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A GENERALIZATION OF WATSON TRANSFORMATION AND

REPRESENTATIONS OF TERNARY QUADRATIC FORMS

JANGWON JU, INHWAN LEE AND BYEONG-KWEON OH

Abstract. Let L be a positive definite (non-classic) ternary Z-lattice and let

p be a prime such that a 1

2
Zp-modular component of Lp is nonzero isotropic

and 4 ¨ dL is not divisible by p. For a nonnegative integer m, let GL,ppmq be

the genus with discriminant pm ¨ dL on the quadratic space Lpm b Q such

that for each lattice T P GL,ppmq, a 1

2
Zp-modular component of Tp is nonzero

isotropic, and Tq is isometric to pLpm qq for any prime q different from p. Let

rpn,Mq be the number of representations of an integer n by a Z-lattice M . In

this article, we show that if m ď 2 and n is divisible by p only when m “ 2,

then for any T P GL,ppmq, rpn, T q can be written as a linear summation of

rppn, Siq and rpp3n, Siq for Si P GL,ppm`1q with an extra term in some special

case. We provide a simple criterion on when the extra term is necessary, and

we compute the extra term explicitly. We also give a recursive relation to

compute rpn, T q, for any T P GL,ppmq, by using the number of representations

of some integers by lattices in GL,ppm ` 1q for an arbitrary integer m.

1. Introduction

For a positive definite (non-classic) integral ternary quadratic form

fpx1, x2, x3q “
ÿ

1ďiďjď3

aijxixj paij P Zq

and an integer n, we define a set Rpn, fq “ tpx1, x2, x3q P Z3 : fpx1, x2, x3q “ nu,

and rpn, fq “ |Rpn, fq|. It is well known that Rpn, fq is always finite if f is positive

definite. The theta series θf pzq of f is defined by

θf pzq “
8ÿ

n“0

rpn, fqe2πinz ,

which is a modular form of weight 3
2
and some character with respect to a certain

congruence subgroup. Finding a closed formula for rpn, fq or finding all integers n

such that rpn, fq ‰ 0 for an arbitrary ternary form f are quite old problems which

are still widely open. As a simplest case, Gauss showed that if f is a sum of three

squares, then rpn, fq is a multiple of the Hurwitz-Kronecker class number.

Though it seems to be quite difficult to find a closed formula for rpn, fq, some

various relations between rpn, fq’s are known. One of the important relations is
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the Minkowski-Siegel formula. Let Opfq be the group of isometries of f and opfq “

|Opfq|. The weight wpfq of f is defined by wpfq “
ř

rf 1sPgenpfq
1

opf 1q , where rf 1s is

the equivalence class containing f 1. The Minkowski-Siegel formula says that the

weighted sum of the representations by quadratic forms in the genus is, in principle,

the product of local densities, that is,

1

wpfq

ÿ

rf 1sPgenpfq

rpn, f 1q

opf 1q
“ c˚

ź

p

αppn, fpq,

where the constant c˚ can easily be computable and αp is the local density de-

pending only on the local structure of f over Zp. Hence if the class number of

f is one, then we have a closed formula on rpn, fq. As a natural modification of

the Minkowski-Siegel formula, it was proved in [6] and [12] that the weighted sum

of the representations of quadratic forms in the spinor genus is also equal to the

product of local densities except spinor exceptional integers (see also [11] for spinor

exceptional integers).

For any prime p ∤ 2df , the action of Hecke operators T pp2q on the theta series of

the quadratic form f gives

rpp2n, fq `

ˆ
´ndf

p

˙
rpn, fq ` p ¨ r

ˆ
n

p2
, f

˙
“

ÿ

rf 1sPgenpfq

r˚pp2f 1, fq

opf 1q
rpn, f 1q.

Here, if n is not divisible by p2, then r
´

n
p2 , f

¯
“ 0, and r˚pp2f 1, fq is the number

of primitive representations of p2f 1 by f . For details, see [1] and [5].

Another important relation comes from the Watson transformation. If a uni-

modular component of the ternary form f in a Jordan decomposition over Zp is

anisotropic, then one may easily show that

rppn, fq “ rppn,Λppfqq,

where Λppfq is defined in Section 2. Hence the theta series of f completely deter-

mines the theta series of λppfq. Unfortunately if a unimodular component of the

ternary form f over Zp is isotropic, one cannot expect such a nice relation. In this

article, we consider the case when a unimodular component of the ternary form f

over Zp is isotropic.

The subsequence discussion will be conducted in the more adapted geometric

language of quadratic spaces and lattices. The term “lattice” will always refer to a

positive definite non-classic integral Z-lattice on an n-dimensional positive definite

quadratic space over Q. Here, a Z-lattice is said to be non-classic if the norm ideal

npLq of L is contained in Z. Let L “ Zx1 ` Zx2 ` ¨ ¨ ¨ ` Zxn be a Z-lattice of rank

n. We write

L » pBpxi, xjqq.

The right hand side matrix is called a matrix presentation of L. Any unexplained

notations and terminologies can be found in [7] or [8].

Let V be a (positive definite) ternary quadratic space and let L be a (non-classic)

ternary Z-lattice on V . Let p be a prime such that Lp »

ˆ
0 1

2
1
2

0

˙
K xǫy, where
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ǫ P Zˆ
p . For any nonnegative integer m, let GL,ppmq be a genus on a quadratic space

W such that each Z-lattice T P GL,ppmq satisfies

Tp »

ˆ
0 1

2
1
2

0

˙
K xǫpmy and Tq » pLpm

qq for any q ‰ p.

Here W “ V if m is even, W “ V p otherwise. The aim of this article is to show

that if T P GL,ppmq for m “ 0 or 1, then there are rational numbers ai, bi such that

rpn, T q “
ÿ

rSisPGL,ppm`1q

`
airppn, Siq ` birpp3n, Siq

˘
` psome extra termq.

In Section 4, we prove this statement in each case and compute the rational numbers

ai’s, bi’s and the extra term explicitly. For the case whenm “ 2, we give an example

such that the above statement does not hold, and prove that the above statement

still holds for m “ 2 if we additionally assume that n is divisible by p. In the case

when m ě 3, we show that under some restriction, the above statement holds if

we replace rpn, T q by rpp2n, T q ´ prpn, T q, and for any integer n not divisible by p,

both rpn, T q and rppn, T q can be written as a linear summation of rppn, Sq’s and

rpn, Sq’s, respectively, for S P GL,ppm ` 1q.

In some cases, the extra term in the above equation can be removed. To de-

termine when it happens, we need to know some structure of the graph GL,ppmq

defined by the equivalence classes in GL,ppmq and GL,ppm ` 1q. The definition and

basic facts on the graph GL,ppmq will be treated in Section 3.

For any integer a, we say that a
2
is divisible by a prme p if p is odd and a ” 0

pmod pq, or p “ 2 and a ” 0 pmod 4q.

2. A generalization of Watson transformation

Let L be a ternary Z-lattice. Recall that we are assuming that a (quadratic) Z-

lattice is non-classic and positive definite. For any prime p, the λp-transformation

(or Watson transformation) is defined as follows:

ΛppLq “ tx P L : Qpx ` zq ” Qpzq pmod pq for all z P Lu.

Let λppLq be the primitive lattice obtained from ΛppLq by scaling V “ L b Q by a

suitable rational number. Assume that p is odd. If the unimodular component in

a Jordan decomposition of Lp is anisotropic, it is well known that

(2.1) Rppn, Lq “ Rppn,ΛppLqq.

Hence rpn, λppLqq “ rppn, Lq if pZp-modular component of Lp is nonzero, and

rpn, λppLqq “ rpp2n, Lq otherwise. One may easily show that (2.1) still holds for

p “ 2 unless

L2 »

ˆ
0 1

2
1
2

0

˙
K xαy, pα P Z2q.

The readers are referred to [3] for more properties of the operators Λp.

Let L be a ternary Z-lattice and let p be a fixed prime. In the remaining of this

section, we always assume that in a Jordan splitting of Lp,

(2.2) the
1

2
Zp-modular component is non-zero isotropic.
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The purpose of this article is to find similar results to (2.1) under this assumption.

To do this, we generalize Watson’s transformation in various directions. Since
ˆ
1 1

2
1
2

1

˙
K xδy »

ˆ
0 1

2
1
2

0

˙
K x5δy over Z2

for any δ P Zˆ
2 , any Z-lattice L such that L2 is isometric to the above will also be

considered when p “ 2.

Definition 2.1. Assume that p is odd. For ǫ “ 0 or ˘1, we define

Sppǫ, Lq “

#
x P L

ˇ̌
ˇ̌
ˇ

ˆ
Qpxq

p

˙
“ ǫ

+
.

We also define S2p0, Lq “ tx P L : Qpxq ” 0 pmod 2qu and S2p˚, Lq “ L´ S2p0, Lq.

Let B “ tx1, x2, x3u be a (ordered) basis of a ternary Z-lattice L and p be a

prime. We define a natural projection map

φB : L ´ pL Ñ pL{pLq˚ Ñ P2,

where P2 is the 2-dimensional projective space over the finite field Fp. The set

φBpSppǫ, Lq ´ pLq is denoted by sBp pǫ, Lq for any ǫ P t0, 1,´1u if p is odd and

ǫ P t0, ˚u otherwise. If the basis B is obvious, we will omit it. For each element

s P P2, we define a Z-sublattice Ls :“ φ´1
B

psq Y pL of L, and

Ωppǫ, Lq “ tLs | s P sBp pǫ, Lqu.

Note that if T : B Ñ C is the transition matrix between ordered bases, then one

may easily show that T psBp pǫ, Lqq “ sCp pǫ, Lq. Hence the set Ωppǫ, Lq is independent

of choices of the basis for L.

Lemma 2.2. Assume that a ternary Z-lattice L and a prime p satisfies the condi-

tion (2.2). If 4dLp P Zˆ
p , then

|spp0, Lq| “ p ` 1, |spp˘1, Lq| “
p

´
p ˘

´
´dL
p

¯¯

2
and s2p˚, Lq “ 4

and

|spp0, Lq| “ 2p ` 1, |spp1, Lq| “ |spp´1, Lq| “
ppp ´ 1q

2
and s2p˚, Lq “ 2,

otherwise.

Proof. Since everything is trivial for p “ 2, we assume that p is odd. For the

unimodular case, see Theorem 1.3.2 of [7]. Assume that Lp is not unimodular. Fix

an ordered basis B “ tx1, x2, x3u of L such that

pBpxi, xjqq ” diagp1,´1, pordppdLqδq pmod pordppdLq`1q,

for some δ P Z ´ pZ. Note that such a basis always exists by the Weak Approxi-

mation Theorem. Assume that x “ a1x1 ` a2x2 ` a3x3 P Spp0, Lq. Then a21 ” a22
pmod pq. Therefore

sBp p0, Lq “ tp0, 0, 1q, p1,˘1, dqu, where d P Fp.
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The lemma follows from this. The case when ǫ “ ˘1 can be done in a similar

manner. �

Lemma 2.3. Under the same assumptions given above, assume that p is an odd

prime. If ǫ ‰ 0 or ǫ “ 0 and Lp is unimodular, then every Z-lattice M P Ωppǫ, Lq

is contained in one genus. Furthermore for the former case,

Mq »

#
xδ,´p2δ,´p2dLy if q “ p,

Lq otherwise,

where δ P Zˆ
p such that

´
δ
p

¯
“ ǫ and,

Mq »

#
xp,´p,´p2dLy if q “ p,

Lq otherwise,

for the latter case. If Lp is not unimodular and ǫ “ 0 then every Z-lattice M P

Ωpp0, Lq is exactly contained in two genera. More precisely

Mq »

#
xp2,´p2,´dLy or xp,´p,´p2dLy if q “ p,

Lq otherwise.

Proof. Let L “ Zx1 `Zx2 `Zx3 and M P Ωppǫ, Lq. Since pL Ă M , we may assume

without loss of generality that M “ Zpx1 ` b2x2 ` b3x3q ` Zppx2q ` Zppx3q. First

assume that ǫ ‰ 0. Then we may further assume that
´

Qpx1`b2x2`b3x3q
p

¯
“ ǫ. Since

Qpx1 ` b2x2 ` b3x3q P Zˆ
p ,

Mp » xQpx1 ` b2x2 ` b3x3qy K mp

for some binary sublattice mp of Mp whose scale is p
2Zp. The assertion follows from

this. Assume that ǫ “ 0 and Lp is unimodular. In this case we may assume that

Qpx1 ` b2x2 ` b3x3q P pZp. Then Bpx1 ` b2x2 ` b3x3, x2q or Bpx1 ` b2x2 ` b3x3, x3q

is a unit in Zp, for Lp is unimodular. The assertion follows from this.

Finally assume that Lp is not unimodular and ǫ “ 0. In this case we may

assume that the ordered basis B “ tx1, x2, x3u satisfies every condition in Lemma

2.2. Then by a direct computation we know Lp0,0,1q P Ωpp0, Lq satisfies the first

local property and the others satisfy the second local property. �

Lemma 2.4. Under the same assumptions given above, assume that p “ 2. Let M

be a Z-lattice in Ω2pǫ, Lq. If ´4dL2 “ δ P Zˆ
2 , then

M2 »

$
’’’’&
’’’’%

˜
0 1

1 0

¸
K x4δy if ǫ “ 0,

x1,´1, 4δy or

˜
0 2

2 0

¸
K xδy otherwise,
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and Mq » Lq for any prime q ‰ 2. If ´4dL2 “ δ P 2Z2, then

M2 »

$
’’&
’’%

˜
0 1

1 0

¸
K x4δy or

˜
0 2

2 0

¸
K xδy if ǫ “ 0,

x1,´1, 4δy otherwise,

and Mq » Lq for any prime q ‰ 2.

Proof. The proof is quite similar to the above. �

Lemma 2.5. Assume that a ternary Z-lattice L and a prime p satisfies the condi-

tion (2.2). For any positive integer n such that
´

n
p

¯
“ ǫ,

rpn, Lq “
ÿ

MPΩppǫ,Lq

rpn,Mq ´ p|sppǫ, Lq| ´ 1qrpn, pLq.

This equality also holds for p “ 2 if either ǫ “ 0 and n is even or ǫ “ ˚ and n is

odd.

Proof. The lemma follows from the facts that

tx P Sppǫ, Lq ´ pL | Qpxq “ n, φpxq “ su “ tx P Ls | Qpxq “ nu ´ Rpn, pLq,

and

Ls X Lt “ pL if and only if s ‰ t,

for any s, t P P2. �

Under the same assumptions given above, one may easily show that dM “ p4dL

for any M P Ωppǫ, Lq. Furthermore L{M » Z{pZ ‘ Z{pZ.

Remark 2.6. If a 1
2
Zp-modular component of Lp is zero or anisotropic, the above

lemma implies the equation (2.1). So we may consider the above lemma as a natural

generalization of Watson’s transformation.

Let L and ℓ be ternary Z-lattices such that dℓ “ p4dL. We define

R̃pℓ, Lq “ tσ : ℓ Ñ L | L{σpℓq » Z{pZ ‘ Z{pZu and r̃pℓ, Lq “ |R̃pℓ, Lq|.

One may easily show that |tM P Ωppǫ, Lq | M » ℓu| “ r̃pℓ, Lq{opℓq for any ǫ P

t0,˘1u or ǫ P t0, ˚u.

Lemma 2.7. For any ternary Z-lattices ℓ and L such that dℓ “ p4dL, we have

r̃pℓ, Lq “ rppℓ#, L#q “ rppL, ℓq.

Proof. Assume that T P R̃pℓ, Lq. Then T tMLT “ Mℓ and pT´1 is an integral

matrix. Since

ppT´1qM´1
L ppT´1qt “ p2M´1

ℓ ,

ppT´1qt P Rppℓ#, L#q. Conversely if StM´1
L S “ p2M´1

ℓ , then dpSq “ ˘p. Hence

pS´1 is an integral matrix and ppS´1qt P R̃pℓ, Lq. This completes the proof. �
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Assume that a ternary Z-lattice L and a prime p satisfies the condition (2.2).

In the remaining of this section, we additionally assume that ordpp4 ¨ dLq ě 2. Let

K “ λppLq and let

genKp pLq “ tL1 P genpLq : λppL1q » Ku.

For any integer n, we also define

rpn, genKp pLqq “
ÿ

rL1sPgenpLq
λppL1q»K

rpn, L1q

opL1q
.

In fact, every Z-lattice in genKp pLq is isometric to one of Z-lattices in

ΓL
p pΛppLqq “ tM Ă K | M P genpLqu.

Furthermore, the isometry group OpKq acts on ΓL
p pΛppLqq. Each orbit under this

action consists of all isometric lattices in ΓL
p pΛppLqq, and hence there are exactly

opKq
opLq lattices that are isometric to L in ΓL

p pΛppLqq. There are exactly p2 ` p ` 1

sublattices of K with index p. They are, in fact,

K0 “ Zppx1q ` Zx2 ` Zx3, K1,u “ Zpx1 ` ux2q ` Zppx2q ` Zx3 p0 ď u ď p ´ 1q

and

K2,α,β “ Zpx1 ` αx3q ` Zpx2 ` βx3q ` Zppx3q p0 ď α, β ď p ´ 1q.

Among these sublattices of K, there are exactly ppp`1q
2

lattices (p2 lattices) that

are contained in the genus of L if ordpp4 ¨ dLq “ 2 (ordpp4 ¨ dLq ě 3, respectively)

(for details, see [4]).

Proposition 2.8. Assume that Z-lattices L and K and a prime p satisfies the

above condition. Then for any integer n not divisible by p, we have

rpn, genK
p pLqq “

$
’’’’’’’&
’’’’’’’%

p ´
´

´ndK
p

¯

2

rpn,Kq

opKq
if p ‰ 2 and ordpp4 ¨ dLq “ 2,

rpn,Kq ´ rpn,Λ1pKqq

opKq
if p “ 2 and ordpp4 ¨ dLq “ 2,

p
rpn,Kq

opKq
if ordpp4 ¨ dLq ě 3,

where Λ1pKq “ tx P K : Bpx,Kq Ă Zu is a sublattice of K.

Proof. Since proofs are quite similar to each other, we only provide the proof of the

first case. Assume that Qpx1q “ n for some x1 P K. We will count the number of

lattices containing the vector x1 in ΓL
p pΛppLqq. Note that for any vector y P K and

any integer d not divisible by p, dy P M if and only if y P M for anyM P ΓL
p pΛppLqq.

Hence we may assume that x1 is a primitive vector in K. Then there is a basis

tx1, x2, x3u of K such that for some integer t not divisible by p,

pBpxi, xjqq ” diagpn, n, tq pmod pq.

Among all sublattices of K with index p that are contained in the genus of L, those

Z-lattices containing x1 areK2,0,β, for any β satisfying
´

´n2´nβ2dK
p

¯
“ 1, and K1,0
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only when
´

´ndK
p

¯
“ 1. Therefore one may easily show that the total number of

such lattices is
p´p ´ndK

p q
2

. The proposition follows from

ÿ

MPΓL
p pλppLqq

rpn,Mq “
ÿ

rMsPgenK
p pLq

opKq

opMq
rpn,Mq “

p ´
´

´ndK
p

¯

2
rpn,Kq.

This completes the proof. �

Proposition 2.9. Under the same assumption given above, if n is divisible by p,

then we have

rpn, genK
p pLqq “

$
’’’’&
’’’’%

p
rpn,Kq

opKq
`

ppp ´ 1q

2

r
´

n
p2 ,K

¯

opKq
if ordpp4 ¨ dLq “ 2,

p
rpn,Kq

opKq
` p2

r
´

n
p2 ,K

¯

opKq
´ p

rpn,ΛppKqq

opKq
otherwise.

Proof. First we define

R˚pn,Kq “ tx P K | Qpxq “ n, x is primitive as a vector in Kpu,

r˚pn,Kq “ |R˚pn,Kq|, and r✸pn,Kq “ rpn,Kq ´ r˚pn,Kq. Let x1 P K be a vector

such that Qpx1q “ n. We will compute the number of lattices containing x1 in

ΓL
p pΛppLqq. By the similar reasoning to the above, we may assume that there is a

primitive vector Ăx1 P K and a nonnegative integer k such that x1 “ pkĂx1. If k ą 0,

then x1 is contained in all lattices in ΓL
p pΛppLqq .

Assume that k “ 0. If ordpp4 ¨ dLq “ 2, then there is a basis tx1, x2, x3u of K

such that

pBpxi, xjqq ”

¨
˝
0 b 0

b 0 0

0 0 e

˛
‚ pmod pq,

where 2b and e are integers not divisible by p. Among all sublattices of K with

index p that are contained in the genus of L, those Z-lattices containing x1 are

K2,0,β for any β. Therefore if ordpp4 ¨ dLq “ 2, we have

ÿ

rMsPgenK
p pLq

opKq

opMq
rpn,Mq “ p ¨ r˚pn,Kq `

ppp ` 1q

2
r˛pn,Kq

“ p ¨ rpn,Kq `
ppp ´ 1q

2
r

ˆ
n

p2
,K

˙
.

Suppose that ordpp4 ¨ dLq ě 3. If there is a vector y P K such that 2Bpx1, yq ı 0

pmod pq, then there are exactly p lattices in ΓL
p pΛppLqq containing x1. However if

2Bpx1,Kq Ă pZ, then there does not exist a lattice in ΓL
p pΛppLqq that contains x1.

Note that

|tx P R˚pn,Kq | 2Bpx,Kq Ă pZu| “ rpn,ΛppKqq ´ r✸pn,Kq.

Therefore we have
ÿ

rMsPgenK
p pLq

opKq

opMq
rpn,Mq “ pprpn,Kq ´ rpn,ΛppKqqq ` p2 ¨ r✸pn,Kq.
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This completes the proof. �

3. Finite (multi-) graphs and ternary quadratic forms

Let V be a (positive definite) ternary quadratic space and let L be a (non-classic)

ternary Z-lattice on V . Let p be a prime such that Lp »

ˆ
0 1

2
1
2

0

˙
K xǫy, where

ǫ P Zˆ
p . For any nonnegative integer m, let GL,ppmq be a genus on W such that

each Z-lattice T P GL,ppmq satisfies

Tp »

ˆ
0 1

2
1
2

0

˙
K xǫpmy and Tq » pLpm

qq for any q ‰ p.

Here W “ V if m is even, W “ V p otherwise.

Lemma 3.1. Let T P GL,ppmq and S P GL,ppm` 1q be ternary Z-lattices. Then we

have

ÿ

rNsPGL,ppm`1q

r̃pNp, T q

opNq
“

#
p ` 1 if m “ 0,

2p otherwise
and

ÿ

rMsPGL,ppmq

rpMp, Sq

opMq
“ 2.

Proof. Note that
ř

rNsPGL,ppm`1q
r̃pNp,T q
opNq is the number of sublattices X of T such

that

T {X » Z{pZ ‘ Z{pZ and X
1

p P GL,ppm ` 1q.

Hence the first equality is a direct consequence of Lemmas 2.2, 2.3 and 2.4.

To prove the second equality, it suffices to show that there are exactly two

sublattices of S with index p whose norm is pZ. By Weak Approximation Theorem,

there exists a basis tx1, x2, x3u for S such that

pBpxi, xjqq ”

ˆ
0 1

2
1
2

0

˙
K xpm`1δy pmod pm`2q,

where δ is an integer not divisible by p. Then for the following two sublattices

defined by

Γp,1pSq “ Zpx1 ` Zx2 ` Zx3, Γp,2pSq “ Zx1 ` Zpx2 ` Zx3,

one may easily show that Γp,ipSq
1

p P GL,ppmq for any i “ 1, 2. Furthermore, norms

of all the other sublattices of S with index p are not contained in pZ. This completes

the proof. �

Now we define a multi-graph GL,ppmq as follows: the set of vertices in GL,ppmq is

the set of equivalence classes in GL,ppmq, say, trT1s, rT2s, . . . , rThsu. The set of edges

is exactly the set of equivalence classes in GL,ppm`1q, say, trS1s, rS2s, . . . , rSksu. For

each equivalence class rSws P GL,ppm`1q, two vertices contained in the edge named

by rSws are defined by rΓp,1pSwq
1

p s and rΓp,2pSwq
1

p s, where the lattice Γp,ipSwq
1

p

that is defined in Lemma 3.1 is contained in GL,ppmq. Note that the graph GL,ppmq
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is, in general, a multi-graph that might have a loop. We define an h ˆ k integer

matrix ML,ppmq “ pmijq as follows:

mij “

$
’’&
’’%

2 if rSjs is a loop of the vertex rTis,

1 if rSjs is not a loop of the vertex rTis, though it contains rTis,

0 otherwise.

Therefore ML,ppmq is the incidence matrix of GL,ppmq if the graph GL,ppmq is

simple.

For any Z-lattice T P GL,ppmq, we define

ΦppT q “ tS P GL,ppm ` 1q : Γp,ipSq
1

p “ T for some i “ 1, 2u

and

ΨppT q “ tM P GL,ppm ` 2q : λppMq “ T u.

Then Lemma 3.1 implies that |ΦppT q| “ p ` 1 if m “ 0, |ΦppT q| “ 2p otherwise.

Lemma 3.2. Let T P GL,pp0q and S, S1 P ΦppT q pS ‰ S1q be ternary Z-lattices

on V and V p, respectively. Then there is a unique Z-lattice M P ΨppT q such that

tΓp,1pMq
1

p ,Γp,2pMq
1

p u “ tS, S1u.

Proof. For any S, S1 P ΦppT q, we have pS Ă S1. Furthermore since S ‰ S1 and

ordpp4dSq “ 1, S1{pS » Z{pZ ‘ Z{p2Z. Therefore, there is a basis x1, x2, x3 for S1

such that

S1 “ Zx1 ` Zx2 ` Zx3, pS “ Zx1 ` Zpx2 ` Zp2x3

and

pBpxi, xjqq “

¨
˝
p2a pb d

pb pc e

d e f

˛
‚,

where a, c, f P Z, b, d, e P 1
2
Z and p ∤ 2d. Define a Z-lattice

M “

ˆ
Z

ˆ
x1

p

˙
` Zx2 ` Zx3

˙p

P GL,pp2q.

Then one may easily show that λppMq “ T and tΓp,1pMq
1

p ,Γp,2pMq
1

p u “ tS, S1u.

As pointed out earlier, the number of Z-lattices M 1 P GL,pp2q such that λppM 1q “ T

for any T P GL,pp0q is ppp`1q
2

. Furthermore for any such a Z-lattice M 1, we have

Γp,ipM
1q

1

p P ΦppT q for any i “ 1, 2 and |ΦppT q| “ p ` 1. Now the uniqueness of M

follows from this observation. �

The above lemma says that if T P GL,pp0q, then there is always an edge containing

rSs and rS1s for any S, S1 P ΦppT q. However this is not true in general if T P GL,ppmq

for a positive integer m.

Lemma 3.3. For a positive integer m, let T P GL,ppmq and S, S1 P ΦppT q be

ternary Z-lattices on V and V p, respectively. If

λppSq “ Γp,1pT q
1

p and λppS1q “ Γp,2pT q
1

p ,
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then there is a unique Z-lattice M P ΨppT q such that tΓp,1pMq
1

p ,Γp,2pMq
1

p u “

tS, S1u.

Proof. By Weak Approximation Theorem, there is a basis x1, x2, x3 for T such that

pBpxi, xjqq ”

ˆ
0 1

2
1
2

0

˙
K xpmδy pmod pm`1q,

where δ is an integer not divisible by p. We may assume that

Γp,1pT q
1

p “ pZpx1 ` Zx2 ` Zx3q
1

p , Γp,2pT q
1

p “ pZx1 ` Zpx2 ` Zx3q
1

p .

One may easily check that

ΦppT q “ tM˚,β “pZpx1 ` Zpx2 ` βx3q ` Zpx3q
1

p : 0 ď β ď p ´ 1u

Y tMα,˚ “ pZpx1 ` αx3q ` Zpx2 ` Zpx3q
1

p : 0 ď α ď p ´ 1u

and

ΨppT q “ tMα,β “ Zpx1 ` αx3q ` Zpx2 ` βx3q ` Zpx3 : 0 ď α, β ď p ´ 1u.

Since λppM˚,βq “ Γp,1pT q
1

p and λppMα,˚q “ Γp,2pT q
1

p for any 0 ď α, β ď p ´ 1,

there are τ, η such that S “ M˚,τ and S1 “ Mη,˚.

Γp,1pT q
1

p

T

Γp,2pT q
1

p

S “ M˚,τ

Mη,τ

S1 “ Mη,˚

λp

λp

λp

3.1 Figure

Now, one may easily check that Mη,τ is the unique lattice in ΨppT q satisfying

tΓp,1pMη,τ q
1

p ,Γp,2pMη,τ q
1

p u “ tM˚,τ ,Mη,˚u.

This completes the proof. �

Lemma 3.4. For an integer m ě 2, let M1,M2 P GL,ppmq be distinct Z-lattices

such that λppM1q “ λppM2q “ T . Then there is a path from rM1s to rM2s of length

4.



12 JANGWON JU, INHWAN LEE AND BYEONG-KWEON OH

Proof. Note that if tΓp,1pM1q,Γp,2pM1qu “ tΓp,1pM2q,Γp,2pM2qu, then M1 “ M2.

Hence, without loss of generality, we may assume that S1 “ Γp,1pM1q
1

p is different

from S2 “ Γp,2pM2q
1

p . If m ě 3, then

tλppΓp,1pMiq
1

p q, λppΓp,2pMiq
1

p qu “ tΓp,1pT q
1

p ,Γp,2pT q
1

p u

for any i “ 1, 2. Hence we further assume that λppS1q ‰ λppS2q. Then by Lem-

mas 3.2 and 3.3, there is a Z-lattice M P GL,ppmq such that λppMq “ T and

tΓp,1pMq
1

p ,Γp,2pMq
1

p u “ tS1, S2u. We define Z-lattices T1 and T2 satisfying

tΓp,1pS1q
1

p ,Γp,2pS1q
1

p u “ tT, T1u and tΓp,1pS2q
1

p ,Γp,2pS2q
1

p u “ tT, T2u.

Let M 1
i P GL,ppmq be a Z-lattice in ΦppSiq such that λppM 1

iq “ Ti for i “ 1, 2. Then

by Lemma 3.3, there are Z-lattices N1, N2, N
1
1, N

1
2 such that two vertices rMis and

rM 1
is are connected by the edge rNis, and two vertices rM s and rM 1

is are connected

by the edge rN 1
is for i “ 1, 2. Therefore two vertices rM1s and rM2s are connected

by a path of length 4 (see Figure 3.2).

T1

S1

T

S2

T2

M 1
1

N1

M1

N 1
1

M

N 1
2

M 1
2

N2

M2

3.2 Figure

The Lemma follows from this. �

Lemma 3.5. For an integer m ě 2, let rM s, rM 1s be vertices of the graph GL,ppmq.

Then there is a path from rM s to rM 1s of length eprM s, rM 1sq in GL,ppmq if and

only if there is a path from rλppMqs to rλppM 1qs of length eprλppMqs, rλppM 1qsq in

GL,ppm ´ 2q. Furthermore, in both cases, there is a path satisfying

eprM s, rM 1sq ” eprλppMqs, rλppM 1qsq pmod 2q.

Proof. Note that “only if” part is trivial. Assume that rλppMqs and rλppM 1qs are

connected by a path with edges rS1s, rS2s, . . . , rSks as in Figure 3.3, where

tΓp,1pSiq
1

p ,Γp,2pSiq
1

p u “ tTi´1, Tiu

for any i “ 2, 3, . . . , k ´ 1.
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λppMq

S1

T1

M0M M1

. . .

. . .

. . . Tk´1

Sk

λppM 1q

Mk´1 Mk M 1

λp

λp λp
λpλp λp

3.3 Figure

Then for any i “ 0, 1, . . . , k, there are Z-lattices Mi such that M0 P ΨppλppMqqX

ΦppS1q, Mk P ΨppλppM 1qq XΦppSkq, and Mj P ΨppTjq XΦppSjq XΦppSj`1q for any

j “ 1, 2, . . . , k ´ 1. Now by Lemma 3.3, there are Z-lattices Ni such that

tΓp,1pNiq
1

p ,Γp,2pNiq
1

p u “ tMi´1,Miu and λppNiq “ Si

for any i “ 1, 2, . . . , k. Since both rM s, rM0s and rMks, rM 1s are connected by a

path of length 4 by Lemma 3.4, rM s and rM 1s are connected by a path of length

k ` 8. �

We investigate the graph GL,pp0q in more detail. Let T P GL,pp0q be a Z-lattice.

Note that the graph ZpT, pq constructed in [9] is slightly different from our graph

(see also [2]). In fact, the graph ZpT, pq is a tree having infinitely many vertices.

However our graph is finite and might have a loop. Two vertices rTis, rTjs P GL,pp0q

are connected by an edge if and only if there are Z-lattices T 1
i P rTis and T 1

j P rTjs

such that T 1
i and T 1

j are connected by an edge in the graph ZpT, pq. If two lattices

Ti, Tj P GL,pp0q are spinor equivalent, then both rTis and rTjs are contained in

the same connected component. Moreover, each connected component of GL,pp0q

contains at most two spinor genera, and it contains only one spinor genus if and

only if jppq P PDJT
Q , where D is the set of positive rational numbers and

jppq “ pjqq P JQ such that jp “ p and jq “ 1 for any prime q ‰ p.

We say that GL,pp0q is of O-type if each connected component of GL,pp0q contains

only one spinor genus, and it is of E-type otherwise. If GL,pp0q is of E-type, then

adjacent classes are contained in different spinor genera (for details, see [2]), that

is, each connect component of the graph GL,pp0q is a bipartite graph.

Assume that

(3.1) GL,pp0q “ trT1s, rT2s . . . , rThsu and GL,pp1q “ trS1s, rS2s, . . . , rSksu

are ordered sets of equivalence classes in each genus. We define

M “

ˆ
rpT p

i , Sjq

opTiq

˙
P Mh,kpZq and N “ NL,pp0q “

ˆ
rpT p

i , Sjq

opSjq

˙
P Mh,kpZq.

In fact, M equals to ML,pp0q, which is defined earlier. There is a nice relation

between M, N and the Eichler’s Anzahlmatrix πppT q defined in [5].
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Definition 3.6. Under the assumptions given above, the matrix

πppT q “

ˆ
rppTi, Tjq

opTiq
´ δij

˙
p1 ď i, j ď hq

is called the Eichler’s Anzahlmatrix of T at p.

Note that πppT q is independent of the choice of the lattice T P GL,pp0q.

Lemma 3.7. For any Z-lattices T P GL,pp0q and S P GL,pp1q, we have rpSp, T q “

rpT p, Sq.

Proof. First we show that rRpSp, T q “ RpSp, T q. Suppose that there is a σ P

RpSp, T q such that T {σpSpq » Z{p2Z. Then there is a basis for T such that

T “ Zx1 ` Zx2 ` Zx3 and σpSpq “ Zx1 ` Zx2 ` Zpp2x3q.

Since npσpSpqq Ă pZ, we have

Qpx1q ” Qpx2q ” 2Bpx1, x2q ” 0 pmod pq.

This is a contradiction to the fact that 4dT is not divisible by p. Therefore the

lemma follows from Lemma 2.7. �

For Z-lattices X1, X2, Y1 and Y2, we write pX1, X2q » pY1, Y2q if X1 » Y1 and

X2 » Y2, or X1 » Y2 and X2 » Y1.

Proposition 3.8. Under the notations and assumptions given above, we have

πppT q ` pp ` 1qI “ M ¨ Nt.

Proof. Let Uij be the set of sublattices X of Tj such that

X » pTi and Tj{X fi Z{pZ ‘ Z{pZ ‘ Z{pZ,

and let Vij be the set of sublattices Y of Tj such that

Y
1

p P GL,pp1q and
´
Γp,1pY

1

p q,Γp,2pY
1

p q
¯

» pT p
i , T

p
j q,

where Γp,ipY
1

p q is a sublattice of Y
1

p with index p defined in Lemma 3.1. Note

that πppT qij “ |Uij |. Now we define a map Φ : Uij ÞÑ Vij as follows. Assume that

X P Uij . Then one may easily show that Tj{X » Z{pZ ‘ Z{p2Z. Hence there is a

basis x1, x2, x3 for Tj such that

Tj “ Zx1 ` Zx2 ` Zx3 and X “ Zx1 ` Zppx2q ` Zpp2x3q.

Since the integer 4dpTjq is not divisible by p and Qpx1q ” 0 pmod p2q, 2Bpx1, x2q ”

0 pmod pq, neither Qpx2q nor 2Bpx1, x3q is divisible by p. Define ΦpXq :“ Y “

Zx1 ` Zppx2q ` Zppx3q. Clearly, Y “ ΛppTj X 1
p
Xq. Hence it is independent of the

choice of basis for Tj . Furthermore one may easily check that ΦpXq “ Y P Vij .

Conversely, there are exactly two sublattices of Y
1

p with index p whose norm is

contained in pZ, and one of them is equal to T
p
j . If we define the other one, as a
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sublattice of Y , by ΨpY q, then Φ ˝ Ψ “ Ψ ˝ Φ “ Id. Therefore πppT qij “ |Vij |.

Now from the definition,

|Vij | “
kÿ

w“1

rpSp
w , Tjq

opSwq
ηw,

where

ηw “

#
1 if pΓp,1pSwq,Γp,2pSwqq » pT p

j , T
p
i q,

0 otherwise.

Since rpT p
j , Swq “ rpSp

w , Tjq by Lemma 3.7,

|Vij | “
kÿ

w“1

rpSp
w , Tjq

opSwq

ˆ
rpT p

i , Swq

opTiq
´ δij

˙
“

#řk
w“1MiwpNtqwj if i ‰ j,

řk
w“1MiwpNtqwj ´ pp ` 1q if i “ j,

by Lemma 3.1. The proposition follows from this. �

The following theorem states that the rank of ML,pp0q “ M is related with some

properties of the graph GL,pp0q.

Theorem 3.9. The followings are all equivalent:

(1) GL,pp0q is of O-type;

(2) rankpMq “ h;

(3) πppT q does not have an eigenvalue ´pp ` 1q;

(4) g`pGL,pp0qq “ g`pGL,pp1qq.

Furthermore, if GL,pp0q is of E-type, then g`pGL,pp0qq “ 2g`pGL,pp1qq, where

g`pGL,pp0qq is the number of spinor genera in GL,pp0q.

Proof. (1) ô (2): Assume that GL,pp0q is of O-type. Without loss of generality,

we may assume that GL,pp0q is connected, that is, every Z-lattice in GL,pp0q is

spinor equivalent. It is well known that the rank of an incidence matrix of a

connected graph GpV,Eq over F2 is |V | ´ 1. Furthermore if the graph G contains

an odd cycle, then the rank of the incidence matrix of G over Q is equal to the

number of vertices. Hence it suffices to show that the graph GL,pp0q contains an

odd cycle, even though it might contains a loop. Assume that rT1s and rT2s be

adjacent vertices in GL,pp0q. Since they are spinor equivalent, there is an isometry

σ P OpV q and Σ “ pΣpq P J 1
V such that T1 “ σΣpT2q, where V “ Q b T1. Let

Φ “ tq P P ´ tpu | pσ´1pT1qqq “ pT2qqu and Ψ “ P ´ pΦ Y tpuq, where P is the

set of all primes. Now by Strong Approximation Theorem for Rotations, for any

ǫ ą 0, there is a rotation τ P O1pV q such that

}τ ´ Σq}q ă ǫ for any q P Ψ and }τ}q “ 1 for any q P Φ.

Therefore we have

σ´1pT1qq “ τpT2qq for any q ‰ p and Σp ˝ τ´1pτpT2qpq “ σ´1pT1qp,

where Σp ˝ τ´1 P O1pVpq. Consequently, there is an even integer n and a basis

tx1, x2, x3u for τpT2q such that

τpT2q “ Zx1 ` Zx2 ` Zx3 and σ´1pT1q “ Zppnx1q ` Zpp´nx2q ` Zx3,
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by Lemma 4.2 of [2]. This implies that there is a path from rT1s to rT2s with even

edges, and hence the graph GL,pp0q contains an odd cycle.

Assume that GL,pp0q is of E-type. Since any two adjacent vertices are contained

in different spinor genera in this case, it is a bipartite (multi-) graph. Therefore

the rank of the matrix ML,pp0q is h ´ 1.

(2) ô (3) : Note that rankpMq “ rankpMNtq. Hence the assertion follows directly

from Proposition 3.8.

(1) ô (4) : Note that g`pLq “ rJQ : PDJL
Q s for any genus L with rank greater

than 2. Since

PDJ
GL,pp1q
Q “ PDJ

GL,pp0q
Q Y jppq ¨ PDJ

GL,pp0q
Q ,

g`pGL,pp1qq “ g`pGL,pp0qq if and only if jppq P PDJ
GL,pp0q
Q , that is, GL,pp0q is of

O-type. Furthermore if GL,pp0q is of E-type, then g`pGL,pp0qq “ 2g`pGL,pp1qq. �

Now, we consider the general case. For any positive integer m, we say that a

graph GL,ppmq is of E-type if m is even and GL,pp0q is of E-type, and O-type

otherwise.

Assume that GL,ppmq is of E-type and M P GL,ppmq. Since the map λ
m
2

p :

spnpKq Ñ spnpλ
m
2

p pKqq is surjective for any K P GL,ppmq, there is a Z-lattice

M 1 P GL,ppmq such that M 1 R spnpMq and rM 1s is connected to rM s by a path by

Lemma 3.5. Furthermore, since g`pGL,ppmqq “ g`pGL,pp0qq for any even m, every

Z-lattice M 1 satisfying the above condition forms a single spinor genus. From the

existence of such a Z-lattice rM 1s, we may define

CspnpMq “

#
spnpMq if GL,ppmq is of O-type,

spnpMq Y spnpM 1q otherwise,

Lemma 3.10. For a Z-lattice M P GL,ppmq, the set of all vertices in the connected

component of GL,ppmq containing rM s is the set of equivalence classes in CspnpMq.

Proof. First, we prove the case when m “ 1. Assume that M 1 P spnpMq. Then

there are σ P PV and Σ P J 1
V such that M 1 “ σΣM (see [8]). Since Γp,ipMq’s are

the only sublattices of M with index p whose norm is pZ, we have

tσΣpΓp,1pMq
1

p q, σΣpΓp,2pMq
1

p qu “ tΓp,1pM 1q
1

p ,Γp,2pM 1q
1

p u.

Hence Γp,1pMq
1

p P spnpΓp,1pM 1q
1

p q Y spnpΓp,2pM 1q
1

p q. Therefore by Lemma 3.2,

rM 1s and rM s are connected by a path in GL,pp1q. Furthermore, as edges of the

graph GL,pp0q, rM s and rM 1s are contained in the same connected component.

Since the number of connected components in GL,pp0q equals to g`pGL,pp1qq by

Theorem 3.9, each spinor genus in GL,pp1q forms a connected component in GL,pp1q.

Furthermore, since g`pGL,pp2m ` 1qq “ g`pGL,pp1qq, spnpλ
m
2

p pMqq “ spnpλ
m
2

p pM 1qq

if and only if spnpMq “ spnpM 1q for any M,M 1 P GL,pp2m ` 1q. Therefore by

Lemma 3.5, the set of all vertices in the connected component of GL,ppmq containing

rM s is the set of equivalence classes in CspnpMq for any odd m. The proof of even

case is quite similar to this. �
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Theorem 3.11. For any non-negative integer m, the graph GL,ppmq has an odd

cycle (including a loop) if and only if GL,ppmq is of O-type.

Proof. We already proved the case when m “ 0 in Theorem 3.9. Assume that

m “ 1. Let T P GL,pp0q be any Z-lattice. Then there are at least three Z-lattices,

say S1, S2, S3, in ΦppT q XGL,pp1q. Now by Lemma 3.2, rSis and rSjs are connected

by an edge for any 1 ď i ‰ j ď 3. Hence the graph GL,pp1q contains a cycle of

length 3 or a loop. For the general case, we may apply Lemma 3.5 to prove the

theorem. �

4. Representations of integers by ternary quadratic forms

Throughout this section, we assume that a Z-lattice L and a prime p satisfies

all conditions given in Section 3. For a nonnegative integer m, let T P GL,ppmq

be a ternary Z-lattice and let S P GL,ppm ` 1q be a ternary Z-lattice such that

rpT p, Sq ‰ 0. This implies that rT s is one of vertices contained in the edge rSs in

the graph GL,ppmq. We assume that

(4.1) CspnpT q “ trT1s, rT2s . . . , rTusu and CspnpSq “ trS1s, rS2s, . . . , rSvsu

are ordered sets of equivalence classes. The aim of this section is to show that if

m ď 2, then there are rational numbers ai and bi such that for any integer n (any

integer n divisible by p only when m “ 2),

(4.2) rpn, T q “
vÿ

i“1

`
airppn, Siq ` birpp3n, Siq

˘
` psome extra termq.

For a while, we assume that m is an arbitrary nonnegative integer. The following

two propositions will be used repeatedly.

Proposition 4.1. For any integer n,

rppn, Sq

opSq
“

uÿ

i“1

rpT p
i , Sq

opSq

rpn, Tiq

opTiq
´

rppn,ΛppSqq

opSq
.

Proof. By Weak Approximation Theorem, there exists a basis tx1, x2, x3u for S

such that

pBpxi, xjqq ”

ˆ
0 1

2
1
2

0

˙
K xpm`1δy pmod pm`2q,

where δ is an integer not divisible by p. As in Lemma 3.1, let

Γp,1pSq “ Zpx1 ` Zx2 ` Zx3, Γp,2pSq “ Zx1 ` Zpx2 ` Zx3.

Since Qpxq ” a1a2 pmod pq for any x “ a1x1 ` a2x2 ` a3x3 P S, we have Qpxq ”

0 pmod pq if and only if a1 ” 0 pmod pq or a2 ” 0 pmod pq. Hence

x P Rppn, Sq if and only if x P Rppn,Γp,1pSqq Y Rppn,Γp,2pSqq

Furthermore since Γp,1pSq X Γp,2pSq “ ΛppSq, we have

rppn, Sq “ rppn,Γp,1pSqq ` rppn,Γp,2pSqq ´ rppn,ΛppSqq

for any integer n. Note that Γp,1pSq and Γp,2pSq P genpT pq are the only sublattices

of S that are contained in genpT pq. Furthermore, since the edge rSs in GL,pp0q
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contains the vertex rT s by assumption, we have Γp,1pSq
1

p ,Γp,2pSq
1

p P CspnpT q. Now

for any Z-lattice Ti P CspnpT q, the number of sublattices in S that are isometric to

T
p
i is

rpTp
i
,Sq

opTiq . The proposition follows from this. �

Proposition 4.2. For any integer n,

rppn, T q

opT q
“

$
’’’’&
’’’’%

vÿ

j“1

rpSp
j , T q

opT q

rpn, Sjq

opSjq
´ p ¨

rpn, T pq

opT q
if m “ 0,

vÿ

j“1

r̃pSp
j , T q

opT q

rpn, Sjq

opSjq
`

rppn,ΛppT qq

opT q
´ 2p ¨

rpn, T pq

opT q
otherwise.

Proof. If we take ǫ “ 0 and L “ T in Lemma 2.5, then we have

rppn, T q “
ÿ

MPΩpp0,T q

rppn,Mq ´ pspp0, T q ´ 1qrpn, T pq.

First, assume that m “ 0. Let M P Ωpp0, T q be a Z-lattice. Then by Lemmas 2.3

and 2.4,

Mp »

ˆ
0 p

2
p
2

0

˙
K x´4p2dT y and Mq » Tq pq ‰ pq.

Hence M P genpSpq. Furthermore, since rpT p,M
1

p q “ r̃pM,T q ‰ 0 and rpT p, Sq “

r̃pSp, T q ‰ 0 by Lemma 2.7, M
1

p P CspnpSq by Lemmas 3.2 and 3.10. Conversely, if

M
1

p P CspnpSq satisfies r̃pM,T q ‰ 0, then M is isometric to a Z-lattice in Ωpp0, T q.

Note that the number of lattices in Ωpp0, T q that are isometric to Sp is rpSp,T q
opSq and

spp0, T q “ p ` 1. The proof of the case when m ě 1 is quite similar to this, except

that there is a unique Z-lattice in Ωpp0, T q that is not contained in genpSpq, which

is, in fact, ΛppT q, and spp0, T q “ 2p ` 1. �

We define

ML,ppmq “

ˆ
rpT p

i , Sjq

opTiq

˙
P Mu,vpZq and NL,ppmq “

ˆ
rpT p

i , Sjq

opSjq

˙
P Mu,vpZq.

Note that these two matrices depend on the order of each set Cspnp¨q, and ML,pp0q

is one of block diagonal components of ML,pp0q if we take a suitable order in (3.1).

For any integer n, we define vectors

Rpn,CspnpT qq “

ˆ
rpn, T1q

opT1q
,
rpn, T2q

opT2q
, . . . ,

rpn, Tuq

opTuq

˙t

,

R7pn,Cspnpλm
p pT qqq “

ˆ
rpn, λm

p pT1qq

opT1q
,
rpn, λm

p pT2qq

opT2q
, . . . ,

rpn, λm
p pTuqq

opTuq

˙t

.

Similarly, we defineRpn,CspnpSqq andR7pn,Cspnpλm
p pSqqq. If CspnpMq “ spnpMq,

then we use Rpn, spnpMqq rather than Rpn,CspnpMqq.

Theorem 4.3. Let T and S be ternary Z-lattices satisfying all conditions given

above when m “ 0. If the graph GL,pp0q is of O-type, then we have

pRpn, spnpT pqq “ M¨Rpn, spnpSqq´pM¨N tq´1M¨pRpp2n, spnpSqq`Rpn, spnpSqqq.
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Proof. By Lemma 3.7 and Propositions 4.1, 4.2, we have the following two equali-

ties:

Rppn, spnpSqq “ N t ¨ Rpn, spnpT qq ´ R7ppn, spnpΛppSqqq,(4.3)

Rppn, spnpT qq “ M ¨ Rpn, spnpSqq ´ pRpn, spnpT pqq.(4.4)

Since λppλppSiqq » Si for any Si P spnpSq, we have

R7pp2n, spnpΛppSqqq “ Rpn, spnpSqq.

Hence

(4.5) Rpp2n, spnpSqq “ N t ¨ Rppn, spnpT qq ´ Rpn, spnpSqq.

Note that

OpspnpT qq ¨ N “ M ¨ OpspnpSqq,

where OpspnpT qq is the u ˆ u diagonal matrix with entries opTiq
´1. Furthermore,

since we are assuming that rankpMq “ u, the u ˆ u square matrix M ¨ N t is

invertible. Therefore the equation follows directly from (4.4) and (4.5). �

Now assume that GL,pp0q is of E-type, then CspnpT q consists of two spinor

genera and each connected component is a bipartite graph. Hence the rank of the

matrix M is u ´ 1 and M ¨ N t is no longer invertible. To get a similar result for

an E-type graph, we need to make some adjustments.

Assume that CspnpT q “ spnpT q Y spnpT̃ q and

spnpT q “ trTi1s, . . . , rTiasu, spnpT̃ q “ trTj1s, . . . , rTjbsu,

where ti1, i2, . . . , ia, j1, . . . , jbu “ t1, 2, . . . , uu. Note that

wpspnpT 1qq “
ÿ

rKsPspnpT 1q

1

opKq
,

is independent of T 1 for any T 1 P genpT q. Define

ǫl “

#
wpspnpT qq´1 if l P ti1, . . . , iau,

´wpspnpT qq´1 if l P tj1, . . . , jbu,

and define a u ˆ pv ` 1q matrix Ñ “ pnijq by

nij “

$
’&
’%

rpT p
i , Sjq

opSjq
if j ď v,

ǫi if j “ v ` 1.

Lemma 4.4. The rank of the matrix Ñ defined above is u.

Proof. Let ni be the i-th row vector of the matrix Ñ . Suppose that α1n1 ` ¨ ¨ ¨ `

αunu “ 0 for some integers αi, that is,

(4.6)

$
’&
’%

α1

rpT p
1 , Sjq

opSjq
` ¨ ¨ ¨ ` αu

rpT p
u , Sjq

opSjq
“ 0 for any j “ 1, . . . , v,

α1ǫ1 ` ¨ ¨ ¨ ` αuǫu “ 0.
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For any j such that 1 ď j ď v, the edge named by rSjs contains two vertices, one

of them, say rTies, is contained in spnpT q and the other, say rTjf s, is contained in

spnpT̃ q. Hence the first equation in p4.6q implies that

αie

rpT p
ie
, Sjq

opSjq
` αjf

rpT p
jf
, Sjq

opSjq
“ 0.

Therefore αie ¨ αjf ď 0. Since the subgraph of GL,pp0q consisting of vertices in

CspnpT q is a connected bipartite graph, each αie (αjf ) is 0, or it has the same sign

to αi1 (αj1 , respectively). Therefore αl “ 0 for any l “ 1, . . . , u and rankpÑ q “ u.

This completes the proof. �

For a vector v “ pv1, . . . , vnq, we define pv, w1, . . . , wsq “ pv1, . . . , vn, w1, . . . , wsq.

Note that the equation p4.5q implies that

(4.7) rR :“ Ñ t ¨ Rppn,CspnpT qq “

¨
˚̊
˝

Rpp2n, spnpSqq ` Rpn, spnpSqq

rppn, spnpT qq ´ rppn, spnpT̃ qq

˛
‹‹‚,

where

rppn, spnpT qq “
1

wpspnpT qq
¨

ÿ

rTisPspnpT q

rppn, Tiq

opTiq
.

Theorem 4.5. If GL,pp0q is of E-type, then we have

pRpn,CspnpT pqq “ M ¨ Rpn, spnpSqq ´ pÑ ¨ Ñ tq´1Ñ ¨ rR.

Proof. From the above lemma, we know that rankpÑ q “ u. The theorem follows

directly from the equations (4.4) and (4.7). �

Note that rppn, spnpT qq ´ rppn, spnpT̃ qq can easily be computed by the formula

given in [11].

Example 4.6. Let p “ 11 and L “ x1, 1, 16y. Then

GL,pp0q{ „“

#
T1 “

¨
˝
1 0 0

0 1 0

0 0 16

˛
‚, T2 “

¨
˝

2 0 ´1

0 2 1

´1 1 5

˛
‚

+
,

GL,pp1q{ „“

#
S1 “

¨
˝
3 1 1

1 6 ´1

1 ´1 11

˛
‚, S2 “

¨
˝
6 2 3

2 6 1

3 1 7

˛
‚

+
.

One may easily compute that M “

ˆ
1 1

1 1

˙
andN “

ˆ
8 4

8 4

˙
. Since rankpMq “ 1,

the graph GL,pp0q is of E-type by Theorem 3.9. Note that Ñ “

ˆ
8 4 16

8 4 ´16

˙
.
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Therefore, by Theorem 4.5, we have

11rpn, T 11
1 q “

38

5
rpn, S1q ´

2

5
rp112n, S1q `

39

10
rpn, S2q ´

1

10
rp112n, S2q

´

ˆ
1

2
rp11n, T1q ´

1

2
rp11n, T2q

˙
,

11rpn, T 11
2 q “

38

5
rpn, S1q ´

2

5
rp112n, S1q `

39

10
rpn, S2q ´

1

10
rp112n, S2q

`

ˆ
1

2
rp11n, T1q ´

1

2
rp11n, T2q

˙
.

Note that by Korollar 2 of [11], one may easily check that

rp11n, T1q ´ rp11n, T2q “

$
&
%
0 if n ‰ 11m2,ˆ
1 ´ p´1qm

2

˙
¨ p´1q

m`1

2 ¨ 44m if n “ 11m2.

Theorem 4.7. Let T P GL,pp1q and S P GL,pp2q be ternary Z-lattices satisfying

rpT p, Sq ‰ 0. Then we have

p3p2 ´ pq ¨ rpn, T q “
ÿ

rS̃sPgenpSq

r̃pS̃p, T q

opS̃q

ˆ
3p

2
rppn, S̃q ´

p

p ´ 1
rpp3n, S̃q

˙

`
1

p ´ 1

¨
˚̊
˚̊
˝
opΓp,1pT qq

ÿ

rS̃sPgenpSq

λppS̃q»Γp,1pT q
1

p

rpp3n, S̃q

opS̃q
` opΓp,2pT qq

ÿ

rS̃sPgenpSq

λppS̃q»Γp,2pT q
1

p

rpp3n, S̃q

opS̃q

˛
‹‹‹‹‚
.

Proof. First, we assume that

ΦppλppSqq “ tT “ T1, T2, . . . , Tp`1u and ΨppλppSqq “ tS “ S1, S2, . . . , S ppp`1q
2

u.

Without loss of generality, we may assume that λppSq “ Γp,1pT q
1

p . Define, for any

integer n,

Rpn,ΦppλppSqqq “ prpn, T1q, rpn, T2q, . . . , rpn, Tp`1qqt

and

Rpn,ΨppλppSqqq “
´
rpn, S1q, rpn, S2q, . . . , r

´
n, S ppp`1q

2

¯¯t

.

We also define a vector Ipn, λppSqq “ rpn, λppSqq ¨ p1, 1, . . . , 1qt of length ppp`1q
2

.

Now by Proposition 4.1, we have

Rppn,ΨppλppSqqq “ U ¨ Rpn,ΦppλppSqqq ´ I

ˆ
n

p
, λppSq

˙
,

where U t P M
pp`1qˆ

ppp`1q
2

pZq is the incidence matrix of the complete graph of order

p ` 1 by Lemma 3.2. Therefore U tU “ pp ´ 1qI ` J and

ppU tUq´1U tqij “

$
’&
’%

1

p
if rpT p

i , Sjq ‰ 0,

´1

ppp ´ 1q
if rpT p

i , Sjq “ 0.
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Here J is a matrix of ones. Therefore we have

(4.8) rpn, T q “
1

p

ÿ

1

rppn, Sq ´
1

ppp ´ 1q

ÿ

2

rppn, Sq `
1

2
r

ˆ
n

p
, λppSq

˙
,

where
ř

1
is the summation of all lattices S1 in ΨppλppSqq such that rpT p, S1q ‰ 0

and
ř

2
is the summation of all lattices S1 in ΨppλppSqq such that rpT p, S1q “ 0.

We define, for simplicity, U1ppn, Sq “
ř

1
rppn, Sq and U2ppn, Sq “

ř
2
rppn, Sq.

Now, by Proposition 2.9, we have

(4.9)

p ¨ rppn, λppSqq `
ppp ´ 1q

2
r

ˆ
n

p
, λppSq

˙
“ opλppSqqrppn, gen

λppSq
p pSqq

“

ppp`1q
2ÿ

i“1

rppn, Siq

“ U1ppn, Sq ` U2ppn, Sq.

Let rS be a Z-lattice such that λpp rSq “ Γp,2pT q
1

p . We may similarly define

Rpn,Ψppλpp rSqqq, U1ppn, rSq and U2ppn, rSq. Then, equations (4.8) and (4.9) hold

even if we replace S by rS. Furthermore, by Proposition 4.2,

(4.10)
rpp2n, T q ` p2p ´ 1qrpn, T q “

ÿ

rS1sPgenpSq

r̃ppS1qp, T q

opS1q
rppn, S1q

“ U1ppn, Sq ` U1ppn, rSq.

By combining (4.8)„(4.10), we have

3p2´p
2

rpn, T q “ ppU1ppn, Sq ` U1ppn, rSqq ´ p
´

1
p
U1pp3n, Sq ´ 1

ppp´1qU2pp3n, Sq
¯

´ ppp´1q
2

´
1
p
U1ppn, Sq ´ 1

ppp´1qU2ppn, Sq
¯
´1

2
pU1ppn, Sq ` U2ppn, Sqq

“
p

2
U1ppn, Sq ` pU1ppn, rSq ´

ˆ
U1pp3n, Sq ´

1

p ´ 1
U2

`
p3n, S

˘˙
.

Since the above equation holds even if we exchange S for rS, we have

p3p2 ´ pqrpn, T q “
3p

2

´
U1ppn, Sq ` U1ppn, rSq

¯
´

p

p ´ 1

´
U1pp3n, Sq ` U1pp3n, rSq

¯

`
1

p ´ 1

´
U1pp3n, Sq ` U2pp3n, Sq ` U1pp3n, rSq ` U2pp3n, rSq

¯
.

This completes the proof. �

Remark 4.8. In the above theorem, one may easily check that the sets ΨppλppSqq

and Ψppλpp rSqq are contained in CspnpSq.

Assume that m “ 2. Recall that T P GL,pp2q and S P GL,pp3q are ternary Z-

lattices satisfying rpT p, Sq ‰ 0. If we define ǫl and Ñ as before for the E-type,

then Lemma 4.4 still holds under this situation.

Theorem 4.9. Let T and S be ternary Z-lattices satisfying all conditions given

above. Assume that the graph GL,pp2q is of O-type. If n is not divisible by p, then

we have

(4.11) Rpn, spnpT qq “ pN ¨ N tq´1N ¨ Rppn, spnpSqq.
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If n is divisible by p, then Rpn, spnpT qq is equal to

1

2p ´ 1

`
M ¨ Rppn, spnpSqq ´ pN ¨ N tq´1N ¨ pRppn, spnpSqq ` Rpp3n, spnpSqqq

˘
.

If GL,pp2q is of E-type, then we have

Rpn,CspnpT qq “

$
’’’&
’’’%

pÑ ¨ Ñ tq´1Ñ ¨ rR1 if p ∤ n,

1

2p ´ 1

´
M ¨ Rppn, spnpSqq ´ pÑ ¨ Ñ tq´1Ñ ¨ rR2

¯
otherwise,

where

rR1 “

¨
˚̊
˚̋ Rppn, spnpSqq

rpn, spnpT qq ´ rpn, spnpT̃ qq

˛
‹‹‹‚, rR2 “

¨
˚̊
˚̋ Rppn, spnpSqq ` Rpp3n, spnpSqq

p2p ´ 1qprpn, spnpT̃ qq ´ rpn, spnpT qqq

˛
‹‹‹‚.

Proof. The proof is similar to that of Theorem 4.3. First, assume that GL,pp2q is

of O-type. Since the rank of N is u, we may define Z “ pN ¨ N tq´1N . From the

equation (4.3), we have

(4.12) Rpn, spnpT qq “ Z

ˆ
Rppn, spnpSqq ` R7

ˆ
n

p
, spnpλppSqq

˙˙
,

and

(4.13) Rpp2n, spnpT qq “ Z
`
Rpp3n, spnpSqq ` R7 ppn, spnpλppSqqq

˘
.

If pΓp,1pSq
1

p ,Γp,2pSq
1

p q » pT1, T2q, then

pΓp,1pλppSqq
1

p ,Γp,2pλppSqq
1

p q » pλppT1q, λppT2qq.

Hence we have

(4.14) R7ppn, spnpλppSqqq “ N t ¨ R7pn, spnpλppT qqq ´ R7pn, spnpλ2
ppSqqq,

that is,

(4.15) R7pn, spnpλppT qqq “ ZpR7ppn, spnpλppSqqq ` R7pn, spnpλ2
ppSqqq.

By Proposition 4.2, we also have

(4.16) Rpp2n, spnpT qq`2pRpn, spnpT qq “ M¨Rppn, spnpSqq`R7pn, spnpλppT qqq.

If n is not divisible by p, then (4.11) comes directly from (4.12). Assume that n is

divisible by p. Since λ3
ppSq » λppSq, we have

(4.17) R7

ˆ
n

p
, spnpλppSqq

˙
“ R7pn, spnpλ2

ppSqqq.

Therefore, the theorem follows from equations p4.12q, p4.13q, p4.15q and p4.16q.

If we replace N by Ñ , then the proof of the case when GL,pp2q is of E-type is

quite similar to this. �
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Example 4.10. Let p “ 3 and let L “ x1, 1, 2y. Then T “ x1, 2, 9y P GL,pp2q and

S1 “ x1, 2, 27y P GL,pp3q. In fact, the graph GL,pp2q is of O-type and

GL,pp3q{ „“

#
S1, S2 “

¨
˝
3 1 1

1 4 2

1 2 6

˛
‚, S3 “

¨
˝
1 0 0

0 5 1

0 1 11

˛
‚, S4 “

¨
˝
2 0 0

0 4 1

0 1 7

˛
‚

+
.

In this case, one may easily check that there are no rational numbers ai and bi

satisfying the equation

rpn, T q “
4ÿ

i“1

ai ¨ rp3n, Siq `
4ÿ

i“1

bi ¨ rp27n, Siq for any integer n.

Finally, assume that m ě 3. Let T P GL,ppmq and S P GL,ppm ` 1q be Z-lattices

such that rpT p, Sq ‰ 0. We additionally assume that GL,ppmq is of O-type. Recall

that M “
´

rpTp
i
,Sjq

opTiq

¯
and N “

´
rpTp

i
,Sjq

opSjq

¯
. We define Z “ pNN tq´1N .

Theorem 4.11. Under the assumptions given above, if n is not divisible by p, then

Rpn, spnpT qq “ Z pRppn, spnpSqqq and Rppn, spnpT qq “ M ¨ Rpn, spnpSqq.

For an arbitrary integer n, we have

pRpp2n, spnpT qq ´ p
2
Rpn, spnpT qq

“ Z

´
2pRpp3n, spnpSqq ` p

2
Rppn, spnpSqq ` R

5ppn, spnpSqq
¯

´ pM ¨ Rppn, spnpSqq,

where

R
5ppn, spnpSqq “

ˆ
opλppS1qq

opS1q
rppn, genλppS1q

p pS1qq, . . . ,
opλppSvqq

opSvq
rppn, genλppSvq

p pSvqq

˙t

.

Proof. By Propositions 4.1 and 4.2, we have

(4.18) Rppn, spnpSqq “ N t ¨ Rpn, spnpT qq ´ R7

ˆ
n

p
, spnpλppSqq

˙
,

and

(4.19)

Rppn, spnpT qq “ M ¨ Rpn, spnpSqq

` R7

ˆ
n

p
, spnpλppT qq

˙
´ 2p ¨ R

ˆ
n

p
, spnpT q

˙
.

The first two equations follow directly from (4.18) and (4.19).

Now by applying λp-transformation to the equation (4.18), we also have

(4.20) R7ppn, spnpλppSqqq “ N t ¨ R7pn, spnpλppT qqq ´ R7

ˆ
n

p
, spnpλ2

ppSqq

˙
.

Our final ingredient is the following equation which is directly obtained from Propo-

sition 2.9:

(4.21)
pR7ppn, spnpλppSqqq ` p2R7

ˆ
n

p
, spnpλppSqq

˙
´ pR7

ˆ
n

p
, spnpλ2

ppSqq

˙

“ R5ppn, spnpSqq.
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By multiplying Z to (4.18), we have

Rpn, spnpT qq “ Z

ˆ
Rppn, spnpSqq ` R7

ˆ
n

p
, spnpλppSqq

˙˙
.

Hence we have

2pRpp2n, spnpT qq ` p
2
Rpn, spnpT qq “ 2pZ

´
Rpp3n, spnpSqq ` R

7ppn, spnpλppSqqq
¯

` p
2
Z

ˆ
Rppn, spnpSqq ` R

7

ˆ
n

p
, spnpλppSqq

˙˙
.

On the other hand, by combining (4.19) and (4.20), we have

Rpp2n, spnpT qq`2pRpn, spnpT qq ´ M ¨ Rppn, spnpSqq

“ Z

ˆ
R7ppn, spnpλppSqqq ` R7

ˆ
n

p
, spnpλ2

ppSqq

˙˙
.

The theorem follows from the above two equations and (4.21). �
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men, J. Reine Angew. Math. 352(1984), 114-132.

[11] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Invent. Math.

75(1984), 283-229.
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