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Abstract

The probabilistic principal component analysis (PPCA)
is built upon a global linear mapping, with which it is in-
sufficient to model complex data variation. This paper pro-
poses a mixture of bilateral-projection probabilistic prin-
cipal component analysis model (mixB2DPPCA) on 2D
data. With multi-components in the mixture, this model
can be seen as a ‘soft’ cluster algorithm and has capabil-
ity of modeling data with complex structures. A Bayesian
inference scheme has been proposed based on the varia-
tional EM (Expectation-Maximization) approach for learn-
ing model parameters. Experiments on some publicly avail-
able databases show that the performance of mixB2DPPCA
has been largely improved, resulting in more accurate re-
construction errors and recognition rates than the existing
PCA-based algorithms.

1. Introduction

Principle Component Analysis (PCA) [3] is one of pop-
ular dimensionality reduction methods widely used in im-
age analysis [9, 11], pattern recognition [8, 14] and machine
learning [13] for data analysis. It can be derived under al-
gebraic framework. However, algebraic models don’t have
flexibility of providing confidence information of the model
when dealing with noisy data. This is due to the absence of
an associated probability density or generative model in al-
gebraic framework.

To compensate the algebraic PCA drawbacks, Tipping
and Bishop [19] firstly proposed a probabilistic PCA model,
called PPCA. Under the probabilistic framework, PPCA
takes advantage of Bayesian learning and inference by com-
bining the likelihood with appropriate priors. As a result,
the observed data are regarded as random variables, gener-
ated from a set of latent random variables which follow the
Gaussian distribution of zero mean and identity covariance,
with additive noises following a Gaussian distribution with

zero mean and an isotropic covariance. Under such a proba-
bilistic learning framework, the model parameters in PPCA
can be easily solved by the maximum likelihood estimation
(MLE). Much progress has been made based on PCA and
PPCA in the last couple of decades [2, 5].

PPCA and standard PCA methods can be interpreted in
many ways, one of which assumes that the observed high-
dimensional data are generated from their low-dimensional
factors through a linear model with the corruption of Gaus-
sian noise. So those algorithms essentially use a linear
model for representing the entire data in a low dimen-
sional subspace. It may be insufficient to model data with
large variation caused by, for example, pose, expression and
lighting in face recognition. Thus the application scope
of PPCA and PCA-based methods is necessarily somewhat
limited by its global linearity assumption. An alternative
improving paradigm is to model the complex manifold with
a mixture of local linear PPCA sub-models. Thus the single
PCA model could be extended to a mixture of such sub-
models.

A number of ‘mixture of PPCA’ have been proposed in
literature. The first work was done by Ghahramani and Hin-
ton [7]. They presented an exact Expectation-Maximization
(EM) algorithm for fitting the parameters of the mixture of
factor analyzers. By constraining the error covariance to
be a diagonal matrix whose elements are usually equal, the
mixture of factor analyzers became the mixture of PPCA
[20]. Bishop and Tipping [4] extended the mixture of PPCA
model to achieve a hierarchical mixture model. Su and Dy
[17] introduced an automated hierarchical mixture of PPCA
algorithm, which utilizes the integrated classification likeli-
hood as a criterion for splitting and stopping the addition of
hierarchical levels. Kim et al. [12] proposed a fast and sub-
optimal selection method of model order such as the num-
ber of mixture components and the number of PCA bases
for the PCA mixture model, consisting of a combination
of many PCAs. In addition, under the assumption of the
Student-t distribution, the related research includes the mix-
ture model of Student-t components [15], which actually is
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a generalized mixture of Gaussian model without consider-
ing subspace structures, and more recent work such as the
robust subspace mixture model [16], in which both the like-
lihood and the latent variables were supposed to follow the
Student-t distribution and the EM algorithm was applied to
the model. In 2005, Archambeau [1] discussed the robust
models in the context of finite mixture models, and a similar
work for the mixture of the robust Laplacians was presented
in [6]. These mixture models are important as it enables one
to model nonlinear relationships by aligning a collection of
such local models.

The aforementioned models are concerned with vecto-
rial data. In order to apply these methods to 2D data, a
typical workaround way is to vectorize 2D data. Vectoriz-
ing 2D data not only results in very high-dimensional data,
causing the problem of the curse of dimensionality [23], but
also ignores valuable information on the spatial relation-
ship among 2D data. Instead of using vectorization, PCA
approaches for two-dimensional data (2DPCA) have been
proposed [22, 24, 26], to generally extract features of 2D
data under the assumption of Gaussian noises. Ju et al. [10]
proposed a probabilistic 2DPCA model to deal with outlier
noises by using Laplacian distribution. This model benefits
outlier detection. Wang et al. [21] extended the probabilis-
tic 2DPCA to a mixture of local probabilistic 2DPCA mod-
els (MP2DPCA). MP2DPCA offers a tempting prospect of
being able to model data with complex variation.

MP2DPCA model regards each row vector of the 2D
data as a observed sample and used all rows to train the
mixture model, resulting in mean vectors from the mix-
ture model. This is essentially a unilateral projection based
scheme, where only one side multiplication is taken into
account. The unilateral scheme usually preserves the cor-
relation information among the row/column vectors of the
images and more parameters are needed to well represent
an image. To tackle these problems, a bilateral-projection
scheme is favored. In this study, our intention is propose a
mixture of bilateral-projection-based probabilistic 2DPCA
(mixB2DPPCA) model. Different from MP2DPCA, we
regard each 2D images as observed samples in their nat-
ural shape and reduce 2D dimensionality directly. The
mixB2DPPCA has two major advantages: 1) The model
makes use of structured information of 2D data and can be
easily extended for high order tensorial data. All the al-
gorithm derivations remain without major difficulties. 2)
mix2DPPCA carries over all the advantages of the mixture
of PPCA.

The remainder of the paper is organized as follows.
In Section 2, the mixture of bilateral-projection two-
dimensional probabilistic PCA model is introduced. The
variational approximation approach for solving the model
is presented in Section 3. In Section 4, some experimen-
tal results are conducted to evaluate the performance of the

proposed model. Finally, conclusions are summarized in
Section 5.

2. Mixture of Bilateral-Projection 2DPPCA
Model (mixB2DPPCA)

In this section, we introduce the mixture of bilateral-
projection probabilistic 2DPCA model. For the purpose, we
introduce several notations. Let X = {X1,X2, ...,XN} be
N independent and identical random samples with values
in Rp×q . For n = 1, ..., N , we suppose that sample Xn

is generated independently from a mixture of K underlying
components with unknown probabilities π1, π2, ..., πK ,

p(Xn|Bn) =

K∑
k=1

πkN (LkB
(k)
n RT

k + Mk, σkI, σkI) (1)

where Mk ∈ Rp×q is the mean matrix, πks satisfy πk > 0
and

∑K
k=1 πk = 1, and Lk ∈ Rp×r and Rk ∈ Rq×c are the

row and column loading matrices with r ≤ p, c ≤ q. Note
that Mk, Lk and Rk are associated with each component of
mixture model, respectively. B(k)

n ∈ Rr×c is the latent vari-
able core of Xn associated with k-th matrix-variate Gaus-
sian component [18, Sec 3.3] with σ2

k as residual variance.
Like [3], we introduce a K-dimensional binary random

variable z having a 1-of-K representation in which a par-
ticular element zk is equal to 1 and all other elements are
equal to 0. That is, zk ∈ {0, 1} and

∑K
k=1 zk = 1. The

distribution of z is defined by

p(zk = 1) := πk,

which can be written as

p(z) =

K∏
k=1

πzk
k .

Thus the conditional distribution of Xn given a particu-
lar value for zn and B

(k)
n is the matrix-variate Gaussian

p(Xn|znk = 1,B(k)
n ) = N (Xn|LkB

(k)
n RT

k + Mk, σkI, σkI).

Generally we have

p(Xn|zn,B(k)
n ) =

K∏
k=1

N (Xn|LkB
(k)
n RT

k +Mk, σkI, σkI)
znk

In this model setting, the parameters are Θ =
{πk,Mk,Lk,Rk, σ

2
k}(k = 1, ..,K), and the latent vari-

ables are zn and B
(k)
n (n = 1, ..., N).

To develop a generative Bayesian model, we define a
matrix-variate Gaussian prior p(B(k)

n ) over the latent vari-
able with zero-mean unit-covariance, defined as

p(B(k)
n ) = N (0, Ir, Ic) =

(
1

2π

) rc
2

·exp{−1

2
tr(B(k)T

n B(k)
n )}
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Hence the joint log-likelihood of the observed data set
for such a mixture model is:

L =

N∑
n=1

K∑
k=1

znk ln{πkp(Xn,B
(k)
n )}.

3. Variational Approximation for
mixB2DPPCA Model

We employ the Expectation Maximization (EM) algo-
rithm to solve for model parameters Θ. To maximize the
log-likelihood of mixB2DPPCA, we take the expectation of
L with respect to the posterior distribution of both B

(k)
n and

znk, i.e.,

〈L〉 =

N∑
n=1

K∑
k=1

〈znk〉{lnπk −
pq

2
lnσ2

k −
1

2
tr(〈B(k)T

n B(k)
n 〉)

− 1

2σ2
k

tr(Xn −Mk)T (Xn −Mk)

+
1

σ2
tr((Xn −Mk)TLk〈B(k)

n 〉RT
k )

− 1

2σ2
tr(〈B(k)T

n LT
kLkB

(k)
n 〉RT

kRk) (2)

where 〈·〉 denotes the expectation.
In E-step, we update Q-distributions of all hidden vari-

ables B(k)
n and zn,k with the current fixed parameter values

for Θ. In M-step, maximizing the function 〈L〉 with respect
to the model parameters Θ, we can obtain ‘new’ values for
these parameters.

3.1. Variational E-step

3.1.1 Update the Posterior Distribution of znk

Suppose γnk := 〈znk〉 and it is actually the posterior prob-
ability of k-mixture generating data point Xn. By using the
same strategy for the mixture Gaussian model [3], we can
obtain

γnk =
πkp(Xn|k)

p(Xn)
, (3)

where p(Xn|k) is the k-the component, representing the
marginal distribution for the observed data Xn over the la-
tent variable. In our case, the marginal distribution of Xn is
obtained by integrating out the latent variable B

(k)
n :

p(Xn|k) =

∫
p(Xn|B(k)

n )p(B(k)
n )dB(k)

n .

Different from the vectorial PPCA, we note that the
marginal distribution of the observed data Xn is in general
no longer a matrix-variate Gaussian. Thus it is difficult to
work with p(Xn|k) directly. Let xn := vec(Xn), now we

can work with p(xn|k) instead of p(Xn|k). Fortunately, the
marginal distribution of xn is a multivariate Gaussian dis-
tribution when taking the special matrix-variate Gaussian
prior B(k)

n ∼ N (0, I, I). Let mk = vec(Mk), we can ob-
tain

p(xn|k) ∼ N (mk,Ck)

where the observation covariance model is specified by
Ck = (RkR

T
k )⊗(LkL

T
k )+σ2

kI. We refer readers to [3, 18]
for more details. Then the denominator in (3) becomes

p(xn) =

K∑
k=1

πkp(xn|k)

After getting γnk, we update the estimated mean matri-
ces Mk’s and mixing proportions πk’s, respectively, by

πk =
1

N

N∑
n=1

γnk and Mk =

∑N
n=1 γnkXn∑N

n=1 γnk
(4)

3.1.2 Update the Posterior Distribution of B(k)
n

In computing the posterior distribution of B
(k)
n , we en-

counter a difficulty that the posteriori distribution of B(k)
n

given Xn

p(B(k)
n |Xn,Lk,Rk, σ

2) ∝ p(Xn|B(k)
n ,Lk,Rk, σ

2)p(B(k)
n )

is also in general not a matrix-variate Gaussian. To get a
tractable posterior in the variational EM, we restrict the ap-
proximated variational distribution to be a matrix-variate
Gaussian N (B

(k)
n |Q(k)

n ,T
(k)
n ,S

(k)
n ) to approximate the

true posterior with the mean Q
(k)
n in size r × c and covari-

ances T
(k)
n � 0 of size r × r and S

(k)
n � 0 of size c × c,

respectively. For mixB2DPPCA model, it follows as a natu-
ral extension of a single 2DPPCA. So the parameters Q(k)

n ,
T

(k)
n and S

(k)
n can be estimated through the maximization of

a single likelihood function. Particularly, the derived formu-
las for estimating these parameters are given by, see more
details in [26],

T(k)
n = cσ2

k[tr(RT
kRkS

(k)
n )LT

kLk + σ2
ktr(S(k)

n )Ir]−1

S(k)
n = rσ2

k[tr(LT
kLkT

(k)
n )RT

kRk + σ2
ktr(T(k)

n )Ic]
−1

and each Q
(k)
n needs to satisfy

LT
kLkQ

(k)
n RT

kRk + σ2
kQ

(k)
n = LT

k (Xn −Mk)Rk.

To solve this we need to make a vectorization on both sides
and solve a linear equation

(RT
kRk ⊗ LT

kLk + σkI⊗ σkI)vec(Q(k)
n ) = y(k)

n (5)

3



with respect to vec(Q
(k)
n ), where

y(k)
n = vec(LT

k (Xn −Mk)Rk)

then reshape vec(Q
(k)
n ) back to get Q(k)

n .
As we assume the approximated posterior distribution of

B
(k)
n is matrix-variate Gaussian, so we can get 〈B(k)

n 〉 =

Q
(k)
n and the following second-order expectations:

〈B(k)T
n B(k)

n 〉 = Q(k)T
n Q(k)

n + S(k)
n tr(T(k)

n ) (6)

〈B(k)T
n LT

kLkB
(k)
n 〉 = Q(k)T

n LT
kLkQ

(k)
n + S(k)

n tr(T(k)
n LT

kLk)
(7)

〈B(k)
n RT

kRkB
(k)T
n 〉 = Q(k)

n RT
kRkQ

(k)T
n + T(k)

n tr(S(k)
n RT

kRk)
(8)

3.2. Variational M-step

In the M-step, we fix all the distributions over the hidden
variables and gather all the terms containing parameters Lk,
Rk and σ2

k in (2) to maximize them respectively. It turns out
that:

Lk =[

N∑
n=1

γnk(Xn −Mk)Rk〈B(k)
n 〉T ]

× [

N∑
n=1

γnk〈B(k)
n RT

kRkB
(k)T
n 〉]−1 (9)

Rk =[

N∑
n=1

γnk(Xn −Mk)TLk〈B(k)
n 〉]

× [

N∑
n=1

γnk〈B(k)T
n LT

kLkB
(k)
n 〉]−1 (10)

and

σ2
k =

1

pqNk
{

N∑
n=1

γnktr(Xn −Mk)T (Xn −Mk)

− 2

N∑
n=1

γnktr(Rk〈B(k)
n 〉TLT

k (Xn −Mk))

+

N∑
n=1

γnktr(〈B(k)T
n LT

kLkB
(k)
n 〉RT

kRk)} (11)

where Nk =
∑

n γnk.
The overall variational EM algorithm is to alternate be-

tween E-step and M-step. The final variational EM algo-
rithm is summarized in Algorithm 1.

Define the average reconstruction error

e(t) =

√∑N
n=1 ‖Xn − X̂

(t)
n ‖2F

N
(12)

Algorithm 1 Variational EM algorithm for mixB2DPPCA.

Initialize: Training set X = {Xn}Nn=1; Initialize all of
model parameters Θ and covariance matrices T(k)

n and
S
(k)
n , n = 1, ..., N and k = 1, ...,K.

1: for t = 1 to T do
2: Variational E-step:

• Iterate the mean matrix Q
(k)
n based on (5) and

update the second-order expectations based on
(6), (7) and (8).

• Update each γnk, mixing proportions πk and
mean matrices Mk based on (3) and (4).

3: Variational M-step:

• Maximize objective function 〈L〉 with respect
to each elements Lk, Rk and σ2

k based on (9),
(10) and (11).

4: end for

where X̂n = Lk′B
(k′)
n RT

k′ + Mk′ with k′ =
arg maxk{γnk} the reconstructed image.

Algorithm 1 may terminate either a given maximum it-
erative number T is achieved or the following condition is
satisfied,

|e(t)− e(t+ 1)| ≤ ε (13)

where ε is a given error tolerance.

3.3. The Reduced-Dimensionality Representation
for a New Sample

In order to obtain the reduced-dimensionality representa-
tion for a given sample, we should solve for the latent vari-
able cores. From the probabilistic perspective, the posterior
mean Q

(k)
new := 〈B(k)

new|Xnew〉 can be seen as the reduced-
dimensionality representation, which is a r × c feature ma-
trix and given by solving a linear equation

(RT
kRk ⊗ LT

kLk + σkI⊗ σkI)vec(Q(k)
new) = y(k)

new

with respect to vec(Q
(k)
new), where

y(k)
new = vec(LT

k (Xnew −Mk)Rk)

then reshape vec(Q
(k)
new) back to get Q(k)

new. As the same
time, we can compute the corresponding γnew,k, i.e., the
posterior probability of k-th component generating the new
sample, given by

γnew,k =
p(Xnew|k)πk
p(Xnew)

4



We find the largest γnew,k (k = 1, ...,K) from which the
most appropriate local 2DPPCA model can be identified for
the new sample. That is, a natural choice is to assign the
new sample to a cluster with the largest posterior probabil-
ity.

4. Experimental Results and Analysis
In this section, we conduct several experiments on some

public databases to assess the proposed mixB2DPPCA
model. These experiments are designed to evaluate the per-
formance of the proposed mix2DPPCA in reconstruction
and recognition by comparing with existing models and al-
gorithms.

The relevant PCA algorithms that can be fairly com-
pared against our proposed mixB2DPPCA are GLRAM
(Generalized Low Rank Approximations of Matrices) [25],
PSOPCA (Probabilistic Second-Order PCA) [27], mixture
of PPCA [20] with the code from http://www.science.

uva.nl/˜jverbeek. Because the zero-noise PSOPCA
model and GLRAM have the same stationary point [27],
we only compare with GLRAM.

4.1. Data Preparation and Experiment Setting

All of the experiments are conducted on the following
four public available datasets:

• A subset of handwritten digits images from the
MNIST database (http://yann.lecun.com/
exdb/mnist).

• The Yale face database (http://vision.ucsd.
edu/content/yale-face-database).

• The AR face database (http://rvl1.ecn.purdue.
edu/aleix/aleix_face_DB.html).

• The FERET face database (http://www.itl.nist.
gov/iad/humanid/feret/feret_master.html).

The subset of handwritten digits images is selected from
MNIST database, which contains 1000 digital images with
100 images of each digit. All images are in grayscale and
have a uniform size of 28× 28 pixels.

The Yale face database contains 15 individuals, with 11
images for each individual. The images were captured un-
der different illumination and expression conditions. The
images are all 100× 100 pixels with 256 grey levels. In the
experiments, we randomly select 6 images of each person as
the training samples, and use the remaining images to form
the testing sample set. All images are scaled to a resolution
of 64× 64 pixels.

The AR face database contains over 4,000 color images
corresponding to 126 subjects. There are variations of facial
expressions, illumination conditions, and occlusions (sun

glasses and scarf) with each person. Each individual con-
sists of 26 frontal view images taken in two sessions (sepa-
rated by 2 weeks), where each session has 13 images. Fig-
ure 1 shows the 26 images of one subject. In the experi-
ments, we select 30 subjects (15 man and 15 women), and
only use the non-occluded 14 images (i.e., the first seven
face images of each row in Figure 1). The first seven of
each subject are used for training and the last seven for test-
ing. All images are cropped and resized to 50× 40 pixels.

FERET database includes 1400 images of 200 different
subjects, with 7 images per subject. In the experiments, we
select 50 subjects randomly. Five images of each subject
are used for training and the remained images are used for
testing. All images are cropped and resized to 32× 32 pix-
els.

In experiments, the initial mixing proportions are set to
πk = 1/K and the initial loading matrices Lk and Rk are
given randomly. Besides, we choose randomly K samples
as mean matrices Mk of the mixture gaussian model and set
all σ2

k = 1.

4.2. Reconstruction Performance

In this section, we test reconstruction error of the pro-
posed mixB2DPPCA model (1). Applying the proposed
model, all digital images can be softly grouped into K clus-
ters, each of which is modelled by a local B2DPPCA. From
all the trained γnk, the most appropriate local B2DPPCA
for a given sample can be found. Then we use the most
appropriate local B2DPPCA to reconstruct the initial digit
image, that is:

X̂n = Lk′ ∗Q(k′)
n ∗RT

k′ + Mk′ .

where k
′

represents the k
′
-th local B2DPPCA which most

appropriate to the sample Xn. After obtaining all recon-
structed digit images X̂n, we can using the equation (12) to
compute the average reconstruction error.

Next we compare the reconstruction error of different al-
gorithms on three databases. In all algorithms, we set the
iterative number is T = 50 and the reduced dimension is
r = c = 4.

4.2.1 Reconstruction Error on Digit Image Set

We use the given digital image subset in Section 4.1 as train-
ing set. In this phase, we compare the reconstruction error
of the training set.

Figure 2 shows the average reconstruction error of the
relevant algorithms. From left to right, the component num-
ber is K = 2, K = 5 and K = 10 respectively. Firstly,
from these three sub-figures, we can see that the recon-
struction error of GLRAM algorithm has no change. This
is because GLRAM has no relationship with K. Besides,

5
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Figure 1: Twenty-six face examples of one subject from AR database. The first row is from the first session, and the second
row images are from the second session.
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Figure 2: Average reconstruction error versus iteration number with the components number K = 2, K = 5 and K = 10
from the left to right.

GLRAM works by iteratively computing the leading eigen-
vectors of the left and right one-sided sample covariance
matrices. Thus GLRAM convergent in five steps and the
change of reconstruction error is not obvious in the figure.
Secondly, fixing the same number of reduced dimension,
the performance of our proposed mixB2DPPCA is better
than GLRAM. From the view of compression, decoded im-
ages from our algorithm have higher quality for the com-
pression ratio of 49 : 1. It illustrates that mixB2DPPCA
can correctly identify data according to clusters. When K
becomes larger, the mixB2DPPCA outperform the mixture
of PPCA in terms of reconstruction errors.

The reconstructed images of different methods are
shown in Fig. 3 with K = 10. The first row shows three
original images. The second, third and fourth rows are the
reconstructed images by GLRAM, mixture of PPCA and
mixB2DPPCA, respectively. It can be found that the pro-
posed mixB2DPPCA has better reconstruction outcomes,
while the results of other two methods show a litter degra-
dation.

Figure 3: Original images and reconstructed images: The
first row shows four original digital images. The sec-
ond, third and fourth rows are the reconstructed images
by GLRAM, mixture of PPCA and mixB2DPPCA, respec-
tively.
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r, c GLRAM K = 4 K = 6 K = 8
mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

2 0.6133 0.5760±0.0401 0.6400±0.0267 0.6237±0.0219 0.6720±0.0210 0.6519±0.0124 0.6693±0.0250
4 0.7067 0.6376±0.0222 0.7173±0.0197 0.6642±0.0245 0.7146±0.0180 0.6613±0.0201 0.7200±0.0089
6 0.7200 0.6480±0.0289 0.7200±0.0154 0.6506±0.0186 0.7187±0.0203 0.6480±0.0283 0.7320±0.0160
8 0.7200 0.6786±0.0117 0.7240±0.0227 0.6560±0.0265 0.7187±0.0262 0.6640±0.0233 0.7347±0.0160

Table 1: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the Yale database

r, c GLRAM K = 6 K = 8 K = 10
mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

4 0.5714 0.5328±0.0220 0.6671±0.0333 0.5595±0.0214 0.7000±0.0371 0.5752±0.0297 0.7244±0.0381
6 0.6857 0.6252±0.0242 0.7867±0.0138 0.6343±0.0236 0.8017±0.0291 0.6613±0.0182 0.7576±0.0366
8 0.7190 0.7004±0.0190 0.8116±0.0231 0.7100±0.0246 0.8211±0.0246 0.7133±0.0222 0.8357±0.0237

Table 2: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the AR database
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Figure 4: Average reconstruction error versus iteration
number with the components number K = 5 on Yale
database (a) and AR database (b).

4.2.2 Reconstruction Error on Yale and AR Databases

In this experiment, we compare the reconstruction error on
Yale and AR databases. Figure 4 shows the average recon-
struction error of all the algorithms: (a) on the Yale database
and (b) on the AR database. The component number is
K = 5 and the reduced dimensionality is (r, c) = (4, 4).
It is obvious that the reconstruction error of mixB2DPPCA
on testing set has reduced greatly than other algorithms.

Figure 5 shows some reconstructed images of different
algorithms on Yale database. The first row is four orig-
inal images. The second, third, and fourth rows are the
corresponding images reconstructed by mixture of PPCA,
GLRAM and mixB2DPPCA. It can be shown that the re-
sults of our algorithm have better visual effect than that of
GLRAM. Besides we can also see that although the face im-
ages reconstructed by mixture of PPCA are relatively clear,
they don’t match the same original images visually. The re-
constructed images on AR database are shown in Figure 6.
The first row shows five original images in the test set and
the last three rows are the reconstructed images from three

Figure 5: Original images (in the Yale database) and recon-
structed images: The first row is original images. The sec-
ond, third and fourth rows are the reconstructed images by
mixture PPCA, GLRAM and mixB2DPPCA, repectively.

models.
From the reconstruction experiments, we can conclude

that the mixB2DPPCA generally outperforms global lin-
ear 2DPCA algorithms in terms of reconstruction errors.
It demonstrates that the classification of training set in ad-
vanced is important for the performance of feature extrac-
tion.

4.3. Recognition Performance

In this section, we compare the recognition perfor-
mances of GLRAM, mixture of PPCA and mixB2DPCA
on Yale, AR and FERET face databases. These algorithms
can be used for extracting features of facial images from
the training samples, respectively, and then a nearest neigh-
bor classifier (1-NN) is used to find the most-similar face
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r, c GLRAM K = 6 K = 8 K = 10
mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA mixPPCA mixB2DPPCA

4 0.5000 0.4620±0.0315 0.6070±0.0427 0.4690±0.0470 0.6210±0.0326 0.4840±0.0316 0.5900±0.0429
6 0.5300 0.5140±0.0206 0.6733±0.0541 0.5350±0.0283 0.6467±0.0343 0.5320±0.0297 0.6644±0.0328
8 0.5400 0.5440±0.0298 0.6900±0.0458 0.5610±0.0159 0.6945±0.0526 0.5580±0.0187 0.6770±0.0593

10 0.5500 0.5910±0.0460 0.6890±0.0455 0.5720±0.0364 0.6960±0.0599 0.5970±0.0336 0.7100±0.0573

Table 3: Recognition accuracy of GLRAM, mixture of PPCA and mixB2DPPCA training on the FERET database

Figure 6: Original images (in the AR database) and re-
constructed images: The first row is the original images.
The second, third and fourth rows are the reconstructed
images by GLRAM, mixture PPCA and mixB2DPPCA,
repectively.

from the training samples for a querying face. In our exper-
iments, the distance measure between two sets of feature
matrices Bn1

and Bn2
, is defined as

dist =

K∑
k=1

‖B(k)
n1
−B(k)

n2
‖F .

where Bn = [B
(1)
n ,B

(2)
n , ...,B

(K)
n ] represents the combi-

nation of K latent variable cores related with n-th sample1.
In all algorithms, we set maximum iteration number is 50
and ε in (13) is 1E-3. We repeat the procedure 10 times,
and the mean values and relevant variances are reported in
Tables 1 to 3.

Table 1 shows the recognition rates of three feature
extraction algorithms: GLRAM, mixture of PPCA and
mixB2DPPCA training on Yale database. The mean val-
ues and relevant variances are reported for the cases of
the reduced dimension (r, c) = (2, 2), (4, 4), (6, 6) and

1A more accurate way is to use γn1kγn2k to weight the individual
distance.

(8, 8). For the mixture of PPCA and mixB2DPPCA, we
also computed the recognition rates for the different com-
ponent number K (K = 4, 6, 8), shown in Table 1. Firstly,
from the table we can see that the recognition rates of
the mixture of PPCA and mixB2DPPCA have a little fluc-
tuation compared with GLRAM. This may be caused by
the uncertainty of probability. Secondly, compared with
GLRAM, the mean recognition rates of mixB2DPPCA al-
gorithm have obviously improved. The bold figures are the
best results in the comparison.

Table 2 shows the recognition rates of the above three al-
gorithms training on AR database. The reduced dimensions
are (r, c) = (4, 4), (6, 6) and (8, 8) and component numbers
are K = 6, 8, 10, respectively. From the table we can see
that the mean recognition rates of mixB2DPPCA algorithm
have better improvement over the other two algorithms.

Table 3 shows the recognition rates on FERET database.
The reduced dimensions are (r, c) = (4, 4), (6, 6), (8, 8)
and (10, 10), and the component numbers are K = 6, 8, 10,
respectively. In this case, both the mixture of PPCA and the
proposed mixB2DPPCA produce slightly larger variances,
however the mean recognition rates have risen greatly.
GLRAM is relatively more robust.

5. Conclusions

In this paper, we proposed a mixture of bilateral-
projection probabilistic PCA model for feature extraction
and dimensionality reduction for 2D data. Different from
the standard PCA which is a global dimension reduction
model, this model employs the mixture of matrix-variate
Gaussian to model local linear sub-models. All the param-
eters in the resulting probabilistic model can be estimated
through the maximization of the likelihood function. The
new model not only makes good use of spatial (structural)
information of 2D data but also can softly group data into
a given number of clusters. The performance of feature
extraction of the proposed method generally outperforms
other existing 2D algorithms in terms of reconstruction er-
ror and recognition rate. The approach used in this paper
can be readily extended to higher order tensorial data and
other non-Gaussian noise models can also be integrated into
the model such.
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