
ar
X

iv
:1

60
1.

01
42

1v
1 

 [
cs

.I
T

] 
 7

 J
an

 2
01

6

Repeated-root constacyclic codes of length 3lps and their dual codes ∗

LiuLi, LiLanqiang

Department of Mathematics, Hefei University of Technology, Hefei 230009, Anhui, P.R.China

Abstract: Let p 6= 3 be any prime and l 6= 3 be any odd prime with gcd(p, l) = 1. F ∗
q = 〈ξ〉

is decomposed into mutually disjoint union of gcd(q − 1, 3lps) coset over the subgroup 〈ξ3lp
s

〉,
where ξ is a primitive (q − 1)th root of unity. We classify all repeated-root constacyclic codes
of length 3lps over the finite field Fq into some equivalence classes by the decomposition, where
q = pm, s and m are positive integers. According to the equivalence classes, we explicitly
determine the generator polynomials of all repeated-root constacyclic codes of length 3lps over
Fq and their dual codes. Self-dual cyclic(negacyclic) codes of length 3lps over Fq exist only
when p = 2. And we give all self-dual cyclic(negacyclic) codes of length 3l2sover F2m and its
enumeration.

Keywords : Repeated-root constacyclic codes, Cyclic(negacyclic) codes, Dual codes, Generator
polynomial.

1 Introduction

Constacyclic codes over finite fields play a very important role in the theory of error-
correcting codes. More important, constacyclic codes have practical applications. As these
codes have rich algebraic structures, so that they can be efficiently encoded and decoded using
shift registers. They also have very good error-correcting properties. All of those explain their
preferred role in engineering.

Repeated-root cyclic codes were first investigated in the most generality in the 1990s by
Castagnoli in[1] and Van Lint in[2]. In their papers, they proved that repeated-root cyclic
have a concatenated construction, and are asymptotically bad. But we know that there still
exists a few optimal such codes by [12− 14], which encourage many scholars to study the class
of codes. For example, Dinh determined the generator polynomials of all constacyclic codes
and their dual codes over Fq, of length 2ps, 3ps and 6ps, in [3 − 5]. Since then, these results
have been extended to more general code lengths. In 2012, G.K. Bakshi and M. Raka give
the generator polynomials of all constacyclic codes of length 2tps over Fq in [6], where q is
a power of an odd prime P . In 2014, B. Chen, H.Q. Dinh and H. Liu study all constacyclic
codes of length lps over Fq in [7], where l is a prime different from p. In [7], all constacyclic
codes of length lps over Fq and their dual codes are obtained. And given all self-dual and all
linear complementary dual constacyclic codes. In resent, in [8], Anuradha Sharma explicitly
determine the generator polynomials of all repeated-root constacyclic codes of length ltps over
Fpm and their dual codes. Further, they listed all self-dual cyclic and negacyclic codes and
also determine all self-orthogonal cyclic and negacyclic codes of length ltps over Fpm . What’s
more, B. Chen, H.Q. Dinh and H. Liu studied all constacyclic codes of length 2lmps over Fq

of characteristic p in [9]. And they given the characterization and enumeration of all linear
complementary dual and self-dual constacyclic codes of length 2lmps over Fq. In the conclusion
of their paper, they said that it would be interesting to study all constacyclic codes of length
klmps over Fq, where p is the characteristic of Fq, l is an odd prime different from p and k is
a prime different from l and p. However, this is very hard to work. In this paper, we study all
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constacyclic codes of length 3lps over Fq , where p 6= 3 is any prime and l 6= 3 is any odd prime
with gcd(p, l) = 1, which is helpful to study all constacyclic codes of more generate lengths for
us.

In this paper, we decompose the multiplicative cyclic group F ∗
q = 〈ξ〉 into mutually disjoint

union of coset of 〈ξ3lp
s

〉, which are one-to-one correspondence to the equivalence classes of all
constacyclic in section 3. Based on the decomposition, we explicitly determine the generator
polynomials of all λ−constacyclic codes of length 3lps over Fq and their dual codes in section
4, where λ is any none-zero element of Fq and q = pm is a power of prime. As an application,
we also give all self-dual cyclic(negacyclic) codes of length 3l2s over F2m and its enumeration
in section 5.

2 Preliminaries

Let Fq be the finite field of order q, where q = pm, p 6= 3 is a prime and the characteristic
of the field, m is a positive integer. Let F ∗

q = 〈ξ〉 is the multiplicative cyclic group of none-zero
elements of Fq , where ξ is a primitive (q − 1)th root of unity.

For any element λ ∈ F ∗
q , λ−constacyclic codes of length n over Fq are regarded as the ideals

〈g(x)〉 of the quotient ring Fq[x]/(x
n − λ), where g(x)|xn − λ. Further, the definition of the

dual code of code C as follows,

C⊥ = {x ∈ Fn
q |x · y = 0, ∀y ∈ C},

where x · y denotes the Euclidean inner product of x and y in Fn
q . The code C is called to

be self-orthogonal code if C ⊆ C⊥ and self-dual code if C = C⊥. Let C be a λ−constacyclic
code of length n over Fq is generated by a polynomial g(x), i.e C = 〈g(x)〉. As g(x)|xn − λ,
then there exists a polynomial h(x) ∈ Fq[x] such that h(x) = xn

−λ
g(x) . It’s clear that h(x) is also

monic if g(x) is monic. The polynomial h(x) is said the parity check polynomial of code C.
And it’s well known that the dual code C⊥ is generated by h(x)∗, where h(x)∗ is the reciprocal
polynomial of h(x). For any f(x) ∈ Fq[x], the reciprocal polynomial of f(x) is defined as
f(x)∗ = f(0)−1xdeg(f(x))f( 1

x
). It’s obvious that (f1f2)

∗ = f∗
1 f

∗
2 , and (f∗

1 )
∗ = f1, for any

polynomials f1(x), f2(x) ∈ Fq[x].
Let n be any positive integer. For any integer s, 0 ≤ s ≤ n−1, the definition of q−cyclotomic

coset of s modulo n as follows:
Cs = {s, sq, ..., sqns−1}.

where ns is the least positive integer such that sqns ≡ s(modn). Then, it’s easy to see that ns

is equal to the multiplicative order of q modulo n
gad(s,n) . If α denotes a primitive nth root of

unity in some extension field of Fq, then the polynomial Ms(x) =
∏

i∈Cs
(x−αi) is the minimal

polynomial of αs over Fq and

xn − 1 =
∏

Ms(x)

gives the factorization of (xn− 1) into irreducible factors over Fq, where s runs over a complete
set of representatives from distinct q−cyclotomic coset modulo n.

Obviously, when n = l, where l 6= 3 is an odd prime with gcd(l, p) = 1, we get that all the
distinct q−cyclotomic coset modulo l are C0 = {0} and Ck = {gk, gkq, ..., gkqnk−1}, for any

integer k, 1 ≤ k ≤ e = φ(l)
f

, by [15, Theory1], where g is a fixed generator of the cyclic group

Z∗
l , f = ordl(q) is the multiplicative order of q in Z∗

l , and φ is Euler’s phi-function. Therefor,
we have that the irreducible factorization of xl − 1 in Fq is given by

xl − 1 = M0(x)M1(x)M2(x)...Me(x),
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where Mi(x) =
∏

j∈Ci
(x − ηi) with η is a primitive lth root of unity.

Further, we determine all the distinct q3−cyclotomic coset modulo l, which is needed to
prove our main results. There exists two subcases. when gac(f, 3) = 1, it’s easy to prove that
f = ordl(q) = ordl(q

3), then 〈q〉 = 〈q3〉 in Z∗
l . According to the definition of q3−cyclotomic

coset modulo l, we have that C0 and Ck, 1 ≤ k ≤ e = φ(l)
f

, are also all of the distinct

q3−cyclotomic coset modulo l. When gac(f, 3) = 3, we prove that ordl(q
3) = f

3 . It’s easy to
verify that A0 = {0},

Ak = {gk, gkq3, ..., gkq3(
f
3 −1)},

Akq = {gkq, gkqq3, ..., gkqq3(
f
3−1)},

Akq2 = {gkq2, gkq2q3, ..., gkq2q3(
f
3−1)},

consist of all the distinct q3−cyclotomic coset modulo l, where 1 ≤ k ≤ e,. Then, we have the
irreducible factorization of xl − 1 in Fq3 [x] as follow:

xl − 1 = A0(x)A1(x)Aq(x)Aq2 (X)A2(x)A2q(x)A2q2 (x)...Ae(x)Aeq(x)Aeq2 (X),

where A0(x) = (x − 1), Ak(x) =
∏

s∈Ak
(x − ηs), Akq(x) =

∏
t∈Akq

(x − ηt) and Akq2 =∏
j∈A

kq2
(x− ηj), 1 ≤ k ≤ e.

What’s more, we also give all the distinct q−cyclotomic coset modulo 3l, which is necessary
to determine our main results. As gac(q, 3) = 1, we have qφ(3) ≡ 1(mod3) by Euler’s Theory,
i.e. q2 ≡ 1(mod3). Then, it’s simple to verify that

ord3l =





f, q ≡ 1(mod3);
f, q ≡ 2(mod3)withfeven;
2f, q ≡ 2(mod3)withfodd.

From [16, Chapter8], there exists a primitive root r modulo l such that gcd( r
l−1

−1
l

, l) = 1.
Assume that g = r + (1 − r)l2, we have gl−1 − 1 ≡ (r + (1 − r)l2)l−1 − 1 ≡ rl−1 − 1(modl2).

Therefore, gcd( g
l−1

−1
l

, l) = gcd( r
l−1

−1
l

, l) = 1. It’s clear that g is a primitive root modulo lt,
1 ≤ t, such that g ≡ 1(mod3).

We give all the distinct q−cyclotomic coset modulo 3l by the following lemma.

Lemma 2.1. (I) If q ≡ 1(mod3), then, we have that all the distinct q−cyclotomic coset modulo
3l are given by

B0 = {0}, Bl = {l}, B−l = {−l},

Bagk = {agk, agkq, ..., agkqf−1},

for a ∈ R = {1,−1, 3} and 0 ≤ k ≤ e− 1.
(II) If q ≡ 2(mod3) and f is even, we have that all the distinct q−cyclotomic coset modulo 3l
are given by B0 = {0}, Bl = {l, lq},

B
gk

′ = {gk
′

, gk
′

q, ..., gk
′

qf−1}, for0 ≤ k
′

≤ 2e− 1,

B3gk = {3gk, 3gkq, ..., 3gkqf−1}, for0 ≤ k ≤ e− 1.

(III) If q ≡ 2(mod3) and f is odd, we have that all the distinct q−cyclotomic coset modulo 3l
are given by

B0 = {0}, Bl = {l, lq},

3



Bgk = {gk, gkq, ..., gkq2f−1},

B3gk = {3gk, 3gkq, ..., 3gkqf−1},

for 0 ≤ k ≤ e− 1.

Proof. [I] Firstly, we prove that the cyclotomic coset Bagk , 0 ≤ k ≤ e−1, are distinct. If there
exist some k1, k2, 0 ≤ k1, k2 ≤ e− 1, such that Bagk1 = Bagk2 , then we have

a1g
k1 ≡ a2g

k2qj(mod3l),

for some integer j, where a1, a2 ∈ R = {1,−1, 3}. Therefor, we get

gcd(a1g
k1 , 3l) = gcd(a2g

k2qj , 3l) = gcd(a2g
k2 , 3l).

From this, we can deduce a1 = a2 or a1 = −a2 = ±1.
If a1 = −a2 = ±1, then

−gk1 ≡ gk2qj(mod3l), i.e.− 1 ≡ gk1−k2qjmod(3l),

for some integer j. Due to g ≡ 1(mod3) and q ≡ 1(mod3), we deduce −1 ≡ 1(mod3). This is a
contradiction.
If a1 = a2, assume that a1 = a2 = a, then we have

agk1 ≡ agk2qj(mod3l), i.e.gk1−k2 ≡ qj(modl),

for some integer j. Further, we have g(k1−k2)f ≡ qjf ≡ 1(modl). As g is a primitive root

modulo l, we get φ(l)|(k1 − k2)f , i.e. e = φ(l)
f

|k1 − k2. Since 0 ≤ k1, k2 ≤ e − 1, we must have
k1 = k2. Secondly, we get

|B0|+ |Bl|+ |B−l|+
∑

a∈R

e−1∑

k=0

|Bagk | = 3 +
∑

a∈R

e−1∑

k=0

f

= 3 +
∑

a∈R

ef

= 3 + 3φ(l)

= 3l.

So, the conclusion (I) holds. The conclusions (II) and (III) are also established in a similar
way.

Assume that Bo(x), Bl(x), B−l(x) and Bagk(x) are the minimal polynomials of the corre-
sponding coset Bo, Bl, B−l and Bagk . From the above lemma, we get the following theory
immediately.

Theory 2.2. The irreducible factorization of x3l − 1 over Fq as follows:
(I) If q ≡ 1(mod3), then

x3l − 1 = B0(x)Bl(x)B−l(x)
∏

a∈R

e−1∏

k=0

Bagk(x),

4



where a ∈ R = {1,−1, 3} and 0 ≤ k ≤ e− 1.
(II) If q ≡ 2(mod3) and f is even, then

x3l − 1 = B0(x)Bl(x)

2e−1∏

k
′=0

B
gk

′ (x)

e−1∏

k=0

B3gk(x),

where 0 ≤ k ≤ e− 1, 0 ≤ k
′

≤ 2e− 1.
(III) If q ≡ 2(mod3) and f is odd, then

x3l − 1 = B0(x)Bl(x)
e−1∏

k=0

Bgk(x)
e−1∏

k=0

B3gk(x),

where 0 ≤ k ≤ e− 1.

The next two lemmas give the necessary and sufficient conditions for judging the reducibility
of binomials and trinomial, which were given by Wan Z in [17].

Lemma 2.3. Suppose that n ≥ 2, Let k = ord(a) be the multiplicative order of a, for any
a ∈ F ∗

q . Then, the binomial xn − a is irreducible over Fq if and only if

(i) Every prime divisor of n divides k, but does not divide (q−1)
k

;
(ii) If 4|n, then 4|(q − 1).

Lemma 2.4. Let t be a positive integer, and H(x) ∈ Fq[x] be irreducible over Fq with
deg(H(x)) = n, x does not divide H(x). and e denote the order of any root of H(x). Then
H(xt) is irreducible over Fq if and only if
(i) Each prime divisor of t divides e;

(ii) gcd(t, qn−1
e

) = 1;
(iii) If 4|t, then 4|(qn − 1).

3 A classification of constacyclic codes of length 3lps

Let ξ be a primitive (q − 1)th root of unity and F ∗
q = 〈ξ〉 be a cyclic group of order (q − 1)

as before. It’s easy to verify that 〈ξ3lp
s

〉 = 〈ξ3l〉 = 〈ξd〉 and the index |F ∗
q : 〈ξ3lp

s

〉| = d, where
d = gcd(q−1, 3lps). Thus, the multiplicative cyclic group F ∗

q can be decomposed into mutually

disjoint union of coset over the subgroup 〈ξ3lp
s

〉 as follows:

Lemma 3.1. F ∗
q = 〈ξ〉 = 〈ξd〉

⋃
ξp

s

〈ξd〉
⋃
...
⋃
ξp

s(d−1)〈ξd〉, where d is the great common divi-
sor of q − 1 and 3lps.

According to the properties of the coset, we obtain the following lemma immediately.

Lemma 3.2. For any two none-zero elements λ and µ of Fq, there exists some integer
j,0 ≤ j ≤ d− 1 such that λ, µ ∈ ξjp

s

〈ξd〉 if and only if λ−1µ ∈ 〈ξd〉, where d = gcd(q − 1, 3lps).

If λ and µ in the same coset, we build a one-to-one correspondence between λ−constacyclic
code and µ−constacyclic code of length 3lps over Fq as following theory, which shows that
λ−constacyclic code and µ−constacyclic code are equivalent.
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Theorem 3.3. Let λ and µ be any two elements of F ∗
q . then there exists some integer a ∈ F ∗

q

such that

ϕ : Fq[x]/(x
3lps

− µ) → Fq[x]/(x
3lps

− λ)

f(x) 7→ f(ax)

is an isomorphism, if and only if λ, µ ∈ ξjp
s

〈ξd〉, where 0 ≤ j ≤ d− 1

Proof.” =⇒ ” If ϕ is an isomorphism, then we have

µ = ϕ(µ) = ϕ(x3lps

) = (ϕ(x))3lp
s

= (ax)3lp
s

= a3lp
s

x3lps

= a3lp
s

λ

i.e. λ−1µ = a3lp
s

.
As a = ξk ∈ F ∗

q , for some positive integer k, then λ−1µ = ξk·3lp
s

∈ 〈ξd〉. By Lemma 3.2, we

get that there exists j, 0 ≤ j ≤ d− 1, such that λ, µ ∈ ξjp
s

〈ξd〉.
” ⇐= ” If there exists j, 0 ≤ j ≤ d − 1, such that λ, µ ∈ ξjp

s

〈ξd〉, then we have λ−1µ ∈
〈ξd〉 = 〈ξ3lp

s

〉 by Lemma 3.2 again. Thus, λ−1µ = ξk·3lp
s

, for some integer k. Set a = ξk, then
λa3lp

s

= µ. Further, we can easy prove that the following map is an isomorphism:

ϕ : Fq[x]/(x
3lps

− µ) → Fq[x]/(x
3lps

− λ)

f(x) 7→ f(ax).

From Theory 3.3, we get the following obvious corollaries.

Corollary 3.4. For any two elements λ and µ of F ∗
q , λ−constacyclic code is equivalent to

µ−constacyclic code if and only if there exists j, 0 ≤ j ≤ d− 1, such that λ, µ ∈ ξjp
s

〈ξd〉, Fur-
ther, λ−constacyclic code and µ−constacyclic code are both equivalent to ξjp

s

−constacyclic
code.

Corollary 3.5. Let λ be any element of F ∗
q , then there exists some integer j, 0 ≤ j ≤ d − 1,

such that λ−constacyclic code is equivalent to ξjp
s

−constacyclic code.

Obviously, the Theory 3.3 and its two corollaries show that all constacyclic codes of length
3lps over Fq are classified into d = gcd(q − 1, 3lps) mutually disjoint classes. And it’s enough
to consider λ−constacyclic codes, where λ = ξjp

s

, 0 ≤ j ≤ d − 1, and d = gcd(q − 1, 3lps), if
we want to determine all constacyclic codes of length 3lps over Fq. Therefore, we mainly study
λ−constacyclic codes in the section 4.

4 All constacyclic codes of length 3lps over Fq

Let f(x) be any polynomial of Fq[x] and leading coefficient an 6= 0, we denote f̂(x) =

a−1
n f(x). Then, f̂(x) is called to be the monic polynomial of f(x).
From the above discussion in the section 3, we know that the number of equivalence con-

stacyclic classes are equal to d = gcd(q− 1, 3lps). Apparently, there are many cases may occur
about d. They are respectively the following four cases arise:
(i) d = gcd(q − 1, 3lps) = 1.
(ii) d = gcd(q − 1, 3lps) = 3.
(iii) d = gcd(q − 1, 3lps) = l.
(iv) d = gcd(q − 1, 3lps) = 3l.
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4.1 All constacyclic codes of length 3lps over Fq when d = 1

From Lemma 3.1, we see that F ∗
q = 〈ξ〉 is the decomposition of coset over the subgroup

〈ξd〉, when d = gcd(q − 1, 3lps) = 1. In this situation, it’s clear that all constacyclic codes of
length 3lps over Fq are equivalent to the cyclic codes. Therefore, we have the following theorem.

Theorem 4.1. Let d = gcd(q − 1, 3lps) = 1, then λ−constacyclic codes C of length 3lps over
Fq are equivalent to the cyclic codes, for any λ ∈ F ∗

q , i.e. there exists a unique element a ∈ F ∗
q

such that a3lp
s

λ = 1. And the map

ϕa : Fq[x]/(x
3lps

− 1) → Fq[x]/(x
3lps

− λ)

f(x) 7→ f(ax)

is an isomorphism.
Further, we have the irreducible factorization of x3lps

− λ in Fq[x] as follows:
(i) if f is even, then

x3lps

− λ = B̂0(ax)
ps

B̂l(ax)
ps

2e−1∏

k
′=0

B̂
gk

′ (ax)p
s
e−1∏

k=0

B̂3gk(ax)p
s

,

where 0 ≤ k ≤ e− 1, 0 ≤ k
′

≤ 2e− 1.
Therefore, we have

C = 〈B̂0(ax)
ε0 B̂l(ax)

ρl

2e−1∏

k
′=0

B̂
gk

′ (ax)τk′

e−1∏

k=0

B̂3gk(ax)υk〉,

C⊥ = 〈B̂0(a
−1x)p

s
−ε0B̂l(a

−1x)p
s
−ρl

2e−1∏

k
′=0

B̂
gk

′ (a−1x)p
s
−τ

k
′

e−1∏

k=0

B̂3gk(a−1x)p
s
−υk〉

where 0 ≤ ε0, ρl, τk′ , υk ≤ ps, for any k = 0, 1, 2, ..., e, and k
′

= 0, 1, 2, ..., 2e.
(ii) If f is odd, then

x3lps

− λ = B̂0(ax)
ps

B̂l(ax)
ps

e−1∏

k=0

B̂gk(ax)p
s
e−1∏

k=0

B̂3gk(ax)p
s

,

where 0 ≤ k ≤ e− 1.
Therefore, we have

C = 〈B̂0(ax)
ε0 B̂l(ax)

ρl

e−1∏

k=0

B̂gk(ax)τk
e−1∏

k=0

B̂3gk(ax)υk〉,

C⊥ = 〈B̂0(a
−1x)p

s
−ε0B̂l(a

−1x)p
s
−ρl

e−1∏

k=0

B̂gk(a−1x)p
s
−τk

e−1∏

k=0

B̂3gk(a−1x)p
s
−υk〉,

where 0 ≤ ε0, ρl, τk′ , υk ≤ ps, for any k = 0, 1, 2, ..., e.

Proof. Proof is trivial.
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4.2 All constacyclic codes of length 3lps over Fq when d = 3

In the section, we consider the second case, i.e. d = gcd(q−1, 3lps) = 3. In this situation, we
have that F ∗

q = 〈ξ〉 = 〈ξ3〉
⋃

ξp
s

〈ξ3〉
⋃
ξ2p

s

〈ξ3〉 is the decomposition of coset of F ∗
q over subgroup

〈ξ3lp
s

〉, by Lemma 3.1. Therefore, it’s enough to consider the cyclic codes, ξp
s

−constcyclic codes
and ξ2p

s

−constcyclic codes if we want to determine all constacyclic codes of length 3lps over
Fq, when gcd(q − 1, 3lps) = 3.

From the section 2, we have that the irreducible factorization of xl − 1 is given by xl − 1 =∏e
i=0 Mi(x), where Mi(x) =

∏
j∈Ci

(x − ηi) with η is a primitive lth root of unity. According
to this, we deduce the following lemma immediately, which gives the irreducible factorization
of xlps

− ξj in Fq[x], when gcd(q − 1, l) = 1.

Lemma 4.2. Let gcd(q − 1, l) = 1. Then, for any ξj ∈ F ∗
q , there exists a unique element

bj ∈ F ∗
q such that blp

s

j ξj = 1. Further, the irreducible factorization of xlps

− ξj is given by

xlps

− ξj =

e∏

i=0

M̂i(bjx)
ps

,

where Mi(x) is the minimal polynomial of the q−cyclotomic coset Ci modulo l.

Proof. Similar to Lemma 3.1, we have the decomposition of coset of F ∗
q = 〈ξ〉 over the sub-

group 〈ξlp
s

〉 is given by F ∗
q = 〈ξ〉, when gcd(q − 1, l) = 1. Next, proof is trivial, by Theorem

3.3.

Lemma 4.3. Let gcd(q − 1, 3lps) = 3. Then there exists an element α = ξ
q−1
3 be a primitive

3−th root of unity. Further, the irreducible factorization of x3lps

− 1 is given by

x3lps

− 1 =

e∏

i=0

Mi(x)
ps

M̂i(b q−1
3
x)p

s

M̂i(b 2(q−1)
3

x)p
s

,

where Mi(x) is the minimal polynomial of the q−cyclotomic coset Ci modulo l and b q−1
3
,

b 2(q−1)
3

∈ F ∗
q .

Proof. As gcd(q − 1, 3lps) = 3, then it’s clear that α = ξ
q−1
3 ∈ F ∗

q is a primitive 3−th root of
unity. Hence, we have

x3lps

− 1 = (xl − 1)p
s

(xl − ξ
q−1
3 )p

s

(xl − ξ
2(q−1)

3 )p
s

.

Further, by Lemma 4.2, we get

x3lps

− 1 =
e∏

i=0

Mi(x)
ps

M̂i(b q−1
3
x)p

s

M̂i(b 2(q−1)
3

x)p
s

,

where Mi(x) is the minimal polynomial of the q−cyclotomic coset Ci modulo l and b q−1
3
,

b 2(q−1)
3

∈ F ∗
q .

Before determine 〈ξip
s

〉−constacyclic codes, i = 1, 2, we must explicitly factory the poly-
nomial x3lps

− ξip
s

, i = 1, 2, into monic irreducible factors product. Obviously, we only need
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determine the irreducible factorization of x3l − ξi, i = 1, 2. Firstly, we consider the polynomial
x3 − ξi, i = 1, 2. Since, x3 − ξi, i = 1, 2, is irreducible in Fq[x], we get that Fq3 is a splitting
field for x3 − ξi, i = 1, 2, over Fq. Thus, there exists νi ∈ Fq3 such that ν3i = ξi, i = 1, 2.
Further, it’s easy to get that νi, ανi, and α2νi are all the roots of x3 − ξi, i = 1, 2, Fq3 , where
α is a primitive 3−th root of unity. In addition, we see that νi ∈ Fq3 but νi not in Fq , and νi
is primitive 3(q − 1)−th roots of unity,i = 1, 2.

As gcd(3(q−1), l) = 1, we can find a bijection θ from the set D to itself such that θ(ν) = νl,
for any ν ∈ D, where D consist of all the primitive 3(q−1)− th roots of unity of F ∗

q3 . Therefore,

there exists a unique element ωi ∈ D such that ν−1
i = θ(ωi) = ωl

i, i.e. ω
l
iνi = 1, i = 1, 2.

From the above discussion, we have the following two lemmas.

Lemma 4.4. The irreducible factorization of x3l − ξ over Fq as follows:
(I) If gcd(f, 3) = 1,

x3l − ξ = (xl − ν1)(x
l − αν1)(x

l − α2ν1)

=

e∏

i=0

M̂i(ω1x)M̂i(αω1x)M̂i(α
2ω1x)

=

e∏

i=0

Ri(x),

where ν1 is a root of x3 − ξ, ω1 is a primitive 3(q − 1)−th root of unity, α is a primitive 3−th

root of unity, and Ri(x) = M̂i(ω1x)M̂i(αω1x)M̂i(α
2ω1x) for any i = 0, 1, 2, ..., e.

(II) If gcd(f, 3) = 3,

x3l − ξ = (xl − ν1)(x
l − αν1)(x

l − α2ν1)

= (x− ω−1
1 )(x − αω−1

1 )(x− α2ω−1
1 )

e∏

i=1

Âi(ω1x)Âiq(ω1x)Âiq2 (ω1x)

Âi(αω1x)Âiq(αω1x)Âiq2 (αω1x)Âi(α
2ω1x)Âiq(α

2ω1x)Âiq2 (α
2ω1x)

= P (x)
∏e

i=1 Qi(x)Ui(x)Zi(x),
where ν1 is a root of x3−ξ, ω1 is a primitive 3(q−1)−th root of unity, α is a primitive 3−th root

of unity, and P (x) = (x−ω−1
1 )(x−αω−1

1 )(x−α2ω−1
1 ), Qi(x) = Âi(ω1x)Âiq(αω1x)Âiq2 (α

2ω1x),

Ui(x) = Âi(αω1x)Âiq(α
2ω1x)Âiq2 (ω1x), and Zi(x) = Âi(α

2ω1x)Âiq(ω1x)Âiq2 (αω1x) for any
i = 1, 2, ..., e.

Proof. (I) If gcd(f, 3) = 1, we get C0 and Ck,1 ≤ k ≤ e = φ(l)
f

are all the q3−cyclotomic coset

modulo l, from the section 2. Let ν1 be a root of x3 − ξ, i.e ν3i = ξ, and α be a primitive 3−th
root of unity. Then, we have ν1, αν1, and α2ν1 are all the roots of x3 − ξ, over Fq3 , i.e.

x3l − ξ = (xl − ν1)(x
l − αν1)(x

l − α2ν1).

By above discussion, we know that there exists ω1 such that ωl
1ν1 = 1, where ω1 is a primitive

3(q−1)−th root of unity and ωq
1 = αω1. As gcd(3, l) = 1, we know l ≡ 1(mod3) or l ≡ 2(mod3).

When l ≡ 2(mod3), we have (αω1)
lαν1 = αl+1 = 1 and (α2ω1)

lα2ν1 = α2(l+1) = 1. When
l ≡ 1(mod3), we have (α2ω1)

lαν1 = α2l+1 = 1 and (αω1)
lα2ν1 = αl+2 = 1. Hence, there always

9



exist ω1, αω1 and α2ω1 such that ωl
1ν1 = 1, (αω1)

lαν1 = 1 and (α2ω1)
lα2ν1 = 1 or ωl

1ν1 = 1,
(α2ω1)

lαν1 = 1 and (αω1)
lα2ν1 = 1. Further, by Lemma 4.2, we get

x3l − ξ =

e∏

i=0

M̂i(ω1x)M̂i(αω1x)M̂i(α
2ω1x),

which is the monic irreducible factorization of x3l − ξ over Fq3 . And we have M̂i(ω1x) =∏
k∈Ci

(x−ω−1
1 ηk), M̂i(αω1x) =

∏
k∈Ci

(x−α2ω−1
1 ηk) and M̂i(α

2ω1x) =
∏

k∈Ci
(x−αω−1

1 ηk).

Obviously, when k runs over Ci, ω−1
1 ηk gives all the roots of M̂i(ω1x). As ωq

1 = αω1 and

kq, kq2 ∈ Ci, we have (ω−1
1 ηk)q = α2ω−1

1 ηkq and (ω−1
1 ηk)q

2

= αω−1
1 ηkq

2

, which gives a root of

M̂i(αω1x) and M̂i(α
2ω1x) respectively. Therefore, it’s easy to deduce that M̂i(ω1x)M̂i(α

2ω1x)

M̂i(α
2ω1x) is irreducible polynomial over Fq.

(II) When gcd(f, 3) = 3, we have that A0, Ak, Akq, Akq2 consist of all the distinct q3−cyclotomic
coset modulo l, where 1 ≤ k ≤ e. Then, the irreducible factorization of xl − 1 over Fq3 is given
by

xl − 1 = A0(x)A1(x)Aq(x)Aq2 (X)A2(x)A2q(x)A2q2 (x)...Ae(x)Aeq(x)Aeq2 (X).

Next, in the same way with (I), we can proved the conclusion (II) holds.

Using arguments similar to the Proof in Lemma 4.3, we have the following lemma, and we
omit its proof here.

Lemma 4.5. The irreducible factorization of x3l − ξ2 over Fq as follows:
(I) If gcd(f, 3) = 1,

x3l − ξ2 = (xl − ν2)(x
l − αν2)(x

l − α2ν2)

=

e∏

i=0

M̂i(ω2x)M̂i(αω2x)M̂i(α
2ω2x)

=

e∏

i=0

R
′

i(x),

where ν2 is a root of x3 − ξ2, ω2 is a primitive 3(q − 1)−th root of unity, α is a primitive 3−th

root of unity, and R
′

i(x) = M̂i(ω2x)M̂i(αω2x)M̂i(α
2ω2x) for any i = 0, 1, 2, ..., e.

(II) If gcd(f, 3) = 3,

x3l − ξ2 = (xl − ν2)(x
l − αν2)(x

l − α2ν2)

= (x− ω−1
2 )(x − αω−1

2 )(x− α2ω−1
2 )

e∏

i=1

Âi(ω2x)Âiq(ω2x)Âiq2 (ω2x)

Âi(αω2x)Âiq(αω2x)Âiq2 (αω2x)Âi(α
2ω2x)Âiq(α

2ω2x)Âiq2 (α
2ω2x)

= P
′

(x)
∏e

i=1 Q
′

i(x)U
′

i (x)Z
′

i(x),
where ν2 is a root of x

3−ξ2, ω2 is a primitive 3(q−1)−th root of unity, α is a primitive 3−th root

of unity, and P
′

(x) = (x−ω−1
2 )(x−αω−1

2 )(x−α2ω−1
2 ), Q

′

i(x) = Âi(ω2x)Âiq(αω2x)Âiq2 (α
2ω2x),

U
′

i (x) = Âi(αω2x)Âiq(α
2ω2x)Âiq2 (ω2x), and Z

′

i(x) = Âi(α
2ω2x)Âiq(ω2x)Âiq2 (αω2x) for any

i = 1, 2, ..., e.
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Theorem 4.6. Let gcd(q − 1, 3lps) = 3, and α = ξ
q−1
3 is a primitive 3−th root of unity. For

any element λ of F ∗
q and λ−constacyclic code C of length 3lps over Fq, one of the following

cases holds:
(I) If λ ∈ 〈ξ3〉, then there exists some element c ∈ F ∗

q such that c3lp
s

λ = 1, and we have

C = 〈

e∏

i=0

M̂i(cx)
εiM̂i(cb q−1

3
x)σiM̂−i(cb 2(q−1)

3

x)τi〉,

C⊥ = 〈

e∏

i=0

M̂−i(c
−1x)p

s
−εiM̂−i(c

−1b−1
q−1
3

x)p
s
−σiM̂i(c

−1b−1
2(q−1)

3

x)p
s
−τi〉,

where 0 ≤ εi, σi, τi ≤ ps for any i = 0, 1, 2, ..., e.
(II) If λ ∈ ξp

s

〈ξ3〉, then there exists some element c1 ∈ F ∗
q such that c3lp

s

1 λ = xip
s

, and one of
the following holds:
(i) If gcd(f, 3) = 1,

C = 〈

e∏

i=0

R̂i(c1x)
ε〉,

C⊥ = 〈
e∏

i=0

R̂−i(c
−1
1 x)p

s
−ε〉,

where 0 ≤ ε ≤ ps, R−i(x) = M̂−i(ω
−1
1 x)M̂−i(α

2ω−1
1 x)M̂−i(αω

−1
1 x) for any i = 0, 1, 2, ..., e.

(ii) If gcd(f, 3) = 3,

C = 〈P̂ (c1x)
ε

e∏

i=1

Q̂εi
i (c1x)Û

σi

i (x)Ẑτi
i (c1x)〉,

C⊥ = 〈P̂ ∗(c−1
1 x)p

s
−ε

e∏

i=1

Q̂ps
−εi

−i (c−1
1 x)Ûps

−σi

−i (c−1
1 x)Ẑps

−τi
−i (c−1

1 x)〉,

where 0 ≤ εi, σi, τi ≤ ps, P ∗(x) = (x − ω1)(x − α2ω1)(x − αω1), Q−i(x) = Â−i(ω
−1
1 x) ·

Â−iq(α
2ω−1

1 x)Â−iq2 (αω
−1
1 x), U−i(x) = Â−i(α

2ω−1
1 x)Â−iq(αω

−1
1 x)Â−iq2 (ω

−1
1 x), and Z−i(x) =

Â−i(αω
−1
1 x)Â−iq(ω

−1
1 x)Â−iq2 (α

2ω−1
1 x), for any i = 1, 2, ..., e.

(II) If λ ∈ ξ2p
s

〈ξ3〉, then there exists some element c2 ∈ F ∗
q such that c3lp

s

2 λ = xi2p
s

, and one
of the following holds:
(i) If gcd(f, 3) = 1,

C = 〈

e∏

i=0

R̂′

i(c2x)
εi 〉,

C⊥ = 〈
e∏

i=0

R̂′

−i(c
−1
2 x)p

s
−εi〉,

where 0 ≤ ε ≤ ps, R
′

−i(x) = M̂−i(ω
−1
2 x)M̂−i(α

2ω−1
2 x)M̂−i(αω

−1
2 x) for any i = 0, 1, 2, ..., e.

(ii) If gcd(f, 3) = 3,

C = 〈P̂ ′(c2x)
ε

e∏

i=1

Q̂′

i(c2x)
εi Û ′

i(c2x)
σi Ẑ ′

i(c2x)
τi)〉,
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C⊥ = 〈P̂ ′
∗

(c−1
2 x)p

s
−ε

e∏

i=1

Q̂′

−i(c
−1
2 x)p

s
−εi Û ′

−i(c
−1
2 x)p

s
−σi Ẑ ′

−i(c
−1
2 x)p

s
−τi)〉,

where 0 ≤ εi, σi, τi ≤ ps, P
′
∗(x) = (x − ω2)(x − α2ω2)(x − αω2), Q

′

−i(x) = Â−i(ω
−1
2 x) ·

Â−iq(α
2ω−1

2 x)Â−iq2 (αω
−1
2 x), U

′

−i(x) = Â−i(α
2ω−1

2 x)Â−iq(αω
−1
2 x)Â−iq2 (ω

−1
2 x), and Z

′

−i(x) =

Â−i(αω
−1
2 x)Â−iq(ω

−1
2 x)Â−iq2 (α

2ω−1
2 x) for any i = 1, 2, ..., e.

Proof. From Lemma 4.3, Lemma 4.4 and Lemma 4.5, we see that the theorem is straightfor-
ward.

4.3 All constacyclic codes of length 3lps over Fq when d = l

Let d = gcd(q − 1, 3lps) = l, i.e. l|(q − 1), and gad(q − 1, 3) = 1. Then there is an element

η = ξ
q−1

l ∈ F ∗
q , which is a primitive l−th root of unity. Therefor, we have the following lemma.

Lemma 4.7. Assume that gcd(q − 1, 3lps) = l, and let η = ξ
q−1
l be a primitive l−th root of

unity in Fq. Then, the irreducible factorization of x3lps

− 1 over Fq as follows:

x3lps

− 1 =

l∏

k=1

(x− ηk)p
s

(x2 + ηkx+ η2k)p
s

.

Proof. As gad(q− 1, 3) = 1, there is not any primitive 3−th root of unity in Fq, which implies
x2 + x+1 is irreducible. By this, we can deduce that x2 + ηkx+ η2k is irreducible, for any k =
1, 2, ..., l. Because if x2+ηkx+η2k is reducible, then η−2k(x2+ηkx+η2k) = (η−kx)2+η−kx+1

is reducible. Set x = η−kx, then x2+x+1 is reducible which is a contradiction. Since η = ξ
q−1

l

be a primitive l−th root of unity, then η3 is also a primitive l−th root of unity. Hence, the
irreducible factorization of x3lps

− 1 over Fq is given by

x3lps

− 1 = (x3l − 1)p
s

=

l∏

k=1

(x3 − η3k)p
s

=

l∏

k=1

(x − ηk)p
s

(x2 + ηkx+ η2k)p
s

.

Lemma 4.8. Assume that gcd(q−1, 3lps) = l, then the irreducible factorization of x3lps

−ξjp
s

,
1 ≤ j ≤ l − 1 over Fq as follows:
(I) When (3, j) = 3, i.e. 3|j, let j = 3k, for some integer k. Then we have

x3lps

− ξjp
s

= (x3l − ξ3k)p
s

= (xl − ξk)p
s

(x2l + ξkxl + ξ2k)p
s

.

(II) When (3, j) = 1, there must exists some integer i, 1 ≤ i ≤ q − 1, such that 3i = j + q − 1
or 3i = j + 2(q − 1). Then one of the following conclusions holds:
(i) When 3i = j + q − 1, we have

x3lps

− ξjp
s

= x3lps

− ξ(j+q−1)ps

= (x3l − ξ(j+q−1))p
s

= (x3l − ξ3i)p
s

= (x− ξi)p
s

(x2l + ξixl + ξ2i)p
s

.
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(ii) When 3i = j + 2(q − 1), we have

x3lps

− ξjp
s

= x3lps

− ξ(j+2(q−1))ps

= (x3l − ξ(j+2(q−1)))p
s

= (x3l − ξ3i)p
s

= (x− ξi)p
s

(x2l + ξixl + ξ2i)p
s

.

Proof. (I) Obviously, gcd(l, k) = 1. From Lemma 2.3, it’s very easy to verify that xl − ξk is
irreducible. By the proof of Lemma 4.5, we see that x2 + ξkx+ ξ2k is irreducible over Fq. Now,
we suppose that δ is any root of x2 + ξkx+ ξ2k in some extended field of Fq, and e is the order
of δ. Then, we have δ3 = ξ3k. Further, we deduce that e

(e,3) = q−1
(q−1,3k) , i.e

e
(e,3) = q−1

(q−1,k) ,

as gcd(q − 1, 3) = 1. By the reduction again, we get e = (q−1)(e,3)
(q−1,k) . From Lemma 2.4, we can

verify that x2l + ξkxl + ξ2k is irreducible.
(II) When (3, j) = 1, we get that x3 − ξj , 1 ≤ j ≤ l − 1, are all reducible, from Lemma 2.3.
Therefor, there must exist some ξi ∈ F ∗

q is a root of x3 − ξj , for any j = 1, 2, ...l − 1. Then,

ξ3i − ξj = 0, i.e. ξ3i = ξj . As 1 ≤ i ≤ q − 1 and 1 ≤ j ≤ l − 1, we deduce that 3i = j + q − 1
or 3i = j + 2(q − 1) and gcd(l.i) = 1. Next, working similar to the proof of (I), we get that
conclusion (i) and conclusion (ii) hold.

From above lemmas , we get the following theory immediately.

Theorem 4.9. Assume that gcd(q − 1, 3lps) = l, and let η = ξ
q−1
l be a primitive l−th root of

unity in Fq. For any element λ of F ∗
q and λ−constacyclic code C of length 3lps over Fq, one of

the following cases holds:
(I) If λ ∈ 〈ξl〉, then there exists c1 ∈ F ∗

q such that c3lp
s

1 λ = 1, and we have

C = 〈

l∏

k=1

(x− c−1
1 ηk)εk (x2 + c−1

1 ηkx+ c−2
1 η2k)τk〉,

C⊥ = 〈

l∏

k=1

(x− c1η
−k)p

s
−εk(x2 + c1η

−kx+ c21η
−2k)p

s
−τk〉,

where 0 ≤ εk, τk ≤ ps, for any k = 1, 2, ..., l.
(II) If λ ∈ ξjp

s

, 1 ≤ j ≤ l− 1, then there exists c2 ∈ F ∗
q such that c3lp

s

2 λ = ξjp
s

, and one of the
following holds:
(i) When (3, j) = 3, i.e. 3|j, let j = 3k, for some integer k. we have

C = 〈(xl − c−1
2 ξk)εk (x2l + c−1

2 ξkxl + c−2
2 ξ2k)τk〉,

C⊥ = 〈(xl − c2ξ
−k)p

s
−εk(x2l + c2ξ

−kxl + c22ξ
−2k)p

s
−τk〉,

where o ≤ εk, τk ≤ ps.
(ii) When (3, j) = 1, there must exists some integer i, 1 ≤ i ≤ q − 1, such that 3i = j + q − 1
or 3i = j + 2(q − 1). Then one of the following conclusions holds:
(a) When 3i = j + q − 1, we have

C = 〈(x− c−1
2 ξi)εi(x2l + c−1

2 ξixl + c−2
2 ξ2i)τi〉,
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C⊥ = 〈(x− c2ξ
−i)p

s
−εi(x2l + c2ξ

−ixl + c22ξ
−2i)p

s
−τi〉.

where 0 ≤ εi, τi ≤ ps.
(b) When 3i = j + 2(q − 1), we have

C = (x− c−1
2 ξi)εi(x2l + c−1

2 ξixl + c−2
2 ξ2i)τi ,

C⊥ = (x− c2ξ
−i)p

s
−εi(x2l + c2ξ

−ixl + c22ξ
−2i)p

s
−τi ,

where 0 ≤ εi, τi ≤ ps.

4.4 All constacyclic codes of length 3lps over Fq when d = 3l

In the section, we assume that d = gcd(3lps, q − 1) = 3l, namely 3l|q − 1. Clearly, there

exists an element γ = ξ
q−1
3l ∈ F ∗

q , which is a primitive 3l−th root of unity. Further, Due to

l|q− 1, and 3|q− 1, it’s easy to know that η = ξ
q−1
l and β = ξ

q−1
3 are primitive l−th and 3−th

root of unity respectively.

From Lemma 3.1, we get that the F ∗
q = 〈ξ〉 = 〈ξ3l〉 ∪ ξp

s

〈ξ3l〉 ∪ ξ2p
s

〈ξ3l〉 ∪ ...∪ ξ(3l−1)ps

〈ξ3l〉.
Therefore, any element λ of F ∗

q belongs to exactly one of the cosets, i.e. there is a unique

integer j, 0 ≤ j ≤ 3l − 1, such that λ ∈ ξjp
s

〈ξ3l〉, namely λ−constacyclic codes are equivalent
to ξjp

s

−constacyclic codes. Hence, we just need to determine ξjp
s

−constacyclic codes, where
0 ≤ j ≤ 3l − 1.

Lemma 4.10. Letd = gcd(3lps, q − 1) = 3l and γ = ξ
q−1
3l . Then irreducible factorization of

x3lps

− 1 over Fq as follow:

x3lps

− 1 =

3l−1∏

i=0

(x− γi)p
s

.

Proof. proof is trivial.

Lemma 4.11. Let η = ξ
q−1
l and β = ξ

q−1
3 . Then the irreducible factorization of x3lps

− ξjp
s

over Fq as follows:
(I) when gcd(3l, j) = l, we have

x3lps

− ξjp
s

= (x3l − ξtl)p
s

=

l−1∏

i=0

(x3 − ξtηi)p
s

,

where t = 1 or 2.
(II) when gcd(3l, j) = 3, we have

x3lps

− ξjp
s

= (x3l − ξ3k)p
s

=

2∏

i=0

(xl − ξkβi)p
s

,

where k is some integer such that j = 3k.
(III) Otherwise, we can see that gcd(3l, j) = 1. Then we have

x3lps

− ξjp
s

= (x3l − ξj)p
s
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.

Proof. (I) As gcd(3l, j) = l and 1 ≤ j ≤ 3l − 1, we have j = tl, where t = 1, 2. Obviously,

η = ξ
q−1

l is a primitive l−th root of unity in Fq. Therefor, we get

x3lps

− ξjp
s

= (x3l − ξtl)p
s

=

l−1∏

i=0

(x3 − ξtηi)p
s

,

Next, we prove that the polynomial x3 − ξtηi, for any i = 0, 1, 2, ..., l− 1, is irreducible in Fq[x].

Firstly, we know that the multiplicative order of ξtηi = ξt+
i(q−1)

l , t = 1, 2, is ei =
q−1

(q−1,t+ i(q−1)
l

.

As 3|q− 1 but gcd(3, t) = 1 and gcd(3, l) = 1, we get that (3, t+ i(q−1)
l

) = 1. Thus, 3 divides ei

but not q−1
ei

= (q − 1, t+ i(q−1)
l

). From Lemma 2.3, we get the polynomial x3 − ξtηi, for any
i = 0, 1, 2, ..., l− 1, is irreducible in Fq[x]. In the same way, we have conclusions (II) and (III)
hold.

In the following theorem, we determine all constacyclic codes of length 3lps over Fq and
their dual codes, when d = gcd(3lps, q − 1) = 3l.

Theorem 4.12. Assume that gcd(3lps, q − 1) = 3l, let γ = ξ
q−1
3l , η = ξ

q−1
l and β = ξ

q−1
3 be

primitive 3l−th, l−th and 3−th root of unity in fq respectively. For any element λ of F ∗
q and

λ− constcyclic codes C of length 3lps over Fq. One of the following holds:

(I) If λ ∈ 〈ξ3l〉, then there exists d1 ∈ F ∗
q such that d3lp

s

1 λ = 1, and we have

C = 〈

3l−1∏

i=0

(x− d−1
1 γi)εi〉,

C⊥ = 〈

3l−1∏

i=0

(x− d1γ
−i)p

s
−εi〉,

where 0 ≤ εi ≤ ps, for any i = 0, 1, 2, ..., 3l− 1.
(II) If λ ∈ ξjp

s

〈ξ3l〉, 1 ≤ j ≤ 3l − 1, then there exist d2 ∈ F ∗
q such that d3lp

s

2 λ = ξjp
s

, and one
of the following holds:
(i) when gcd(3l, j) = l, we have

C = 〈

l−1∏

i=0

(x3 − d−3
2 ξtηi)εi〉,

C⊥ = 〈

l−1∏

i=0

(x3 − d32ξ
−tη−i)p

s
−εi〉,

where 0 ≤ εi ≤ ps, for any i = 0, 1, 2, ..., l− 1.
(ii) when gcd(3l, j) = 3, we have

C = 〈

2∏

i=0

(xl − d−l
2 ξkβi)εi〉,
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C⊥ = 〈

2∏

i=0

(xl − dl2ξ
−kβ−i)p

s
−εi〉,

where 0 ≤ εi ≤ ps for i = 0, 1, 2. And k is some integer such that j = 3k.
(iii) When gcd(3l, j) = 1. Then we have

C = 〈(x3l − d−3l
2 ξj)ε〉,

C⊥ = 〈(x3l − d3l2 ξ
−j)p

s
−ε〉,

where 0 ≤ ε ≤ ps.

5 All self-dual cyclic codes of length 3lps over Fq

In section 4, we have given the generator polynomials of all the constacyclic codes and
their dual codes of length 3lps over Fq. Further, we more detailed determine all the self-dual
cyclic(negacyclic) codes of length 3lps over Fq, in this section.

It’s well known that there exist self-dual cyclic codes of length N over Fq if and only if N is
even and the characteristic of Fq is p = 2 [10, 11]. Therefore, we get that self-dual cyclic codes
of length 3lps over Fq exist only when p = 2, in this paper. What’s more, when p = 2, cyclic
codes are the same with negacyclic codes of length 3l2s over F2m . Therefore, aim to obtain
self-dual cyclic and negacyclic codes, we just need to work on cyclic(negacyclic) codes.

Let x3lps

− 1 = (x3l − 1)p
s

= f1(x)
ps

f2(x)
ps

· · · fa(x)
ps

h1(x)
ps

h∗
1(x)

ps

· · · hj(x)
ps

h∗
b(x)

ps

be the irreducible factorization of x3lps

− 1, where fi(x), 1 ≤ i ≤ a, is monic irreducible self-
reciprocal polynomial over Fq, hj(x) and its reciprocal polynomial h∗

j (x), 1 ≤ j ≤ b, are also
monic irreducible polynomial over Fq. Further, for any cyclic code C = 〈g(x)〉 of length 3lps

over Fq, we suppose that

g(x) = f1(x)
τ1f2(x)

τ2 · · · fa(x)
τah1(x)

δ1h∗
1(x)

σ1 · · · hb(x)
δbh∗

1(x)
σb ,

where 0 ≤ τi, δj, σk ≤ ps. Then, we have

h(x) = f1(x)
ps

−τ1f2(x)
ps

−τ2 · · · fa(x)
ps

−τah1(x)
ps

−δ1h∗
1(x)

ps
−σ1 · · · hb(x)

ps
−δbh∗

1(x)
ps

−σb ,

Therefore,

h∗(x) = f1(x)
ps

−τ1f2(x)
ps

−τ2 · · · fa(x)
ps

−τah1(x)
ps

−σ1h∗
1(x)

ps
−δ1 · · · hb(x)

ps
−σbh∗

1(x)
ps

−δb ,

If C is a self-dual cyclic code, we get the following theorem.

Theorem 5.1. With the above notations, we have that C is a self-dual cyclic code if and only
if 2τi = ps, 0 ≤ i ≤ a, and δj + σj = ps, 0 ≤ j ≤ b.

Proof. C is a self-dual cyclic code if and only if g(x) = h∗(x), i.e. 2τi = ps, 0 ≤ i ≤ a, and
δj + σj = ps, 0 ≤ j ≤ b.

According to this theorem, we see that it’s enough to determine the irreducible factorization
of x3lps

− 1 as above. And if we do this, we can give all the self-dual cyclic codes immediately.
Similar to the definition of reciprocal polynomials, we give the following definition.
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Definition 5.2. Let Cs = (s, sq, ...sqf−1) be any q−cyclotomic coset modulo l, then

C∗
s = (−s,−sq, ...− sqf−1)

is said to be the reciprocal coset of Cs. And Cs is called self-reciprocal if Cs = C∗
s .

Obviously, C∗
s is still a q−cyclotomic coset modulo l. And the reciprocal polynomial of the

minimal polynomial of Cs is the minimal polynomial of C∗
s . Hence, the minimal polynomial of

Cs is also self-reciprocal if Cs is self-reciprocal.

Lemma 5.3. When q ≡ 1(mod3), For the q−cyclotomic coset, which have been described in
Lemma 2.1, one of the following holds:
(I) If f = ordl(q) is even, we have

B∗
0 = B0, B

∗
l = B−l, B

∗

gk = B−gk , B∗

3gk = B3gk ,

where 0 ≤ k ≤ e− 1.
(II) If f = ordl(q) is odd, we have

B∗
0 = B0, B

∗
l = B−l, B

∗

gk = B−gk , B∗

3gk
′ = B

−3gk
′

where {B3gk} = {B
3gk

′ }
⋃
{B

−3gk
′ } and 0 ≤ k ≤ e− 1, 0 ≤ k

′

≤ e
2 − 1.

Proof. (I) Obviously, we only need to prove B∗

3gk = B3gk . If f = ordl(q) is even, we deduce

that q
f
2 ≡ −1(modl). According to this, we get there exist i, j, 0 ≤ i, j ≤ f − 1, and |j− i| = f

2 ,
such that 3gkqi ≡ −3gkqj(mod3l), for any 3gkqi ∈ B3gk , 0 ≤ k ≤ e − 1. Therefore, we have
B∗

3gk = B3gk , for any k = 0, 1, ...e− 1.

(II) In the same way with Lemma 2.1, we get B0, Bl, B−l, Bgk , B−gk , B
3gk

′ and B
−3gk

′ , 0 ≤

k ≤ e − 1, 0 ≤ k
′

≤ e
2 − 1, are all the distinct q−cyclotomic coset modulo 3l. Next, the result

is obvious.

Lemma 5.4. If q ≡ 2(mod3) and f is even, For the q−cyclotomic coset, which have been
described in Lemma 2.1, one of the following holds:
(I) When f = 2t and t is even, we have

B∗
0 = B0, B

∗
l = Bl, B

∗

gk = B−gk , B∗

3gk = B3gk ,

where {B
gk

′ } = {Bgk}
⋃
{B−gk},0 ≤ k ≤ e− 1 and 0 ≤ k

′

≤ 2e− 1.

(II) When f = 2t and t is odd, we have

B∗
0 = B0, B

∗
l = Bl, B

∗

gk
′ = B

gk
′ , B∗

3gk = B3gk ,

where 0 ≤ k ≤ e− 1 and 0 ≤ k
′

≤ 2e− 1.

Proof. (I) In the same way with Lemma 2.1, we get B0, Bl, Bgk , B−gk and B3gk , 0 ≤ k ≤ e−1,
are all the distinct q−cyclotomic coset modulo 3l. Next, We first prove that B∗

l = Bl, i.e.
{l, lq}∗ = {l, lq}. As q ≡ 2(mod3), i.e q ≡ −1(mod3), then lq ≡ −l(mod3). Since gcd(3, l) = 1,
we have lq ≡ −l(mod3l), which implies B∗

l = Bl. Otherwise, similar to the proof in (II) of
Lemma 5.3, we get the other results immediately.
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(II) According to (I), it’s obvious that we only need to prove B∗

gk
′ = B

gk
′ . As t is odd, we

have qt ≡ −1(mod3). Since qt ≡ −1(modl) and gcd(3, l) = 1, we get qt ≡ −1(mod3l). Then, we

deduce that there exist i, j, 0 ≤ i, j ≤ f − 1, and |j − i| = t, such that gk
′

qi ≡ −gk
′

qj(mod3l),

for any gk
′

qi ∈ Bk
′ , 0 ≤ k

′

≤ 2e− 1, i.e. B∗

gk
′ = B

gk
′ .

Lemma 5.5. If q ≡ 2(mod3) and f is odd, For the q−cyclotomic coset, which have been
described in Lemma 2.1, we have

B∗
0 = B0, B

∗
l = Bl, B

∗

gk
′ = B

−gk
′ , B∗

3gk
′ = B

−3gk
′ ,

where {Bgk} = {B
gk

′ }
⋃
{B

−gk
′ }, {B3gk} = {B

3gk
′ }

⋃
{B

−3gk
′ } and 0 ≤ k ≤ e − 1, 0 ≤ k

′

≤
e
2 − 1.

From the above lemmas, we can give all the self-dual cyclic(negacyclic) codes of length 3l2s

over F2m and its enumeration in the following theorem.

Theorem 5.6. let l 6= 3 be an odd prime, p = 2, f = ordl(2
m), and e = l−1

f
. Then, for

cyclic(negacyclic) self-dual codes of length 3l2s over F2m , we have
(I) When q ≡ 1(mod3), one of the following hold:
(i) If f = ordl(q) is even, then there exist (2s + 1)e+1 cyclic self-dual codes of length 3l2s over
F2m . And they are given by

〈(x − 1)2
s−1

Bl(x)
δB−l(x)

2s−δ

e−1∏

k=0

Bgk(x)δkB−gk(x)2
s
−δkB3gk(x)2

s−1

〉,

where 0 ≤ δ, δk ≤ 2s, for any 0 ≤ k ≤ e.
(ii) If f = ordl(q) is odd, then there exist (2s +1)

3e
2 +1 cyclic self-dual codes of length 3l2s over

F2m . And they are given by

〈(x − 1)2
s−1

Bl(x)
δB−l(x)

2s−δ

e−1∏

k=0

Bgk(x)δkB−gk(x)2
s
−δk

e
2−1∏

k=0

B3gk(x)σkB−3gk(x)2
s
−σk〉,

where 0 ≤ δ, δk, σk ≤ 2s, for any 0 ≤ k ≤ e.
(II) When q ≡ 2(mod3), we have
(i) If f = 2t and t is even, then there exist (2s + 1)e cyclic self-dual codes of length 3l2s over
F2m . And they are given by

〈(x − 1)2
s−1

Bl(x)
2s−1

e−1∏

k=0

Bgk(x)δkB−gk(x)2
s
−δkB3gk(x)2

s−1

〉,

where 0 ≤ δk ≤ 2s, for any 0 ≤ k ≤ e.
(ii) if f = 2t and t is odd, then there exists only one cyclic self-dual codes of length 3l2s over
F2m . And they are given by

〈(x− 1)2
s−1

Bl(x)
2s−1

2e−1∏

k=0

B
gk

′ (x)2
s−1

e−1∏

k=0

B3gk(x)2
s−1

〉.
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(iii) If f is odd, then there exist (2s + 1)e cyclic self-dual codes of length 3l2s over F2m . And
they are given by

〈(x− 1)2
s−1

Bl(x)
2s−1

e
2−1∏

k
′=0

B
gk

′ (x)δk′ B
−gk

′ (x)2
s
−δ

k
′ B

3gk
′ (x)σk

′ B
−3gk

′ (x)2
s
−σ

k
′ 〉.

where 0 ≤ δk′ , σk
′ ≤ 2s, for any 0 ≤ k ≤ e.
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