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Xinglin Piao, Yongli Hu, Member, IEEE, Yanfeng Sun, Member, IEEE, Junbin Gao, Baocai Yin, Member, IEEE

Abstract—In a sparse representation based recognition scheme,
it is critical to learn a desired dictionary, aiming both good repre-
sentational power and discriminative performance. In this paper,
we propose a new dictionary learning model for recognition ap-
plications, in which three strategies are adopted to achieve these
two objectives simultaneously. First, a block-diagonal constraint
is introduced into the model to eliminate the correlation between
classes and enhance the discriminative performance. Second, a
low-rank term is adopted to model the coherence within classes
for refining the sparse representation of each class. Finally,
instead of using the conventional over-complete dictionary, a
specific dictionary constructed from the linear combination of
the training samples is proposed to enhance the representational
power of the dictionary and to improve the robustness of the
sparse representation model. The proposed method is tested on
several public datasets. The experimental results show the method
outperforms most state-of-the-art methods.

Index Terms—Dictionary learning, sparse representation,
recognition application.

I. INTRODUCTION

In the past years, the sparse representation has achieved
great success in many applications, such as face recognition
[1], [2], [3], image classification [4], [5], [6], and human
action recognition [7], [8], [9]. The main idea of the sparse
representation is based on the fact that many natural signals
could be represented or encoded by a few atoms of an over-
complete dictionary [10]. Many dictionary learning methods
have been proposed to learn an expressive dictionary for the
problems at hand. Among them, an easy and direct method is
to use training samples themselves as dictionary atoms. This
simple strategy, based on the data self expressive property, is
widely adopted by many sparse representation based recogni-
tion methods, such as the Sparse Representation Classification
(SRC) method [1] and its variations like [4]. The data self
expression is theoretically guaranteed by the subspace theory,
which assumes that many signals constitute linear subspaces
and the samples derived from a subspace can be approximately
represented by other samples (in most cases, the training
samples) from the same subspace [1]. Although using data self
expression dictionaries shows good performance in practice,
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the success in applications generally depends on the quality of
training data, as this type of methods is sensitive to noise and
outliers. On the other hand, to obtain good representation re-
sults, the number of training samples in a dictionary should be
large enough to capture variances of signals, which increases
the computational complexity of sparse coding. Therefore,
instead of using the training samples themselves, learning
based methods construct dictionaries by optimalizing some
sparse representation criteria for training samples. This type of
learning algorithms includes the Method of Optimal Directions
(MOD) [11] and K-SVD [12]. Following these two classic
methods, many sparse representation based methods learn their
specific dictionaries with many successful applications. For
example, Yang et al. [13] proposed an SRC based MetaFace
Learning (MFL) method for face recognition.

However, the unsupervised strategy in classic dictionary
learning methods, such as MOD and K-SVD, does not utilize
label or discriminative information of data, which is valu-
able for recognition applications. So many researchers try to
develop supervised dictionary learning methods to improve
classification or recognition performance by incorporating dis-
criminative information of training data. For example, Zhang
et al. [14] proposed a Discriminative K-SVD (D-KSVD)
dictionary learning method, in which the discriminative in-
formation of training data was represented as a classification
error term with a simple linear classifier. Jiang et al. [15], [16]
proposed a Label Consistent K-SVD method (LC-KSVD) for
recognition applications, in which a sparse recognition error
term was designed to model the consistency of class labels
and its recognition results for training samples. The Fisher
criterion is an effective penalty to decrease the within-class
scatterness and increase the between-class scatterness. Yang et
al. [17] added the Fisher criterion constraint into the dictionary
learning model to form a Fisher Discrimination Dictionary
Learning method (FDDL).

Except for the label information of training samples,
the structure of the sparse coefficient matrix, the incoher-
ence between sub-dictionaries or the coherence within sub-
dictionaries, the correlation within the sparse vectors of the
same class and other properties are explored to improve the
discriminative power of the sparse representation model for
recognition [16], [18], [22]. For the sparse representation based
recognition, the ideal coefficient matrix of training samples un-
der dictionaries should be block-diagonal, i.e. the coefficients
of a sample on its own sub-dictionary are nonzero and on the
sub-dictionaries corresponding to different class are zero. This
desired structural coefficient matrix will bring best discrimina-
tive results. In some methods, one adds some block-diagonal
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constraint on the coefficient matrix in a dictionary learning
model. For example, in LC-KSVD, one enforces a coefficient
matrix to be approximately 0-1 block-diagonal [16]. For the
similar purpose, in other methods one also adds constraints
on the dictionaries or sub-dictionaries instead of on the coef-
ficient matrix. For example, the Dictionary Learning method
with Structure Incoherence (DLSI) [18] uses an incoherence
term to decrease the correlation between sub-dictionaries.
To further enhance the incoherence between different sub-
dictionaries, Kong et al. [19] proposed a Dictionary Learning
method to learn a common pattern pool (the COmmonality)
and class-specific dictionaries (the PARticularity) for clas-
sification, namely DL-COPAR. In this method, a common
dictionary is learned to separate the sharing information of
different sub-dictionaries, and class-specific sub-dictionaries
are learned to produce a clear block-diagonal sparse coefficient
matrix. Along this direction, the Discriminative Group Sparse
Dictionary Learning method (DGSDL) [20] assigns different
weights to the common dictionary and the class-specific sub-
dictionaries, respectively, to decrease the interference of the
common dictionary for classification and obtain more non-zero
coefficients with respect to the class-specific sub-dictionaries.
Generally, there exists high correlation within the samples of
same class. As a result, it is a belief that there is a correlation
within their sparse vectors. So this characterization can be
utilized to improve the sparse representation for recognition.
An intuitive form to represent this property is the low rank
constraint on the sparse coefficient matrix. Zhang et al. [22]
proposed a joint image recognition model, which learns a
low-rank and structured sparse representation for dictionary
learning. Li et al. [23] proposed a semi-supervised model
to learn Low-Rank representations with Classwise Block-
Diagonal Structure (LR-CBDS) for dictionary learning. These
works have shown that the low-rank constraint could not only
model the coherence within each class but also reduce the
noise that exists in training data.

The current research has demonstrated that enforcing certain
specific structures in the sparse coefficient matrix in the
dictionary learning procedure does improve the discriminative
power of the dictionary and recognition performance. In many
existing methods one aims to construct a block-diagonal sparse
coefficient matrix by incorporating certain diagonal induced
constraints on the coefficient matrix. In general, the resulting
matrix is far away from the desired block-diagonal ones. So it
is worth to explore a block-diagonal structure for sparse coef-
ficient matrices in a more straight fashion for recognition ap-
plications. Whilst the block-diagonal sparse coefficient matrix
is an attempt to enhance the incoherence between classes, how
to represent the correlation or coherence within each class is
also important. In literature, the low rank constraint is regarded
as a good way to represent the correlation of the samples
of one class [24]. In most of existing methods, the low rank
constraint is simply imposed on the whole sparse coefficient
matrix instead of individual classes [22]. In this paper, we
propose a new dictionary learning method based on block-
diagonal sparse representation for recognition applications, by
simultaneously incorporating the block-diagonal structure for
the sparse coefficient matrix and applying low rank constraint

to maintain the coherence within each class.

Incorporating the block-diagonal and low rank constraints
on the sparse coefficient matrix may improve the discrim-
inative power of the sparse representation. Furthermore, in
this paper, we explore the structure of dictionaries to be
learned. In most of the existing dictionary learning methods,
little attention has been paid to the structure of dictionaries.
Either dictionary atom are freely updated only according to the
reconstruction error between the training data and its sparse
representation, or one uses a fixed dictionary with training
data themselves based on the data self-representative property.
In the first case, the learned dictionary will be dramatically
influenced by the training samples. Especially, if there are
outlier or noise in the training data, the dictionary will be
misdirected by these samples. Therefore, instead of using the
conventional dictionary in the sparse representation models,
many researches try to construct specific dictionaries for
different applications, such as the double-sparsity model [25],
and the non-linear kernel dictionary [26]. In this paper, we take
a strategy between the conventional dictionary learning and
data self-representation by using a form of linear combination
of the training samples. This strategy has been proved to be
an optimal solution to the dictionary learning problem in the
conventional sparse representation model [26]. Additionally,
the linear combination dictionary will enhance the robustness
of the sparse representation and the recognition performance
in complex scenarios. This point is demonstrated by our
experiments on several public datasets.

In summary, the contributions and novelties of this paper
are four-fold,

• A strict block-diagonal sparse representation model is
proposed for the dictionary learning to eliminate the cor-
relation between classes and achieve better discriminative
performance for recognition applications.

• The coherence of the sparse representation within each
class is represented by a low-rank constraint, refining the
sparse representation of each class for recognition.

• The linear combination of the training samples is utilized,
which will enhance the representational power of the
dictionary and improve the robustness of the sparse
representation model.

• An efficient algorithm is constructed to solve the pro-
posed sparse optimization model with block-diagonal and
low rank constraints.

The paper is organized as follows. Section II introduces the
basic sparse representation and dictionary learning method for
recognition applications. In Section III, the new block-diagonal
sparse representation based dictionary learning method is
proposed in detail. Section IV gives the solution to the optimal-
ization problem of the proposed sparse representation model.
In Section V, recognition experiments are conducted on several
public datasets to assess the performance of the proposed
method. Section VI concludes the paper and discusses the
future work.
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II. THE BASIC SPARSE REPRESENTATION BASED
DICTIONARY LEARNING FOR RECOGNITION

Given a training data set Y = [y1, y2, ..., yN ] ∈ Rn×N ,
where n denotes the dimension of sample data and N denotes
the number of training samples. We can learn a dictionary D
and the sparse representation X = [x1, x2, ..., xN ] of Y by
solving the following model:

min
D,X

‖Y −DX‖2F ,

s.t. ∀i, ‖xi‖0 ≤ T.
(1)

where ‖Y − DX‖2F denotes the error between the training
data and its sparse representation on the dictionary D =
[d1, d2, ..., dK ] ∈ Rn×K with Frobenius norm, K the num-
ber of dictionary atoms, X ∈ RK×N the sparse coefficient
matrix, ‖ · ‖0 the l0 norm, and T the sparsity level.

To construct an effective dictionary D and obtain the sparse
coefficient matrix X, a classical algorithm namely K-SVD
[12] is proposed to solve this problem by an iterating scheme.
In this algorithm, the Orthogonal Matching Pursuit algorithm
(OMP) [27], [28] is used for computing the coefficient matrix
X with a fixed dictionary D, while the dictionary D can
be updated atom-by-atom by minimizing the energy term
‖Y−DX‖2F in (1) with the fixed X. As an efficient dictionary
learning method, K-SVD is widely used in many applications,
such as image reconstruction and denoising [29], [30], [31].

In general, the non-convex l0 norm induces certain opti-
mization difficulty, hence one usually uses the surrogate l1
norm instead. So a new dictionary learning model with l1
sparse norm is formulated as the following equation:

min
D,X

‖Y −DX‖2F + τ‖X‖1. (2)

where τ is a balance parameter trading-off between the
construction error and the sparsity, and ‖X‖1 =

∑
i,j |xij |

is the l1 norm of the coefficient matrix X. While using an
alternative way to solve problem (2), the coefficient matrix X
can be solved by a sparse coding algorithm such as the feature-
sign search algorithm [33], the learned iterative shrinkage-
thresholding algorithm (LISTA) [34] and the alternating direc-
tion method of multipliers (ADMM) [35], while the dictionary
D can be solved by adopting the dictionary updating procedure
of K-SVD algorithm.

Based on the above sparse representation, there is a basic
framework for recognition application, known as the sparse
representation based recognition. In this framework, the train-
ing dataset with label information can be rewritten as Y =
[Y1,Y2, ...,YC ] according the class label, where C is the
number of all classes and Yi ∈ Rn×Ni denotes the subset
of training dataset for the i-th class with Ni samples such
that

∑C
i Ni = N . Thus we can learn a dictionary for every

class of training data Yi by the above sparse representation
model, denoted by Di, i = 1, ..., C, which are regarded as
the sub-dictionaries and integrated to form the dictionary
D = [D1,D2, ...,DC ] w.r.t. the training data Y. To this end,
for a test sample ỹ, we can calculate the sparse coefficient
x̃ on the dictionary D using a sparse coding method by the

following formula,

x̃ = argmin
x
‖ỹ −Dx‖22 + τ‖x‖1. (3)

From this sparse representation, the recognition is finally
realized by selecting the class with the minimal reconstruction
error as follows,

identity(ỹ) = argmin
i
‖ỹ −Dix̃i‖22. (4)

where x̃i is the sparse coefficients of x̃ corresponding to the
i-th sub-dictionary Di.

III. BLOCK-DIAGONAL SPARSE REPRESENTATION BY
LEARNING A LINEAR COMBINATION DICTIONARY FOR

RECOGNITION

From the above basic framework of the sparse repre-
sentation based recognition, with the label information be-
ing available, the training data Y = [Y1,Y2, ...,YC ] can
be sparse represented on the integrated dictionary D =
[D1,D2, ...,DC ], i.e. Y = DX. However, the sparse rep-
resentation does not consider the relation of different classes
as the sub-dictionaries are learned respectively. So we fur-
ther investigate the intrinsic structure underlying the sub-
dictionaries and the sparse representations of training data to
form a new dictionary learning method for recognition. Firstly,
we examine the structure of the sparse coefficients matrix X.
According to the class label, the sparse coefficients matrix X
can be further rewritten as following form

X =


X11 X12 · · · X1C

X21 X22 · · · X2C

...
...

. . .
...

XC1 XC2 · · · XCC

 . (5)

where Xij ∈ R
Ki×Nj , i, j ∈ {1, 2, ..., C} is the sub-

coefficient matrix, representing the sparse coefficient of the
samples in the j-th labelled class Yj over the i-th sub-
dictionary Di. Thus Yj can be rewritten as:

Yj = D1X1j + D2X2j + ...+ DCXCj . (6)

It is natural to assume that the j-th labelled class samples
Yj can be strictly represented by the atoms of the j-th sub-
dictionary Dj , which means that Xij is a zero sub-matrix
for i 6= j. In other words, the ideal coefficient matrix X is
block-diagonal in the following form:

diag(X11,X22, ...,XCC) =


X11 0 · · · 0
0 X22 · · · 0
...

...
. . .

...
0 0 · · · XCC

 .
(7)

Let X = diag(X11,X22, ...,XCC). With this block-diagonal
parametrization of the sparse representation matrix, we can
build a block-diagonal sparse representation model as follow-
ing:

min
D,X

τ‖X‖1 + ‖Y −DX‖2F ,

s.t. X = diag(X11,X22, ...,XCC).
(8)
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The block-diagonal sparse representation model is proposed
to eliminate correlation between different classes and enhance
the discriminate power of the model. However, for each class,
there exists high correlation within its training samples and
their corresponding sparse coefficient vectors. Thus, to further
model the coherence within each class, we adopt the low-rank
constraint to capture this property within each individual class.
Concretely, we add low rank constraints on each diagonal sub-
matrix of the coefficient matrix and get the following revised
sparse representation model from the model in (8).

min
D,X

τ‖X‖1 + λ

C∑
i=1

rank(Xii) + ‖Y −DX‖2F ,

s.t. X = diag(X11,X22, ...,XCC).

(9)

where λ is a weight for the low-rank term.
In general, the rank minimization problem in (9) is a NP-

hard problem [36]. So an alterative way to solve the problem
in (9) is to replace the rank function with the so-called matrix
nuclear norm ‖ · ‖∗, which is defined as the sum of singular
values of the matrix. Thus the model in (9) can be converted
into a convex optimization problem as follows:

min
D,X

τ‖X‖1 + λ

C∑
i=1

‖Xii‖∗ + ‖Y −DX‖2F ,

s.t. X = diag(X11,X22, ...,XCC).

(10)

To further get an efficient dictionary for recognition, instead
of using the dictionary in the conventional sparse representa-
tion model, we adopt a specific dictionary constructed by the
linear combination of the training samples, i.e. D = YW,
where W ∈ RN×K is the combination matrix. The motivation
of using this linear combination dictionary lies in two folds.
First, in theory, this type of dictionary has been proved an
optimal solution to the dictionary learning problem in the
conventional sparse representation model, see Proposition 1
in [26]. Second, the linear combination operation confines
the variety of the dictionary atoms in the space spanned
by the training samples. Thus the influence of few outliers
or noise in the training data will be reduced, and this will
enhance the robustness of the dictionary learning and the
sparse representation. Under this specific dictionary, we get
our revised sparse model as follows:

min
W,X

τ‖X‖1 + λ

C∑
i=1

‖Xii‖∗ + ‖Y −YWX‖2F ,

s.t. X = diag(X11,X22, ...,XCC).

(11)

This is a complicated optimization problem with l1 norm and
nuclear norm with respect to matrix variable X. In order to
get a stable feasible solution, we further add a regularizer on
X and obtain the following sparse model,

min
W,X

τ‖X‖1 + λ

C∑
i=1

‖Xii‖∗ + α‖X‖2F

+ ‖Y −YWX‖2F ,
s.t. X = diag(X11,X22, ...,XCC).

(12)

As X = diag(X11,X22, ...,XCC), we have ‖X‖1 =∑C
i=1 ‖Xii‖1 and ‖X‖2F =

∑C
i=1 ‖Xii‖2F . So the above

model is reformed as,

min
W,X

τ

C∑
i=1

‖Xii‖1 + λ

C∑
i=1

‖Xii‖∗ + α

C∑
i=1

‖Xii‖2F

+ ‖Y −YWX‖2F ,
s.t. X = diag(X11,X22, ...,XCC).

(13)

We call this final model the Block-Diagonal Sparse Rep-
resentation based Linear Combination Dictionary Learning
(BDSRLCDL). Compared with the majority of existing dictio-
nary learning methods, the most significant difference is that
we keep the coefficient matrix in a block-diagonal structure.
Additionally, the proposed model is characterized with the
low rank constraint on each block-diagonal submatrix and
the linear combination dictionary. In the next section, we
will propose an efficient algorithm to solve the optimization
problem.

Having learned the linear combination dictionary YW from
the training samples, for a test sample ỹ we can calculate its
sparse representation x̃ by solving the following problem:

min
x̃
‖ỹ −YWx̃‖22 + τ‖x̃‖1 + λ‖x̃‖22. (14)

Then the sparse coefficient vector x̃ can be used for
recognition. For convenience, we rewrite W as W =
[W1,W2, ...,WC ], where Wi ∈ RN×Ki , i = 1, 2, ..., C is
the coefficient correspondending to i-th class. So we obtain
each sub-dictionary by Di = YWi, i = 1, 2, ..., C. If we
formulate the coefficient vector x̃ as x̃ = [x̃T1 , x̃

T
2 , ..., x̃

T
C ]
T ,

where x̃i is the sparse coefficients corresponding to the i-th
sub-dictionary Di = YWi, we can calculate the error on the
i-th sub-dictionary as follows:

ei = ‖ỹ −YWix̃i‖. (15)

From these reconstruction errors on sub-dictionaries, the test
sample ỹ could be identified as follows:

identity(ỹ) = argmin
i
{ei}. (16)

where identity(ỹ) is the class label of the test sample ỹ.

IV. OPTIMIZATION SOLUTION TO BDSRLCDL

To solve the optimization problem of BDSRLCDL in (13),
we adopt an alternating direction method and separate the
problem into several subproblems. We firstly introduce a set
of extra variables {Zii}Ci=1 and let Zii = Xii to separate the
‖ · ‖1 term and the ‖ · ‖∗ term involving X according to [35].
So the problem in (13) can be reformulated as the following
problem with the introduced linear constraints,

min
W,X,{Zii}Ci=1

τ

C∑
i=1

‖Xii‖1 + λ

C∑
i=1

‖Zii‖∗ + α

C∑
i=1

‖Xii‖2F

+ ‖Y −YWX‖2F ,
s.t. Zii = Xii, i = 1, ..., C

and X = diag(X11,X22, ...,XCC).
(17)
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Then we can get the following objective function of the
problem by the augmented Lagrangian multiplier method.

L(Z,X,W,F, γ)

=τ

C∑
i=1

‖Xii‖1 + λ

C∑
i=1

‖Zii‖∗ + α

C∑
i=1

‖Xii‖2F

+ ‖Y −YWX‖2F

+

C∑
i=1

(< Fii,Zii −Xii > +
γ

2
‖Zii −Xii‖2F )

=τ

C∑
i=1

‖Xii‖1 + λ

C∑
i=1

‖Zii‖∗ + α

C∑
i=1

‖Xii‖2F

+ ‖Y −YWX‖2F

+

C∑
i=1

(
γ

2
‖Zii −Xii +

Fii
γ
‖2F −

1

2γ
‖Fii‖2F ),

(18)

where Fii is the Lagrangian multipliers and γ is an adaptive
weight parameter for enforcing the condition Zii = Xii,
〈A,B〉 = trace(ATB). For the objective function in (18), we
adopt the linearized alternating direction method in [37] to
solve the optimization problem by an iteration procedure. The
following steps give the detailed iterations for Zii,Xii,W and
other parameters alternately. Superscript t denotes the current
iteration.

A. Calculate Zii while fixing W and Xii

When W and Xii are fixed, the objective function is
degenerated into a function with respect to Zii. So we solve
Zii by the following optimalization problem,

Zt+1
ii = argmin

Zii
λ‖Zii‖∗ +

γt

2
‖Zii −Xt

ii +
Ftii
γt
‖2F

= argmin
Zii

λ

γt
‖Zii‖∗ +

1

2
‖Zii − (Xt

ii −
Ftii
γt

)‖2F .
(19)

This problem has closed-form solution as

Zt+1
ii = US λ

γt
[Σ]VT (20)

where UΣVT is the singular value decomposition (SVD) of
(Xt

ii−
Ftii
γt ). S λ

γt
[·] is the soft-thresholding operator [38] with

the following defination,

S λ
γt
[x] =


x− λ

γt , if x > λ
γt ,

x+ λ
γt , if x < − λ

γt ,

0, otherwise.

(21)

B. Calculate Xii while fixing W and Zii

When W and Zii are fixed, we rewrite the objective
function as the following form:

L(Z,X,W,F, γ)

=τ

C∑
i=1

‖Xii‖1 + λ

C∑
i=1

‖Zii‖∗ + α

C∑
i=1

‖Xii‖2F

+

C∑
i=1

‖Yi −YWiXii‖2F

+

C∑
i=1

(
γ

2
‖Zii −Xii +

Fii
γ
‖2F −

1

2γ
‖Fii‖2F ),

(22)

Let

hi(Zii,Xii,Wi,Fii, γ)

=α‖Xii‖2F + ‖Yi −YWiXii‖2F +
γ

2
‖Zii −Xii +

Fii
γ
‖2F ,

then Xii can be solved by the following optimalization,

Xt+1
ii = argmin

Xii

τ‖Xii‖1 + hi(Z
t+1
ii ,Xii,W

t
i ,F

t
ii, γ

t)

= argmin
Xii

τ‖Xii‖1+ < 5Xt
ii
hi,Xii −Xt

ii >

+ ηti‖Xii −Xt
ii‖2F

= argmin
Xii

τ

2ηti
‖Xii‖1 +

1

2
‖Xii − (Xt

ii −
5Xt

ii
hi

2ηti
)‖2F ,
(23)

where 5Xt
ii
hi represents the partial differential at Xt

ii of
hi with respect to Xii and has the form of 5Xt

ii
hi =

γ(Xt
ii − Zt+1

ii −
Ftii
γt

) + 2(Wt
i)
TYTYWt

iX
t
ii + 2αXt

ii, η
t
i =

‖YWt
i‖22+

γt

2 . From the conclusions in [39], [40], the closed-
form solution to the problem is given by the following form,

Xt+1
ii = sign(Xt

ii −
5Xt

ii
hi

2ηti
)max{|Xt

ii −
5Xt

ii
h

2ηti
| − τ

2ηti
, 0}.
(24)

C. Calculate W while fixing Zii and Xii

When Zii and Xii are fixed, the optimalization problem in
(17) changes to the following problem:

min
W

‖Y −YWXt+1‖2F , (25)

where Xt+1 = diag(Xt+1
11 ,Xt+1

22 , ...,Xt+1
CC ) is a strict

block-diagonal coefficient matrix conducted from the current
Xt+1
ii , i = 1, ..., C in the above subsection.
To solve the problem in (25), we adopt an atom-by-atom

iteration scheme to update the current W, denoted by Wt,
similar to the algorithm in [13], [17]. For convenience, we let
Ŵ = Wt and denote its each column by ŵk, k = 1, ...,K.
Then each column ŵk of Ŵ can be updated by solving the
following problem, while fixing the other columns.

min
ŵk

‖YEk −Yŵkx
t+1
k ‖

2
F

s.t. ‖Yŵk‖2 = 1.
(26)
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where xt+1
k , k = 1, ...,K is the k-th row of Xt+1, the

condition ‖Yŵk‖2 = 1 demands the dictionary atoms having
unit scalar, and Ek is defined as

Ek = I−
∑
p 6=k

ŵpx
t+1
p . (27)

For the problem in (26), we calculate the differential of the
objective function with respect to ŵk and let it be 0. Then we
have a solution to the problem as follows,

ŵk = Ekx
T
k /(xkx

T
k ). (28)

In addition, to satisfy the normalized constraint ‖Yŵk‖2 = 1,
we further update ŵk by the following formula and obtain a
final solution of ŵk.

ŵk = ŵk/‖Yŵk‖2 (29)

The above procedure of solving W is summarized in
Algorithm 1.

D. Update the multiplier Fii and parameter γ

After updating the coefficient matrix Z,X and the dictio-
nary combination matrix W at each iteration, the multiplier
Fii and parameter γ should also be updated by the following
formulas:

Ft+1
ii = Ftii + γ(Zt+1

ii −Xt+1
ii ). (30)

γt+1 = min{ργt, γmax}, (31)

where ρ = 1.1, γmax = 1010.
Integrating the above iterations, the solution to the proposed

BDSRLCDL model is obtained and the complete algorithm is
summarized in Algorithm 2. However, the convergence of the
ADMM method could not be guaranteed as being discussed in
[41]. However, we found that the algorithm always converges
in our experiments. In our algorithm, the stopping criterion is
measured by the following two conditions,

max

{
‖Zt+1 −Xt+1‖∞, ‖Zt+1 − Zt‖∞,

‖Xt+1 −Xt‖∞

}
≤ ε1. (32)

|Lt+1 − Lt|
|Lt|

≤ ε2. (33)

where ‖ · ‖∞ denotes the Infinite Norm, and Lt =
L(Zt,Xt,Wt,Ft, γt) represents the value of the objective
function at t iteration. (32) and (33) should be satisfied at
same time to stop the iteration.

Fig. 1 shows the convergence of BDSRLCDL on the AR
face dataset [42]. It shows that the curves decrease fast and
almost tend to be stable after 30 iterations, which verifies our
BDSRLCDL algorithm with good convergent property.

V. EXPERIMENTAL RESULTS

To evaluate the proposed method, we implement recognition
experiments on various public datasets of different types.
There are four types of datasets: i) Face image datasets,
including Extended Yale B face dataset [43] and AR face
dataset [42]; ii) Texture image sets, including KTH-TIPS
texture dataset [44] and DynTex++ dataset [45]; iii) Scene

Algorithm 1 Calculate W while fixing Zii and Xii

Input: The training data set Y, the current Wt and
{Xt+1

ii }Ci=1.
1: Construct a strict block-diagonal coefficient matrix

X̂ = diag(Xt+1
11 ,Xt+1

22 , ...,Xt+1
CC ).

2: Let Ŵ = Wt.
3: for each k ∈ 1, 2, ...,K do
4: Calculate Ek by (27);
5: Calculate ŵk by (28);
6: Update ŵk by (29) .
7: end for
8: Let Wt+1 = Ŵ.

Output:
The matrix Wt+1.

Algorithm 2 Block-Diagonal Sparse Representation based
Linear Combination Dictionary Learning (BDSRLCDL)
Input: The training data set Y, the parameters τ , λ, α.

1: Initialize : {Z0
ii}Ci=1 = {X0

ii}Ci=1 = 0, {F0
ii}Ci=1 = 1,

initialize W0 randomly and let w0
i = w0

i /‖Yw0
i ‖2,

γ0 = 10−4, ρ = 1.1, γmax = 1010, ε1 = ε2 = 10−7,
the number of maximum iteration MaxIter = 1000.

2: t = 0.
3: while not converged and t ≤MaxIter do
4: Calculate {Zt+1

ii }Ci=1 by (20);
5: Calculate {Xt+1

ii }Ci=1 by (23);
6: Calculate Wt+1 by Algorithm 1;
7: Calculate {Ft+1

ii }Ci=1 by (30);
8: Calculate γt+1 by (31);
9: t = t+ 1.

10: end while
Output:

The matrices Wt, Xt.

image sets, including 15-Scene dataset [48] and UCF sports
action dataset [51]; iv) Object image sets, including Oxford
Flowers 17 dataset [49] and Pittsburgh Food Image dataset
(PFID) [52]. These datasets are challenging for recognition
applications.

The performance of the proposed method is compared with
some state-of-the-art dictionary learning algorithms, such as
SRC [1], DLSI [18], LC-KSVD [16], FDDL [17], MFL [13],
DL-COPAR [19], DGSDL [20] and Discriminative Collabora-
tive Representation Dictionary learning method (DCR) [21].

A. Face recognition

We test our proposed algorithm for face recognition on
two face datasets: Extended Yale B [43] and AR face dataset
[42]. The former has face images with various illuminations.
The later has face images with different expressions and
illuminations. Both of them are challenging data sets for face
recognition.

1) Extended Yale B: This dataset contains 2,414 frontal
face images of 38 subjects captured under various laboratory-
controlled lighting conditions, i.e. the number of classes
C = 38. Each subject has about 64 images. Fig.2 shows some
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Fig. 1. The convergence curves of our BDSRLCDL method on the AR dataset
[42]. (a) the convergence curve of ‖Zt+1 −Xt+1‖∞; (b) the convergence
curve of ‖Zt+1−Zt‖∞; (c) the convergence curve of ‖Xt+1−Xt‖∞; (d)
the convergence curve of the objective function in (18).

samples of the dataset. In our experiment, we randomly select
20 images of each subject to compose the training set, and the
rest images are used for testing. All the images are cropped
and normalized to the size of 32×32 pixels. The parameters
τ , α, λ are tuned manually by the experiment results, here
τ = λ = α = 0.001. We simply set the atom number of all
sub-dictionary as same number, here Ki = 20, i = 1, ..., C.
The recognition experiments are repeated 10 times and the
mean recognition rate is reported to evaluate the performance.

The experiment results are shown in Table I. It is shown
that the proposed method obtains the highest recognition rate
of 96.62% (in bold text), which is higher than the second
(underlined) by 0.61%.

Generally, the atom number of the dictionary is critical
to dictionary learning methods. So we further investigate the
influence of the atom numbers on these dictionary learning
methods. The recognition experiments are implemented with
different atom numbers, here Ki is set from 8 to 20 for all
methods. The experimental results are shown in Fig. 3. It
can be observed that the recognition rate of the BDSRLCDL
changes little with the standard deviation 0.49% compared
with DLSI 1.59%, LC-KSVD 1.72%, FDDL 1.49%, MFL
2.28%, DL-COPAR 1.80%, DGSDL 1.66% and DCR 1.27%.
Thus our method is robust to the scale of the learned dictio-
nary. Even with small number of atoms in the dictionary, the
recognition accuracy downgrades little. Note that the different
number of atoms in the experiment is not implemented for
SRC method as SRC uses the training data itself as the
dictionary.

2) AR face dataset: The AR face dataset contains over
4,000 frontal face images from 126 persons (70 men and
56 women). These face images are captured under different
facial expressions, illuminations, and occlusions (sun glasses
and scarf). The face images under the same conditions were

Fig. 2. Some face images of the Extended Yale B dataset.

TABLE I
RECOGNITION RESULTS OF DIFFERENT METHODS ON EXTENDED YALE B

DATASET WITH Ki = 20.

Algorithm Recognition rate (%)
SRC 88.50
DLSI 94.03

LC-KSVD 94.42
FDDL 93.92
MFL 93.65

DL-COPAR 95.11
DGSDL 95.72

DCR 96.01
BDSRLCDL 96.62

captured in two sessions, which are separated by two weeks
(14 days). Fig. 4 shows some samples of AR face dataset.
In our experiment, we adopt the same way of [1], [17] and
[20] to construct the training and testing data for recognition
experiment, in which, a subset of images of 100 persons
(50 men and 50 women) is selected (C = 100). For each
person, seven images selected from Session 1 are used as
training data, and seven images selected from Session 2 are
used as testing data. All the selected images are cropped and
normalized to the size of 50 × 40 pixels. The parameters
τ = λ = 0.0002, α = 0.00015. The atom number of sub-
dictionary Ki = 7, i = 1, ..., C. In the above data setting, the
training set and test set are fixed, so there is no experiment
repeated.

Table II reports the experimental results of the proposed
method and other comparing methods. It can be seen that the
proposed BDSRLCDL algorithm obtains the highest recog-
nition rate of 95.22% (in bold text), which is higher than
the second (underlined) by 0.80%. We also do the experi-
ments with different number of the sub-dictionary atoms, here
Ki = 4 to 7. The experimental results are shown in Fig. 5. It
is shown that the result of our method is also robust to the
variety of the atoms number of sub-dictionary.

The results of the experiments on the above two datasets
have demonstrated that our proposed method has better per-
formance on face recognition compared with other methods.
The better performance may benefit from the introduction of
the block-diagonal and low rank constraints. Additionally, our
method shows robustness to the dictionary size.

B. Texture classification

In this experiment, we evaluate the proposed algorithm
on two widely used texture datasets. The first is KTH-TIPS
dataset [44], which is a static texture dataset containing
various texture images. It is a challenging texture dataset for
recognition as the images are captured in different scale, pose
and illumination. The other is the dynamic texture dataset
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Fig. 3. Recognition results of different methods on Extended Yale B face
dataset with the number of sub-dictionary atoms changing.

Fig. 4. Some face images of AR face dataset.

named DynTex++ [45], which is a set of dynamic texture
videos captured in different complex scenarios. The dynamic
texture video clips are divided into dozens of classes. It is also
a challenging dataset for recognition.

1) KTH-TIPS texture dataset: This dataset contains 10
classes of static texture images (C = 10). Each class has
81 texture images captured at nine scales, three illumination
directions and three poses. Some samples of this dataset are
shown in Fig. 6. In our experiment, we randomly select 40
images from each class as training data and use the rest as
test data. To represent the feature of these texture images,
instead of using the original image raw data, we use the PRI-
CoLBP0 descriptor in [54] to construct the sparse model and
implement recognition experiment. The parameters are set to
τ = λ = α = 10−6 and Ki = 40. Each experiment is also
repeated 10 times.

The experimental results are shown in Table III. It is shown
that our method has best recognition rate compared with other
methods. The recognition experiments are also conducted
with different numbers of dictionary atoms (Ki = 20 to 40).
The results in Fig. 7 indicates that our method has high
recognition accuracy with different number of atoms in the
learned dictionary.

2) DynTex++ dataset: This dataset contains 345 video
sequences, which are captured from different scenarios such
as river water, fish swimming, smoke, cloud and so on. These
videos are divided into 36 classes (C = 36) and each class
has 100 subsequences (totally 3600 subsequences) with a fixed
size of 50 × 50 × 50 (50 gray frames). Some samples of the
dataset are shown in Fig. 8.

Considering the high dimension of the original video clips,
we adopt the method of Grassmann manifold in [46] to

TABLE II
RECOGNITION RESULTS OF DIFFERENT METHODS ON AR FACE DATASET

WITH Ki = 7.

Algorithm Recognition rate (%)
SRC 89.14
DLSI 89.61

LC-KSVD 93.96
FDDL 93.00
MFL 90.12

DL-COPAR 94.12
DGSDL 94.42

DCR 93.43
BDSRLCDL 95.22
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Fig. 5. Recognition results of different methods on AR face dataset with the
number of sub-dictionary atoms changing.

represent the dynamic texture samples. In this method, each
video clip is firstly represented as the Local Binary Patterns
from Three Orthogonal Plans (LBP-TOP) feature, which is
proved an efficient way to capture the dynamic texture feature
[47]. Then the LBP-TOP feature is used to construct the
Grassmann Manifold points in form of a column orthogonal
matrix in size of 177 × 14. To get a proper distance mea-
surement, these Grassmann Manifold points are transformed
into symmetrical matrics in size of 177 × 177, which have
Euclid like distance and finally are used to construct the sparse
model in our experiment. More detail can be found in [46]. In
our experiment, we select 50 video clips randomly from each
class used for dictionary learning and the rest for testing. The
parameters τ = λ = 10−6, α = 10−4, and Ki = 50. Each
experiment is also repeated 10 times.

The experimental results are shown in Table IV. Once again
the proposed method performs excellent against all the other
methods in terms of recognition rate. Similarly we also explore
the influence of dictionary sizes and the results are shown in
Fig. 9, here Ki = 25 to 50. It is obvious that our method has
the best performance than all the other methods.

These two experiments show that the proposed method
offers the best recognition performance with certain robustness
for the static and dynamic texture datasets. In general, the
dynamic texture contains more complex variety compared with
static texture, which results in a lower recognition rate.
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Fig. 6. Some texture images from KTH-TIPS dataset.

TABLE III
RECOGNITION RESULTS OF DIFFERENT METHODS ON KTH-TIPS

DATASET WITH Ki = 40.

Algorithm Recognition rate (%)
SRC 83.77
DLSI 96.00

LC-KSVD 96.21
FDDL 96.00
MFL 91.68

DL-COPAR 92.16
DGSDL 93.26

DCR 94.33
BDSRLCDL 96.37

C. Scene recognition

The scene recognition or clustering is a classic problem in
computer vision. As too much variety and influencing factors
to make a proper descriptor for a complex scene, there are
many challenges in scene recognition. To evaluate the pro-
posed method, we implement scene recognition experiments
on two public datasets, the 15-Scene dataset [48] and the UCF
sports dataset [51]. The former contains a set of images with
different indoor and outdoor scenes. The later is a specific
scene dataset having different sport scenes in the form of video
sequences.

1) The 15-Scene dataset: This dataset contains images of a
wide range of outdoor and indoor scenes, such as bedrooms,
kitchens, and country scenes, etc. There are totally 4485
images in this dataset and these images are divided into 15
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Fig. 7. Recognition rate on various methods with different number of sub-
dictionary atoms on KTH-TIPS texture dataset

Fig. 8. Samples images from DynTex++ dataset.

TABLE IV
RECOGNITION RESULTS OF DIFFERENT METHODS ON DYNTEX++

DATASET WITH Ki = 50.

Algorithm Recognition rate (%)
SRC 86.20
DLSI 90.34

LC-KSVD 91.29
FDDL 92.03
MFL 90.02

DL-COPAR 91.77
DGSDL 90.43

DCR 90.27
BDSRLCDL 92.35

categories (C = 15). Each category has 210 to 410 images
with a size of 250×300 pixels. Some images of this dataset are
shown in Fig. 10. For recognition experiment, we randomly
select 100 images per category as training data and use the
rest as test data. Here we adopted the spatial-pyramid feature
and SIFT-descriptor in [16] to represent the images. The
parameters are set to τ = 10−6, λ = 10−5, α = 10−5 and
Ki = 50. Each experiment is also repeated 10 times.

The experimental results are shown in Table V. It can be
observed that the proposed method has 2+% improvement than
other methods. The recognition experiment is also conducted
to assess the robustness of the method with different number
of sub-dictionary atoms. The results in Fig. 11 shows that our
method is stable when the number of sub-dictionary atoms Ki

varies from 50 to 100.
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Fig. 9. Recognition results of different methods on DynTex++ dataset with
the number of sub-dictionary atoms changing.
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Fig. 10. Sample images from the 15-Scene dataset

TABLE V
RECOGNITION RESULTS OF DIFFERENT METHODS ON THE 15-SCENE

DATASET WITH Ki = 50.

Algorithm Recognition rate (%)
SRC 88.40
DLSI 94.22

LC-KSVD 93.17
FDDL 94.67
MFL 92.22

DL-COPAR 93.79
DGSDL 94.43

DCR 95.92
BDSRLCDL 98.02

2) The UCF sports dataset [51]: This dataset contains
various video sequences collected from the sports channels
of BBC and ESPN. These videos covers 10 classes of sport
scenes (C = 10), including kicking, golfing, diving, horse
riding, skateboarding, running, swinging, swinging highbar,
lifting and walking. Each class contains 6 to 22 video se-
quences. Some examples of this dataset are shown in Fig. 12.

We implement recognition experiment in a fivefold cross
validation manner, where four folds are used in training
and the remaining one is used for testing. To obtain good
recognition results and reduce the data dimension, the action
bank features in [53] are extracted to represent the video
sequences. The parameters are τ = λ = α = 10−4 and
Ki = 10. Each experiment is also repeated 10 times.

The experimental results are shown in Table VI which
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Fig. 11. Recognition results of different methods on the 15-Scene dataset
with the number of sub-dictionary atoms changing.

Fig. 12. Some images of the UCF sports action dataset.

TABLE VI
RECOGNITION RESULTS OF DIFFERENT METHODS ON THE UCF SPORTS

ACTION DATASET WITH Ki = 10.

Algorithm Recognition rate (%)
SRC 92.72
DLSI 92.17

LC-KSVD 91.53
FDDL 94.33
MFL 90.34

DL-COPAR 90.73
DGSDL 91.27

DCR 92.35
BDSRLCDL 94.52

further confirm that the proposed method has the best perfor-
mance in recognition rates compared with the other methods.
However in this experiment no further experiments were
conducted for other values of Ki as there are only few training
samples for most of classes.

D. Object recognition

To further evaluate our method, we continue the recognition
experiments on object data. Here we select two public image
datasets of specific objects to do experiments. One is the
Oxford Flowers 17 dataset [49] which contains 17 classes
of flower images. The other is the Pittsburgh Food Image
Dataset (PFID) [52] which is a recently constructed image
set containing various food images. It is a challenging dataset
for recognition as the difference between classes is minor. At
present, many state-of-the-art recognition methods have poor
performance on this dataset [16], [17], [21].

1) The Oxford Flowers 17 dataset: This dataset consists of
17 species of flowers with 80 images of each class. Some
of species have very similar appearance. There are large
viewpoint, scale, and illumination variations for the images.
Some images of this dataset are shown in Fig. 13. This dataset
is challenging for recognition as the large intra-class variability
and sometimes small inter-class variability. We adopted the
data splits provided on the website (www.robots.ox.ac.uk/
∼vgg/data/flowers) to construct our data setting, in which the
training splits are used as our training data, and the validation
and test splits are combined together as our test data. So
there are totally 3 groups of data for experiments and each
group has 40 training images and 40 test images for each
class of 17 species (C = 17). All images are resized so
that the smallest dimension is 500 pixels. To construct the
sparse model, the recently proposed Frequent Local Histogram
(FLH) [50] feature is adopted as the image representations.

www.robots.ox.ac.uk/~vgg/data/flowers
www.robots.ox.ac.uk/~vgg/data/flowers
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Fig. 13. Some images of the Oxford Flowers 17 dataset.

TABLE VII
RECOGNITION RESULTS OF DIFFERENT METHODS ON THE OXFORD

FLOWERS 17 DATASET WITH Ki = 30.

Algorithm Recognition rate (%)
SRC 88.40
DLSI 88.87

LC-KSVD 90.20
FDDL 91.72
MFL 89.07

DL-COPAR 91.28
DGSDL 92.75

DCR 93.41
BDSRLCDL 96.47

The parameters are τ = λ = α = 10−6 and Ki = 30. The
mean recognition of the experiments on the 3 groups are shown
in Table VII. The experiments with different size of dictionary
are also implemented (Fig. 14 shows the results). We have the
similar results as the above experiments.

2) The Pittsburgh Food Image Dataset: This Dataset is a
recently released dataset containing a set of fast food images
and videos captured from 13 chain restaurants. There are
61 categories of specific food items (C = 61) and each
food category consists of three different instances (bought in
different days from different branches of the restaurant chain).
Each instance contains six images with different viewpoints.
Some images of this dataset are shown in Fig.15. Similar to
the experimental setting in [52], we randomly chosen two
instances for training and the other one for testing for each
category. To represent the food images, we also adopt the PRI-
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Fig. 14. Recognition results of different methods on the Oxford Flowers 17
dataset with the number of sub-dictionary atoms changing.

Fig. 15. Some images of the Pittsburgh Food Image Dataset.

TABLE VIII
RECOGNITION RESULTS OF DIFFERENT METHODS ON THE PITTSBURGH

FOOD IMAGE DATASET WITH Ki = 6.

Algorithm Recognition rate (%)
SRC 22.61
DLSI 21.65

LC-KSVD 23.15
FDDL 16.65
MFL 21.64

DL-COPAR 18.70
DGSDL 30.52

DCR 37.35
BDSRLCDL 49.50

CoLBP0 feature descriptor [54] as the feature. The parameters
are τ = λ = α = 10−4 and Ki = 6. Each experiment is also
repeated 10 times.

The experimental results are shown in Table VI. For this
dataset, the proposed method significantly outperforms all the
other methods with more than 12% gap in terms of recognition
rates. Given that the high performance over the dataset, we
omit the analysis on the robustness over the size of sub-
dictionaries.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a Block-Diagonal Sparse Repre-
sentation model for recognition based on Linear Combination
Dictionary Learning (BDSRLCDL) method. The method in-
corporates a parametric block-diagonal sparse representation
in dictionary learning model to eliminate correlation between
classes and to achieve better discriminative performance. To
further enhance the sparse representational power, we enforce
a low rank representation matrix to describe the correlation of
the sparse representation within each class. Instead of using the
conventional over-complete dictionary, a dictionary consisting
of linear combinations of the training samples is adopted in
the model. The proposed method is evaluated on wide range
of public datasets in different recognition applications, such
as face recognition, texture recognition, scene recognition and
object recognition. It has been demonstrated that the proposed
method outperforms most state-of-the-art dictionary learning
methods. In future work, We will explore the extension of the
method for the cases of data in non-Euclidean spaces such as
kernel spaces and manifold spaces.
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