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Abstract. We consider the noise-induced transitions in the randomly per-
turbed discrete logistic map from a linearly stable periodic orbit consisting of T
periodic points. The traditional large deviation theory and asymptotic analysis
for small noise limit as well as the derived quasi-potential can not distinguish
the quantitative difference in noise-induced stochastic instabilities of these T
periodic points. We generalize the transition path theory to the discrete-time
continuous-space stochastic process to attack this problem. As a first criterion of
quantifying the relative instability among T periodic points, we compare the dis-
tribution of the last passage locations in the transitions from the whole periodic
orbit to a prescribed set far away. This distribution is related to the contribu-
tions to the transition rate from each periodic points. The second criterion is
based on the competency of the transition paths associated with each periodic
point. Both criteria utilise the reactive probability current in the transition
path theory. Our numerical results for the logistic map reveal the transition
mechanism of escaping from the stable periodic orbit and identify which peri-
odic point is more prone to lose stability so as to make successful transitions
under random perturbations.

Key words and phrases: random logistic map, transition path theory, periodic
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1. Introduction

When deterministic dynamical systems are perturbed by random noise, even
though the noise amplitude is small, it has a prominent influence on the dynamics
on the appropriate time-scale. For example, the thermal noise can induce impor-
tant physical and biological metastability phenomena such as phase transitions,
nucleation events, configuration changes of macromolecules. These phenomena
correspond to the very unlikely excursions in the phase space of the random tra-
jectories, so these events are usually called rare events. These trajectories have
to overcome some barriers to escape from the initial metastable state and enter
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another. For the understanding of the occurrence of rare events, it is of great im-
portance to investigate the non-equilibrium statistical and dynamical behaviours
of those trajectories successfully making transitions. One of the interesting ques-
tions is how the ensemble of these transition trajectories depend on the phase space
of the unperturbed deterministic dynamical systems, for example, what structure
in the phase space would be the barriers for transitions, how the system leaves
the initial metastable state and escapes the basin of attraction of this metastable
state, etc. For general dynamics, the metastable state may not be a single point
as a local minimum on potential energy surface; it may be a collection of points,
such as limit cycle, periodic orbit, or even chaotic attractor. In this paper, we are
interested in, conditioned on the occurrence of rare transitions from one of these
stable structures, through which location within the metastable set the transition
trajectories will leave with a higher or dominant probability. Particularly, as an
example, our study focuses on the stable periodic orbits in the randomly perturbed
logistic map.

In history, many research work target to explore the barrier on the basin bound-
ary. For the diffusion process on a potential energy surface (a classic model for
chemical reactions [1,2]), the well-known transition-state theory [3] states that ba-
sically the transition state, is a saddle point with index 1 on the potential energy
surface. The progresses of chemical reactions are mainly described by heteroclinic
orbits connecting the local minima through the saddle point, i.e., “minimum en-
ergy path”. In addition, one can calculate the transition rate by computing the
probability flux of particles that cross the dividing surface of two neighbouring
potential wells. For general continuous time dynamical systems under random
perturbations, the notion of “most probable path” is very useful to describe the
transition process. This path is a curve in the phase space with a dominant
contribution in the ensemble of transition trajectories at vanishing noise limit.
From a mathematical viewpoint, such a notion of most probable path is based
on the large deviation principle (LDP) in path space. The well-known Freidlin-
Wentzell theory [4] states that the most probable transition path from one set A
to another B is the minimum action path, which minimizes the rate function of
the Freidlin-Wentzell LDP (aka.“Freidlin-Wentzell action functional”) subject to
the constraint of starting from A and ending at B. The transition probability is
dominated by the minimal value of the rate function. Therefore, by analytically
performing asymptotic analysis such as WKB or instanton analysis [5–8], or nu-
merically solving the variational problem in a path space [9–11], one can identify
most probable escape/transition path. This allows a further examination of the
path and the unstable structure in the phase space, in particular, how this path
crosses the basin boundaries. This methodology of least action principle is ap-
plicable for general dynamical systems of continuous-time or discrete-time. The
applications to Lorenz model [12], Kuramoto-Sivashinsky PDE [13] have already
discovered the barriers on the basin boundary in types of saddle points or saddle
cycles.

For discrete maps perturbed by noise, there has been a long history of studying
the effect of random perturbations on the dynamics. Some works are based on the
brute-force simulation to collect the empirical distributions of transition trajecto-
ries [14]. The applications of the large deviation rate function in the setting of
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discrete-time maps included the work in [15,16] which studied the transitions be-
tween stable fixed points, stable periodic orbits and chaotic attractors, providing
empirical evidence that the transition state is the type of a saddle node. [17, 18]
focused on the quasi-potential (activation energy), which is a good quantification
of the stochastic stability for a metastable set, to investigate the key invariant set
on the basin boundary. The series work of [19–21] carried extensive studies for
Lorenz systems, Henon maps and other examples of discrete maps under additive
random perturbation. Their results seem to suggest that in the noise-induced
escape from the basin of attraction of a stable set, the barrier-crossing on the
basin boundary is mostly determined by the position and stability properties of
certain saddle point or saddle cycles. Recently, a new approach was developed
in [22, 23] to understand transport in stochastic dynamical systems. They basi-
cally use the transition probability matrix (after discretizing and reindexing the
continuous space) for identification of active regions of stochastic transport. Most
of these existing studies deal with the transition state (or the set) on the basin of
attraction of a metastable state (or invariant set).

In this paper, we are interested in the transition from set to set with the purpose
of pinpointing the role of individual points in the initial metastable set to escape.
The motivation comes from the questions below: how the randomly perturbed
system leaves the periodic orbit (or limit cycle in continuous time dynamics); how
the stable self-sustained oscillating motion is eventually destroyed by the noise.

Specifically, we consider the random logistic map with additive Gaussian noise.
We are concerned with the noise-induced transitions from A to B — two disjoint
sets in the phase space. It is assumed that the unperturbed system has a linearly
stable periodic orbit (all eigenvalues are less than one in modulus), denoted as
ξ = (ξ1, ξ2, · · · , ξT ), where the integer T is the period. To explore the stochastic
instability of ξ, we select A as the union of the T periodic points {ξi} (more
precisely, A is the union of T small windows around {ξi}. Refer to Section 2).
After an exponentially long time wandering around the metastable set A in the
random motion of nearly periodic oscillation, the stochastic system will eventually
get a chance of making a significant transition to a set B far away from A. The
question we shall address is how the system deviates from the typical periodic
oscillation and whether it have any preference to some special periodic points to
make the transition.

The traditional techniques based on large deviation principle and the concept
of quasi-potential are not capable of addressing the above question due to the
following fact, although they are quite successful in studying the most active
regions on the basin boundary of the set A. If the unperturbed deterministic
flow can go from a point x to another point y, then the cost (quasi-potential)
from x to y is simply zero. Thus, if any points in the set A can reach each
other mutually by the deterministic flow (periodic orbit or limit cycle certainly
satisfies this condition), then the quasi-potential is flat on the whole set A. From
any point in A, the minimal action to escape the basin is the same. The extremal
path minimizing the action functional usually takes infinite time and has infinitely
length, and the whole invariant set A is the α-limit set of the extremal path: There
is no particular location in the set A from where the extremal path emits. Hence,
the action functional and the minimum action path can not distinguish individual
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points inside A in such cases. Similarly, the singular perturbation method [24] for
the mean first passage time in the vanishing noise limit will give a constant value
of the WKB solution on the stable limit cycle, and thus may be not directly useful
to our problem.

We use a new and attractive tool, the transition path theory [25–28], by modi-
fying this theory for the discrete map. The transition path theory for continuous-
time dynamical systems has been proved to be an effective mathematical tool to re-
veal transition mechanism of a few complex physical and biological systems [29,30].
This article intends to bring the transition path theory into studying the stochastic
instability issues for random discrete maps. We shall formulate the transition path
theory for the discrete-time continuous-space Markov process. We then use three
key ingredients in the transition path theory, the reactive current, the transition
rate and the dominant transition path, to understand the escape mechanism from
the periodic orbit A for any finite noise. To quantitatively compare the stochastic
instability of the T individual periodic points, we propose two rules: the first one
is the distribution of the last passage position among these T point and the second
one is the starting point of the dominant transition path. Our numerical results
obtained clearly show the capability of this theory in quantitative understanding
of the different roles of the individual points belonging to the same periodic orbit.

The paper is organized as follows. In Section 2, we will set up our problem for the
random logistic map. In Section 3, we briefly review the existing methodologies.
Section 4 is our method based on the transition path theory. In section 5, we
present numerical results for the random logistic map. Section 6 is our concluding
discussion.

2. Random Logistic Map

The randomly perturbed discrete map of our interest is the following

xn+1 = F (xn) + σηn

where ηn ∼ N(0, 1) are i.i.d. standard normal random variables and the constant
σ > 0 is the noise amplitude. In this paper, we focus on a well-known example
of F : the logistic map. Logistic map is probably the simplest nonlinear mapping
giving rise to periodic and chaotic behaviors. It is popularly used as a discrete-time
demographic model to represent the population with density-dependent mortality.
Mathematically, the logistic map is written by

x→ F (x) := αx(1− x),

where x is a number between zero and one that represents the ratio of existing
population to the maximum possible population. α > 0 is the parameter. When
x is out of the interval [0, 1], the logistic map simply diverges to infinity and never
returns. The dynamics of interest is in the interval [0, 1]. There are two fixed
points in this interval, 0 and 1 − 1

α
. When 0 < α < 1, 0 is the only stable fixed

point and when 1 < α < 3, 1− 1
α

is the only stable fixed point. Both fixed points
become unstable for α larger than 3. α = 3 is the onset of a stable period-2 orbit,
and this period-2 orbit disappears at α = 1 +

√
6 ≈ 3.4495, at which the period-4

orbit takes over. The stable period-2n orbit is followed by the stable period-2n+1

orbit if α increases continuously. This phenomenon is termed as period doubling
cascade and leads to the onset of chaos. Apart from this, tangent bifurcation is
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found, e.g., the onset of stable period-3 orbit arises at α = 1 + 2
√

2 ≈ 3.828.
Further details about the logistic map can be found in some classic literature,
e.g., [31].

The random logistic map of our interest is the following additive random per-
turbation restricted on the interval D = [0, 1] with F (x) = αx(1− x):

xn+1 = F (xn) + σηn mod 1. (2.1)

We here impose the periodic boundary condition for the Markov process {xn} so
that all dynamics is restricted on the compact set D. This will guarantee the
unique existence of the invariant measure for {xn} on D and thus ergodicity holds
for this stochastic process, which is a fundamental assumption in the transition
path theory. Other type of boundary condition is also feasible such as the reflection
boundary condition at x = 0 and x = 1.

The transition probability density of the discrete-time continuous-space Markov
process (2.1) is

P (x, y) =
∑
l∈Z

1√
2πσ2

exp

(
− 1

2σ2
(y − F (x) + l)2

)
, (2.2)

where the sum over the integer l is merely a minor adjustment for the periodic
boundary condition we used here. The density of the unique invariant measure,
π(x), is the solution of the following balance equation∫

D

P (y, x)π(y) dy = π(x). (2.3)

In other words, π(x) is the eigenfunction for the principle eigenvalue of the adjoint
of the transition kernel P (x, y).

Now we specify the sets involved in the transition problems for the randomly
perturbed logistic map. The parameter α in our study will be selected so that the
logistic map only has periodic oscillations. The stable invariant set of interest here
is the (linearly) stable period-T orbit in the (unperturbed) logistic map, denoted
as ξ = (ξ1, ξ2, · · · , ξT ). The order of (ξi) in ξ is specified so that ξi+1 = F (ξi).
We pick a small neighbourhood A around the T periodic points and a disjoint set
B. With these setups, the noise-induced transitions from A to B, named as A-B
transitions, will be our focus. By specifying the width δa, the set A around the
periodic orbit ξ is the union of the T disjoint small windows

A = ∪
1≤i≤T

[ξi − δa, ξi + δa]. (2.4)

It is possible to specify different widths for different periodic points, or let the
interval be asymmetric around ξi. It is also possible to use the level set of the
invariant measure π, {x : π(x) < δ}, around the periodic points. In the study of
this paper, we use the same δa for simplicity. The set B is placed near the unstable
fixed point 0 (or 1) with the width δb:

B = [0, δb] ∪ [1− δb, 1]. (2.5)

δa and δb are small enough so that A∩B = ∅ and [ξi−δa, ξi+δa]∩[ξj−δa, ξj+δa] = ∅
is empty for any 1 ≤ i < j ≤ T . The set B in our logistic map example is around
the unstable point, the “furthest” boundary point from the stable set A. In general
situations, this set B is placed just outside the basin of attraction of the periodic
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orbit ξ and the instability result about the ξ is typically robust for small noise
amplitude.

We introduce the nonzero width δa for the periodic orbit ξ, because the space
is continuous, not discrete: it makes no sense to consider trajectories in stochastic
system exactly leaving or entering some singleton points, at a fixed noise amplitude
σ > 0. In practice, the specification of the window width δa should be given by
the user who decides to what extent the system is deemed as out of the oscillation
status for specific applications.

Usually, the width δa should be small enough so that the set Ai can represent
the transition behaviour for the point ξi inside. In theory, for a set A to truly
reflect the transition mechanism of escaping from ξ, the width δa should approach
zero. In fact, all calculations are based on a finite δa. But since the set A has the
metastability property (linearly stable), then it follows that the conclusions to our
question based on the study of the set A for finitely small δa are quite robust and
indeed give correct insights about the transition mechanisms and the stochastic
instabilities for the stable periodic orbit ξ.

3. Related Works

We first briefly review two existing methods for the study of stochastic sys-
tems. The known applications of both methods are mainly for exploring the basin
boundary.

3.1. Large deviation principle. We give a glimpse of the large deviation prin-
ciple (LDP) or the principle of least action for randomly perturbed discrete map.
For continuous-time diffusions processes, refer to the Freidlin-Wentzell theory
in [4]. We start from the transition probability for the random mapping xn+1 =
F (xn) + σηn, which is

P (x, y) =
1√

2πσ2
exp

(
−(y − F (x))2

2σ2

)
.

With the fixed initial point x0 at time 0 and ending point xn at time n, the
probability of a path γ = (x0, x1, · · · , xn−1, xn) is

P [γ] =
n−1∏
i=0

p(xi, xi+1) ∝ Z−1
σ exp

(
− 1

σ2
S[x0, · · · , xn]

)
, (3.1)

where Z−1
σ is the prefactor and the cost function S has the form of

S[γ] = S[x0, · · · , xn] =
1

2

n−1∑
i=0

(xi+1 − F (xi))
2. (3.2)

This cost function S is actually the rate function (aka. action) of the LDP at
the vanishing noise limit σ ↓ 0. By the Laplace’s method, the path probability
P [γ] is asymptotically dominated by exp

(
− 1
σ2Smin

)
, where Smin = minγ S[γ]. The

minimum action path (MAP) γ∗ is the one such that S[γ∗] = Smin. If this minimal
action Smin is viewed as the function of the initial point x0 and the ending point xn
for all possible n, then it is the so-called quasi-potential, which is quite useful for
quantifying the stability of each basin against the random perturbation [4,15,32].
When the initial point x0 is in a stable structure (fixed point, periodic orbit,
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chaotic attractor) of the phase space, and xn is out of the basin of attraction
of this stable structure, the MAP is usually called the most probable escape path
(MPEP). The intersection part of the MPEP with the basin boundary is quite
revealing for transition states or active regions during crossing the boundary.

One obvious feature of this least action method based on the LDP is that the
cost is zero for a path from ξ1 to ξ2 if ξ2 is exactly equal to F (ξ1). This means
that starting from any point in the same period-T orbit, the minimal action is the
same. Thus, one can not tell which point in the periodic orbit, limit cycle, or even
chaotic attractor, is more prone to the random perturbation, since they share the
same action.

3.2. PDF flux. To study the bi-stabilities in the stochastically perturbed dynam-
ical systems, Billings et al. [22, 23] proposed a method on the transport of prob-
ability density function under the discrete map, in which the one-step transport
is described by the Frobenius-Perron operator, i.e., the adjoint of the transition
kernel P (x, y). They investigated how an initial distribution is transported to a
given region in the phase space under the action of this operator:

ρ(x)→ F [ρ](x) :=

∫
D

P (y, x)ρ(y) dy.

Depending on the initial distribution, they call F [ρ] the area flux if ρ is uniform
and call F [ρ] the PDF flux if ρ is the invariant measure π (Eqn (2.3)). For a given
set A ⊂ D, the “mass flux into A” is defined as∫

x∈A

(∫
y∈D\A

P (y, x)ρ(y) dy

)
dx

and “mass flux out of A ” (by switching A and its complement set D\A) is defined
as

F−A =

∫
x∈D\A

(∫
y∈A

P (y, x)ρ(y) dy

)
dx

=

∫
y∈D\A

(∫
x∈A

P (x, y)ρ(x) dx

)
dy

=

∫
x∈A

ρ(x)

(∫
y∈D\A

P (x, y) dy

)
dx.

(3.3)

The quantity ρ(x)P (x, y) was used for x in one basin and y in another basin to
investigate where a trajectory is most likely to escape the basin boundary. For
a few applications [22], the saddle cycles on the basin boundary usually have the
maximal flux across the boundary.

4. Transition Path Theory for discrete map

We first formulate the transition path theory for discrete map. Then we iden-
tify the point in the orbit ξ with the highest probability mass of being the last
passage position during the A-B transition, which is actually the point with the
biggest contributions to the transition rate. To further study the development of
the current for the transition probability after emitting the set A, we carry out
the pathway analysis and target for the dominant transition paths. The precise
definitions of these concepts will be explained soon. We remark that the first
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approach based on the transition rate is relatively easy for calculation and quite
universal for any situations. The second path-based approach needs a thorough
exploration of connected paths based on network theory and could have difficult
situations that fail to compare the stochastic instability in a quantitative way due
to complexity of pathways, although our logistic map example does not meet with
such dilemma and shows a clean result. In addition, the above two approaches
may also give two different conclusions since the viewpoints of interpreting and
comparing the stochastic instabilities are different.

4.1. Transition path theory for randomly perturbed discrete map. The
original TPT was formulated for the continuous-time continuous-space Markov
process [25, 26, 28]. The TPT for the continuous-time discrete-space Markov pro-
cess (jump process) was developed in [27], in which a detailed analysis for the path-
ways on the discrete space is of particular interest. Here we present the method
of TPT in the setting of the discrete-time continuous-space Markov process.

The transition path theory does not consider the limit of vanishing noise. It
assumes that the stochastic system is ergodic and has a unique invariant measure.
The main focus of the TPT is the statistical behaviour of the ensemble of reactive
trajectories between two arbitrary disjoint sets. Assume that A and B are two
disjoint closed subsets of the state space D (D = [0, 1] for our example of the
logistic map), each of which is the closure of a nonempty open set. The transition
of our interest is from A to B. For a discrete-time homogeneous Markov process
{Xn : n ∈ Z}, define the first hitting time after time m and the last hitting time
before time m of A ∪B as follows, respectively,

H+
AB(m) := inf{n ≥ m : Xn ∈ A ∪B},

H−AB(m) := sup{n ≤ m : Xn ∈ A ∪B}.
(4.1)

Then for a generic trajectory (Xn)n∈Z, the ensemble of A-B reactive trajectories
is defined to be the collection of pieces of the truncated trajectories: {Xn : n ∈ R},
where n ∈ R if and only if

XH+
AB(n+1) ∈ B and XH−AB(n) ∈ A.

R is the set of times at which Xn belongs to an A-B reactive trajectory. Refer to
Figure 1 for one piece of reactive trajectory extracted from a generic trajectory.
The intuition for defining A-B reactive trajectories is that the points on these
reactive trajectories will first reach B rather than A and came from A rather than
B.

The most important ingredient in the TPT is the probability current for A-B
reactive trajectories. For the continuous state space D, we introduce its space-
discretized version first:

J(x, y,∆x,∆y) := lim
N→∞

1

2N + 1

−N∑
n=N

(
1[x−∆x

2
,x+ ∆x

2
](Xn)1[y−∆y

2
,y+ ∆y

2
](Xn+1)

1A(XH−AB(n))1B(XH+
AB(n+1))

)
,

(4.2)
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0
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0.4

0.6

0.8

1

n

Figure 1. A snapshot of a generic trajectory (dots in the plot)
and one reactive trajectory (three points circled in the plot) of
the randomly perturbed logistic mapobserved in the time interval
[4896620, 4896780]. The set A is the union of A1 and A2 around the
periodic points ξ = (0.5130, 0.7995), corresponding to two narrow
bands with length 2δa = 0.04 shown by solid horizontal lines. The
bounds of the set B near 0 and 1 are shown in dashed lines. α = 3.2,
σ = 0.04.

where 1{·}(·) is the indicator function. Then the A-B reactive probability
current is defined as the following limiting function for x and y in D,

J(x, y) := lim
∆x,∆y→0

J(x, y,∆x,∆y)

∆x∆y
.

We sometimes just call J the reactive current whenever the specification of the
sets A and B is clear.

The above definition of the reactive current J is based on the time average for an
infinitely long generic trajectory. To obtain an ensemble average, we need assume
the Markov process {Xn} is ergodic, i.e., the unique existence of the invariant

probability density such that π(x) = lim
N→∞

1
N

∑N−1
n=0 1x(Xn). Then, (4.2) leads to

the following formula of the reactive current

J(x, y) = q−(x)π(x)P (x, y)q+(y), x ∈ D, y ∈ D. (4.3)

where P (x, y) is the transition density function of the Markov process P (x, y dy =
P[Xn+1 ∈ [y, y + dy)|Xn = x], q+ and q− are the the forward and backward
committor functions, defined as follows, respectively:

q+(x) := P[XH+
AB(0) ∈ B|X0 = x], q−(x) := P[XH−AB(0) ∈ A|X0 = x].

By definition, the committor functions satisfy the following boundary conditions{
q+(x) = 0, and q−(x) = 1, if x ∈ A,
q+(x) = 1, and q−(x) = 0, if x ∈ B.

(4.4)

This implies the fact

J(x, y) = 0, when x ∈ B, y ∈ D or x ∈ D, y ∈ A. (4.5)
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It is known from [25, 27] that the committor functions satisfy the following Fred-
holm integral equation for all x /∈ A ∪B,

q+(x) =

∫
D

P (x, y)q+(y) dy, x ∈ D \ (A ∪B) (4.6)

and

q−(x) =

∫
D

P−(x, y)q−(y) dy, x ∈ D \ (A ∪B) (4.7)

where

P−(x, y) :=
1

π(x)
P (y, x)π(y) (4.8)

is the transition kernel of the time reversed process {X−n}n∈Z. Since the transition
kernel P is irreducible in the ergodicity assumption, then the functions q+(x) and
q−(x) are always strictly positive for any x /∈ A ∪B.

Remark 1. Compared with the PDF flux π(x)P (x, y) in Section 3.2, the A-B
reactive current J(x, y) = π(x)P (x, y)q−(x)q+(y) in the transition path theory
includes the additional global information for the A-B transition of the committor
functions. These two quantities are equal only when x ∈ A and y ∈ B.

In the next, we shall address two main issues about the methods based on the
TPT for the application to the random perturbed discrete map. The first one is
the robust calculation of the reactive current function J(x, y) and the second is
how to use this reactive current function to analyze the reaction pathways as well
as the reaction rate. Based on these developments, we shall carry out the study
for the roles of individual points in A and evaluate their stabilities in the content
of A-B transitions.

We rewrite the equations (4.7) and (4.8) by introducing q̃−(x) := π(x)q−(x),
then

q̃−(x) =

∫
D

P (y, x)q̃−(y) dy, x ∈ D \ (A ∪B). (4.9)

The boundary condition is q̃−(x) = π(x) for x ∈ A and q̃+(x) = 0 for x ∈ B.
Eqn (4.9) has the same form as Eqn (4.6) by transposing the transition kernel P .
There are two reasons for introducing q̃−: (1) the reactive current J , rather than
q− itself, is of more interest in understanding the mechanics of transition and it
is not necessary to calculate q− explicitly in order to obtain J ; (2) the numerical
method to calculate q− directly is instable under small noise intensity and this
problem can be resolved by calculating q̃− instead.

The system (4.9) and (4.6) together with the boundary condition (4.4) can be
solved as a linear system after discretizing the spatial domain D = [0, 1]. q+(x)
and q̃−(x) typically exhibit boundary layers or discontinuities at the boundaries
of A and B. In our numerical discretisation, the spatial mesh grid is adjusted in a
moving mesh style to distribute more points near the boundaries by checking the
derivatives |∇q+| and |∇q̃−| (refer to [10] for details).

Since

J(x, y) = q−(x)π(x)P (x, y)q+(y) = q̃−(x)q+(y)P (x, y), (4.10)
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then we can see from (4.6) and (4.9) that∫
y∈D

J(x, y)dy = q−(x)π(x)

∫
y∈D

P (x, y)q+(y) dy = q̃−(x))q+(x), ∀x /∈ (A ∪B);

(4.11)∫
x∈D

J(x, y) dx = q+(y)

∫
x∈D

P (x, y)q̃−(x) dx = q̃−(y)q+(y), ∀y /∈ (A ∪B).

(4.12)
The above quantity on the right hand sides is actually the probability density of
reactive trajectories:

πR(x) := q−(x)π(x)q+(x) = q̃−(x)q+(x), ∀x ∈ D \ (A ∪B).

Under ergodicity condition, this probability density πR(x) corresponds to the fol-

lowing time average: πR(x) dx = limN→∞
1

2N+1

∑N
−N 1R(n)1[x,x+ dx)(Xn). Eqn (4.11)

and Eqn (4.12) together show that∫
y∈D

J(x, y) dy =

∫
y∈D

J(y, x) dy = πR(x), for any x ∈ D \ (A ∪B). (4.13)

So, the reactive current J(x, y) defines a flow at any x ∈ D \ (A ∪ B) since the
in-flow is equal to the out-flow.

Remark 2. For the transition kernel P (x, y) based on the discrete map, it is
possible that q±(x) is continuous only in the open set D \ (A ∪B). The one-sided
limit from the open set D \ (A ∪ B) may not equal the boundary value at ∂A or
∂B (note that A and B are closed set and ∂A ⊂ A, ∂B ⊂ B). Thus, there may be
a jump discontinuity q±(x) at x ∈ ∂A∪ ∂B. Refer to Figure 3 in the next section
for the example of logistic map. This means that J(x, y) in (4.10) may also have
the jump discontinuities whenever x or y crosses the boundaries at ∂A ∪ ∂B.

4.2. Transition rate and most-probable-last-passage periodic point. The
reactive current J allows us to calculate how frequently the transition occurs from
A to B, i.e., the transition rate. The transition rate is the average number of
transitions from A to B per unit time, defined by

κAB := lim
N→∞

#{transitions from A to B in [−N,N ]}
2N + 1

.

With the definition of the set R, we can rewrite the above as

κAB = lim
N→∞

1

2N + 1

N∑
−N

1A(Xn)1D\A(Xn+1)1R(n).

Remark 3. When the set A is the union of disjoint compact subsets A = ∪Ki=1Ai,
then it is obvious that the A-B transition rate has the following decomposition

κAB =
K∑
i=1

κAiB :=
K∑
i=1

lim
N→∞

1

2N + 1

N∑
−N

1Ai
(Xn)1D\A(Xn+1)1R(n),

where R still means the A-B transitions. Then the ratio
κAiB

κAB
is exactly the prob-

ability that the reactive trajectory selects the subset Ai to leave the set A during
its last stay in the set A.
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Using the ergodicity, the transition rate is calculated as follows

κAB =

∫
x∈A

∫
y∈D\A

J(x, y) dy dx =

∫
x∈A

∫
y∈D

J(x, y) dy dx

=

∫
x∈A

q−(x)π(x)

∫
y∈D

P (x, y)q+(y) dy dx

=

∫
x∈A

π(x)

∫
y∈D

P (x, y)q+(y) dy dx,

(4.14)

where the definition J(x, y) = π(x)P (x, y)q−(x)q+(y) and the facts that J(x, y) =
0 for y ∈ A and q−(x) = 1 for x ∈ A are applied.

From Eqn (4.13), it is clear that∫
x∈A∪B

∫
y∈D

J(x, y) dy dx =

∫
x∈A∪B

∫
y∈D

J(y, x) dy dx.

By Eqn (4.5), the above equality becomes∫
x∈A

∫
y∈D

J(x, y) dy dx =

∫
x∈B

∫
y∈D

J(y, x) dy dx.

Thus, there is an equivalent formula for the transition rate:

κAB =

∫
x∈B

∫
y∈D

J(y, x) dy dx =

∫
y∈B

∫
x∈D

J(x, y) dx dy. (4.15)

The transition rate (4.14) is the total contribution of the reactive current out
of A and into B. To distinguish the different points in A, where the reactive
current J initiates, we introduce the following two functions r−AB(x) and r+

AB(y)
to represent the local contribution of the reactive current to the reaction rate:

r−AB(x) :=

∫
D\A

J(x, y) dy =

∫
D

J(x, y) dy, for x ∈ A, (4.16)

r+
AB(y) :=

∫
D\B

J(x, y) dx =

∫
D

J(x, y) dx, for y ∈ B. (4.17)

Note that like Eqn (4.14), r−AB(x) = π(x)
∫
y∈D P (x, y)q+(y) dy, requiring only the

forward committor function q+.
It is easy to see that r−AB and r+

AB defined in (4.16) and (4.17), after normal-
ization, are known as the reactive exit and reactive entrance distributions in the
transition path theory [30,33]. Indeed, by Remark 3, the probability density func-
tion of the last passage position on A of a typical reactive trajectory is then given

by
r−AB(x)

κAB
(note

∫
A
r−AB(x) dx = κAB). Similarly, the probability density function

of the first entrance position on B of a typical reactive trajectory is then given by
r+
AB(y)

κAB
. We then define the most-probable-last-passage point in A as

x̂ := arg max
x∈A

r−AB(x)

κAB
= arg max

x∈A
r−AB(x), (4.18)
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and the most-probable-first-hitting point in B as

ŷ := arg max
y∈B

r+
AB(y)

κAB
= arg max

y∈B
r+
AB(y). (4.19)

Of our particular interest is the most-probable-last-passage point x̂ in A. We can
think of this point as the most A-B “reactive” point in the set A. In terms of
instability due to the noisy perturbation, this point means the least stable location
in the set A conditioned on the transitions from A to B.

For the problem of the periodic orbits ξ in the logistic map, the set A is defined
as the union of neighbours of the T periodic points ξ1, · · · , ξT , i.e., A = ∪

1≤i≤T
[ξi−

δa, ξi + δa]. Since δa is small, we can use

r−AB(i) :=
1

2δa

∫ ξi+δa

ξi−δa
r−AB(x) dx. (4.20)

to represent the contributions to the total flux κAB from the point ξi. We define
the most-probable-last-passage periodic point (abbreviated to “MPLP”) as
the point ξî having the maximal value {r−AB(i) : i = 1, · · · , T}. This MPLP is
the most unstable periodic point in the sense of transition from the periodic orbit
ξ = (ξ1, · · · , ξT ) to the set B.

Remark 4. The transition rate κAB is the integration over x ∈ A for the function

π(x)

∫
y∈D\A

P (x, y)q+(y) dy dx.

As mentioned in Remark 1, compared with the PDF flux defined in Eqn (3.3)
(where ρ = π), the difference between these two formulations is that q+(y) is
multiplied onto P (x, y) here. The inclusion of this forward committor function
indicates that in the transition path theory, the object of focus is the A-B reactive
trajectories, which have to reach the target set B before returning to A. The
trajectories counted in the PDF flux (3.3) is a much larger set containing those
trajectories which failed to reach B and return to A again. So, for the same
stochastic system, κAB is usually much smaller than the quantity F−A in Eqn (3.3)
unless B is infinitely close to D \ A.

The definition of the above MPLP periodic point is associated with the inte-
gration of the reactive probability current J(x, y) for all y ∈ D \ A. It does not
take account of what happens after the reactive current leaves A from the point
x. So, it is possible that, once the reactive current flows out of A from the MPLP
point x̂, the reactive current could quickly diverge and spread out, and as a result,
in terms of the transition paths from A to B, different transition paths can carry
significantly different values of the reactive currents. We then need to find the
dominant ones among all the transition paths connecting A and B. The starting
points in A of the dominant transition paths will give our second description of the
stochastic instabilities to distinguish the periodic points in ξ. Apparently, when
the dominant transition paths are not unique due to the complexity of the prob-
lem, it is possible that the starting points of these dominant transition paths may
lie in multiple subsets Ai for the case of A = ∪Ti=1Ai, which means that all these
subsets (or the periodic points) are equally instable by this path-based criterion.
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4.3. Competency and maximum competency periodic point. The analysis
of pathways is built on the effective reactive probability current J+(x, y),
which is defined by

J+(x, y) := max(J(x, y)− J(y, x), 0). (4.21)

J+(x, y) is always non-negative and represents the net reactive flux from x to y.
We may write

J+(x, y) =
J(x, y)− J(y, x) + |J(x, y)− J(y, x)|

2
.

Then using Eqn (4.13), we obtain∫
y∈D

J+(x, y) dy =

∫
y∈D

J+(y, x) dy, for any x ∈ D \ (A ∪B).

When y ∈ A, J(x, y) = 0 and it follows that when x ∈ A, J+(x, y) = max(J(x, y)−
J(y, x), 0) = J(x, y). So, the formula of the rate (4.14) can also be written in terms
of the effective current J+:

κAB =

∫
x∈A,y∈D

J(x, y) dx dy =

∫
x∈A,y∈D

J+(x, y) dx dy.

The effective current J+(x, y) naturally leads to a series of concepts about the
transition paths. These concepts are well described for countable discrete space
in [27]. Indeed, in terms of the algorithms, we can divide the continuous domain
D into a large number of very fine intervals (much smaller than the widths δa and
δb) and apply the discrete algorithms based on the graph theory described in [27].
The theoretical formulation we give below is for a continuous space domain, and
we believe this formulation has its own interest. To represent the functionality of
the effective current J+, we shall use a generic two-dimensional function f(x, y),
which is defined on D × D, associated with the given disjoint subsets A and B.
This function f(x, y) is an analogue of the weight for an edge from one node x
to another y in the graph theory. Clearly, f has to meet the properties that J+

has. We assume that the triplet (A,B, f) for a compact state space D satisfies
the following assumption.

Assumption 1.

(1) The sets A and B are disjoint nonempty closed subsets of the state space
D and A ∪B $ D;

(2) f(x, y) is always non-negative for all (x, y) ∈ D ×D and

f(x, y) = 0, if x ∈ B, y ∈ D or x ∈ D, y ∈ A.
(3) f(x, x) = 0, for x ∈ D.
(4) For any x ∈ D \ (A ∪B),∫

y∈D
f(x, y) dy =

∫
y∈D

f(y, x) dy.

(5) f(x, y) is bounded and piecewise continuous in D ×D.

Definition 1. Given two disjoint subsets A′, B′ in D and the triplet (A,B, f)
satisfying Assumption 1, for any n ∈ N, ω = (ω0, ω1, . . . , ωn) ∈ D × · · · × D is
called an A′-B′ transition path associated with (A,B, f), if
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(1) ω0 ∈ A′, ωn ∈ B′;
(2) f(ωi, ωi+1) > 0 for 0 ≤ i ≤ n− 1.

Note that property (2) in Assumption 1 implies that ωi /∈ (A ∪ B) for all
1 ≤ i ≤ n− 1.

We actually use A′ = A (or A′ ⊂ A) and B′ = B in most cases. Occasionally, we
need a different set B′ from B. The following definition of the path competency
is from the graph theory.

Definition 2. We define the competency of a path ω = (ω0, ω1, . . . , ωn) as the
minimal value of f(ωi, ωi+1) for all 0 ≤ i ≤ n− 1, that is,

Cp(ω) := min
0≤i≤n−1

f(ωi, ωi+1).

Remark 5. The notion of “competency” defined above is referred to as capacity in
the context of the graph theory. However, the terminology “capacity” is also used
and plays a significant role in the classical potential theory for stochastic systems
which is closely related to the transition path theory. So to avoid confusion, we
adopt a different terminology “competency”.

Property (2) in Definition 1 implies that the competency of any A′-B′ transition
path is always strictly positive.

Definition 3. With the same assumption in Definition 1, a subset C of the prod-
uct space D × D is called A′-B′ f-connected, if there exists at least one A′-B′

transition path ω = (ω0, ω1, . . . , ωn) for some n ≥ 1, associated with the triplet
(A,B, f), such that every directed edge (ωi, ωi+1) belongs to C for all 0 ≤ i ≤ n−1.

The collection of all A-B transition paths with length n and all edges contained
in the set C is denoted by Gn(C). G(C) := ∪nGn(C).

We drop out the function f most of the time and simply say the set C is A′-B′

connected. We are particularly interested in the special set C in the form of the
super level set of the function f .

Definition 4. With the same assumption in Definition 1, define the superlevel set
of the function f for any non-negative real number z,

Lz := {(x, y) ∈ D ×D : f(x, y) ≥ z}.

The A′-B′ competency of the function f , denoted as z∗(A′, B′), is defined as

z∗(A′, B′) := sup {z ≥ 0 : Lz is A′-B′ connected} . (4.22)

Lz∗(A′,B′) is call the minimal A′-B′ connected superlevel set of f if the max-
imizer can be reached:

z∗(A′, B′) = max {z ≥ 0 : Lz is A′-B′ connected} .

As a convention, when A′ and B′ are not specified, A′ is A and B′ is B by default
and we simply say the competency of the function f , the minimal connected set
and denote z∗(A′, B′) as z∗.

Remark 6. The relation between Definition 2 and Definition 4 is that

z∗(A′, B′) = sup {Cp(ω) : ω is an A′-B′ transition path} . (4.23)
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Indeed, if ω is an A′-B′ transition path, then Lz is A′-B′ connected for z ≤
Cp(ω); and conversely, if Lz is A′-B′ connected, then any A′-B′ transition path
ω = (ω0, ω1, · · · , ωn) with edges contained in Lz must satisfy f(ωi, ωi+1) ≥ z for
all 0 ≤ i ≤ n − 1, thus Cp(ω) ≥ z. In particular, all the A-B transition paths
with edges in the minimal A-B connected superlevel set Lz∗ must have the same
competency z∗ as the function f .

Definition 5. With the same assumption in Definition 1, let z∗(A′, B′) be the A′-
B′ competency of f in Defintion 4, if Lz∗(A′,B′) is A′-B′ f -connected, we then call
all the A′-B′ transition paths with edges in Lz∗(A′,B′) the A′-B′ dominant transi-
tion paths. The A-B dominant transition paths are simply called the dominant
transition paths.

In our problem about the periodic orbit ξ = (ξi)i=1,··· ,T , the set A is ∪Ti=1Ai
where Ai = [ξi − δa, ξi + δa]. Note that the following important fact from (4.23),

z∗(A,B) = max
i
z∗(Ai, B).

Therefore, we propose to make use of the capacities z∗(Ai, B) for 1 ≤ i ≤ T to com-
pare the instability of each ξi. The point ξî such that z∗(Aî, B) = maxi z

∗(Ai, B)
is defined as the maximum competency periodic point (MCPP). The inter-
pretation of this MCPP is that there exists a transition path emitting from this
MCPP (more precisely, its window Aî) whose competency is larger than any tran-
sition path emitting from any other periodic point. Thus this MCPP is deemed as
the most active (least stable) periodic point in the noise-induced transition from A
to B. If this MCPP ξî is unique, then all the dominant transition paths will start
from Aî. In case that the maximizers are not unique, the capacities z∗(Ai, B) still
can in general give a rank in terms of stochastic instability for all periodic points
ξ = (ξi).

In the community of graph algorithms and network optimization, the dominant
transition path is called the widest path, also known as the bottleneck shortest
path or the maximum competency path. There are plenty of practical algorithms
to find the widest path [34]. In what follows, we discuss the identification of the
A-B competency z∗ and the dominant transition paths. The motivation here is
not to present the details of the practical implements for discrete state space, but
to demonstrate the concepts and the related theoretical properties in the continuos
space.

It is easily seen from (4.23) that z∗ > 0. On the other hand, for z > supD×D f ,
Lz is empty. So, the competency z∗ of f satisfies 0 < z∗ ≤ supD×D f < ∞. The
following properties are obvious: (1) If Lz1 is connected, then so is Lz2 for any
z2 < z1; (2) Lz is connected for any 0 < z < z∗; (3) Lz is not connected for any
z > z∗. So, one can use a binary search algorithm to compute the competency z∗

of f within the interval (0, sup(x,y)∈D×D f(x, y)]. Then the numerical result for z∗

is a tiny interval [z∗l , z
∗
u] bracketing the true value z∗. To judge a given set Lz is

A-B f -connected or not, we can use the following set-to-set map Φz to propagate
the set A until reach B if it is reachable. The map Φz provides a set-tracking
algorithm to search the transition path from A to B. The idea is the analogue
of the breadth-first search algorithm. The same procedure is used to test every
Ai-B f -connection in order to identify z∗(Ai, B). Actually, since A = ∪Ai, the
set-tracking is performed in parallel for all Ai.
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Definition 6. For any z > 0, we can define the map Φz on the collection of all
subsets of D by

Φz(C) =: ∪x∈C {y : (x, y) ∈ Lz}, ∀C ⊂ D.

Denote the compound mapping by

Φm
z (C) := Φz(Φ

m−1
z (C))

and Φ0
z(C) := C by default.

Let
N(z) := min{n ≥ 1 : Φn

z (A) ∩B 6= ∅}
be the minimal length of the A-B transition paths in G(Lz), then N(z) < ∞ if
and only if Lz is A-B connected.

To avoid the technicality and ease the presentation, we theoretically assume
that Lz∗ is A-B f -connected, i.e., z∗ is the maximizer in (4.22). Numerically, we
check for z slightly below the numerical value z∗l , and if for all these z’s, they share

exactly the same N(z) and the set Φ
N(z)
z (A) ∩ B converges as z approaches z∗l ,

then we are able to use the obtained numerical value z∗l as the competency of f
defined in (4.22).

4.4. Dominant transition path and dynamical bottleneck. Calculating the
Ai-B competency, z∗(Ai, B), suffices for quantifying the stochastic instabilities of
the periodic points. In the following last part of this section, we further discuss
some additional issues about finding the A-B dominant transition paths since such
paths can give us more details and insights of the transition mechanism, especially
how the periodic points compete in winning the global competency z∗.

First we define a pull back operation.

Definition 7. Given z ≤ z∗ and n ≥ N(z), let

W n,n
z := Φn

z (A) ∩B,
if this set is nonempty. And for 0 ≤ i < n, define recursively,

W n,i
z := {x ∈ Φi

z(A) : Φz({x}) ∩W n,i+1
z 6= ∅}.

For any ω = (ω0, ω1, · · · , ωn), define the canonical projection πi : ω 7→ ωi. Then
we have the following property about the above set W n,i

z .

Proposition 1. For any z ∈ (0, z∗], n ≥ N(z), and 0 ≤ i ≤ n, then

W n,i
z = πi (Gn(Lz)) ,

which is to say

(1) for any α ∈ W n,i
z , there exits a transition path ω = (ω0, ω1, · · · , ωn) ∈

Gn(Lz) with length n and ωi = α.
(2) for any ω = (ω0, ω1, · · · , ωn) ∈ Gn(Lz), ωi ∈ W n,i

z for all 0 ≤ i ≤ n.

Proof. (1): Pick up an arbitrary α in W n,i
z , let ωi := α, then there exists a point,

denoted as ωi+1, in both Φz({ωi}) and W n,i+1
z . Since ωi+1 ∈ W n,i+1

z , we can
inductively find ωj ∈ W n,j

z ∩ Φz({ωj−1}) for i < j ≤ n; in particular, ωn ∈
W n,n
z ⊂ B. Meanwhile, since ωi ∈ Φi

z(A), then there exists an ωi−1 such that
ωi−1 ∈ Φi−1

z (A) and ωi ∈ Φz({ωi−1}). From ωi−1 ∈ Φi−1
z (A), we similarly have
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ωj ∈ Φj
z(A) and ωj+1 ∈ Φz({ωj}) for 0 ≤ j < i; in particular, ω0 ∈ Φ0

z(A) = A.
Then ω := (ω0, · · · , ωi, · · · , ωn) is the desired transition path.

(2): Let ω = (ω0, ω1, · · · , ωn) be a transition path in the set Lz. Then ω0 ∈
A = Φ0

z(A). Note that f(ωi, ωi+1) ≥ z for all 0 ≤ i < n, then ωi+1 ∈ Φz({ωi}).
In particular, ω1 ∈ Φz({ω0}) ⊂ Φ1

z(A), and inductively, we have ωi ∈ Φi
z(A) for

0 ≤ i ≤ n. Since ωn ∈ B, thus we have ωn ∈ W n,n
z . Then by induction, we obtain

from the definition of W n,i
z that ωi ∈ W n,i

z for 0 ≤ i ≤ n. �

Definition 8. A pair (x, y) ∈ D ×D is called an A-B dynamical bottleneck,
or dynamical bottleneck for abbreviation, if f(x, y) = z∗ and (x, y) ∈ W n,i

z∗ ×
W n,i+1
z∗ for some n ≥ N(z∗) and 0 ≤ i < n.

Proposition 2. (1) If (x, y) is a dynamical bottleneck, then there exists a
dominant transition path ω = (ω0, · · · , ωn) in G(Lz∗), such that x = ωi
and y = ωi+1 for some 0 ≤ i < n.

(2) If for the given set A, B and the function f , the bottleneck is unique, then
every dominant transition path contains the bottleneck as one of its edges.

Proof. (1) From the proof of Proposition 1, we see that if x ∈ W n,i
z∗ , there must

exist an A-{x} transition path (ω0, ω1, · · · , ωi = x) with edges in Lz∗ , and if
y ∈ W n,i+1

z∗ , there should be a {y}-B transition path (ωi+1 = y, ωi+2, · · · , ωn) with
edges in Lz∗ . Since (x, y) ∈ Lz∗ , then putting together the above two pieces, we
obtain ω = (ω0, ω1, · · · , ωi = x, ωi+1 = y, ωi+2, · · · , ωn) is a dominant transition
path.

(2) In view of Remark 6, for every dominant transition path ω = (ω0, ω1, · · · , ωn)
in G(Lz∗), we have Cp(ω) = mini f(ωi, ωi+1) = z∗. Let i∗ = arg mini f(ωi, ωi+1),
then f(ωi∗ , ωi∗+1) = z∗. On the other hand, it follows from Proposition 1 that

ωi∗ ∈ W n,i∗

z∗ and ωi∗+1 ∈ W n,i∗+1
z∗ . Hence (ωi∗ , ωi∗+1) is a bottleneck by definition.

Since the bottleneck is unique, (ωi∗ , ωi∗+1) must be the bottleneck (x, y). �

For the situations that the A-B dynamical bottleneck is unique, which is de-
noted as B(A,B) = (B−(A,B),B+(A,B)), we can furthermore recursively investi-
gate how the dominant transition paths leave the set A and reach the bottleneck
B(A,B). For example, we can define the bottleneck B(A,B−(A,B)) for the tran-
sition from A to B−(A,B), i.e., taking B−(A,B) as B′. If this bottleneck is also
unique, we can continue to trace the nested bottlenecks B(A,B−(A, · · · )) back to
some point in the set A. The final point obtained in this recursive way in the set
A is just the MCPP we defined before.

4.5. Comments on two criteria of MPLP and MCPP. It is normal that
our two criteria in Section 4.2 and Section 4.3 can give rise to different results
in describing the stochastic instabilities of the same periodic point in regard of
different criteria used. The first criterion of looking for MPLP is to compare the
total out-flow of the reactive current from a periodic point. The second criterion
of looking for MCPP is to compare the competency of the “pipelines” from a
periodic point in transporting the reactive current to the destination B. So, it is
quite reasonable that the total flow is huge but the competency of each individual
pipeline is actually small, or the vice versa. In a nutshell, the MPLP is for the
collective behavior of all pipelines while the MCPP is about where the pipeline
with the widest bottleneck lies.



19

5. Application to the random logistic map

We are now in the position to apply the above method based on the TPT to
the logistic map for the set A and B specified in Section 2. The first result is
for a fixed value α = 3.2, at which a stable period-2 orbit exists. We shall show
the numerical values of the A-B reactive probability current J and the analysis
of the MPLP, MCPP and dominant transition paths. Then, by changing various
parameter α and the noise amplitude σ, we study how these quantities change to
affect the individual points in one periodic orbit. During the discussion, we also
show some validation work for the consistence with the direct simulation and the
robustness with respect to δa and δb.

5.1. Results for the period-2 case.

5.1.1. Basic quantities. (1) invariant measure π: Pick up α = 3.2 as an example
first. The stable period-2 orbit in this case is ξ = (ξ1, ξ2) = (0.5130, 0.7995).
The invariant measure π at σ = 0.04 is shown in Figure 2a, where the two peaks
correspond to the locations of ξ1 and ξ2. It is seen that π(ξ1) < π(ξ2), which implies
that the periodic point ξ2 on the right has higher probability at equilibrium. The
same result π(ξ1) < π(ξ2) for the two periodic points ξ1 < ξ2 is observed for all
values of α between [3.02, 3.4]. Actually, when α increases in this interval, so does
the ratio π(ξ2)/π(ξ1).

Figure 2b shows the invariant measure for a period-3 example at α = 3.83.
The period-3 orbit is ξ = (ξ1, ξ2, ξ3) = (0.1561, 0.5047, 0.9574). To show the three
peaks for this periodic orbit, a smaller σ = 0.008 is set. It is shown here that the
peak at ξ3 = 0.9574 is dominantly large.
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(b) π(x) at a period-3 case.

Figure 2. The invariant probability density π(x) for (A) period-
2 case and (B) period-3 case. The parameters are (A) α = 3.2,
σ = 0.04, (B) α = 3.83, σ = 0.008.

(2) Committor functions. Choose the sets A and B as in (2.4) and (2.5) with
δa = δb = 0.02. The forward committor function q+ and backward committor
function q− at σ = 0.04 (α = 3.2) are plotted in Figure 3 at the logarithmic scale.
As a comparison to the solutions obtained from the finite difference scheme for
Eqn (4.6) and Eqn (4.7) with 104 grid size, shown in the subplot Figure 3a and
3c, the same committor functions in Figure 3b and 3d are calculated from the
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(d) q−(x) from direct simulation.

Figure 3. The logarithmic plots of the forward committor function
(A, B) and backward committor function (C, D). The parameters
are α = 3.2, σ = 0.04, δa = δb = 0.02.

statistical average of a long trajectory by brute-force simulation of the random
logistic mapping. The total simulation time step is 2 × 1010 (i.e., N = 1010 in
Eqn (4.14)), during which the number of successful transitions from A to B is
12238. Thus the transition rate obtained from direct simulation is 6.119 × 10−7.
The transition rate calculated from the equation (4.14) is 6.008× 10−7.

It should be emphasized that the committor functions are not continuous at the
boundary of the sets A and B. The forward committor function does not even
change monotonically from 1 to 0. These special features come from the nature
of the discrete-time dynamical system.

(3) A-B reactive current. The transition kernel P (x, y) is shown in Figure 4a.
Figure 4b plots π(x)P (x, y), which is the so-called “PDF flux” in [22]. The A-
B reactive current in the TPT for our use, shown in Figure 4c, was calculated
from Eqn (4.10) via solving Eqn (4.9) and Eqn (4.6) by finite difference method.
Figure 4d is the empirical result from the direct simulation, which shows that our
calculation is reliable.

5.1.2. Stochastic instability comparison at α = 3.08. We fix σ = 0.04 for the
following discussion about the transition mechanism at α = 3.08, in which the
period-2 orbit is ξ = (ξ1, ξ2) = (0.5696, 0.7551).

The first viewpoint of MPLP is to compare the total current out of A, r−AB(x) =∫
D
J(x, y) dy for x ∈ A. The set A of concern is the union A1 ∪ A2, where Ai =

[ξi − δa, ξi + δa], i = 1, 2. The set B = [0, δb] ∪ [1 − δb, 1]. Table 1 shows that
δa, the width of the set A, has little influence on the result of the transition rate
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(d) empirical J(x, y).

Figure 4. The plots of the transition kernel P (x, y), the PDF flux
π(x)P (x, y) used in [22] and the A-B reactive current J(x, y) =
π(x)P (x, y)q−(x)q+(y). The contour plots for J in subplots (C)
and (D) are actually for the value log(J(x, y)/M) where M =
maxx,y∈S J(x, y) for visualization. The parameters are α = 3.2,
σ = 0.04, δa = δb = 0.02. (M = 6.5186× 10−4).

kAB δa = 0.01 δa = 0.015

δb = 0.01 4.6883×10−9 4.6883×10−9

δb = 0.015 7.6215×10−9 7.6215×10−9

Table 1. Transition rate kAB for different δa and δb. Here, α =
3.08, σ = 0.04.

κAB, and δb has a slightly more significant influence on κAB. This observation is
expected since the set A is a small neighbourhood of the linearly stable periodic
orbit of the logistic map. To test the impact on the MPLP point, we plot in Figure
5 the total current r−AB(x) for x ∈ A1 (left) and x ∈ A2 (right) for the different
widths specified in Table 1. As shown in this figure, the window A2 where the
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periodic point ξ2 lies carries 30% ∼ 50% more reaction current than the window
A1, for various values of δa and δb. We also tested this result of the MPLP point
by varying σ between 0.01 and 0.04, and reached the same conclusion that the
second periodic point ξ2 is the MPLP.

So, our technique based on the relative size of the total current out of the set A
robustly identifies the point ξ2 from the period-2 orbit (ξ1, ξ2) as the MPLP. In the
sense of the A-B transition events, we can claim that the point ξ2 is less stable, or
more active, under the random perturbation. Note that in terms of the invariant
measure, π(ξ2) > π(ξ1). It is ξ1 that has a smaller equilibrium probability density.

0.56 0.58 0.6

0.5

1

1.5

2

2.5
x 10

−7

x

r
− A
B
(x
)

0.74 0.76 0.78

0.5

1

1.5

2

2.5
x 10

−7

x

r
− A
B
(x
)

 

 

(0.01,0.01)
(0.01,0.015)
(0.015,0.01)
(0.015,0.015)

Figure 5. r−AB(x) for x in the union of the sets A1 = [ξ1 −
δa, ξ1 + δa](left) and A2 = [ξ2 − δa, ξ2 + δa](right). ξ = (ξ1, ξ2) =
(0.5696, 0.7551) is the period-2 orbit. α = 3.08. σ = 0.04. The solid
line corresponds to δa = 0.01, δb = 0.01; the dashed line corresponds
to δa = 0.01, δb = 0.015; the dotted line corresponds to δa = 0.015,
δb = 0.01; the dash-dot line corresponds to δa = 0.015, δb = 0.015.

In the following, we analyze the dynamical bottleneck and dominant transition
pathways for this period-2 case. We will restrict to those dominant transition
paths with the minimal path lengths N(z∗) to exclude the possible existence of

loops. For simplicity, we will omit the N(z∗) in the notation W
N(z∗),i
z∗ and write

W i
z∗ . We choose the window width δa = δb = 0.01. After building the effective

reactive current J+(x, y) , we found that the A-B competency z∗ ≈ 1.98 × 10−6

by the binary search between 0 and M = maxD×D J
+(x, y). N(z∗) is equal to 2.

Then, we look for the sequences of the sets W i
z∗ for i = 2, 1, 0, by using a number

of pilot points to explore these sets. The numerical result, up to the accuracy
10−4, shows the following:

W 2
z∗ = [0.9900, 0.9928] ⊂ B,

W 1
z∗ = {0.5331} ⊂ D \ (A ∪B),

W 0
z∗ = {0.7651} ⊂ A.

Then the A-B dynamical bottleneck B(A,B) is (0.7651, 0.5331). Let 0.5331 be
the new set A′ and search for the A′-B dynamical bottleneck. Then we obtain
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the second dynamical bottleneck (0.5331, 0.9900). Finally, we get the dominant
transition path

ϕ ≈ (0.7651, 0.5331, 0.9900), at σ = 0.04,

where the underlined values correspond to the location of the dynamical bottle-
necks. This result of the dominant transition path is unchanged when we changed
the grid size between 1.7×10−4 and 3.4×10−4 in discretizing the space D = [0, 1].
We also varied the width δa between 0.01 and 0.02 and obtained the same result
for the dominant transition path ϕ. The first point of the dominant transition
path ϕ, i.e., the point in W 0

z∗ , lies in the window A2 for the second periodic point
ξ2. Thus the A-B competency is actually realized by the A2-B competency. So,
we conclude that ξ2 is also the MCPP. The A-B dominant transition path starts
from a boundary point in A2, followed by a jump to some point on the left but far
away from ξ1 to escape the periodic orbit, and eventually jumps into the set B.

5.2. Bifurcation diagram for the period-2 case. It is interesting to see how
the above transition mechanisms (MPLP, MCPP, dominant transition paths, etc.)
change when the noise amplitude σ or the parameter α changes. The following
numerical results show bifurcations for varying parameters, and we will see that
the two criteria do not always give the same conclusion.

5.2.1. change σ. We still fix α = 3.08 but now change the value of the noise am-
plitude σ between 0.01 and 0.04. Remind that the period-2 orbit is ξ = (ξ1, ξ2) =
(0.5696, 0.7551).

Figure 6a plots the probability density at ξ1 and ξ2 of the last hitting distribution
of the transitions from A to B. It shows that ξ2 always wins ξ1 as the MPLP for
σ ∈ (0.01, 0.04). The dependence of the transition rate κAB on the noise amplitude
σ, in Figure 6b, shows an Arrhenius-like relation.
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For the results about the dominant transition paths, the first observation is
that the minimal length of the dominant transition paths, N(z∗), grows as σ
decreases. For example, at σ = 0.02, the dominant transition path is ϕ =
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(0.7651, 0.5269, 0.9743, 0.0100). At σ = 0.014, the dominant transition path has
the minimal length 5:

ϕ = (0.5596, 0.7761, 0.5181, 0.9740, 0.0100).

At σ = 0.013, the dominant transition path has the minimal length 6:

ϕ = (0.7643, 0.5508, 0.7818, 0.5118, 0.9740, 0.0100).
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0.55
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σ

W
0 z
∗

Figure 6. The maximum competency periodic point.

When σ varies, Figure 6 plots the MCPP among the choices of the periodic
points ξ1 and ξ2. This figure shows two critical values of σ: σ1 ≈ 0.0134 and
σ2 ≈ 0.0185, where ξ1 and ξ2 exchange their roles as MCPP.

σ = 0.0130 < σ1 0.0134 ≈ σ1 0.0136 > σ1

ϕ1 =
(ξ1, · · · )

0.5596, 0.7751,
0.5196, 0.9740,
0.0100

0.5596, 0.7758,
0.5186, 0.9740,
0.0100

0.5596, 0.7758,
0.5186, 0.9740,
0.0100

J+(ϕ1) 0.0150, 0.0165,
0.0242, 0.3753

0.0053, 0.0063,
0.0093, 0.1255

0.0243, 0.0289,
0.0424, 0.5557

ϕ2 =
(ξ2, · · · )

0.7644, 0.5509,
0.7818, 0.5119,
0.9740, 0.0100

0.7641, 0.5513,
0.7818, 0.5119,
0.9740 , 0.0100

0.7641, 0.5516,
0.7818, 0.5119,
0.9740, 0.0100

J+(ϕ2) 0.0230, 0.0152,
0.0260, 0.0363,
0.3753

0.0079, 0.0053,
0.0091, 0.0126,
0.1255

0.0357, 0.0240,
0.0410, 0.0567,
0.5557

z∗ = 0.0152 0.0053 0.0243

ϕ = ϕ2 ϕ1, ϕ2 ϕ1
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Table 2. The A-B dominant transition path ϕ and the A-B com-
petency z∗ for three values of σ: σ < σ1, σ = σ1 and σ > σ1. ϕ1

and ϕ2 are the A1-B and A2-B dominant transition paths respec-
tively. The various dynamical bottlenecks are underlined. Their
capacities are marked in bold font at the J+ row (by multiplying
the unit 10−58, 10−54 and 10−53, respectively for each column). The
A-B competency, z∗, is determined by the maximum of the A1-B
and A2-B capacities. Note that the periodic points are located at
ξ = (ξ1, ξ2) = (0.5696, 0.7551) and δa = δb = 0.01.

We demonstrate a more detailed analysis at the bifurcation point σ1 in Table 2
as well as in Figure 7. Table 2 compares the Ai-B dominant transition paths ϕi,
i = 1, 2. That is z∗(Ai, B) = Cp(ϕi) for i = 1, 2. The A-B dominant transition
path ϕ is the path among ϕ1 and ϕ2 with the larger competency. Remind that
the competency of a given path (ϕ0, · · · , ϕN) is calculated as the minimum of the
effective currents J+(ϕn, ϕn+1) at each edge (ϕn, ϕn+1), which is denoted in bold
font in Table 2.

To understand the bifurcation of the MCPP, we need analyze the competition
of the two capacities z∗(A1, B) and z∗(A2, B), which are further determined by
the Ai-B dynamical bottlenecks B(Ai, B) on the Ai-B dominant transition paths
ϕi for i = 1, 2. The A1-B dynamical bottleneck is the first step of jump on
ϕ1, from the left boundary point of A1 to a point (located at 0.77 ∼ 0.78) near
the right interval A2. The A2-B dynamical bottleneck is the second step on ϕ2,
corresponding to the jump from a point slightly on the left side of the interval A1,
to a point quite close to one point of the A1-B dynamical bottleneck. Hence for
σ around the value σ1, both of the Ai-B, i = 1, 2 dynamical bottlenecks are the
jumps from a region near the left boundary of A1 (including A1’s left boundary),
denoted as I1 to a region near the right boundary of A2, denoted as I2. So, by
setting I2 = [0.7, 0.82] and I1 = [0.53, 0.59], we investigate the maximum possible
reactive current for any given x ∈ I1: g(x) := maxy∈I2 J

+(x, y) for x ∈ I1. The
maximizer of this function, whether it is equal to the left boundary of A1 or not,
will determine which one of ϕ1 and ϕ2 is the A-B dominant transition path. By
plotting the graph of the function g for several σ values around the critical value σ1

in Figure 8 and rescaling g by its value at the left boundary of A1, we indeed find
that it is the competition of two local maximizers of g that leads to the bifurcation
of the dominant transition path from ϕ2 to ϕ1 as σ increasingly passes σ1 .

The bifurcation at the second critical value σ2 of the noise amplitude σ is also
due to the change of the effective current J+(x, y), which yields the changes of
the MPCC and the dominant transition paths, via the competition of the local
maximizers in the interiors and the values at the boundary points of A1 and A2

for the function J+(x, y).

5.2.2. Change α. When α ∈ [3.02, 3.40], the only stable invariant set of the logistic
map is the period-2 orbit. We are now interested in how the value of α influences
the transition rate and the roles of the individual periodic points. Fix σ = 0.02
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Figure 7. This figure visualizes (in form of cobweb plot) the
dominant transition path in the contour plot of log(J+/M) where
M = maxx,y∈D J

+(x, y) (α = 3.08, δa = δb = 0.01). Top: σ = 0.013;
Bottom: σ = 0.014. The six vertical and six horizontal straight
lines (solid, blue) are the boundaries of A and B. The red and blue
dots represent the first and the last edge of the path. The black
dots represent all the other edges.
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Figure 8. The plot of g(x)/g(ξ1 − δa) near A1 for the four values
of σ from 0.013 and 0.014. Note that g is not continuous at the
boundary locations of A1: ξ1 − δa = 0.5596 and ξ1 + δa = 0.5796,
shown as the two vertical lines in this figure.
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Figure 9. κAB versus α.

and δa = δb = 0.01. Figure 9 shows that the transition rate κAB increases in α
and this dependency is nearly exponential. To identify the MPLP between the
two periodic points ξ1 and ξ2 (ξ1 is defined to be the smaller one), the probability
mass r−AB(i)/(r−AB(1) + r−AB(2)) is plotted in Figure 10a. As shown in this figure,
ξ1 is the MPLP only when α is approximately between 3.20 and 3.26. Figure 10b
shows the MCPP in dark diamond-shaped dots for each α. For the range of α
we investigated here, there are four critical values of α where the MCPP switches
between the two periodic points ξ1 and ξ2. As explained in Section 4.5, the MPLP
and MCPP can be different so the bifurcation points of σ in Figure 10a and 10b
are different .

6. Discussion

In conclusion, we have described the method based on the transition path the-
ory, illustrated on the example of the randomly perturbed logistic map, to study
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Figure 10. The MPLP and the MCPP for 3.02 ≤ α ≤ 3.40. σ =
0.02, δa = δb = 0.01. The horizontal straight line in (A) indicates
the threshold 0.5. The dashed curves in (B) represent the locations
of the two periodic points for each α.

the stochastic instability of the linearly stable periodic orbit in the context of noise-
induced transitions. The introduced concepts of most-probable-last-passage point
and the maximum competency point are the novel descriptions of the stochastic
instability for the linearly stable periodic orbit. We demonstrated the capability
of these two proposed perspectives to quantify the stochastic instabilities of the
individual periodic point in one periodic orbit. It should be noted that although
only the case of period-2 in discrete map was analysed here, our method can also
be applied to other types of the set A with more complex structures. In fact, our
approach based on the transition path theory is generic to any ergodic stochastic
dynamical systems, such as the multiplicative random perturbations, and to the
arbitrary nonintersecting closed subsets A and B, such as the stable limit cycles
in continuous-time dynamical systems.
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