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Abstract

Learning the kernel functions used in kernel methods has been a vastly explored area in machine learn-
ing. It is now widely accepted that to obtain ’good’ performance, learning a kernel function is the key
challenge. In this work we focus on learning kernel representations for structured regression. We propose
use of polynomials expansion of kernels, referred to as Schoenberg transforms and Gegenbaur transforms,
which arise from the seminal result of Schoenberg [1938]. These kernels can be thought of as polynomial
combination of input features in a high dimensional reproducing kernel Hilbert space (RKHS). We learn
kernels over input and output for structured data, such that, dependency between kernel features is maxi-
mized. We use Hilbert-Schmidt Independence Criterion (HSIC) to measure this. We also give an efficient,
matrix decomposition-based algorithm to learn these kernel transformations, and demonstrate state-of-the-
art results on several real-world datasets.

1 Introduction
The goal in supervised structured prediction is to learn a prediction function f : X → Y from an input domain
X , to an output domain Y . As an example, in articulated human pose estimation, input x ∈ X would be an
image of a human performing an action, and output would be the an interdependent vector of joint positions
(x, y, z). Typically, space of functionsH is fixed (decision trees, neural networks, SVMs) and parametrized.
We estimate these parameters from a given set of training examples S = {(x1, y1), (x2, x2), . . . , (xm, ym)} ⊆
X ×Y , drawn independently identically distributed (i.i.d.) from P (x, y) over X ×Y . We formulate a mean-
ingful loss function L : Y × Y , such as 0-1 loss, or squared loss [Weston et al., 2002], or a structured loss
[Taskar and Guestrin, 2003, Tsochantaridis et al., 2004, Bo and Sminchisescu, 2010, Bratieres et al., 2013].
During prediction for a input x∗ ∈ X , we search for the best possible label y∗ so that this loss L(f(x∗), y) is
minimized, given all of training data, and for all possible labels y ∈ Y , such that,

y∗ = f(x∗) = arg min
y∈Y
L(f(x∗), y)

In case of kernel methods for structured prediction [Weston et al., 2002, Taskar and Guestrin, 2003,
Tsochantaridis et al., 2004, Bo and Sminchisescu, 2010, Schölkopf et al., 2006, Nowozin and Lampert, 2011],
space of functions H is specified by positive definite kernel functions, which further are jointly defined
on the input and output space as h((x, y), (x′, y′)). In the most common case, this kernel is factorized
over the input and output domain as k(x, x′) and g(y, y′), with input and output elements x, x′ ∈ X and
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y, y′ ∈ Y , respectively. These individual kernels map arguments data to reproducing kernel Hilbert space
(RKHS) or kernel feature spaces. They are denoted by K and G, respectively. Now, it is well known that
performance of kernel algorithms critically depends on the choice of kernel functions (k(x, x′) and g(y, y′)),
and learning them is a challenging problem. In this work, we propose a method to learn kernel feature space
representations over input and output data for problem of structured prediction.

Our contributions are as follows, first, we propose to use of monomial and expansion of dot product and
Gegenbaur expansion of radial kernel to learn a polynomial combination kernel features over both input and
output. Second, we propose an efficient, matrix-based algorithm to solve for these expansions. And third, we
show state-of-the art results on synthetic and real-world datasets data using Twin Gaussian Processes of Bo
and Sminchisescu [2010] as a prototypical kernel method for structured prediction.

1.1 Related work
In the seminal work of Micchelli and Pontil [2005] showed that we can parametrize a family of kernels F
over a compact set Ω as

F =

{∫
Ω

Gω(x)dω : p ∈ P(Ω)

}
,

where P(Ω) is a set of all probability measures on Ω, and G(ω) is a base kernel parametrized by ω. To
illustrate with an example, if we set Ω ⊆ R+ and Gω(x) as multivariate Gaussian kernel over x, with
variance ω, then F corresponds to a subset of the class of radial kernels.

Most kernel learning frameworks in past have focussed on learning a single kernel from a family of
kernels (F) defined using above equation. All of these frameworks have focussed on problem of classification
or regression. Table 1 illustrates previous work on learning kernels for different choices of Ω, and base kernel
Gω(x, y), over data domain X . Some of the above approaches work iteratively, [Argyriou et al., 2005, 2006]

Kernel family and base kernel Gω(x, y) Related Work

Radial kernels (Iterative), Gω(x, y) = e−ω‖x−y‖
2

Argyriou et al. [2005, 2006].

Dot product kernels, Gω(x, y) = eω〈x,y〉 Argyriou et al. [2005, 2006].

Finite convex sum of kernels, SimpleMKL Rakotomamonjy et al. [2008].

Radial kernels (Semi-infinite Programing, Infinite Kernel Learning) Gehler and Nowozin [2008]

Shift-invariant kernels (Radial and Anisotropic), Gω(x− y) Shirazi et al. [2010]

Table 1: Kernel learning frameworks which learn kernels as convex combination of base kernels Gω(x, y).

while others use optimization methods such as, semi-infinite programming [Özögür-Akyüz and Weber, 2010],
or QCQP [Shirazi et al., 2010]). A review paper by Suzuki and Sugiyama [2011] surveys many of these
works on various Multiple Kernel Learning algorithms. The relevant works which uses results on polynomial
expansion of kernels has been of Smola et al. [2000] which learn dot product kernels using monomial basis
{1, x, x2, . . .}, and learning shift-invariant kernels using radial base kernels of Shirazi et al. [2010], both of
these have been proposed for classification and regression.

We use results on expansion of kernels for learning kernels for problem of structured regression. In
propose a framework to learn kernels for structured prediction that use monomial and Gegenbaur expansions
to learn a positive combination of base kernels. The Gegenbaur basis has an advantage of being orthonormal
and provides a weight parameter γ that helps avoid Gibbs phenomenon observed in interpolation [Gottlieb
et al., 1992].
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Outline of this paper is as follows. In section 2 we describe radial and dot product kernels along and
their respective polynomial expansions. In section 3 we describe the dependency criteria (HSIC) used in
our problem formulation. In section 4 we describe our proposed algorithm. In section 5 we describe Twin
Gaussian Processes used for structured prediction. In section 6 we present experimental results on several
synthetic and real-world datasets. Finally, section 7 and section 8 are discussion and conclusion, respectively.

2 Kernel Transformations

2.1 Radial and Dot Product Kernels
A classical result of Schoenberg [1938] states that any continuous, isotropic, kernel k(x, x′), is positive
definite if and only if k(x, x′) = φ(〈x, x′〉), and φ(t) is a real valued function such that

φ(t) =

∞∑
i=0

αkG
λ
k(t), t ∈ [−1, 1]

where
∑∞
k=0 αk ≥ 0, k ∈ Z+ and αkG

λ
k(1) < ∞. The symbol Gλk(t) stands for what is known as

ultraspherical or Gegenbaur basis polynomials. Examples of such kernels include the Gaussian and Laplacian
kernels.

To understand this better, if we look at a result of Bochner [1959] which says that, a continuous, shift-
invariant kernel k(·) is positive definite, if and only if, it is a inverse Fourier transform of a finite non-negative
probability measure µ on Rd.

k(x− y) = φ(z) =

∫
Rd

e
√
−1〈z,s〉dµ(s), x, y, s ∈ Rd

This results allows us to represent a shift-invariant kernel uniquely as a spectral distribution in a spectral
domain. Now, if we take the Fourier transform of equation 2.1, we have a unique representation of positive
definite kernel φ(t), and also a unique representations of positive definite base kernels Gλk(t), k = 1, 2, . . .,
in the spectral domain. Hence, the kernel expansion is a nonnegative mixture of base spectral distributions
whose kernels are given by kernels Gλk(t) with nonnegative weights αk’s.

If we look at monomial basis instead of Gegenbaur basis, a similar interpretation can be given for dot
product kernels as mentioned in Smola et al. [2000]. Additionally, we know that the span of monomials form a
dense basis in L2[−1, 1], and by Weirerstrass approximation theorem [Szegö, 1939], any continuous function
on a [−1, 1] can be approximated uniformly on that interval by polynomials to any degree of accuracy. The
Gegenbaur basis is orthonormal and provides additional benefits in interpolation accuracy for functions with
sharp changes. Thus avoiding the so called Gibbs phenomenon, [Gottlieb et al., 1992].

In our work, we use above expansions of kernel k′(·, ·) on features obtained from an initial kernel k(·, ·),
defined on X ×X . We refer to k(·, ·) as initial kernel, and estimate φ(t) which when applied to kernel matrix
[K]i,j = 〈x, y〉 gives us a new kernel matrix [K]′i,j = φ([K]i,j . Figure 1 illustrates this pictorially.

2.2 Monomial Transformations
In case of the monomial basis functions we have the following expansion.

Theorem 2.1 (Schoenberg [1938]). For a continuous function φ : [−1, 1]→ R and k(x, y) = φ(〈x, y〉), the
kernel matrix K′ defined as K′ = φ([K]i,j) is positive definite for any positive definite matrix K if and only

3



Figure 1: Finding of Kernel Transformations φ(·)

if φ(·) is real entire, and of the form below

k′(〈x, y〉) = φ(t) =

∞∑
i=0

αit
i (1)

with αi ≥ 0 for all i ≥ 0.

So φ(t) is an infinitely differentiable and all coefficients αj are non-negative (eg. φ(t) = et). A benefit
of this monomial expansion is that it is easy to compute and can be readily evaluated in parallel.

2.3 Gegenbaur Transformations
We obtain Gegenbaur’s basis if we insist on having a orthonormal expansion. These expansions are also more
general, in the sense that they include a weight function w(t; γ), which controls the size of the function space
used for representation, controlled by a parameter γ > −1/2.

To formally state,

Theorem 2.2 (Schoenberg [1938]). For a real polynomial φ : [−1, 1]→ R and for any finiteX = {x1, x2, x3, . . .}
the matrix [φ(〈xi, xj〉)]i,j is positive definite if and only if φ(t) is a nonnegative linear combination of Gegen-
bauer’s polynomials Gγi (t), which is,

φ(t) =

∞∑
i=0

αiG
γ
i (t) (2)

with αi ≥ 0, and
∑
i aiG

γ
i (1) <∞.

Definition 2.1. Gegenbauer’s polynomials are defined as below,

Gγ0(t) = 1, Gγ1(t) = 2γt, . . . , (3)

Gγi+1(t) =

(
2(γ + i)

i+ 1

)
tGγi (t)−

(
2γ + i− 1

i+ 1

)
Gγi−1(t) (4)

As stated earlier Gγk and Gγl are orthogonal in [−1, 1] and all polynomials are orthogonal with respect to
the weight function w(t; γ) = (1− t2)(γ−1/2) and γ > −1/2.∫ 1

−1

Gγk(t)Gγl (t)w(t; γ)dt = 0, k 6= l. (5)
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The weight function above defines a weighted inner product on the space of functions with a norm and a inner
product given by

‖φ‖2 =

∫ 1

−1

w(t; γ)φ(t)φ(t)dt, (6)

〈φ, ψ〉 =

∫ 1

−1

w(t; γ)φ(t)ψ(t)dt (7)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

γ=0.5

γ=1.0

γ=10.0

γ=0.5

γ=1.0

γ=10.0

Figure 2: Weight function w(t; γ) as a function of γ,
as we see that the γ value controls the behavior of
the weight function at the boundaries, and equivalently
controlling the size of the function space, which de-
creases with size.

This weight function controls the space of func-
tions over which we estimate these polynomial
maps. Figure 2 shows the weight function obtained
by different γ parameter. We observe that γ value
controls the behavior of the function at the boundary
points { 1,−1 }. Having this weight function also
improves the the quality of interpolation by avoid-
ing the Gibbs phenomenon as further explained in
Gottlieb et al. [1992] .

To summarize given a base kernel matrix K on
input data, we expand the target kernel K′ as a trans-
formation φ(t) applied to K. This maps the ini-
tial RKHS features k(x, ·) to new RKHS features
k′(x, ·). These two forms of the polynomial map-
ping representations have been known before in the
literature but have mostly used for non-structured
prediction tasks like regression and classification. In
our approach, we use these expansions on both input
and output kernels so as to maximize dependence
between mapped feature spaces k′(x, ·) and g′(y, ·),
using the Hilbert Schmidt Independence Criterion
(HSIC) described below.

3 Hilbert Schmidt Independence
Criterion
To measure cross-correlation or dependence between structured input and output data in kernel feature Gret-
ton et al. [2005] proposed a Hilbert Schmidt Independence criterion (HSIC). Given i.i.d. sampled input-output
pair data, {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ P (x, y) HSIC measures the dependence between X and Y .

Definition 3.1. If we have two RKHS’s K and G, then a measure of statistical dependence between X and Y
is given by the norm of the cross-covariance operator Mxy : G → K, which is defined as,

Mxy := Ex,y[(k(x, ·)− µx)⊗ (g(y, ·)− µy)] (8)
= Ex,y[(k(x, ·)⊗ g(y, ·))]− µx ⊗ µy (9)

and the measure is given by the Hilbert-Schmidt norm of Mxy which is,

HSIC(pxy,K,G) := ||Mxy||2HS (10)
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So the larger the above norm, the higher the statistical dependence between X and Y . The advantages of
using HSIC for measuring statistical dependence, as stated in Gretton et al. [2005] are as follows: first, it has
good uniform convergence guarantees; second, it has low bias even in high dimensions; and third a number
of algorithms can be viewed as maximizing HSIC subject to constraints on the labels/outputs. Empirically,
in terms of kernel matrices it is defined as

Definition 3.2. Let Z := {(x1, y1), . . . (xm, ym)} ⊆ X ×Y be a series of m independent observations drawn
from pxy . An unbiased estimator of HSIC(Z,K,G) is given by,

HSIC(Z,K,G) = (m− 1)−2trace(KHGH) (11)

where K,H,G ∈ Rm×m, [K]i,j := k(xi, xj), [G]i,j := g(yi, yj) and [H]i,j := δij −m−1

Now, for well defined normalized and bounded kernels, K and G. We have HSIC(Z,K,G) ≥ 0. For
the ease of discussion we denote HSIC(Z,K,G) by HSIC(K,G). So we use HSIC to measure depen-
dence between kernels in the target kernel feature space and estimate these transformations (αi′s, β′js) by
maximizing it.

4 Learning Kernel Transformations
The goal in structured prediction is to predict output label y ∈ Y , given a input example x ∈ X , our thesis is
that if output kernel feature g′(y, ·) is more correlated (dependent) with input kernel feature k′(x, ·), then we
can significantly improve the regression performance. We propose to use HSIC for this. Also, maximizing
HSIC (or equivalently Kernel Target Alignment) has been used as an objective for learning kernels in the past
[Cortes et al., 2012]. These frameworks maximize the HSIC or alignment between input and outputs, which
in our case are structured objects. Shawe-Taylor and Kandola [2002] in their work provide generalization
bounds and which confirm that maximizing alignment (i.e HSIC) does indeed lead to better generalization.

Following on this, if we let K′ = φ(K), and G′ = ψ(G), where K and G are normalized base kernels
on input and output data. Using the empirical definition HSIC we define the following objective function to
optimize as,

L(α∗,β∗) = max
α,β

HSIC(φ(K), ψ(G)) (12)

subject to αi ≥ 0, βj ≥ 0,∀i, j ≥ 0 (13)

In case of monomial basis as in section 2.2, we can use equation 1 on kernel matrices K and G we get
equations for φ : K→ K′ and ψ : G→ G′ as follows,

φ(K) =

∞∑
i=0

αiK
(i), αi ≥ 0, ∀i ≥ 0 (14)

φ(G) =

∞∑
j=0

βjG
(j), βj ≥ 0, ∀j ≥ 0 (15)

where K(i) is the kernel obtained by applying the ith polynomial basis ti, to the base kernel matrix K
(similarly Gλk(t) for Gegenbaur basis). Figure 3 illustrates this. Assuming our base kernels are both bounded
and normalized we also need our new kernels φ(K) and ψ(G) to be at-least bounded. For this purpose, we
impose l2-norm regularization constraint on αi’s and βj’s, that is ‖α‖2 = 1 and ‖β‖2 = 1. These constraints
are similar to the l2-norm regularization constraint on positive mixture coefficient’s in the Multiple Kernel
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Figure 3: Twin Kernel Learning

Learning framework of Cortes et al. [2012]. These helps generalization to unseen test data and also avoid
arbitrary increase of optimization objective so as to maximize it.

Substituting the expansions equations 14 and 15 in equation 13, and simplifying the main objective 13
and we get,

maximize
∞∑
i=0

∞∑
j=0

αiβjCi,j (16)

subject to, ‖α‖2 = 1, ‖β‖2 = 1

where the C-matrix is such that [C]i,j = HSIC(K(i),G(j)). Also, we know that the entries of the C-matrix
are non-negative. The C-matrix looks as follows,

C =

K(0) K(1) K(i) K(d2)

G(0) C1,1 C1,2

... Cd2,1

G(1) C1,1 C1,2

... Cd2,1

G(0) C2,1 C1,2

... C2,d2

G(j) . . . . . . Ci,j . . .

G(d1) Cd1,1 Cd1,2
... Cd1,d2

(17)

where Ci,j = HSIC(K(i),G(j)).
To further explain, every entry [C]i,j = HSIC(K(i),G(j)) represents higher order cross-correlations

among the polynomial combination of features of order i and j between input and output, respectively. Hence
by appropriately choosing coefficient’s αi and βj we are maximizing these higher order cross-correlations
in the target kernel feature space. Here we approximate sum to finite degrees d1 and d2 which leads us to
a finite dimensional problem with deg(φ) = d1 and deg(ψ) = d2. This amounts to using all polynomial
combinations of features up to degree d1 for input and d2 for output. So higher the degree we choose more
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is the dependence and intuitively better is the prediction. The upper bound on the degree is computationally
limited by the added non-linearity in the kernel based prediction algorithm and can lead to overfitting. So
we choose these degrees empirically by cross-validation until we saturate the performance of the prediction
algorithm.

We have the following theorem regarding the solution of optimization problem 16,

Theorem 4.1. The solution (α∗,β∗) to the optimization problem in 16 is given by the first left and right
singular vector of the C-matrix

Proof. Using Perron-Frobenius theorem [Chang et al., 2008] for square non-negative matrices CTC and
CCT , we claim that both CTC and CCT have Perron vectors α∗ and β∗, respectively. Both α∗ and β∗ are
the left and right singular vectors of C and also maximize Eq. 16.

This above theorem gives us our required solution to the problem. Hence, to solve for the unknown’s αi’s
and βj’s we do Singular Value Decomposition (SVD) of the C-matrix and choose α and β to be the first
left and right singular vectors Theorem 4.1. The non-negativity of the α and β vector is guaranteed due to
non-negativity of the C-matrix combined with Perron-Frobenius theoremm Chang et al. [2008].

We also observe that α0 = β0 = 0., so choosing d1 = 1 corresponds to using the identity mapping
φ(t) = t on the input kernel, which corresponds to using the initial kernel only, or equivalently, no mapping
on input kernel. A similarly logic also applies if we set d2 = 1, then we have ψ(t) = t and no mapping on
output base kernel. This is interesting because if we set d2 = 1 and d1 to be some arbitrary value greater than
one, then solution α∗ is exactly where α∗i ∝ HSIC(K(i),G), which same as choosing coefficients based
on kernel alignment as in Cortes et al. [2012].

We also like to point out the similarity of our proposed objective to that of Kernel Canonical Correlation
Analysis (KCCA) objective, which also uses HSIC [Chang et al., 2013]. In KCCA we find two nonlinear
mappings φ(·) ∈ K and ψ(·) ∈ G from their prespecified RKHS’s maximizing statistical correlation. In
our approach, we also look for analytical kernel transformations φ(·) and ψ(·) on initial kernel matrices to
maximize the same objective.

5 Twin Gaussian Processes
Twin Gaussian Processes (TGP) of Bo and Sminchisescu [2010], are a recent and popular form of structured
prediction methods, which model input-output domains using Gaussian processes with covariance functions,
represented by K and G. These covariance matrices encode prior knowledge about the underlying process
that is being modeled. In many real world applications data is high dimensional and highly structured,
and the choice of kernel functions is not obvious. In our work, we aim to learn kernel covariance matrices
simultaneously. We use TGP as an illustrative example to demonstrate the benefits of learning them. Although
we note that this framework is not limited only to the use of Twin Gaussian Processes.

In TGP choice of the auxiliary evaluation function is typically some form of information measure, e.g.
KL-Divergence or HSIC which are known to be special cases of Bregman divergences (See Banerjee et al.
[2005]). KL-Divergence is an asymmetric measure of information, while HSIC is symmetric in its arguments.
We refer to two versions of Twin Gaussian Processes below corresponding to each of these measures of
information. We refer to them as TGP with KL-Divergence or simply TGP, and TGP with HSIC for TGP.

TGP with KL-Divergence: In this version of TGP, we minimize the KL-divergence between the kernels,
K andG, given the training data X × Y and test example x∗. The prediction function for HOTGP is,

y∗ = arg min
y
DKL((GY ∪y||KX∪x∗) (18)

8



TGP with HSIC: For this version of TGP with HSIC criteria, the prediction function maximizes the
HSIC between the kernels K and G given the training data (X × Y), and test example x∗. The prediction
function looks as follows,

y∗ = arg max
y

HSIC(GY ∪y,KX∪x∗) (19)

5.1 Modified Twin Gaussian Processes (TGP)
We also both of these criteria propose above against degree of mapping d1 and d2. This allows us to show
how each information measure is affected as the mapping degrees d1 and d2 are increased. The relationship
we observe is straightforward and direct, allowing the choice of d1 and d2 to be made easily. We refer to
these new modified TGP’s as Higher Order TGP with KL-Divergence (HOTGP) and Higher Order HSIC
(HOHSIC) for TGP using HSIC.

Modified TGP with KL-Divergence: In this version of TGP, we minimize the KL-divergence between
the transformed kernels, φ(K) and ψ(G), given the training dataX ×Y , and test example x∗. The prediction
function for HOTGP is,

y∗ = arg min
y
DKL((ψ(GY ∪y)||φ(KX∪x∗)) (20)

Modified TGP with HSIC: For this version of TGP with HSIC criteria, the prediction function maxi-
mizes the HSIC between the transformed kernels φ(K) and ψ(G) given the training data X × Y , and test
example x∗. The prediction function looks as follows,

y∗ = arg max
y

HSIC((ψ(GY ∪y), φ(KX∪x∗)) (21)

6 Experiments
We show empirical results using Twin Gaussain Processes with KL-Divergence and HSIC, and using both
monomial and Gegenbaur transformations on synthetic and real-world datasets. To measure improvement in
performance over the baseline we look at empirical reduction in error which we call % Gain defined as

% Gain =

(
1−

Error(mapping)

Error(no mapping)

)
× 100.

In all our experiments, we use Gaussian kernels k(xi, xj) = exp(−γx||xi−xj ||2) and g(yi, yj) = exp(−γy||yi−
yj ||2) as base kernels on input and output, respectively. The bandwidth parameters γx and γy were chosen
using cross-validation using base kernel on the original dataset. The weight parameters were chosen to be
λ1 = 0.51 and λ2 = 0.52 using rough estimates from expressions in Gottlieb et al. [1992] and validated on
validation set. For choice of expansion degree we increase degrees d1 and d2 until % Gain saturates on the
cross-validation. We learn kernel transformations φ(·) and ψ(·) using above proposed approach.

6.1 Datasets
6.1.1 Synthetic Data

9
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Figure 4: S-Shape dataset.

S Shape Dataset: The S-shape synthetic dataset from Dalal and Triggs
[2002] is a simple 1D input/output regression problem. In this dataset, 500
values of inputs (x) are sampled uniformly in (0, 1), and evaluated for r =
x+ 0.3sin(2πx) + ε with ε drawn from a zero mean Gaussian noise with
standard deviation σ = 0.05 (Figure 4). Goal here is to solve the inverse
problem which is to predict x, given r. This dataset is challenging in the
sense that it is multivalued (in the middle of the S-shape), discontinuous
(at the boundary of uni-valued and multivalued region), and noisy (ε =
N (0, σ)). The error is metric is used is mean absolute error (MAE).

Poser Dataset: Poser dataset contains synthetic images of human mo-
tion capture sequences from Poser 7 SmithMicro Software. These motion
sequences includes 8 categories: walk, run, dance, fall, prone, sit, transi-
tions and misc. There are 1927 training examples coming from different sequences of varying lengths and the
test set is a continuous sequence of 418 time steps. Input feature vectors are 100d silhouette shape descriptors
while output feature vectors are 54d vectors with x, y and z rotation of joint angles. Error metric is mean
absolute error (MAE) in mm.

6.1.2 Real-world data

Figure 5: USPS digits.

USPS Handwritten Digits Reconstruction (Figure 5): In USPS hand-
written digit reconstruction dataset from Weston et al. [2002] our goal is
to predict 16 pixel values at center of an image given outer pixels. We use
7425 examples for training (without labels) and 2475 examples (roughly
1/4th for each digit) for testing. Error metric here is reconstruction error
measured using mean absolute error (MAE). HumanEva-I Pose Dataset
(Figure 6): HumanEva-I dataset from Sigal and Black [2006] is a chal-
lenging dataset that contains real motion capture sequences from three
different subjects (S1,S2,S3) performing five different actions (Walking,
Jogging, Box, Throw/Catch, Gestures). We train models on all subjects
and all actions. We have input images from three different cameras; C1,C2 and C3 and we use HoG features
from Dalal and Triggs [2005] on them. The output vectors are 60d with the x, y, z joint positions in mm. We
report results using concatenated features from all three cameras (C1+C2+C2) and also individual features
from each individual camera (C1,C2 or C3).

6.2 Results
6.2.1 Synthetic data

Figure 6: HumanEva-I

S-shape data: We choose bandwidth parameter to be γx = 1 and γy = 1
using cross-validation. To illustrate effect of increasing degrees d1 and d2,
we run our results on a grid of degrees from the set {1, 2, 3, 5, 7, 11}. In
figure 7 we plot increase in mapping degree as % Gain. Figures 7a and 7b
show results for using KL-Divergence as optimization criteria. Fig-
ures 7c and 7d show results for using HSIC as an optimization criteria.
We observe that for both as we increase d1 and d1, % Gain increases i.e.
mean absolute error (MAE) reduces. Also for each pair of figures, for each
objective, changing from a monomial basis to Gegenbaur basis helps im-
prove % Gain from 31.27% to 39.49% for KL-Div, and 22.31% to 26.06%
for HSIC.
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(a) TGP (KL-Div) with Monomial Basis
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(b) TGP (KL-Div) with Gegenbaur Basis
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(c) TGP (HSIC) with Monomial Basis
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(d) TGP (HSIC) with Gegenbaur Basis

Figure 7: % Gain for TGP with KL-Div figures 7a and 7b and HSIC (Figures 7c and 7d) using monomial and
Gegenbaur basis on left and right, respectively.

Criterion (d1, d2) MAE (w/o map) MAE (w/map) Gain %

KL-Div (1,11) 57.03 41.57 27.25%

HSIC (1,11) 48.08 38.71 19.48%

KL-Div (Gegen.) (1,11) 57.02 44.19 22.50%

HSIC (Gegen.) (1,23) 48.08 35.55 36.02%

Table 2: Root Mean Absolute Error for the Poser dataset for the two criteria’s of TGP using monomial and
Gegenbaur transformation.
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Method (d1, d2) MAE Method (d1, d2) MAE

NN / 0.341 KRR / 0.250
SVR / 0.250 KDE / 0.260
SOARkrr / 0.233 SOARsvr / 0.230
HSIC (1,1) 0.3399 HSIC (11,11) 0.195 (2.50%)
KL-Div (1,1) 0.2151 KL-Div (11,11) 0.211 (2.01)%
KL-Div Gegen. (1,1) 0.2101 KL-Div Gegen. (11,11) 0.19 (7.01%)
HSIC Gegen. (1,1) 0.3399 HSIC Gegen. (23,23) 0.25442 (25.14%)

Table 3: Comparison with others models from Bo and Sminchisescu [2009] for USPS digits reconstruction
dataset. The two lowest errors are emphasized and their % Gain bolded. NN means nearest neighbor re-
gression, KDE means kernel dependency estimation [Weston et al., 2002] with 16d latent space obtained by
kernel principal component analysis. SOAR means Structured Output Associative regression [Bo and Smin-
chisescu, 2009]. Note: The % Gain show reduction in error compared to no-mapping vs. using mapping for
KL-Div and HSIC criteria and with monomial and Gegenbaur basis.

Poser: For Poser dataset we choose bandwidth to be γx = 10 and γy = 10−5 using cross-validation.
The final results are shown in Table 2. In this case we observe that for both basis input degree turns out be
d1 = 1, and using Gegenbaur basis gives us better results of 57.02% at d2 = 11, when compared to monomial
basis with 48.08% at d2 = 23. Here we distinctly observe benefits of using Gegenbaur basis in terms better
accuracy and better numerical stability with a lower output degree d2.

6.2.2 Real-world data

Handwriting Recognition: We report our results with bandwidth parameters γx = 2e10−7 and γy =
2e10−2. The mapping degrees were chosen for HOTGP were (d1, d2) = (11, 11) and for HOHSIC were
(d1, d2) = (23, 23), using cross validation on MAE criteria. Table 3 shows summary of results and compares
our approach with other kernel-based structured prediction methods. We observe two lowest scores to be
from Twin Gaussian process using HSIC with monomial basis, (d1, d2) = (11, 11), and KL-Divergence with
Gegenbaur basis, (d1, d2) = (23, 23). % Gain shows that using Gegenbaur basis leads to better same results
for lower degree over baseline with no-mapping. Best accuracy is obtained for both objective criteria.

HumanEva-I Pose Dataset: We report results using concatenated features from all three cameras (C1
+C2+C2), and also features from individual camera (C1,C2 and C3). We use Gaussian kernel with γx =
γy = 10−4. For KL-divergence criteria we get (d1, d2) = (1, 11) for monomial basis, and (d1, d2) = (1, 5)
for Gegenbaur basis. In case of HSIC criteria, we get (d1, d2) = (11, 11) for both monomial and Gegenbaur
basis. Table 4) shows complete set of results. % Gain for each criteria is shown in bold. We observe in both
subtables that using concatenated features (C1+C2+C3) gives us better results than using individual camera
features.

In subtable 4a, we see results with monomials basis for both HSIC KL-Divergence criterion. In general
we observe KL-Divergence to be giving better results compared to HSIC. The best results for this case is
with features (C1+C2+C3) with KL-Divergence and % Gain of 5.080%. In subtable 4b for the Gegenbaur
basis we observe a significant reduction in error when using KL-divergence with % Gain of 99.95%. We
show consistent improvement in performance with this expansion and much better results using Gegenbaur
expansion. We provide detailed results on all subjects and actions in appendix.
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Features Crit. w/map wo/map % Gain

HoG
(C1C2C3)

KL-Div 45.17 42.88 5.08%

HSIC 172.66 172.59 0.05%
HoG
(C1)

KL-Div 34.29 33.43 2.51%

HSIC 172.66 173.88 0.08%
HoG
(C2)

KL-Div 31.99 31.58 1.29%

HSIC 172.66 173.88 0.09%
HoG
(C3)

KL-Div 30.93 30.49 1.41 %

HSIC 172.66 172.59 0.09%

(a) Monomial transformation: KL-Div - (d1, d2) =
(1, 11), HSIC-(d1, d2) = (11, 11)

Features Crit. w/map wo/map % Gain

HoG
(C1C2C3)

KL-Div 25.40 0.011 99.95 %

HSIC 172.66 172.29 0.25%
HoG
(C1)

KL-Div 44.42 9.63 77.46%

HSIC 172.66 172.28 0.26%
HoG
(C2)

KL-Div 44.68 12.30 71.71%

HSIC 172.66 172.27 0.26%
HoG
(C3)

KL-Div 44.35 0.01 99.97%

HSIC 172.66 172.28 0.26%

(b) Gegenbaur transformation: KL-Div-(d1, d2) =
(1, 5), HSIC-(d1, d2) = (11, 11)

Table 4: Mean Absolute Error for HumanEva-I dataset for the two criteria KL-Div and HSIC with and without
mapping using both monomials transformation and Gegenbaur transformation.

7 Discussion

% Gain Criterion S-shape Poser USPS Digits HumaEva-I
(C1+C2+C3)

HumanEva-I (C1,C2,C3)

KL-Div. 31.27 %. 6.39 % 1.97 % 5.08% (2.51%, 1.29%, 1.40%)
HSIC 22.31 %. 1.26% 2.11 % 0.05% (0.08%, 0.09%, 0.09%)

KL-Div. (Gegen.) 39.49 %. 14.31% 14.31 % 99.95 % (77.46%,71.71% 99.97%)
HSIC (Gegen.) 26.06 %. 7.01% 7.01 % 0.25 % (0.26%,0.26%, 0.26%)

Table 5: % Gain for all datasets with both criteria, and using both monomial and Gegenbaur transformation.

Table 5 provides a complete summary of results for all datasets. It is clear from experimental results
that as we increase mapping degrees d1 and d2, we use higher order combination of polynomial kernel
features to maximize dependence between input and output, and this leads to better regression. Reduction in
prediction error as indicated by the % Gain metric. Choice of degree is done using cross-validation and kernel
parameters are selected using the kernel median trick. In S-shape dataset increase in both d1 and d2 helps
until the performance saturates, and later falls off due to numerical instability due to the added non-linearity
and overfitting.

For the case of the Poser dataset (Table 2) and for HumanEva with KL-Divergence (Table 4a and 4b),
we see that the best performance is for d1 equal to one. This amounts to choosing choosing the identity
mapping/no-mapping on input, φ(t) = t. As we described in section 4 this amounts to choosing coefficients
proportional to kernel target alignment of Cortes et al. [2012] score between initial input kernel and kernels
obtained from basis expansion of initial output kernel G.

The effect of using the two different objective criteria KL-Divergence versus HSIC, we see that in many
cases, KL-Divergence does better or as well as HSIC (Table 3). In terms of ease of optimization of TGP
with HSIC, it turns out to be easier criteria to optimize as there is no explicit training step for it [Bo and
Sminchisescu, 2010], and it is relatively easier to compute objective than KL-Divergence.

In terms of choice of basis functions, it is clear that using Gegenbaur basis leads to better numerical
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stability and often times better results. In some cases like HumaEva with KL-Divergence (Table 4b), it does
lead to using lower degree values and leads to easier optimization during prediction in TGP.

8 Conclusions and Future Work
We proposed a novel method for learning kernels using polynomial expansions of base kernels. We empir-
ically showed that maximizing dependency between input and output kernel features leads to better perfor-
mance in structured prediction. We propose an efficient matrix-decomposition based algorithm to learn these
kernel transformations. We show state-of-the-art empirical results using Twin Gaussian Processes on several
synthetic and real-world datasets.

For future work, we plan to further investigate; 1) automated learning of kernel parameters d1, d2 and
γ by using distributional priors on them and optimizing for data likelihood, 2) extending this framework to
multiple kernels for multi-modal and/or multi-task prediction, and 3) joint learning of kernels and prediction.
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A Perron-Frobenius
Theorem A.1 (Perron O., Frobenius G. (1912) ). For An×n ≥ 0, with spectral radius r = ρ(A), the
following statements are true.

1. r ∈ σ(A) and r > 0

2. r is unique and it the spectral radius of A

3. Az = rz for some z ∈∆n = {x|x ≥ 0 with x 6= 0}

4. There is unique vector defined by

Ap = rp,p > 0, and ||p||1 = 1, (22)

is called Perron vector of A and there are no other nonnegative vectors except for positive multiples
of p, regardless of eigenvalue.

B Kernel gradients
For data points X = {x1, x2, . . . xm} and test data point x.

∂φ(K(x1, x))

∂x(d)
=
∂φ(t)

∂t
|t=K(x1,x)

∂K(x1, x)

∂x(d)

∂φ(t)

∂t
=

d1∑
i=0

αiH
γ
i (t)

Hγ
0 (t) = 0, Hγ

1 (t) = 2γ, (23)

Hγ
i+1(t) =

(
2(γ + i)

i+ 1

)
(tHγ

i (t) +Gγi (t))−
(

2γ + i− 1

i+ 1

)
Hγ
i−1(t) (24)

∂φ(K(X,x))

∂x(d)
=


∂φ(t)
∂t |t=K(x1,x)

∂K(x1,x)
∂x(d)

∂φ(t)
∂t |t=K(x2,x)

∂K(x2,x)
∂x(d)

...
∂φ(t)
∂t |t=K(xm,x)

∂K(xm,x)
∂x(d)


B.1 RBF kernel

K(xi, xj) = e−γ‖xi−xj‖2

∂K(X,x)

∂x(d)
=


−2γ(−x(d)

1 + x(d))K(x, x1)

−2γ(−x(d)
2 + x(d))K(x, x2)

...
−2γ(−x(d)

m + x(d))K(x, xm)


∂K(x1, x)

∂x(d)
= −2γ(−x(d)

1 + x(d))K(x, x1)
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B.2 Linear kernel
K(xi, xj) = γ 〈xi, xj〉

∂K(X,x)

∂x(d)
=


γx

(d)
1 )

γx
(d)
2
...

γx
(d)
m


C Additional Results

Crit. / Mean Abs. Er (no mapping) (mapping) Gain %

KL-Div (11,11) 0.2151 0.21078 2.008 %

HSIC (11,11) 0.3399 0.19536 2.5007 %

KL-Div (Gegen.) (11,11) 0.2101 0.19536 7.0096 %

HSIC (Gegen.) (23,23) 0.3399 0.25442 25.1441% %

Table 6: Mean Absolute Error for USPS Handwritten digits dataset for the two criteria, with and without
mapping.
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Table 7: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject is shown in bold,
and in red otherwise. In the table, / shows that the values are not available (no training samples); Average gives
the averaged % Gain for the different motions of the same subject; C1 means image feature are computed
only from the first camera; C1+C2+C3 means image features from three cameras are combined in a single
descriptor. Columns TGP and HOTGP indicate the mean absolute error while the % Gain column indicates
the percentage reduction on error.
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Table 8: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject is shown in bold,
and in red otherwise. In the table, / shows that the values are not available (no training samples); Average gives
the averaged % Gain for the different motions of the same subject; C1 means image feature are computed
only from the first camera; C1+C2+C3 means image features from three cameras are combined in a single
descriptor. Columns HSIC and HOHSIC (Gegen.) indicate the mean absolute error while the % Gain column
indicates the percentage reduction on error.
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Table 9: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject is shown in bold,
and in red otherwise. In the table, / shows that the values are not available (no training samples); Average gives
the averaged % Gain for the different motions of the same subject; C1 means image feature are computed
only from the first camera; C1+C2+C3 means image features from three cameras are combined in a single
descriptor. Columns HSIC and HOHSIC indicate the mean absolute error while the % Gain column indicates
the percentage reduction on error.
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Table 10: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject is shown in
bold, and in red otherwise. In the table, / shows that the values are not available (no training samples);
Average gives the averaged % Gain for the different motions of the same subject; C1 means image feature
are computed only from the first camera; C1+C2+C3 means image features from three cameras are combined
in a single descriptor. Columns TGP and HOTGP (Gegen) (1,5) indicate the mean absolute error while the
% Gain column indicates the percentage reduction on error.
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