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AN INFINITE PRESENTATION FOR THE MAPPING CLASS

GROUP OF A NON-ORIENTABLE SURFACE

GENKI OMORI

Abstract. We give an infinite presentation for the mapping class group of a
non-orientable surface. The generating set consists of all Dehn twists and all
crosscap pushing maps along simple loops.

1. Introduction

Let Σg,n be a compact connected orientable surface of genus g ≥ 0 with n ≥ 0
boundary components. The mapping class group M(Σg,n) of Σg,n is the group
of isotopy classes of orientation preserving self-diffeomorphisms on Σg,n fixing the
boundary pointwise. A finite presentation for M(Σg,n) was given by Hatcher-
Thurston [5], Wajnryb [15] and Harer [4]. Gervais [3] obtained an infinite presenta-
tion forM(Σg,n) by using the finite presentation forM(Σg,n), and Luo [10] rewrote
Gervais’s presentation into a simpler infinite presentation (See Theorem 2.5).

Let Ng,n be a compact connected non-orientable surface of genus g ≥ 1 with
n ≥ 0 boundary components. The surface Ng = Ng,0 is a connected sum of g real
projective planes. The mapping class groupM(Ng,n) of Ng,n is the group of isotopy
classes of self-diffeomorphisms on Ng,n fixing the boundary pointwise. For g ≥ 2
and n ∈ {0, 1}, a finite presentation forM(Ng,n) was given by Lickorish [8], Birman-
Chillingworth [1], Stukow [12] and Paris-Szepietowski [11]. Note thatM(N1) and
M(N1,1) are trivial (See [2, Theorem 3.4]) andM(N2) is finite (See [8, Lemma 5]).
Stukow [13] rewrote Paris-Szepietowski’s presentation into a finite presentation with
Dehn twists and a “Y-homeomorphism” as generators (See Theorem 2.11).

In this paper, we give a simple infinite presentation forM(Ng,n) (Theorem 3.1)
when g ≥ 3 and n ∈ {0, 1}, or (g, n) = (2, 1). The generating set consists of all
Dehn twits and all “crosscap pushing maps” along simple loops. We review the
crosscap pushing map in Section 2. We prove Theorem 3.1 by applying Gervais’s
argument to Stukow’s finite presentation.

2. Preliminaries

2.1. Relations among Dehn twists and Gervais’s presentation. Let S be
either Ng,n or Σg,n. We denote by NS(A) a regular neighborhood of a subset A
in S . For every simple closed curve c on S, we choose an orientation of c and
fix it throughout this paper. However, for simple closed curves c1, c2 on S and
f ∈ M(S), f(c1) = c2 means f(c1) is isotopic to c2 or the inverse curve of c2. If S
is a non-orientable surface, we also fix an orientation of NS(c) for each two-sided
simple closed curve c. For a two-sided simple closed curve c on S, denote by tc the
right-handed Dehn twist along c on S. In particular, for a given explicit two-sided
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2 G. OMORI

simple closed curve, an arrow on a side of the simple closed curve indicates the
direction of the Dehn twist (See Figure 1).

Figure 1. The right-handed Dehn twist tc along a two-sided sim-
ple closed curve c on S.

Recall the following relations onM(S) among Dehn twists along two-sided sim-
ple closed curves on S.

Lemma 2.1. For a two-sided simple closed curve c on S which bounds a disk or a
Möbius band in S, we have tc = 1 on M(S).

Lemma 2.2 (The braid relation (i)). For a two-sided simple closed curve c on S

and f ∈ M(S), we have

t
εf(c)

f(c) = ftcf
−1,

where εf(c) = 1 if the restriction f |NS(c) : NS(c) → NS(f(c)) is orientation pre-
serving and εf(c) = −1 if the restriction f |NS(c) : NS(c)→ NS(f(c)) is orientation
reversing.

When f in Lemma 2.2 is a Dehn twist td along a two-sided simple closed curve
d and the geometric intersection number |c ∩ d| of c and d is m, we denote by Tm
the braid relation.

Let c1, c2, . . . , ck be two-sided simple closed curves on S. The sequence c1, c2,
. . . , ck of simple closed curves on S is the k-chain on S if c1, c2, . . . , ck satisfy
|ci ∩ ci+1| = 1 for each i = 1, 2, . . . , k − 1 and |ci ∩ cj | = 0 for |j − i| > 1.

Lemma 2.3 (The k-chain relation). Let c1, c2, . . . , ck be a k-chain on S and let
δ1, δ2 (resp. δ) be distinct boundary components (resp. the boundary component)
of NS(c1 ∪ c2 ∪ · · · ∪ ck) when k is odd (resp. even). Then we have

(t
εc1
c1 t

εc2
c2 · · · t

εck
ck )k+1 = t

εδ1
δ1
t
εδ2
δ2

when k is odd,

(t
εc1
c1 t

εc2
c2 · · · t

εck
ck )2k+2 = tεδδ when k is even,

where εc1 , εc2, . . . , εck , εδ1 , εδ2 and ε are 1 or −1, and t
εc1
c1 , t

εc2
c2 , . . . , t

εck
ck , t

εδ1
δ1

and t
εδ2
δ2

(resp. tεδδ ) are right-handed Dehn twists for some orientation of NS(c1 ∪
c2 ∪ · · · ∪ ck).

Lemma 2.4 (The lantern relation). Let Σ be a subsurface of S which is diffeomor-
phic to Σ0,4 and let δ12, δ23, δ13, δ1, δ2, δ3 and δ4 be simple closed curves on Σ as
in Figure 2. Then we have

t
εδ12
δ12

t
εδ23
δ23

t
εδ13
δ13

= t
εδ1
δ1
t
εδ2
δ2
t
εδ3
δ3
t
εδ4
δ4
,

where εδ12 , εδ23 , εδ13 , εδ1 , εδ2 , εδ3 and εδ4 are 1 or −1, and t
εδ12
δ12

, t
εδ23
δ23

, t
εδ13
δ13

, t
εδ1
δ1

,

t
εδ2
δ2

, t
εδ3
δ3

and t
εδ4
δ4

are right-handed Dehn twists for some orientation of Σ.

Luo’s presentation forM(Σg,n), which is an improvement of Gervais’s one, is as
follows.
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Figure 2. Simple closed curves δ12, δ23, δ13, δ1, δ2, δ3 and δ4 on Σ.

Theorem 2.5 ([3], [10]). For g ≥ 0 and n ≥ 0,M(Σg,n) has the following presen-
tation:

generators: {tc | c : s.c.c. on Σg,n}.
relations:

(0′) tc = 1 when c bounds a disk in Σg,n,
(I′) All the braid relations T0 and T1,
(II) All the 2-chain relations,
(III) All the lantern relations.

2.2. Relations among the crosscap pushing maps and Dehn twists. Let µ
be a one-sided simple closed curve on Ng,n and let α be a simple closed curve on
Ng,n such that µ and α intersect transversely at one point. Recall that α is oriented.
For these simple closed curves µ and α, we denote by Yµ,α a self-diffeomorphism on
Ng,n which is described as the result of pushing the Möbius band NNg,n

(µ) once
along α. We call Yµ,α a crosscap pushing map. In particular, if α is two-sided, we
call Yµ,α a Y-homeomorphism (or crosscap slide), where a crosscap means a Möbius
band in the interior of a surface. We have the following fundamental relation on
M(Ng,n) and we also call the relation the braid relation.

Lemma 2.6 (The braid relation (ii)). Let µ be a one-sided simple closed curve
on Ng,n and let α be a simple closed curve on Ng,n such that µ and α intersect
transversely at one point. For f ∈M(Ng,n), we have

Y
εf(α)

f(µ),f(α) = fYµ,αf
−1,

where εf(α) = 1 if the given orientation of f(α) coincides with that of f(α) induced
by the orientation of α, and εf(α) = −1 if the given orientation of f(α) does not
coincide with that of f(α) induced by the orientation of α.

We describe crosscap pushing maps as a different view. Let e : D′ →֒ intS be a
smooth embedding of the unit disk D′ ⊂ C. Put D := e(D′). Let S′ be the surface
obtained from S − intD by the identification of antipodal points of ∂D. We call
the manipulation that gives S′ from S the blowup of S on D. Note that the image
M ⊂ S′ of NS−intD(∂D) ⊂ S − intD with respect to the blowup of S on D is a
crosscap. Conversely, the blowdown of S′ on M is the following manipulation that
gives S from S′. We paste a disk on the boundary obtained by cutting S along the
center line µ of M . The blowdown of S′ on M is the inverse manipulation of the
blowup of S on D.

Let µ be a one-sided simple closed curve on Ng,n. Note that we obtain Ng−1,n

from Ng,n by the blowdown of Ng,n on NNg,n
(µ). Denote by xµ the center point

of a disk Dµ that is pasted on the boundary obtained by cutting S along µ. Let
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e : D′ →֒ Dµ ⊂ Ng−1,n be a smooth embedding of the unit disk D′ ⊂ C to Ng−1,n

such that Dµ = e(D′) and e(0) = xµ. LetM(Ng−1,n, xµ) be the group of isotopy
classes of self-diffeomorphisms on Ng−1,n fixing the boundary ∂Ng−1,n and the
point xµ, where isotopies also fix the boundary ∂Ng−1,n and xµ. Then we have the
blowup homomorphism

ϕµ :M(Ng−1,n, xµ)→M(Ng,n)

that is defined as follows. For h ∈ M(Ng−1,n, xµ), we take a representative h′ of
h which satisfies either of the following conditions: (a) h′|Dµ

is the identity map

on Dµ, (b) h
′(x) = e(e−1(x)) for x ∈ Dµ. Such h′ is compatible with the blowup

of Ng−1,n on Dµ, thus ϕµ(h) ∈ M(Ng,n) is induced and well defined (c.f. [14,
Subsection 2.3]).

The point pushing map

jxµ
: π1(Ng−1,n, xµ)→M(Ng−1,n, xµ)

is a homomorphism that is defined as follows. For γ ∈ π1(Ng−1,n, xµ), jxµ
(γ) ∈

M(Ng−1,n, xµ) is described as the result of pushing the point xµ once along γ.
Note that for γ1, γ2 ∈ π1(Ng−1,n), γ1γ2 means γ1γ2(t) = γ2(2t) for 0 ≤ t ≤ 1

2 and

γ1γ2(t) = γ1(2t− 1) for 1
2 ≤ t ≤ 1.

We define the composition of the homomorphisms:

ψxµ
:= ϕµ ◦ jxµ

: π1(Ng−1,n, xµ)→M(Ng,n).

For each closed curve α on Ng,n which transversely intersects with µ at one point,
we take a loop α on Ng−1,n based at xµ such that α has no self-intersection points
on Dµ and α is the image of α with respect to the blowup of Ng−1,n on Dµ. If
α is simple, we take α as a simple loop. The next two lemmas follow from the
description of the point pushing map (See [7, Lemma 2.2, Lemma 2.3]).

Lemma 2.7. For a simple closed curve α on Ng,n which transversely intersects
with a one-sided simple closed curve µ on Ng,n at one point, we have

ψxµ
(α) = Yµ,α.

Lemma 2.8. For a one-sided simple closed curve α on Ng,n which transversely
intersects with a one-sided simple closed curve µ on Ng,n at one point, we take

NNg−1,n(α) such that the interior of NNg−1,n(α) contains Dµ. Suppose that δ1 and

δ2 are distinct boundary components of NNg−1,n(α), and δ1 and δ2 are two-sided

simple closed curves on Ng,n which are image of δ1, δ2 with respect to the blowup
of Ng−1,n on Dµ, respectively. Then we have

Yµ,α = t
εδ1
δ1
t
εδ2
δ2
,

where εδ1 and εδ2 are 1 or −1, and εδ1 and εδ2 depend on the orientations of α,
NNg,n

(δ1) and NNg,n
(δ2) (See Figure 3).

By the definition of the homomorphism ψxµ
and Lemma 2.7, we have the fol-

lowing lemma.

Lemma 2.9. Let α and β be simple closed curves on Ng,n which transversely
intersect with a one-sided simple closed curve µ on Ng,n at one point. Suppose the

product αβ of α and β in π1(Ng−1,n, xµ) is represented by a simple loop on Ng−1,n,
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Figure 3. If the orientations of α, NNg,n
(δ1) and NNg,n

(δ2) are

as above, then we have Yµ,α = tδ1t
−1
δ2

. The x-mark as in the figure
means the boundary of Dµ identified the antipodal points of ∂Dµ.

and αβ is a simple closed curve on Ng,n which is the image of the representative of

αβ with respect to the blowup of Ng−1,n on Dµ. Then we have

Yµ,αβ = Yµ,αYµ,β .

Finally, we recall the following relation between a Dehn twist and a Y-
homeomorphism.

Lemma 2.10. Let α be a two-sided simple closed curve on Ng,n which transversely
intersect with a one-sided simple closed curve µ on Ng,n at one point and let δ be
the boundary of NNg,n

(α ∪ µ). Then we have

Y 2
µ,α = tεδ,

where ε is 1 or −1, and ε depends on the orientations of α and NNg,n
(δ) (See

Figure 4).

Lemma 2.10 follows from relations in Lemma 2.1, Lemma 2.8 and Lemma 2.9.

Figure 4. If the orientations of α and NNg,n
(δ) are as above, then

we have Y 2
µ,α = tδ1 .

2.3. Stukow’s finite presentation for M(Ng,n). Let ei : D
′
i →֒ Σ0 for i = 1,

2, . . . , g + 1 be smooth embeddings of the unit disk D′ ⊂ C to a 2-sphere Σ0 such
that Di := ei(D

′) and Dj are disjoint for distinct 1 ≤ i, j ≤ g + 1. Then we take a
model of Ng (resp. Ng,1) as the surface obtained from Σ0 (resp. Σ0 − intDg+1) by
the blowups on D1, . . . , Dg and we describe the identification of ∂Di by the x-mark
as in Figure 5, 6. When n ∈ {0, 1}, for 1 ≤ i1 < i2 < · · · < ik ≤ g, let γi1,i2,...,ik be
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the simple closed curve on Ng,n as in Figure 5. Then we define the simple closed
curves αi := γi,i+1 for i = 1, . . . , g − 1, β := γ1,2,3,4 and µ1 := γ1 (See Figur 6),
and the mapping classes ai := tαi

for i = 1, . . . , g − 1, b := tβ and y := Yµ1,α1 .
Then the following finite presentation for M(Ng,n) is obtained by Lickorish [8]
for (g, n) = (2, 0), Stukow [12] for (g, n) = (2, 1), Birman-Chillingworth [1] for
(g, n) = (3, 0) and Stukow [13] for the other (g, n) such that g ≥ 3 and n ∈ {0, 1}.

Figure 5. Simple closed curve γi1,i2,...,ik on Ng,n.

Figure 6. Simple closed curves α1, . . . , αg−1, β and µ1 on Ng,n.

Theorem 2.11 ([8], [1], [12], [13]). For (g, n) = (2, 0), (2, 1) and (3, 0), we have
the following presentation for M(Ng,n):

M(N2) =
〈
a1, y | a

2
1 = y2 = (a1y)

2 = 1
〉
∼= Z2 ⊕ Z2,

M(N2,1) =
〈
a1, y | ya1y

−1 = a−1
1

〉
,

M(N3) =
〈
a1, a2, y | a1a2a1 = a2a1a2, y

2 = (a1y)
2 = (a2y)

2 = (a1a2)
6 = 1

〉
.

If g ≥ 4 and n ∈ {0, 1} or (g, n) = (3, 1), then M(Ng,n) admits a presentation
with generators a1, . . . , ag−1, y, and b for g ≥ 4. The defining relations are

(A1) [ai, aj ] = 1 for g ≥ 4, |i − j| > 1,
(A2) aiai+1ai = ai+1aiai+1 for i = 1, . . . , g − 2,
(A3) [ai, b] = 1 for g ≥ 4, i 6= 4,
(A4) a4ba4 = ba4b for g ≥ 5,
(A5) (a2a3a4b)

10 = (a1a2a3a4b)
6 for g ≥ 5,

(A6) (a2a3a4a5a6b)
12 = (a1a2a3a4a5a6b)

9 for g ≥ 7,
(A9a) [b2, b] = 1 for g = 6,
(A9b) [ag−5, b g−2

2
] = 1 for g ≥ 8 even,

where b0 = a1, b1 = b and
bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)
−6

for 1 ≤ i ≤ g−4
2 ,
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(B1) y(a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 ) = (a2a3a1a2ya
−1
2 a−1

1 a−1
3 a−1

2 )y for g ≥
4,

(B2) y(a2a1y
−1a−1

2 ya1a2)y = a1(a2a1y
−1a−1

2 ya1a2)a1,
(B3) [ai, y] = 1 for g ≥ 4, i = 3, . . . , g − 1,
(B4) a2(ya2y

−1) = (ya2y
−1)a2,

(B5) ya1 = a−1
1 y,

(B6) byby−1 = {a1a2a3(y−1a2y)a
−1
3 a−1

2 a−1
1 }{a

−1
2 a−1

3 (ya2y
−1)a3a2} for

g ≥ 4,
(B7) [(a4a5a3a4a2a3a1a2ya

−1
2 a−1

1 a−1
3 a−1

2 a−1
4 a−1

3 a−1
5 a−1

4 ), b] = 1 for g ≥ 6,

(B8) {(ya−1
1 a−1

2 a−1
3 a−1

4 )b(a4a3a2a1y
−1)}{(a−1

1 a−1
2 a−1

3 a−1
4 )b−1(a4a3a2a1)}

= {(a−1
4 a−1

3 a−1
2 )y(a2a3a4)}{a

−1
3 a−1

2 y−1a2a3}{a
−1
2 ya2}y−1 for g ≥ 5,

(C1b) (a1a2 · · ·ag−1)
g = 1 for g ≥ 4 even and n = 0,

(C2) [a1, ρ] = 1 for g ≥ 4 and n = 0,
where ρ = (a1a2 · · ·ag−1)

g for g odd and

ρ = (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−2
2 y−1a2a3 · · · ag−1 for g even,

(C3) ρ2 = 1 for g ≥ 4 and n = 0,

(C4a) (y−1a2a3 · · ·ag−1ya2a3 · · ·ag−1)
g−1
2 = 1 for g ≥ 4 odd and n = 0,

where [x1, x2] = x1x2x
−1
1 x−1

2 .

3. Presentation for M(Ng,n)

The main theorem in this paper is as follows:

Theorem 3.1. For g ≥ 3 and n ∈ {0, 1} or (g, n) = (2, 1), M(Ng,n) has the
following presentation:

generators: {tc | c : two-sided s.c.c. on Ng,n}
∪{Yµ,α | µ : one-sided s.c.c. on Ng,n, α : s.c.c. on Ng,n, |µ ∩ α| = 1}.
Set the generating set by X.

relations:

(0) tc = 1 when c bounds a disk or a Möbius band in Ng,n,
(I) All the braid relations

{
(i) ftcf

−1 = t
εf(c)

f(c) for f ∈ X,

(ii) fYµ,αf
−1 = Y

εf(α)

f(µ),f(α) for f ∈ X,

(II) All the 2-chain relations,
(III) All the lantern relations,
(IV) All the relations in Lemma 2.9, i.e. Yµ,αβ = Yµ,αYµ,β,

(V) All the relations in Lemma 2.8, i.e. Yµ,α = t
εδ1
δ1
t
εδ2
δ2

.

Remark that Relations (V) are superfluous by rewriting Relations (I)(ii) and (I
V) as words of Dehn twists and Y-homeomorphisms.

We set X := {f | f ∈ X}, where f is an abstract symbol for f ∈ X . Let G
be the group whose presentation has the generating set X and relations which are
obtained from the relations of the presentation in Theorem 3.1 by replacing f±1

for f ∈ X in the relations with f
±1

. Denote by (0), (I), (II), (III), (IV ) and (V )
the relations which are obtained from Relation (0), (I), (II), (III), (IV) and (V) by

replacing f±1 for f ∈ X in the relations with f
±1

, respectively.
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Let ι : Σh,m →֒ Ng,n be a smooth embedding and let G′ be the group whose
presentation has all Dehn twists along simple closed curves on Σh,m as gener-
ators and Relations (0′), (I′), (II) and (III) in Theorem 2.5. By Theorem 2.5,
M(Σh,m) is isomorphic to G′, and we have the homomorphism G′ → G de-

fined by the correspondence of tc to t
ει(c)
ι(c) , where ει(c) = 1 if the restriction

ι|NΣh,m
(c) : NΣh,m

(c) → NNg,n
(ι(c)) is orientation preserving, and ει(c) = −1 if

the restriction ι|NΣh,m
(c) : NΣh,m

(c) → NNg,n
(ι(c)) is orientation reversing. Then

we remark as follows.

Remark 3.2. The composition ι∗ : M(Σh,m) → G of the homomorphisms is a
homomorphism.

Remark 3.2 means that if a product tε1c1 t
ε2
c2
· · · tεkck of Dehn twists along simple

closed curves c1, c2, . . . , ck on a connected compact orientable subsurface of Ng,n
is a product of relators on the mapping class group of the orientable subsurface of
Ng,n, then tc1

ε1
tc2

ε2 · · · tck
εk is a product of relators obtained by Relations (0), (I),

(II), (III).
Set X± := X ∪ {x−1 | x ∈ X}. By Relation (I), we have the following lemma.

Lemma 3.3. For f ∈ G, suppose that f = f1 f2 · · · fk, where f1, f2, . . . , fk ∈ X±.
Then we have{

(i) ftcf
−1 = tf1f2···fk(c)

εf1f2···fk(c) ,

(ii) fYµ,αf
−1 = Yf1f2···fk(µ),f1f2···fk(α)

εf1f2···fk(α)
,

where for fi ∈ {x−1 | x ∈ X}, fi := f−1
i

−1
.

The next lemma follows from a argument of the combinatorial group theory (for
instance, see [6, Lemma 4.2.1, p42]).

Lemma 3.4. For groups Γ, Γ′ and F , a surjective homomorphism π : F → Γ and
a homomorphism ν : F → Γ′, we define a map ν′ : Γ → Γ′ by ν′(x) := ν(x̃) for
x ∈ Γ, where x̃ ∈ F is a lift of x with respect to π (See the diagram below).

Then if kerπ ⊂ kerν, ν′ is well-defined and a homomorphism.

F

π
��
��

ν

  
❅

❅

❅

❅

❅

❅

❅

❅

Γ
ν′

//❴❴❴ Γ′

Proof of Theorem 3.1. Assume g ≥ 3 and n ∈ {0, 1} or (g, n) = (2, 1). Then we
obtain Theorem 3.1 ifM(Ng,n) is isomorphic to G. Let ϕ : G →M(Ng,n) be the

surjective homomorphism defined by ϕ(tc) := tc and ϕ(Yµ,α) := Yµ,α.
Set X0 := {a1, . . . , ag−1, b, y} ⊂ M(Ng,n) for g ≥ 4 and X0 :=

{a1, . . . , ag−1, y} ⊂ M(Ng,n) for g = 2, 3. Let F (X0) be the free group which
is freely generated by X0 and let π : F (X0)→M(Ng,n) be the natural projection
(by Theorem 2.11). We define the homomorphism ν : F (X0) → G by ν(ai) := ai
for i = 1, . . . , g− 1, ν(b) := b and ν(y) := y, and a map ψ = ν′ :M(Ng,n)→ G by

ψ(a±1
i ) := ai

±1 for i = 1, . . . , g−1, ψ(b±1) := b
±1

, ψ(y±1) := y±1 and ψ(f) := ν(f̃)

for the other f ∈ M(Ng,n), where f̃ ∈ F (X0) is a lift of f with respect to π (See
the diagram below).
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F (X0)

π
��
��

ν

##●
●

●

●

●

●

●

●

●

●

M(Ng,n)
ψ

//❴❴❴ G

If ψ is a homomorphism, ϕ◦ψ = idM(Ng,n) by the definition of ϕ and ψ. Thus it
is sufficient for proving that ψ is isomorphism to show that ψ is a homomorphism
and surjective.

3.1. Proof that ψ is a homomorphism. When (g, n) is either (2, 1) or (3, 0),
relations of the presentation in Theorem 2.11 are obtained from Relations (0), (I),
(II), (IV ) and (V ), clearly. Thus by Lemma 3.4, ψ is a homomorphism.

Assume g ≥ 4 or (g, n) = (3, 1). By Lemma 3.4, if the relations of the presenta-
tion in Theorem 2.11 are obtained from Relations (0), (I), (II), (III), (IV ) and (V ),
then ψ is a homomorphism.

The group generated by a1, . . . , ag−1 and b with Relations (A1)-(A9b) as defining
relations is isomorphic toM(Σh,1) (resp. M(Σh,2)) for g = 2h+1 (resp. g = 2h+2)
by Theorem 3.1 in [11], and Relations (A1)-(A9b) are relations on the mapping
class group of the orientable subsurface NNg,n

(α1 ∪ · · · ∪ αg−1) of Ng,n. Hence

Relations (A1)-(A9b) are obtained from Relations (0), (I), (II), (III) by Remark 3.2.
Stukow [13] gave geometric interpretations for Relations (B1)-(B8) in Section 4

in [13]. By the interpretation, Relations (B1), (B2), (B3), (B4), (B5), (B7) are
obtained from Relations (I) (Use Lemma 3.3), Relation (B6) is obtained from
Relations (0), (I), (III), (IV ) and (V ) (Use Lemma 2.10 and Lemma 3.3), and
Relation (B8) is obtained from Relations (I), (IV ) and (V ) (Use Lemma 3.3).
Thus ψ is a homomorphism when n = 1.

We assume n = 0. By Remark 3.2, k-chain relations are obtained from Re-
lations (0), (I), (II) and (III) for each k. Relation (C1b) is interpreted in G as
follows.

(a1a2 · · · ag−1)
g (0),(I),(II),(III)

= tγ1,2,...,gt
−1
γ1,2,...,g

= 1.

Thus Relation (C1b) is obtained from Relations (0), (I), (II) and (III).
Relation (C2) is obtained from Relations (I) by Lemma 3.3, clearly.
When g is odd, by using the (g − 1)-chain relation, Relation (C3) is interpreted

in G as follows.

ρ2 = (a1a2 · · ·ag−1)
2g (0),(I),(II),(III)

= tε∂NNg (γ1,2,...,g)

(0)
= 1,

where ε is 1 or −1. Note that NNg
(γ1,2,...,g) is a Möbius band in Ng. Thus Rela-

tion (C3) is obtained from Relations (0), (I), (II) and (III) when g is odd.
When g is even, we rewrite the left-hand side ρ2 of Relation (C3) by braid

relations. Set A := a2a3 · · · ag−1. Note that

Yµ1,γ1,2,3(a2 · · · a2ia2 · · ·a2i−1Yµ1,γ1,2,...,2i−1a
−1
2i−1 · · · a

−1
2 a−1

2i · · · a
−1
2 ) = Yµ1,γ1,2,...,2i+1

for i = 2, . . . , g−2
2 by Relation (I), (IV ), and then we have

ρ

= y−1A(yAy−1

←−−
A)

g−2
2
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(I)
= y−1A(ya2y

−1a3 · · · ag−1A)
g−2
2

= y−1A(y(a2y
−1a−1

2 )A2)
g−2
2

(I),(IV )
= y−1A(Yµ1,γ1,2,3A

2)
g−2
2 .

= y−1AYµ1,γ1,2,3A
2 · · ·Yµ1,γ1,2,3A

2Yµ1,γ1,2,3
←−−−−−

A2

(I)
= y−1AYµ1,γ1,2,3A

2 · · ·Yµ1,γ1,2,3Aa2a3Yµ1,γ1,2,3a4 · · · ag−1A
2

= y−1AYµ1,γ1,2,3A
2 · · ·Yµ1,γ1,2,3A(a2a3Yµ1,γ1,2,3a

−1
3 a−1

2
←−−−−−−−−−−−−−−−

)A3

(I)
= y−1AYµ1,γ1,2,3A

2 · · ·Yµ1,γ1,2,3a2a3a4(a2a3Yµ1,γ1,2,3a
−1
3 a−1

2 )a5 · · ·ag−1A
3

= y−1AYµ1,γ1,2,3A
2 · · ·Yµ1,γ1,2,3(a2a3a4a2a3Yµ1,γ1,2,3a

−1
3 a−1

2 a−1
4 a−1

3 a−1
2 )A4

(I),(IV )
= y−1AYµ1,γ1,2,3A

2 · · ·Yµ1,γ1,2,3A
2Yµ,γ1,2,3,4,5
←−−−−−−−

A4

(I)
= y−1AYµ1,γ1,2,3A

2 · · ·Yµ1,γ1,2,3

·(a2a3a4a5a6a2a3a4a5Yµ,γ1,2,3,4,5a
−1
5 a−1

4 a−1
3 a−1

2 a−1
6 a−1

5 a−1
4 a−1

3 a−1
2 )A6

(I),(IV )
= y−1AYµ1,γ1,2,3A

2 · · ·Yµ1,γ1,2,3,4,5,6,7A
6

...

= y−1AYµ1,γ1,2,...,g−1A
g−2

= y−1 ·AYµ1,γ1,2,...,g−1A
−1 ·Ag−1

(I),(IV )
= Yµ1,γ1,2,...,gA

g−1.

Since Yµ1,γ1,2,...,g commutes with ai for i = 2, . . . , g− 1, and ∂NNg
(µ1 ∪γ1,2,...,g) =

∂NNg
(α2 ∪ · · · ∪ αg−1) (See Figure 7), we have

ρ2 = Yµ1,γ1,2,...,gA
g−1Yµ1,γ1,2,...,gA

g−1

(I)
= Y 2

µ1,γ1,2,...,g
A2g−2

(0),(I),(II),(III)
= Y 2

µ1,γ1,2,...,g
t∂NNg (α2∪···∪αg−1)

Lem. 2.10
= t−1

∂NNg (α2∪···∪αg−1)
t∂NNg (α2∪···∪αg−1)

= 1.

Thus Relation (C3) is obtained from Relations (0), (I), (II), (IV ) and (V ) when g
is even.

Finally, we also rewrite the left-hand side (y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−1
2 of

Relation (C4a) by braid relations. Remark that g is odd. For 1 ≤ i1 < i2 < · · · <
ik ≤ g, we denote by γ′i1,i2,...,ik the simple closed curve on Ng,n as in Figure 8. Note
that

Yµ1,γ
′

1,2,...,2i+1
= Yµ1,γ

′

1,2,3
(a2 · · · a2ia2 · · · a2i−1Yµ1,γ

′

1,2,...,2i−1
a−1
2i−1 · · · a

−1
2 a−1

2i · · ·a
−1
2 )
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Figure 7. Simple closed curve ∂NNg
(α2 ∪ · · · ∪ αg−1) on Ng.

for i = 2, . . . , g−1
2 and ∂NNg

(µ1 ∪ γ1,2,...,g) = d1 ⊔ d2, and by a similar argument
for Relation (C3) when g is even, we have

(y−1a2a3 · · · ag−1ya2a3 · · · ag−1)
g−1
2

= (y−1A y
←−
A)

g−1
2

(I)
= (y−1(a2ya

−1
2 )A2)

g−1
2

(I),(IV )
= (Yµ1,γ

′

1,2,3
A2)

g−1
2

= Yµ1,γ
′

1,2,3
A2 · · ·Yµ1,γ

′

1,2,3
A2Yµ1,γ

′

1,2,3
←−−−−−

A2

(I)
= Yµ1,γ

′

1,2,3
A2 · · ·Yµ1,γ

′

1,2,3
A2

·Yµ1,γ
′

1,2,3
(a2a3a4a2a3Yµ1,γ

′

1,2,3
a−1
3 a−1

2 a−1
4 a−1

3 a−1
2 )A4

(I),(IV )
= Yµ1,γ

′

1,2,3
A2 · · ·Yµ1,γ

′

1,2,3
A2Yµ1,γ

′

1,2,3,4,5
←−−−−−−−

A4

(I)
= Yµ1,γ

′

1,2,3
A2 · · ·Yµ1,γ

′

1,2,3

·(a2a3a4a5a6a2a3a4a5Yµ,γ′

1,2,3,4,5
a−1
5 a−1

4 a−1
3 a−1

2 a−1
6 a−1

5 a−1
4 a−1

3 a−1
2 )A6

(I),(IV )
= Yµ1,γ

′

1,2,3
A2 · · ·Yµ,γ′

1,2,3,4,5,6,7
A6

...

= Yµ,γ1,2,...,gA
g−1

(II)
= Yµ,γ1,2,...,gtd1td2

(V )
= t−1

d1
t−1
d2
td1td2

(I)
= 1,

where simple closed curves d1 and d2 are boundary components of NNg
(α2 ∪ · · · ∪

αg−1) as in Figure 9. Therefore Relation (C4a) is obtained from Relations (I), (II),

(IV ) and (V ), and ψ :M(Ng,n)→ G is a homomorphism.

3.2. Surjectivity of ψ. We show that there exist lifts of tc’s and Yµ,α’s with
respect to ψ for cases below, to prove the surjectivity of ψ.

(1) tc; c is non-separating and Ng,n − c is non-orientable,
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Figure 8. Simple closed curve γ′i1,i2,...,ik on Ng,n.

Figure 9. Simple closed curve d1 and d2 on Ng,n.

(2) tc; c is non-separating and Ng,n − c is orientable,
(3) tc; c is separating,
(4) Yµ,α; α is two-sided and Ng,n − α is non-orientable,

(5) Yµ,α; α is two-sided and Ng,n − α is orientable,

(6) Yµ,α; α is one-sided.

Set X±
0 := X0 ∪ {x−1 | x ∈ X0}, and for a simple closed curve c on Ng,n, we

denote by (Ng,n)c the surface obtained from Ng,n by cutting Ng,n along c.
Case (1). Since (Ng,n)c is diffeomorphic to Ng−2,n+2 and g ≥ 3, there exists a

product f = f1f2 · · · fk ∈ M(Ng,n) of f1, f2, · · · , fk ∈ X
±
0 such that f(α1) = c.

Note that ψ(fi) = fi ∈ X
±
= X ∪{x−1 | x ∈ X} for i = 1, 2, . . . , k. Thus we have

ψ(fa1f
−1) = ψ(f)ψ(a1)ψ(f)

−1

= f1 f2 · · · fka1fk
−1
· · · f2

−1
f1

−1

Lem. 3.3
= tf(α1)

ε

= tc
ε
,

where ε is 1 or −1. Thus faε1f
−1 is a lift of tc with respect to ψ for some ε ∈ {−1, 1}.

Case (2). We remark that g is even in this case. When g = 2, such a simple
closed curve c is unique and c = α1. Thus a1 is the lift of tc with respect to
ψ. When g = 4, since (Ng,n)c is diffeomorphic to Σ1,n+2, there exists a product

f = f1f2 · · · fk ∈M(Ng,n) of f1, f2, · · · , fk ∈ X
±
0 such that f(β) = c. By a similar

argument in Case (1), fbεf−1 is a lift of tc with respect to ψ for some ε ∈ {−1, 1}.
Assume g ≥ 6 even. Then there exists a product f = f1f2 · · · fk ∈ M(Ng,n) of

f1, f2, · · · , fk ∈ X
±
0 such that f(γ1,2,...,g) = c. Since α1 ∪ α3 ∪ γ5,6,...,g ∪ γ1,2,...,g

bounds a subsurface of Ng,n which is diffeomorphic to Σ0,4 (See Figure 10), we
have btγ3,4,...,g tγ1,2,5,...,g = tγ1,2,...,ga1a3tγ5,6,...,g by a lantern relation. Note that

b, tγ3,4,...,g , tγ1,2,5,...,g , a1, a3, tγ5,6,...,g are Dehn twists of type (1), and tγ3,4,...,g ,
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tγ1,2,5,...,g , tγ5,6,...,g have lifts h1, h2, h3 ∈ M(Ng,n) with respect to ψ, respectively.
Thus we have

ψ(fbh1h2a
−1
1 a−1

3 h−1
3 f−1)

= f1 f2 · · · fk btγ3,4,...,g tγ1,2,5,...,ga1
−1a3

−1tγ5,6,...,g
−1
fk

−1
· · · f2

−1
f1

−1

(III)
= f1 f2 · · · fktγ1,2,...,gfk

−1
· · · f2

−1
f1

−1

Lem. 3.3
= tc

ε
,

where ε is 1 or −1. Thus f(bh1h2a
−1
1 a−1

3 h−1
3 )εf−1 is a lift of tc with respect to ψ

for some {−1, 1}.

Figure 10. α1∪α3∪γ5,6,...,g∪γ1,2,...,g bound a subsurface of Ng,n
which is diffeomorphic to Σ0,4.

Case (3). Let Σ be the component of (Ng,n)c which has one boundary com-
ponent. When Σ is orientable, there exists a k-chain c1, c2, . . . , ck on Ng,n such
that NNg,n

(c1 ∪ c2 ∪ · · · ∪ ck) = Σ. By the chain relation, (tε1c1 t
ε2
c2
· · · tεkck )

2k+2 = tc
for some ε1, ε2, . . . , εk ∈ {−1, 1}. Note that tc1 , tc2 , . . . , tck are Dehn twists of
type (1) and tc1 , tc2 , . . . , tck have lifts h1, h2, . . . , hk ∈ M(Ng,n) with respect to
ψ, respectively. Thus we have

ψ((hε11 h
ε2
2 . . . hεkk )2k+2) = (tc1

ε1
tc2

ε2 · · · tck
εk)2k+2

(0),(I),(II),(III)
= tc.

Thus (hε11 h
ε2
2 . . . hεkk )2k+2 is a lift of tc with respect to ψ.

When Σ is non-orientable, we proceed by induction on the genus g′ of Σ. For
g′ = 1, tc = 1 by Relation (0). When g′ = 2, there exists a product f = f1f2 · · · fk ∈
M(Ng,n) of f1, f2, · · · , fk ∈ X±

0 such that f(∂NNg,n
(µ1 ∪ α1)) = c. Hence

fy2f−1 = tεc for some ε ∈ {−1, 1}. Then we have

ψ(fy2f−1) = f1 f2 · · · fk y
2fk

−1
· · · f2

−1
f1

−1

Lem. 2.10
= f1 f2 · · · fk t∂NNg,n (µ1∪α1)

ε
fk

−1
· · · f2

−1
f1

−1

Lem. 3.3
= tc

ε′

,

where ε′ is 1 or −1. Thus fy2ε
′

f−1 is a lift of tc with respect to ψ for some
ε′ ∈ {−1, 1}.

Suppose that g′ ≥ 3 and c′ is the separating simple closed curve on Ng,n as in
Figure 11. Then there exists a product f = f1f2 · · · fk ∈ M(Ng,n) of f1, f2, · · · ,
fk ∈ X±

0 such that f(c′) = c. Denote by ci for i = 1, 2, . . . , 6 the separating
simple closed curves on f(Σ) as in Figure 11. Note that c′ ∪ c4 ∪ c5 ∪ c6 bounds
a subsurface of f(Σ) which is diffeomorphic to Σ0,4, and each ci for i = 1, 2, . . . ,
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6 bounds a subsurface of f(Σ) which is diffeomorphic to a non-orientable surface
of genus gi < g′ with one boundary component. By the inductive assumption, tc1 ,
tc2 , tc3 , tc4 have lifts h1, h2, h3 and h4 ∈M(Ng,n) with respect to ψ, respectively.
Thus we have

ψ(fh1h2h3h
−1
4 f−1) = f1 f2 · · · fktc1 tc2 tc3 tc4

−1
fk

−1
· · · f2

−1
f1

−1

(0),(III)
= f1 f2 · · · fktc′fk

−1
· · · f2

−1
f1

−1

Lem. 3.3
= tc

ε
,

where ε is 1 or −1. Thus f(h1h2h3h
−1
4 )εf−1 is a lift of tc with respect to ψ for

some ε ∈ {−1, 1}.

Figure 11. Simple closed curves c′ and ci for i = 1, 2, . . . , 6 on f(Σ).

Case (4). Since Ng,n−intNNg,n
(µ∪α) is diffeomorphic toNg−2,n+1 and the two-

sided simple closed curve on N2,1 is unique, there exists a product f = f1f2 · · · fk ∈
M(Ng,n) of f1, f2, · · · , fk ∈ X

±
0 such that f(α1) = α and f(µ1) = µ. Thus we

have

ψ(fyf−1) = f1 f2 · · · fkyfk
−1
· · · f2

−1
f1

−1

Lem. 3.3
= Yµ,α

ε
,

where ε is 1 or −1. Thus fyεf−1 is a lift of Yµ,α with respect to ψ for some
ε ∈ {−1, 1}.

Case (5). We remark that g is even in this case. Since Ng,n− intNNg,n
(µ∪α) is

diffeomorphic to Σ g−2
2 ,n+1 and the two-sided simple closed curve on N2,1 is unique,

there exists a product f = f1f2 · · · fk ∈ M(Ng,n) of f1, f2, · · · , fk ∈ X±
0 such

that f(γ1,2,...,g) = α and f(µ1) = µ. Note that Yµ1,γ1,2 , Yµ1,γ1,3 , . . . , Yµ1,γ1,g are

Y-homeomorphisms of type (4), and Yµ1,γ1,3 , Yµ1,γ1,4 , . . . , Yµ1,γ1,g have lifts h3, h4,
. . . , hg ∈M(Ng,n) with respect to ψ, respectively. Thus we have

ψ(fhg . . . h4h3yf
−1)

= f1 f2 · · · fk Yµ1,γ1,g . . . Yµ1,γ1,4 Yµ1,γ1,3yfk
−1
· · · f2

−1
f1

−1

(IV )
= f1 f2 · · · fk Yµ1,γ1,2,...,g fk

−1
· · · f2

−1
f1

−1

Lem. 3.3
= Yµ,α

ε
,

where ε is 1 or −1. Thus f(hg . . . h4h3y)
εf−1 is a lift of Yµ,α with respect to ψ for

some ε ∈ {−1, 1}.
Case (6). Let δ1, δ2 be two-sided simple closed curves on Ng,n such that

δ1 ⊔ δ2 = ∂NNg,n
(µ ∩ α). By Lemma 2.8, we have Yµ,α = tε1δ1 t

ε2
δ2

for some ε1 and
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ε2 ∈ {−1, 1}, and by above arguments, tc1 , tc2 have lifts h1 and h2 ∈ M(Ng,n) with
respect to ψ, respectively. Thus we have

ψ(hε11 h
ε2
2 ) = tc1

ε1
tc2

ε2

(V )
= Yµ,α.

Thus hε11 h
ε2
2 is a lift of Yµ,α with respect to ψ and ψ :M(Ng,n)→ G is surjective.

We have completed the proof of Theorem 3.1.
�
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