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Abstract

We present a short and novel derivation of the Schwinger mechanism for particle pair
production in 1+ 1 dimensional de Sitter and Anti de Sitter spacetimes. We work in
the flat embedding space and derive the pair production rates in these spacetimes via
instanton methods by directly exploiting the Davies-Unruh effect. The derivation is
manifestly coordinate independent, and lends support to the deep connection between
two conceptually disparate quantum phenomena - Schwinger effect and the Davies-
Unruh effect.
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1 Introduction

It is well known that in presence of an electric field, the vacuum is unstable and particle-
antiparticle pair production occurs spontaneously [I]. In flat Minkowski space, the probablity
of this event occuring is given by
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where e is the particle charge and E is the constant external electric field. This probability is
non-perturbative in the coupling “e” as can be seen from (II). This effect, due to Schwinger,
has been extensively explored in various contexts - especially in non-trivial backgrounds to
understand the effects of temperature and/or spacetime curvature on the Schwinger mecha-
nism [2, 3]. For instance, the Schwinger mechanism has been applied to particle production
and false vacuum decay in de Sitter space [3, 4]. The de Sitter case is interesting from the
cosmological perspective, and the computation essentially revolves around finding the one-
loop effective action, formally via the heat kernel method. The Schwinger mechanism has also
been investigated in Anti de Sitter backgrounds, in the context of charged Reissner-Nordstrom
(RN) black holes. RN black holes emit particles via Hawking radiation and since the near
horizon geometry is AdS; x S?, there is an inevitable interplay between the Hawking process
and Schwinger effect. [5] [6].

In addition to the Schwinger effect, quantum field theory predicts another remarkable and
far reaching result - the Davies-Unruh effect [7]. Stated simply, according to this effect an
uniformly accelerating observer perceives a thermal bath with temperature proportional to
its acceleration. Besides the fact that under the influence of a constant electric field, charged
particles move with constant acceleration a = %, there does not seem to be any relation be-
tween the Schwinger and Davies-Unruh effects. However, the first hint of a relation between
the two effects surfaces while studying Euclidean instantons in the context of Schwinger pair
production. The instanton is characterized as a solution to the classical equations of motion,
albeit in Euclidean time. Such a solution describes a closed circular orbit in flat Minkowski
space. The corresponding action for an instanton in the presence of a constant electric field
in flat space is given by Sgu. = ™4 ® . and the proper Euclidean time to complete this closed

orbit is given by Hamilton—Jacol;iErelation TEue = OMSEue = 27“ = ﬁ, where Tpy is the
Davies-Unruh temperature. This points to a possible connection between Schwinger and the
Davies-Unruh effect. In this paper we advance this connection by deriving Schwinger pair
production rate using the Davies-Unruh effect, in both de Sitter and Anti de Sitter space-
times. By working in the embedding space, we shall present a coordinate independent and

unified treatment of deriving Schwinger effect in these spacetimes.



We shall work in the semiclassical approximation using instanton methods. Additionally, we
restrict ourselves to 1+ 1 dimensions for simplicity. The qualitative picture for the Schwinger
mechanism is as follows. Initially, there is just vacuum and the electric field is E,,; every-
where. Suddenly a particle-antiparticle pair is spontaneously created and the electric field
drops to E;, between the particles. Subsequently the pair accelerate apart, converting the
electric field value to Ej, as they move away. The closed Euclidean worldline divides the
space into “inside” and “outside” regions. On the worldline, the electric field is defined as
the average sum of F,,; and E;,. In the instanton method, the charged particle couples to
the electromagnetic field and by complexifying the time coordinate, the on-shell action (the
coupling term and the surface term cancel each other on-shell) for the particle-field system is
given by [§]

1
Sp =M / ds+ 5 / FM™F,, 2)
b Vol

We assume a constant external electric field. Following the work of Brown and Teitelboim
[9], we define the following quantities.

Eout - Ez = —e
Eout + Ezn - 2Eon (3)

Using equations (2)) and (3)), the relevant instanton action is therefore given by

Sglinstanton] = S — Sg*
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Now consider a constant external electric field in dSs/AdSs space given by
F;w = —Fout —9€uw (5)

where ¢y = —e;9p = 1. Under the action of the above field, charged particles trace out
worldlines according to the equations of motion
eFylu;

o = = (6)



where a, is the 2-acceleration of the particle, FJ the field strength defined on the worldline,
and v’ the usual 2-velocity. Using (B) and (@), and considering the fact that u'u; = —1, the
magnitude of 2-acceleration is given by
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As defined before, E,,, is the electric field on the worldline.

2 Schwinger Effect in dS,

Consider de Sitter space with scale R defined by the hyperboloid

- X0+ X7+ X5 =R (8)

From the perspective of embedding space, this hyperboloid exists in 2+1 dimensional flat
Minkowski space. Consider a constant electric field along the direction X;. The charged
particle then accelerates along this direction keeping the coordinate Xy = X. = constant.
Therefore, the trajectory in embedding space is given by

— X2+ X?=R*- X? (9)

suggesting that in embedding space the particle has an accelerating trajectory with “3-
acceleration” given by

az =1/(R* - X) (10)

In an elegant paper by Deser and Levin [10], it was shown that acceleration in embedding
space is what determines the Davies-Unruh temperature in the target space as well. This
equivalence of temperature is the key step. Therefore, in our case of dS,, the Davies-Unruh
temperature in terms of acceleration is given by
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= 27TTUnruh (11)
Therefore, from equations (7)), (I0) and (II]), we have
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We can now compute the instanton action (4)) in the embedding space. We first complexify
the time coordinate as Xy — iXop, and thus from Eq.(d) the worldline radius becomes
Ry =/R?—- X2 = #W. The instanton action () for dSs can be calculated as

Sglinstanton] = 2nMRy — eE,, /// 5(\/X§E + X2+ X2 — R) dXod X dXog
D

= 2nR[\/ M2+ e2E2 R? — ¢E,, ] (13)

where the domain of integration D : —y/R? — X2 < Xop < \/R* — X2; —\/R? — X2 — X2, <
X; < VR?2—X2—- X% 0< X, < /R?— X?— X2, Using (I3), the Schwinger pair cre-
ation rate is given by

— 2 22 2 _
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We observe that even in the absence of any electric field, pair production occurs with rate
Lys, ~ e 2™ME  This feature is the well known cosmological particle production of heavy
fields in de Sitter space [3] 4, [§].

3 Schwinger Effect in AdS,

We now turn to Anti de Sitter space. Consider AdS, with scale R defined by

—~ X0+ X - X3 = —R? (15)

From the perspective of embedding space, this hyperboloid exists in 1+2 dimensional flat
Minkowski space. This immediately raises a concern regarding closed time-like curves since
both X, and X, behave like time coordinates. However, in our present work we sidestep this
issue by taking X, as the “relevant” time coordinate. We now consider a constant electric
field along the direction X;. The charged particle then accelerates along this direction keeping
the coordinate Xy = X. = constant. Therefore, the trajectory is given by

- Xe+ X=X - R? (16)

This implies that in embedding space the particle has an accelerating trajectory with “3-
acceleration” given by

az =1/(X; - R?) (17)



Again following [10], the Davies-Unruh temperature in AdS, in terms of acceleration is given
by
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= 27TTUnruh (18)
Therefore, from equations ([7), (I7) and (I&]), we have
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The instanton action can now be computed as follows. As in the case of dS,, the time co-
ordinate is complexified as Xq — iXog, and thus from Eq.(I6]) the worldline radius becomes

Ry=+/X?—-R?= \/%. Therefore the instanton action (4]) for AdSs can be calcu-
lated in the embedding space as

Sgp[instanton] = 2t M Ry — B,y / / / 6(\/X22 — X2— X2, — R) dXodX1dXop  (20)
D

where now the domain of integrationis D : —/X2 — R2 < Xop < /X2 — R?%; —/X2—- X}, — R2 <
X; < /X2- X2 —R% 0< Xy < /X2+ X% + R

Evaluating the above integral near the neighborhood \/% ~ 1, we get
Sgplinstanton] = 2w R[eEy, R — \/€2E2 R? — M?] (21)
Therefore, the Schwinger pair creation rate is given by
T pas, ~ ¢~ 2 RleBon R/ B2, 2= M) (22)
However, unlike in the case of dS,, there exists a critical threshold electric field E2, = % in

AdS,, below which there is no pair creation [5, [6]. This is due to the confining effects of AdS.

4 Conclusion

The derivation presented here is self-contained but a few concluding remarks are in order.
In our calculation, we have ignored the gravitational backreaction, and have also implicitly
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assumed that mass of the instanton is much greater than curvature scales, i.e. M? > %. If
one relaxes this assumption, the instanton actions and pair production rates (I3)), (I4]), (21))
and (22) will be modified by simply shifting the mass squared term to M? — M? F 15 for de
Sitter and Anti de Sitter spaces respectively. This shift can be understood by looking at the
quadratic Casimirs for de Sitter and Anti de Sitter groups, SO(1,2) and SI(2,R), respectively.
Though operationally we have used the kinematic equalities in Egs.(II]) and (I8]) to derive our
results, it is noteworthy to belabor on their interpretation. The first equality in both these
equations is a classical relation, and in fact, the relation between accelerations in any embed-
ding space and a submanifold of it (ap and ap_1) is a purely differential geometric result (see
[T1] for a pedagogical discussion). However, the appearance of temperature, which has its
origins in quantum statistics, presents a conceptually different interpretation of Eqs. (1] and
(I8)). There is no general theorem that establishes the equivalence of Unruh temperature for a
general embedding space and its submanifold. Such an equivalence has only been established
for (Anti) de Sitter spacetimes [10], where the detector response for target spaces as well as
their corresponding embedding spaces was explicitly calculated using quantum field theory.
We therefore posit that Eqgs.(II]) and (I8) also hold true at the quantum level, thereby latently
encapsulating the Davies-Unruh effect in our derivation.

Summarizing, our present derivation of the Schwinger pair creation rate rests on two ingre-
dients - 1) Equivalence of Euclidean action at the level of both embedding as well as target
space. 2) The Davies-Unruh effect, and the equivalence of temperature at the level of both
embedding as well as target space. This strongly suggests that instead of working in target
space, it should be possible to demonstrate Schwinger pair creation in AdS/dS by employing
a quantum field theoretic approach in their flat embedding spaces. However, unlike in the
case of de Sitter, one may run into technical difficulties while attempting a field theoretic
derivation in the case Anti de Sitter spacetime. This is due to the presence of two time-like
coordinates at the embedding level. Therefore, additional assumptions and boundary condi-
tions must be specified for the derivation to go through. Additionally, while the Davies-Unruh
effect is essentially thermodynamic in nature, the Schwinger effect is not. The fact that the
Davies-Unruh effect was used to derive the pair production rate alludes to a deep connection
between the two phenomena. Though this connection has been explored previously in the
literature [3, [5, 12], 13], we believe our present derivation to be the most concrete realization
of this connection by invoking the Davies-Unruh effect.
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