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AN INFINITE PRESENTATION FOR THE MAPPING CLASS
GROUP OF A NON-ORIENTABLE SURFACE

GENKI OMORI

ABSTRACT. We give an infinite presentation for the mapping class group of a
non-orientable surface. The generating set consists of all Dehn twists and all
crosscap pushing maps along simple loops.

1. INTRODUCTION

Let ¥4, be a compact connected orientable surface of genus g > 0 with n > 0
boundary components. The mapping class group M(X,,) of ¥,, is the group
of isotopy classes of orientation preserving self-diffeomorphisms on ¥, ,, fixing the
boundary pointwise. A finite presentation for M(X,,) was given by Hatcher-
Thurston [5], Wajnryb [I5] and Harer [4]. Gervais [3] obtained an infinite presenta-
tion for M (X, ,,) by using the finite presentation for M(X, ,,), and Luo [10] rewrote
Gervais’s presentation into a simpler infinite presentation (See Theorem [Z3]).

Let Ny, be a compact connected non-orientable surface of genus g > 1 with
n > 0 boundary components. The surface Ny = Ny is a connected sum of g real
projective planes. The mapping class group M(Ny ) of Ny ,, is the group of isotopy
classes of self-diffeomorphisms on Ny, fixing the boundary pointwise. For g > 2
and n € {0, 1}, a finite presentation for M (N, ,,) was given by Lickorish [§], Birman-
Chillingworth [I], Stukow [12] and Paris-Szepietowski [11]. Note that M (N7) and
M(Ny 1) are trivial (See [2, Theorem 3.4]) and M (Nz) is finite (See [8, Lemma 5]).
Stukow [13] rewrote Paris-Szepietowski’s presentation into a finite presentation with
Dehn twists and a “Y-homeomorphism” as generators (See Theorem 2.TT]).

In this paper, we give a simple infinite presentation for M(N, ,,) (Theorem B.1])
when g > 3 and n € {0,1}, or (g,n) = (2,1). The generating set consists of all
Dehn twits and all “crosscap pushing maps” along simple loops. We review the
crosscap pushing map in Section 2l We prove Theorem [3I] by applying Gervais’s
argument to Stukow’s finite presentation.

2. PRELIMINARIES

2.1. Relations among Dehn twists and Gervais’s presentation. Let S be
either N, ,, or X, ,. We denote by Ng(A) a regular neighborhood of a subset A
in S . For every simple closed curve ¢ on S, we choose an orientation of ¢ and
fix it throughout this paper. However, for simple closed curves c¢i, co on S and
feM(S), f(cr1) = c2 means f(c1) is isotopic to ¢z or the inverse curve of co. If S
is a non-orientable surface, we also fix an orientation of Ng(c) for each two-sided
simple closed curve c. For a two-sided simple closed curve ¢ on S, denote by t. the
right-handed Dehn twist along ¢ on S. In particular, for a given explicit two-sided
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simple closed curve, an arrow on a side of the simple closed curve indicates the
direction of the Dehn twist (See Figure [I).

FIGURE 1. The right-handed Dehn twist ¢. along a two-sided sim-
ple closed curve c on S.

Recall the following relations on M (S) among Dehn twists along two-sided sim-
ple closed curves on S.

Lemma 2.1. For a two-sided simple closed curve ¢ on S which bounds a disk or a
Mobius band in S, we have t. =1 on M(S).

Lemma 2.2 (The braid relation (i)). For a two-sided simple closed curve ¢ on S
and f € M(S), we have

Ef(c) L
SO ftof
where €5y = 1 if the restriction fla ) + Ns(c ) — Ns(f(c)) is orientation pre-

serving and € ¢y = —1 if the restriction f|ng () : Ns(c¢) = Ns(f(c)) is orientation
TeVersing.

When f in Lemma 2.2 is a Dehn twist ¢4 along a two-sided simple closed curve
d and the geometric intersection number ¢ N d| of ¢ and d is m, we denote by T},
the braid relation.
Let ¢1, co, ..., ¢k be two-sided simple closed curves on S. The sequence c1, ca,
.., ¢ of simple closed curves on S is the k-chain on S if ¢1, ca, ..., ¢ satisfy
leiNecipr1] =1foreachi=1,2,...,k—1and|¢;Ne;| =0 for |j —i| > 1.

Lemma 2.3 (The k-chain relation). Let ¢1, ¢a, ..., ¢ be a k-chain on S and let
01, 02 (resp. 0) be distinct boundary components (resp. the boundary component)
of Ns(cp Uca U---Ucy) when k is odd (resp. even). Then we have

(test tos? ~-~t€ck)k+1 = tgfl tzzz when k is odd,

€ € .
(tos tes? - tok )22 = 5 when k is even,
e 5 e es
where €c,, €cyy -+ -y ey €815 €6, and € are 1 oor =1, and toit, te®, ..., o, 5!

and tgjz (resp. t5°) are right-handed Dehn twists for some orientation of N5(01 U
coJ--- U Ck).

Lemma 2.4 (The lantern relation). Let ¥ be a subsurface of S which is diffeomor-
phic to ¥4 and let d12, da23, d13, 01, 02, 03 and 64 be simple closed curves on ¥ as
in Figure[2. Then we have

€612 45623 45613 €651 4E62 4563 554
t5 t52e t513 —t(; t62 tég 84 0

E§ E§ Es§ E§
Where €5,,, €5,55 E5155 €615 €655 €65 and €5, are 1 or —1, and t572, 5%%, 5719, 157,
€ € € .
t522  ts. 6'* and t5i4 are right-handed Dehn twists for some omentatzon of .

Luo’s presentation for M(X, ,,), which is an improvement of Gervais’s one, is as
follows.
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FIGURE 2. Simple closed curves 12, d23, 013, 01, d2, 03 and §4 on 2.

Theorem 2.5 ([3], [10]). For g >0 andn >0, M(X,,,) has the following presen-
tation:

generators: {t. | c: s.c.c. on Xy}

relations:

(0") t. =1 when ¢ bounds a disk in X, ,,
(I') All the braid relations Ty and Ty,
() All the 2-chain relations,

(IT) All the lantern relations.

2.2. Relations among the crosscap pushing maps and Dehn twists. Let u
be a one-sided simple closed curve on N, , and let a be a simple closed curve on
Ngy.n such that 1 and « intersect transversely at one point. Recall that « is oriented.
For these simple closed curves ;i and o, we denote by Y, . a self-diffeomorphism on
Ny which is described as the result of pushing the Mébius band Ny, , (i) once
along o. We call Y), o a crosscap pushing map. In particular, if o is two-sided, we
call Y, o a Y-homeomorphism (or crosscap slide), where a crosscap means a Mobius
band in the interior of a surface. We have the following fundamental relation on
M(Ny,,) and we also call the relation the braid relation.

Lemma 2.6 (The braid relation (ii)). Let u be a one-sided simple closed curve
on Ngn and let a be a simple closed curve on Ny, such that p and o intersect
transversely at one point. For f € M(Ny..,), we have

Yl sy = Yuaf

fw),f(a
where (o) = 1 if the given orientation of f(«a) coincides with that of f(«) induced
by the orientation of o, and €y = —1 if the given orientation of f(a) does not

coincide with that of f(«) induced by the orientation of a.

We describe crosscap pushing maps as a different view. Let e : D’ < int.S be a
smooth embedding of the unit disk D’ C C. Put D :=e(D’). Let S’ be the surface
obtained from S — intD by the identification of antipodal points of 9D. We call
the manipulation that gives S’ from S the blowup of S on D. Note that the image
M C S of Ns_intp(0D) C S — intD with respect to the blowup of S on D is a
crosscap. Conversely, the blowdown of S’ on M is the following manipulation that
gives S from S’. We paste a disk on the boundary obtained by cutting S along the
center line p of M. The blowdown of S’ on M is the inverse manipulation of the
blowup of S on D.

Let 11 be a one-sided simple closed curve on Ny ,. Note that we obtain Ny_1
from N, by the blowdown of N, on Ny, (). Denote by x, the center point
of a disk D, that is pasted on the boundary obtained by cutting S along j. Let
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e: D' — D, C Ny_1, be a smooth embedding of the unit disk D’ C C to Ny_1,,
such that D, = e(D’) and e(0) = z,. Let M(Ny_1.,,z,) be the group of isotopy
classes of self-diffeomorphisms on Ny_1, fixing the boundary ON,_;, and the
point x,,, where isotopies also fix the boundary ONy_1,, and x,,. Then we have the
blowup homomorphism

op t M(Ng—1,n,2) = M(Ng,n)

that is defined as follows. For h € M(Ny—_1,,x,), we take a representative h’ of
h which satisfies either of the following conditions: (a) h'[p, is the identity map
on D, (b) h'(x) = e(e~!(x)) for x € D,,. Such h’ is compatible with the blowup
of Ng—1,, on D,, thus ¢,(h) € M(Nyy) is induced and well defined (c.f. [14]
Subsection 2.3]).

The point pushing map

Jap T (Ng—1,n, %) = M(Ng—1,n, )

is a homomorphism that is defined as follows. For v € 71 (Ny_1,n,2u), Jo, (V) €
M(Ny—1,n,2,) is described as the result of pushing the point z, once along .
Note that for vi, 72 € m1(Ng—1,n), 7172 means v17y2(t) = 72(2t) for 0 <t < % and
Tye(t) =7 (2t —1) for 3 <t <1

We define the composition of the homomorphisms:

Y, = Pp 0 Ju, : T1(Ng—1,n,Tp) = M(Ngp).

For each closed curve o on Ny, which transversely intersects with p at one point,
we take a loop @ on Ny_1 , based at z,, such that @ has no self-intersection points
on D, and « is the image of @ with respect to the blowup of Ny_; , on D,. If
« is simple, we take @ as a simple loop. The next two lemmas follow from the
description of the point pushing map (See [7, Lemma 2.2, Lemma 2.3]).

Lemma 2.7. For a simple closed curve o on Ny, which transversely intersects
with a one-sided simple closed curve ;v on Ny, at one point, we have

Y, (@) = Yy

Lemma 2.8. For a one-sided simple closed curve ac on Ng, which transversely
intersects with a one-sided simple closed curve 1 on Ny, at one point, we take
NNn,_..,. (@) such that the interior of N,_, , (@) contains D,,. Suppose that 6, and
0o are distinct boundary components of NNy i (@_), ind 01 and 02 are two-sided
simple closed curves on Ny, which are image of 01, 62 with respect to the blowup
of Ng—1,n on D,,, respectively. Then we have
E§ Es
Yio= t611t6227

where €5, and €5, are 1 or —1, and €5, and €5, depend on the orientations of «,

NN, .. (01) and N, , (62) (See Figure[3).

g,n

By the definition of the homomorphism 1,, and Lemma 7, we have the fol-
lowing lemma.

Lemma 2.9. Let o and 3 be simple closed curves on Ny, which transversely
intersect with a one-sided simple closed curve pn on Ny, at one point. Suppose the
product @8 of @ and 5 in w1 (Ng_1 n,x,) is represented by a simple loop on Ng_1 p,
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FIGURE 3. If the orientations of a, Ny, , (d1) and Ny, , (02) are

as above, then we have Y,, o = ts, tg;. The x-mark as in the figure
means the boundary of D,, identified the antipodal points of 0D,,.

and af} is a simple closed curve on Ny, which is the image of the representative of
af with respect to the blowup of Ng_1, on D,. Then we have

Yiap =YuaYus.

Finally, we recall the following relation between a Dehn twist and a Y-
homeomorphism.

Lemma 2.10. Let o be a two-sided simple closed curve on Ny, which transversely
intersect with a one-sided simple closed curve pn on Ny, at one point and let § be
the boundary of N, (a U p). Then we have

2
Yia =15
where € is 1 or —1, and e depends on the orientations of a and Ny, (8) (See
Figure[]).
Lemma follows from relations in Lemma [2.1] Lemma 2.8 and Lemma 2.9

FIGURE 4. If the orientations of v and Ny, ,, (9) are as above, then
we have Y;ioz =15,

2.3. Stukow’s finite presentation for M(Ny ). Let e; : D) — ¥ for i = 1,
2,..., g+ 1 be smooth embeddings of the unit disk D’ C C to a 2-sphere ¥ such
that D; := ¢;(D’) and D, are disjoint for distinct 1 <4,j < g+ 1. Then we take a
model of Ny (resp. Ny 1) as the surface obtained from 3¢ (resp. Xo — intDy41) by
the blowups on Dy, ..., D, and we describe the identification of D; by the x-mark
as in Figure[B [6 When n € {0,1}, for 1 <y <iy < -+ < i < g, let vi, ip...ix DE
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the simple closed curve on Ny, as in Figure Bl Then we define the simple closed
curves o 1= vii41 fori =1, ..., g —1, f:= 1234 and py := 1 (See Figur [6),
and the mapping classes a; 1= to, fori =1, ..., g—1,b:=1g and y := Y}, o,-
Then the following finite presentation for M(Ny ) is obtained by Lickorish [8]
for (g,n) = (2,0), Stukow [12] for (g,n) = (2,1), Birman-Chillingworth [I] for
(g,m) = (3,0) and Stukow [I3] for the other (g,n) such that g > 3 and n € {0, 1}.

)
.o . Dy
~— 21,29,.- 50
1 1 19 i) g

FIGURE 5. Simple closed curve 7;, 4,.... i, o0 Ny p.

- Dy
%)
a1 &
as
FIGURE 6. Simple closed curves oy, ..., ag—1, 8 and p1 on Ny .

Theorem 2.11 ([8], [1], [12], [13]). For (g9,n) = (2,0), (2,1) and (3,0), we have
the following presentation for M(Ng.,,):

M(N) = (ary|al =y = (ary)’ =1) = Zy ® Lo,

M(Nop) = (ar,y|yary ™' =a7t),
M(N3) = (a1,a2,y | araza1 = azaraz, y® = (a1y)” = (a2y)® = (ara2)® = 1).
If g >4 and n € {0,1} or (g,n) = (3,1), then M(N,,) admits a presentation

with generators ay,...,aq—1,y, and b for g > 4. The defining relations are
(A1) [as,aj] =1 forg>4,1]i—j| >1,
(A2) a;ait10; = @i410:Qi41 Jori=1,...,9—-2,
(A3) [alvb]zl fOTgZ4,Z#4,
(A4) asbay = bagb for g >5,
(A5) (agazasb)'® = (ajazazaqd)® for g >5,
(A6) (azazasasash)'? = (arazazasasagh)’ forg>1,

(A9a) [be,b] =1 for g =6,
(A9D) [ag_5,bg;2] =1 for g > 8 even,

where by = a1, by = b and
bz‘+1 = (bif1a2ia2i+1a2i+2a2i+3bi)5(bif1a2ia2i+1a2i+2a2i+3)76

for 1 <i< 4
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(B1) y(agagalagyaz_lal_lag_lagl) = (agagalagyaglal_lag_lagl)y for g >
4,
(B2) y(acarytas 'yaras)y = ai(acarytay 'yaraz)as,
a;,y] = org>4,1=3,...,9g—1,
(B3) lai,y] =1 forg>4,i=3,...,9—1
(B4) az(yazy™") = (yasy ")as,
(B5) ya - a1_1y7
(B6) byby " {arazas(y~ agy)az 'ay 'ay  Hay tag  (yagy )azas} for
g >4,
(B7) [(a4a5a3a4aga3a1agya2 1af1a§1a51a21a§1a51a51), b|=1 for g > 6,
(B8) {(yay 1% Yag tay M b(asasazary ") H(ay tag tag tay )b (asazazar)}
= {(ay "az a5 y(azazas) Haz oy 'y~ azas}t{ay 'yas}y Jor g >5,
(C1b) (araz---ag-1)9 =1 for g >4 even and n =0,
(C2) [a1,p] =1 for g >4 and n =0,
where p = (a1az -+ ag—1)9 for g odd cmd
p2: (y~tasas - “Qg_1yasas - - ag,l) e y lazas - ag—1 for g even,
(C3)p=1 for g >4 and n =0,

1
(Cda) (y~tasas---ag_1yasaz---az—1) 3

where [x1, x| = I1$2I1_1I2_1.

=1 for g >4 odd and n =0,

3. PRESENTATION FOR M (N ,,)

The main theorem in this paper is as follows:

Theorem 3.1. For g > 3 and n € {0,1} or (g,n) = (2,1), M(Nyn) has the
following presentation:
generators: {t. | c: two-sided s.c.c. on Ng,}
U{Y,a | p: one-sided s.c.c. on Ny, a: s.c.c. on Ny, |[pNal=1}.
Set the generating set by X.
relations:

(0) t. =1 when c bounds a disk or a Mébius band in Ny ,,
(I) All the braid relations

(@) ftef T =15 for f € X,
(@) Yl " =Y e for fEX,
(I) All the 2-chain relations,
(IT) All the lantern relations,
(IV) All the relations in Lemma[Z , ie. Yyoap =Y, aY,s,
(V) All the relations in Lemmal28, i.e. Y, o = taélt%z.

Remark that Relations (V) are superfluous by rewriting Relations (T)(ii) and (I
V) as words of Dehn twists and Y-homeomorphisms.

We set X := {f | f € X}, where f is an abstract symbol for f € X. Let G
be the group whose presentation has the generating set X and relations which are
obtained from the relations of the presentation in Theorem [B.I] by replacing f*!

for f € X in the relations with f . Denote by (0), (I), (I), (I[), (IV) and (V')
the relations which are obtained from Relation (0), (I), (II), (Il), (IV) and (V) by

. . . ., 7Tl .
replacing f*! for f € X in the relations with f~ , respectively.
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Let ¢ : Xp,m < Ngpn be a smooth embedding and let G’ be the group whose
presentation has all Dehn twists along simple closed curves on %j ,, as gener-
ators and Relations (0'), (I'), (I) and (W) in Theorem By Theorem 2.
M(Zp,m) is isomorphic to G’, and we have the homomorphism G’ — G de-

fined by the correspondence of ¢, to tfég), where €,y = 1 if the restriction

Uns, (¢) t Ney (@) = N, (e(c)) is orientation preserving, and e, = —1 if
the restriction t[ny, (o) : Ny, . (¢) = NN, (t(c)) is orientation reversing. Then
we remark as follows.

Remark 3.2. The composition ¢, : M(Z,,,) — G of the homomorphisms is a
homomorphism.

Remark means that if a product #51¢72---t2* of Dehn twists along simple

C17C2
closed curves cq, c2, ..., ¢; on a connected compact orientable subsurface of Ny,

is a product of relators on the mapping class group of the orientable subsurface of
Ny, then T, 77,7 - 1.,."" is a product of relators obtained by Relations (0), (1),

Ck

(1), ().
Set X* := X U{z~!| 2 € X}. By Relation (I), we have the following lemma.
Lemma 3.3. For f € G, suppose that f = f1 fo--- fr, where fi, fo, ..., fr € XT.

Then we have

{ (Z) fﬂf*l :1 t-flfz"'fk(C)Sflfszkm’
(@) fYpaf 7 =Yh o f )i for fi(@)

f1 2 f (@)
)

. —
where for f; € {7 |z € X}, fi:=f71 .

The next lemma follows from a argument of the combinatorial group theory (for
instance, see [6l, Lemma 4.2.1, p42]).

Lemma 3.4. For groups I', TV and F, a surjective homomorphism 7 : F — T' and
a homomorphism v : F — T”, we define a map v/ : T' — I by v/(z) := v(x) for
x €T, where T € F is a lift of x with respect to ™ (See the diagram below).

Then if kerm C kerv, v/ is well-defined and a homomorphism.

|

Proof of Theorem [l Assume g > 3 and n € {0,1} or (¢,n) = (2,1). Then we
obtain Theorem 3] if M(N,,,) is isomorphic to G. Let ¢ : G — M(Ny ) be the
surjective homomorphism defined by (%) := t. and ¢(Y,.0) == Y0

Set Xo = {a1,....a9-1,0,y} C M(Ny,) for ¢ > 4 and X, :=
{a1,...,a9-1,y} C M(Ny,) for g = 2, 3. Let F(Xy) be the free group which
is freely generated by X and let m : F|(Xy) — M(Ny,») be the natural projection
(by Theorem [ZTT]). We define the homomorphism v : F(Xy) — G by v(a;) := a;
fori=1,...,9—1,v(b) :=band v(y) :=7, and amap ¢ = /' : M(N,.,,) = G by

Y =gt fori=1,..., g1, %(bil) = Eil, Yy =7 and ¥(f) == v(f)

for the other f € M(Ny..,), where f € F(Xy) is a lift of f with respect to m (See
the diagram below).
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F(Xo)

ﬂi \
M(Nyw) - -5 G

If ¢ is a homomorphism, o = idq(n, ) by the definition of ¢ and . Thus it
is sufficient for proving that ¢ is isomorphism to show that v is a homomorphism
and surjective.

3.1. Proof that ¢ is a homomorphism. When (g,n) is either (2,1) or (3,0),

relations of the presentation in Theorem [ZT1] are obtained from Relations (0), (1),
(), (IV) and (V), clearly. Thus by Lemma 34} 1 is a homomorphism.

Assume g >4 or (g,n) = (3,1). By Lemma [34] if the relations of the presenta-
tion in Theorem ZIT] are obtained from Relations (0), (I), (I), (@), (IV) and (V),
then ¢ is a homomorphism.

The group generated by aq, . .., ag_1 and b with Relations (A1)-(A9b) as defining
relations is isomorphic to M(Xj 1) (resp. M(X4 2)) for g = 2h+1 (resp. g = 2h+2)
by Theorem 3.1 in [II], and Relations (A1)-(A9b) are relations on the mapping
class group of the orientable subsurface Ny, (a1 U--- U ag_1) of Ny ,. Hence
Relations (A1)-(A9b) are obtained from Relations (0), (I), (), (I ) by Remark 3.2l

Stukow [13] gave geometric interpretations for Relations (B1)-(B8) in Section 4
in [I3]. By the interpretation, Relations (B1), (B2), (B3), (B4), (B5), (B7) are
obtained from Relations (I) (Use Lemma [B3.3]), Relation (B6) is obtained from

Relations (0), (1), (), (IV) and (V) (Use Lemma and Lemma B3)), and
Relation (B8) is obtained from Relations (1), (IV) and (V) (Use Lemma [B3).
Thus v is a homomorphism when n = 1.

We assume n = 0. By Remark [3.2] k-chain relations are obtained from Re-

lations (0), (I), (I) and (@) for each k. Relation (C1b) is interpreted in G as
follows.

o O-DM.@ A

(a1a2 ©rrlg—1 V1,2,.,0771,2,...,9

Thus Relation (C1b) is obtained from Relations (0), (I), (I) and ().

Relation (C2) is obtained from Relations (1) by Lemma [33] clearly.

When g is odd, by using the (g — 1)-chain relation, Relation (C3) is interpreted
in G as follows.

2 _ 2g (0),(D),(I),(I) ©)
P = (Q1Q2' "agfl) g - %NNQ(VIQ _____ ) 15

where € is 1 or —1. Note that Ny, (71,2,....¢) is a Mébius band in N,. Thus Rela-

tion (C3) is obtained from Relations (0), (I), () and (1) when g is odd.
When g is even, we rewrite the left-hand side p? of Relation (C3) by braid
relations. Set A := asasz---ag—1. Note that

Yz (@2 - 02002 @21y ya oGy 005 03 3 ) = Yy i
fori=2,..., # by Relation (1), (IV), and then we have
p
= AWy AT
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@ -1 -1 a=2
=y Alyazy laz---ag14) 2
_ -1 —1_—1y 42\ %52
=y Aylazy lay )A%) 2
(D),() —1 9,92
= Y A(Yuh’h,z,sA ) 2.
_ —1 2 2 2
- Y AYMl;%,z,SA o 'YH17’71,2,3A YH17’71,2,3A
%
@ —1 2 2
= Y AYMl;%,z,SA B 'YH17’71,2,3Aa2a3YM1;V1,2,3a4 o 'ag—lA
_ —1 2 -1 —1 3
- Yy AY#1,71,2,3A o 'Y#l771,2,3A(a2a3Y#17’)’1,2,30'3 Qg )A
) _1AY A2Y ( Y, —1 *1) A3
= Yy 1,71,2,3 1,71,2,30203A4(A2A3 Y 14y 5, 5 303 Ay )5 Ag—1
_ —1 2 -1 -1 -1 -1 —1 4
- Yy AY#1,71,2,3A "'Y#1771,2,3 (a2a3a4a2a3yﬂlq’h,2,3a3 Qg Qg Q3 Qg )A
@,d) 2 2 4
= Y AYMl;%,z,SA o 'YH17’71,2,3A YH;V1,2,3,4,5A
@ —1 2
= Y AYMl;%,z,SA o 'YH17’71,2,3
-1 -1 -1 -1 -1 -1 -1 —1 —1 6
-(aga3a4a5a6aga3a4a5YHm12,314“,,a5 ay Qg Q9 Gg A5 Gy Gz Gy )A
(D),(V) —1 2 6
= Yy AY#11’71,2,3A o 'Y#1771,2,3,4,5,6,7A
_ -1 g—2
- Yy AYMlWl,z ..... gflA
-1 —1  ag—1
) ’ Ayﬂlﬂl,z ..... gflA A
(I),(1V) 1
fANy g
- Y#lﬁl,z ,,,,, gA .
Since Yy, ~, , ., commutes with a; fori =2, ..., g—1, and ONN, (1 U1 2,....9) =

ONN, (a2 U---Uag_1) (See Figure[T), we have

2 _ g—1 g—1
P - Y#lﬁl,z ,,,,, gA Y#11’71,2 ,,,,, gA
@) 2 2g—2
"/ g
- YH17’71,2 ..... gA

(0),(D),(I), (1)

2
H1,71,2,.., gtaNNg (a2U-Uag_1)

Lem. ZXT0I —1
- 8./\/1\79(agU---Uag,l)taNNg(0‘2U"'U0¢g71)

= 1.

Thus Relation (C3) is obtained from Relations (0), (1), (I), (IV) and (V) when g
is even.

Finally, we also rewrite the left-hand side (y~'asas - - - ay_1yasas - - - ag,l)% of
Relation (C4a) by braid relations. Remark that g is odd. For 1 <iy < i < -+ <
ix < g, we denote by ;, ;. ;. thesimple closed curve on Ny, as in Figure[ Note
that

i

Y,

, _ 1 1 71)
K1sY12,.00 2041

1 1 —
=Yy, a a2 azian a2 1Yy, oy, Gg g Gy e cag
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FIGURE 7. Simple closed curve ON, (a2 U---Uag_1) on N.

fori=2,..., 9—51 and ONn, (p11 U71,2,....9) = d1 U da, and by a similar argument
for Relation (C3) when g is even, we have

1 g—1
(y~ asas-- Qg 1Ya2a3 - Ag_1) 2

= (y‘lAgA)g%

(I),(IV) 2\ 21

= (}LlnLZSA») R

_ 2 2 2

- Y#lv'}’i’g,:;A Y#lv'}’i’z,:;A Y,Ufl-,'Yig,gA

@ 2 2

- YH17’Y{,2,3A o 'Yﬂlv'Y{,z,sA

—1 —1 —1_—1 _—1\ 44
Yir 41 4 5 (0203040203Y ), o a3 ag ay aga;)A

(I),(1v) 2 2 4

- Ylu‘lv’)'{,zygA o 'Yﬂlv’Y{,z,aA Y#1=7£,2,3,4,5A

@ 2

- Yl"lv'}’i’g,:;A U Y#lv'}'i,z,:;

—1, -1 -1 —1 -1 —1 —1 _—1_—1\ 46
“(a2azasasagazazasasY, o, as ay a3 ay ag as ay az a; )A

(D),av) 2 6

- Y#1771,2,3A o 'Y#=71,2,3,4,5,6,7A

= Y, A9t

V1,2, g

()

= Y#-,’Yl,2 ,,,,, gtdl tdz

V) 1,1

=M My ta,

)

where simple closed curves d; and ds are boundary components of N, N, (U~ U
ay—1) as in Figure[@ Therefore Relation (C4a) is obtained from Relations (1), (1),

(IV) and (V), and ¢ : M(Ny,,) — G is a homomorphism.

3.2. Surjectivity of . We show that there exist lifts of t.’s and Y, o’s with
respect to ¢ for cases below, to prove the surjectivity of 1.

(1) tc; ¢ is non-separating and N, — ¢ is non-orientable,
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Dg+1
1 11 iQ (2% g
/
- 0 Pre

FIGURE 8. Simple closed curve v; ; ~ , on Ny .

FIGURE 9. Simple closed curve d; and dy on Ny .

2) ¢ is non-separating and N, , — c is orientable,
3) t¢; ¢ is separating,
4) Y, # a; o is two-sided and N, — « is non-orientable,
) Y,
) Y,

SIS
Inl

A~~~

ot

mou « is two-sided and N, — « is orientable,
a5 @ is one-sided.

6

Set X := XoU{z~' | 2 € Xy}, and for a simple closed curve ¢ on N, we
denote by (Ng.,). the surface obtained from Ny, by cutting Ny, along c.
Case (1). Slnce (Ng.n)e is diffeomorphic to Ny_g 5,42 and g > 3, there exists a

product f = fifs--- fr € M( Nyn) of fi, fa, -+, fx € Xi such that f(a;) = c.
Notethatw(fi):fiEX =XU{z t|zeX}fori=1,2,..., k. Thus we have
D(farf™h) = (vl
- A R--fafe R R
Lem. B3] £
=ty
= I,

where ¢ is 1 or —1. Thus fa5 f~ is a lift of £, with respect to ¢ for some e € {—1,1}.

Case (2). We remark that ¢ is even in this case. When g = 2, such a simple
closed curve c is unique and ¢ = «;. Thus a; is the lift of . with respect to
1. When g = 4, since (Ngy,,). is diffeomorphic to X; 5,42, there exists a product
f="Ffifo - frn € M(Nyn) of fi, fo, -+, fx € Xi such that f(8) = c. By a similar
argument in Case (1), fb°f~! is a lift of 7. with respect to 1 for some € € {—1,1}.

Assume g > 6 even. Then there exists a product f = fifa--- fr € M(Ngy,) of
fis fa, o+, fu € X§ such that f(y12..4) = c. Since oy Uas Usge,.., gU”Y1,2 ..... g
bounds a subsurface of Ny, which is dlffeomorphlc to ¥p4 (See Figure I0), we
have by, ,  tyios , = tyya . 01030 ¢ by a lantern relation. Note that
b, tysa s byros.. 4> Q1, @3, by . are Dehn twists of type (1), and ., , |



PRESENTATION FOR MAPPING CLASS GROUP 13

t t , have lifts hy, hy, hs € M(Ny,,) with respect to v, respectively.

Y1.2,5,....97 UV5.6,...,
Thus we have

¢(fbhyhgay taz hy f7Y)

R — SR 11 11
= fl fok ti3,4 ..... g tV1,2,5,...,ga1 10’3 lt’YS,G ..... g fk f2 fl
() _——— = 1 —_——1——1
= fifer fotyo G fe o f2

Lem.[3.3] 4=
= )

where € is 1 or —1. Thus f(bhlhgal_laglhgl)gf_l is a lift of . with respect to 1
for some {—1,1}.

Dg+l

FIGURE 10. ajUaszU7se,....gUY1,2,...,¢ bound a subsurface of N,
which is diffeomorphic to ¥g 4.

Case (3). Let X be the component of (N, ,). which has one boundary com-
ponent. When ¥ is orientable, there exists a k-chain ¢, ¢, ..., ¢ on Ny, such
that Ny, (c1 Uca U---Ucg) = X. By the chain relation, (£51¢52 - - - t5+)2F+2 = ¢,
for some ey, €9, ..., e € {—1,1}. Note that t.,, tc,, ..., tc, are Dehn twists of
type (1) and tc,, tey, ..., te, have lifts hy, ho, ..., hy € M(N,,,) with respect to
1, respectively. Thus we have

PRSP = TR
(©),(D),(I),(X) .
= ..
Thus (h{'h5? ... hi*)?*+2 is a lift of 7, with respect to 1.

When ¥ is non-orientable, we proceed by induction on the genus ¢’ of . For

g =1,1. = 1Dby Relation (0). When g’ = 2, there exists a product f = fifo--- fx €

M(Ngn) of f1, fa, -+, fu € XSE such that f(ON,,(#1 U 1)) = c. Hence
fy?f~1 =t for some ¢ € {—1,1}. Then we have
_ S S R
Oy = N N R
Lem. 2. 10| — — B e | —1—1
= fi foo-o fr taNNgyn(mum)Efk o fe f1
Len;B:E;] t—a/

c ?

where ¢’ is 1 or —1. Thus fy2 f~! is a lift of 7, with respect to 1 for some
e e{-1,1}.

Suppose that ¢’ > 3 and ¢ is the separating simple closed curve on Ny, as in
Figure Il Then there exists a product f = fifa--- fx € M(Ng,) of f1, fo, -+,
fr € XSE such that f(¢’) = ¢. Denote by ¢; for i = 1, 2, ..., 6 the separating
simple closed curves on f(X) as in Figure [Il Note that ¢ U ¢y U ¢5 U ¢g bounds
a subsurface of f(X) which is diffeomorphic to X¢ 4, and each ¢; for i =1, 2, ...,
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6 bounds a subsurface of f(X) which is diffeomorphic to a non-orientable surface
of genus g; < g’ with one boundary component. By the inductive assumption, %,
teys tess e, have lifts by, ho, hg and hy € M(Ny,,) with respect to v, respectively.
Thus we have

1 _—— - 11 =11
1Z)(ththhB‘h;; ! 1) = fifa--- fktcl tey ey tey 1fk - fa
0, —-— ———1 11
(0),() Al et o h
Lem. [3.3] t—a

where ¢ is 1 or —1. Thus f(hihahshy ") f~1 is a lift of 7. with respect to 1 for
some € € {—1,1}.

J) - o1 Dy

5 ;
: o
@ ® @) e
[ :
1 2 3 q ad+1 g
FIGURE 11. Simple closed curves ¢ and ¢; for i =1, 2, ..., 6 on f(X).

Case (4). Since N, , —intNy, , (uUc) is diffeomorphic to Ny 41 and the two-
sided simple closed curve on N ; is unique, there exists a product f = fifa- - fi €

M(Ny,) of fi, fa, -+, fr € XF such that f(a1) = a and f(u1) = p. Thus we
have
oyt = R Tl R h
Lem. [3.3l £
= Y,u,a )

where € is 1 or —1. Thus fy°f~! is a lift of m with respect to ¥ for some
ee{-1,1}.

Case (5). We remark that g is even in this case. Since Ny, —intNy, , (nUa) is
diffeomorphic to X PR and the two-sided simple closed curve on Ns 1 is unique,

there exists a product f = fifa---fr € M(Nyy) of fi, fo, -+, fr € X5 such

that f(v1,2,..9) = @ and f(p1) = p. Note that Yy, ., Y qisr -5 Yy, are
Y-homeomorphisms of type (4), and Yy, ~, 55 Yy y14s -+ -5 Yoy, have lifts hg, hy,

..., hg € M(Ny,,) with respect to 1, respectively. Thus we have

1/)(fhg e h4h,3yf71)

- - 1 =151
fl f2"'fk Y,Ufl-,'Yl,g"'Yﬂly'Yl,él Y#17’71,3yfk f2 fl

(V) —_—— =1 ——1—1
= fl fokZ YMI;'YI,Z _____ g fk} f2 fl
Len;BB] Y#.’aa,

where € is 1 or —1. Thus f(hg...hshsy)®f~! is a lift ofm with respect to 1 for
some ¢ € {—1,1}.

Case (6). Let 01, d2 be two-sided simple closed curves on N, such that
61 Udy = ONn, (1N a). By Lemma 28 we have Y, , = tf;itf;j for some £, and

g,n
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g2 € {—1,1}, and by above arguments, ., , t., have lifts h; and hy € M(Ny ) with
respect to i, respectively. Thus we have

Y(hhy?) = T

<

Y-

Thus h7'h3? is a lift of Y, o with respect to ¢ and ) : M(N,,) — G is surjective.
We have completed the proof of Theorem [3.1}
(]

Acknowledgement: The author would like to express his gratitude to Hisaaki
Endo, for his encouragement and helpful advices. The author also wish to thank
Susumu Hirose for his comments and helpful advices. The author was supported
by JSPS KAKENHI Grant number 15J10066.

REFERENCES

[1] J. S. Birman, D. R. J. Chillingworth, On the homeotopy group of a mon-orientable surface,
Proc. Camb. Philos. Soc. 71 (1972), 437-448.

[2] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.

(3] S. Gervais, Presentation and central extensions of mapping class groups, Trans. Amer. Math.
Soc. 348 (1996), 3097-3132.

[4] L. Harer, The second homology group of the mapping class groups of orientable surfaces,
Invent. Math. 72, 221 239 (1983)

(5] A. Hatcher, W. Thurston, A presentation for the mapping class group of a closed orientable
surface, Top. 19 (1980), 221-237.

(6] D. L. Johnson, Presentations of Groups, London Math. Soc. Stud. Texts 15 (1990).

[7] M. Korkmaz, Mapping class groups of nonorientable surfaces, Geom. Dedicata. 89 (2002),
109-133.

[8] W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Camb. Philos.
Soc. 59 (1963), 307-317.

[9] W. B. R. Lickorish, On the homeomorphisms of a non-orientable surface, Proc. Camb. Philos.
Soc. 61 (1965), 61-64.

[10] F. Luo, A presentation of the mapping class groups, Math. Res. Lett. 4 (1997), 735-739.

[11] L. Paris and B. Szepietowski, A presentation for the mapping class group of a nonorientable
surface, arXiv:1308.5856v1 [math.GT], 2013.

[12] M. Stukow, Dehn twists on nonorientable surfaces, Fund. Math. 189 (2006), 117-147.

[13] M. Stukow, A finite presentation for the mapping class group of a nonorientable surface with
Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), no. 12,
2226-2239.

[14] B. Szepietowski. Crosscap slides and the level 2 mapping class group of a nonorientable
surface, Geom. Dedicata 160 (2012), 169-183.

[15] B. Wajnryb, A simple presentation for the mapping class group of an orientable surface,
Israel J. Math. 45 (1989), 157-174.

(GENKI OMORI) DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, OH-
OKAYAMA, MEGURO, TOKYO 152-8551, JAPAN
E-mail address: omori.g.aa@m.titech.ac.jp


http://arxiv.org/abs/1308.5856

	1. Introduction
	2. Preliminaries
	2.1. Relations among Dehn twists and Gervais's presentation
	2.2. Relations among the crosscap pushing maps and Dehn twists
	2.3. Stukow's finite presentation for M(Ng,n)

	3. Presentation for M(Ng,n)
	3.1. Proof that  is a homomorphism
	3.2. Surjectivity of 

	References

