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A GENERALIZATION OF WATSON TRANSFORMATION AND
REPRESENTATIONS OF TERNARY QUADRATIC FORMS

JANGWON JU, INHWAN LEE AND BYEONG-KWEON OH

ABSTRACT. Let L be a positive definite (non-classic) ternary Z-lattice and let
p be a prime such that a %Zp—modular component of L, is nonzero isotropic
and 4 - dL is not divisible by p. For a nonnegative integer m, let G, ,(m) be
the genus with discriminant p™ - dL on the quadratic space LP™ ® Q such
that for each lattice T € Gr, ,(m), a %Zp—modular component of T}, is nonzero
isotropic, and Ty is isometric to (me )q for any prime ¢ different from p. Let
r(n, M) be the number of representations of an integer n by a Z-lattice M. In
this article, we show that if m < 2 and n is divisible by p only when m = 2,
then for any T € Gr, ,(m), r(n,T) can be written as a linear summation of
r(pn, S;) and r(p3n, S;) for S; € Gy, ,(m+1) with an extra term in some special
case. We provide a simple criterion on when the extra term is necessary, and
we compute the extra term explicitly. We also give a recursive relation to
compute 7(n,T), for any T € G, ,(m), by using the number of representations
of some integers by lattices in Gy, ,(m + 1) for an arbitrary integer m.

1. INTRODUCTION

For a positive definite (non-classic) integral ternary quadratic form

f(,’El,!Ez, 1'3) = Z Qi T (aij € Z)
1<i<G<3
and an integer n, we define a set R(n, f) = {(x1,z2,23) € Z3 : f(x1,72,73) = n},
and r(n, f) = |R(n, f)|. It is well known that R(n, f) is always finite if f is positive
definite. The theta series 0¢(z) of f is defined by
e 0]
Op(z) = Y. r(n, fle* =,
n=0

which is a modular form of weight % and some character with respect to a certain
congruence subgroup. Finding a closed formula for r(n, f) or finding all integers n
such that r(n, f) # 0 for an arbitrary ternary form f are quite old problems which
are still widely open. As a simplest case, Gauss showed that if f is a sum of three
squares, then r(n, f) is a multiple of the Hurwitz-Kronecker class number.

Though it seems to be quite difficult to find a closed formula for r(n, f), some
various relations between r(n, f)’s are known. One of the important relations is
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the Minkowski-Siegel formula. Let O(f) be the group of isometries of f and o(f) =
|O(f)]. The weight w(f) of f is defined by w(f) = Z[f/]egen(f) ﬁ, where [f’] is
the equivalence class containing f’. The Minkowski-Siegel formula says that the
weighted sum of the representations by quadratic forms in the genus is, in principle,

the product of local densities, that is,

1 r(n. f') =c*| | ap(n
o) o, oty Lot do)

€gen(f)

where the constant ¢* can easily be computable and «, is the local density de-
pending only on the local structure of f over Z,. Hence if the class number of
f is one, then we have a closed formula on r(n, f). As a natural modification of
the Minkowski-Siegel formula, it was proved in [6] and [12] that the weighted sum
of the representations of quadratic forms in the spinor genus is also equal to the
product of local densities except spinor exceptional integers (see also [I1] for spinor
exceptional integers).

For any prime p { 2df, the action of Hecke operators T'(p?) on the theta series of
the quadratic form f gives

_ndf n LT
r(p2n,f)+< n )r(n,f>+p-r(—,f)= W), g,
p s [f/]e%n(f) olf")

Here, if n is not divisible by p?, then r (p%, f) =0, and 7*(p*f’, f) is the number

of primitive representations of p?f’ by f. For details, see [I] and [5].

Another important relation comes from the Watson transformation. If a uni-
modular component of the ternary form f in a Jordan decomposition over Z, is
anisotropic, then one may easily show that

T(pnv f) = T(pn7AP(f))7

where A, (f) is defined in Section 2. Hence the theta series of f completely deter-
mines the theta series of A\,(f). Unfortunately if a unimodular component of the
ternary form f over Z, is isotropic, one cannot expect such a nice relation. In this
article, we consider the case when a unimodular component of the ternary form f
over Z, is isotropic.

The subsequence discussion will be conducted in the more adapted geometric
language of quadratic spaces and lattices. The term “lattice” will always refer to a
positive definite non-classic integral Z-lattice on an n-dimensional positive definite
quadratic space over Q. Here, a Z-lattice is said to be non-classic if the norm ideal
n(L) of L is contained in Z. Let L = Zx1 + Zxo + - - - + Zx,, be a Z-lattice of rank
n. We write

L~ (B(JJ“,TJ))
The right hand side matrix is called a matriz presentation of L. Any unexplained
notations and terminologies can be found in [7] or [g].

Let V be a (positive definite) ternary quadratic space and let L be a (non-classic)

1
ternary Z-lattice on V. Let p be a prime such that L, ~ <(1) (2)) 1 {e), where
2
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€ € Z,; . For any nonnegative integer m, let Gr, ,(m) be a genus on a quadratic space
W such that each Z-lattice T € Gr ,(m) satisfies

0 2 m
T, ~ (l (2)) 1 {ep™) and T, ~ (L? ), for any q # p.
2

Here W = V if m is even, W = VP otherwise. The aim of this article is to show
that if T € G, ,(m) for m = 0 or 1, then there are rational numbers a;, b; such that

r(n,T) = Z (a;r(pn, Si) + bir(p®n, S;)) + (some extra term).
[SileGr,p(m+1)

In Section 4, we prove this statement in each case and compute the rational numbers
a;’s, b;’s and the extra term explicitly. For the case when m = 2, we give an example
such that the above statement does not hold, and prove that the above statement
still holds for m = 2 if we additionally assume that n is divisible by p. In the case
when m > 3, we show that under some restriction, the above statement holds if
we replace r(n, T) by r(p?n,T) — pr(n,T), and for any integer n not divisible by p,
both r(n,T) and r(pn,T) can be written as a linear summation of r(pn,S)’s and
r(n, S)’s, respectively, for S € G, ,(m + 1).

In some cases, the extra term in the above equation can be removed. To de-
termine when it happens, we need to know some structure of the graph &y, ,(m)
defined by the equivalence classes in Gy, ,(m) and Gr, ,(m + 1). The definition and
basic facts on the graph &, ,(m) will be treated in Section 3.

For any integer a, we say that g is divisible by a prme p if p is odd and a =0
(mod p), or p =2 and a =0 (mod 4).

2. A GENERALIZATION OF WATSON TRANSFORMATION

Let L be a ternary Z-lattice. Recall that we are assuming that a (quadratic) Z-
lattice is non-classic and positive definite. For any prime p, the A -transformation
(or Watson transformation) is defined as follows:

Ay(L)y={zeL:Q(z+z)=Q(z) (mod p) for all ze L}.

Let A\, (L) be the primitive lattice obtained from A, (L) by scaling V = L®Q by a
suitable rational number. Assume that p is odd. If the unimodular component in
a Jordan decomposition of L, is anisotropic, it is well known that

Hence r(n, Ap(L)) = r(pn, L) if pZ,-modular component of L, is nonzero, and
r(n,A\p(L)) = r(p*n, L) otherwise. One may easily show that (2.1) still holds for
p = 2 unless

Ly~ (g %) 1<), (aeZs).

2
The readers are referred to [3] for more properties of the operators A,.

Let L be a ternary Z-lattice and let p be a fixed prime. In the remaining of this
section, we always assume that in a Jordan splitting of L,

1
(2.2) the §Zp—modular component is non-zero isotropic.
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The purpose of this article is to find similar results to (2.1) under this assumption.
To do this, we generalize Watson’s transformation in various directions. Since

(i %)um((j §>L<56> over Zs

2 2

for any § € ZJ', any Z-lattice L such that Lo is isometric to the above will also be
considered when p = 2.

Definition 2.1. Assume that p is odd. For e = 0 or +1, we define

)]

We also define S2(0,L) = {z € L : Q(x) =0 (mod 2)} and Sa(x, L) = L — S2(0, L).

Sp(e, L) = {x el

Let B = {x1, 22,23} be a (ordered) basis of a ternary Z-lattice L and p be a
prime. We define a natural projection map

¢» : L —pL — (L/pL)* — P?,
where P? is the 2-dimensional projective space over the finite field F,. The set
¢ (Sp(e, L) — pL) is denoted by S?(E,L) for any € € {0,1,—1} if p is odd and
e € {0, *} otherwise. If the basis B is obvious, we will omit it. For each element
s € P2, we define a Z-sublattice Lg := ¢5' (s) U pL of L, and

Qple, L) = {Le | s € s3(c, L)}.
Note that if T': 8 — € is the transition matrix between ordered bases, then one

may easily show that T'(s} (¢, L)) = s5(e, L). Hence the set Q,(e, L) is independent
of choices of the basis for L.

Lemma 2.2. Assume that a ternary Z-lattice L and a prime p satisfies the condi-
tion (2.2). If 4dLy € 75, then

—dL
[sp(0, L) =p+1, |sp(£l,L)| = — and so(*,L) =4

and

p(p—1)
=—5—

[sp(0,L)] =2p+1, [sp(1,L)] =|sp(—1,L and  sa(#,L) =2,

otherwise.

Proof. Since everything is trivial for p = 2, we assume that p is odd. For the
unimodular case, see Theorem 1.3.2 of [7]. Assume that L, is not unimodular. Fix
an ordered basis B = {x1, z2, 23} of L such that

(B(w;,z;)) = diag(1, —1,p°™%(@5)§)  (mod pordr(@L)F1),

for some § € Z — pZ. Note that such a basis always exists by the Weak Approxi-
mation Theorem. Assume that z = ajz1 + asws + asws € Sp(0, L). Then a} = a3

(mod p). Therefore
s2(0,L) = {(0,0,1),(1,+1,d)},  where d € F,.
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The lemma follows from this. The case when ¢ = +1 can be done in a similar
manner. O

Lemma 2.3. Under the same assumptions given above, assume that p is an odd
prime. If € # 0 or e = 0 and L, is unimodular, then every Z-lattice M € Qp(e, L)
is contained in one genus. Furthermore for the former case,
5, —p%d, —p*dL if g =p,
M, ~ {< p°6,—p*dL)  ifq=p

Lq otherwise,

where 6 € Z, such that (%) = € and,

—p, —p2dL if ¢ =
M, = p;—p,—p°dL)  ifq=p,
L, otherwise,

for the latter case. If L, is not unimodular and € = 0 then every Z-lattice M €
Q,(0, L) is exactly contained in two genera. More precisely

M, ~
Lq otherwise.

{<p2, —p*,—dL) or {p,—p,—p*dL)y  ifq=p,

Proof. Let L = Zz1 + Zxo + Zxs and M € Q,(e, L). Since pL ¢ M, we may assume

without loss of generality that M = Z(x; + boxa + b3xs) + Z(pxr2) + Z(pxs). First

Q(z1+baza+bsxs)
p

assume that € # 0. Then we may further assume that ( = €. Since

Q(:El + bazo + bgftg) € Z;,
M, ~ {Q(x1 + baxa + bzwz)) L m,

for some binary sublattice m,, of M, whose scale is p?>Z,. The assertion follows from
this. Assume that ¢ = 0 and L,, is unimodular. In this case we may assume that
Q(z1 + bazo + bsxs) € pZy. Then B(x1 + baxs + bsxs, x2) or B(x1 + baxa + bzxs, x3)
is a unit in Z,, for L, is unimodular. The assertion follows from this.

Finally assume that L, is not unimodular and ¢ = 0. In this case we may
assume that the ordered basis B = {1, 22, x5} satisfies every condition in Lemma
Then by a direct computation we know Lo 0,1y € €2,(0, L) satisfies the first
local property and the others satisfy the second local property. (|

Lemma 2.4. Under the same assumptions given above, assume that p = 2. Let M
be a Z-lattice in Qa(e, L). If —4dLs = § € 25, then

(g ;) L4 fe—o.
M2 >~

2
(1,-1,40) or (2 0) 145) otherwise,
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and My ~ Lq for any prime q # 2. If —4dLy = 0 € 2Zo, then

0 1 0 2 .
My~ (1 O>L<46> or (2 O>L<6> if e=0,

(1,-1,45) otherwise,
and My ~ Ly for any prime q # 2.
Proof. The proof is quite similar to the above. O

Lemma 2.5. Assume that a ternary Z-lattice L and a prime p satisfies the condi-
tion (2.2). For any positive integer n such that (%) =€,
r(n, L) = Y, r(n, M)~ (Isy(e, L)| = )r(n,pL).
MeQ, (e,L)

This equality also holds for p = 2 if either € = 0 and n is even or € = * and n is
odd.

Proof. The lemma follows from the facts that
{reSp(e,L) —pL | Q(z) =n, ¢(x) =s}={xeLs|Q(x)=n}—R(n,pL),
and
LsnL; =pL if and only if s #t,
for any s,t € P2. O

Under the same assumptions given above, one may easily show that dM = p*dL
for any M € Qp(¢e, L). Furthermore L/M ~ Z/pZ @ Z/pZ.

Remark 2.6. If a %Zp—modular component of L, is zero or anisotropic, the above
lemma implies the equation (2.1). So we may consider the above lemma as a natural
generalization of Watson’s transformation.

Let L and ¢ be ternary Z-lattices such that d¢ = p*dL. We define
RU,L)={0:4 - L|Ljo(l) ~Z/pZ®ZL/pZ} and 7, L) = |R(, L)
One may easily show that |{M € Q,(¢,L) | M ~ ¢}| = 7(¢,L)/o({) for any € €
{0,+1} or e € {0, =}.
Lemma 2.7. For any ternary Z-lattices ¢ and L such that df = p*dL, we have
70, L) = r(pt*, L#) = r(pL, ().

Proof. Assume that T € R(¢,L). Then T*M;T = M, and pT~' is an integral
matrix. Since

(T "M (pT 1) =p* M, ",

(pT~Y)t € R(pt#,L#). Conversely if StMé_lS = p?M, !, then d(S) = +p. Hence
pS~1is an integral matrix and (pS—1)! € R(¢,L). This completes the proof. O
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Assume that a ternary Z-lattice L and a prime p satisfies the condition (2.2).
In the remaining of this section, we additionally assume that ord,(4-dL) > 2. Let
K = X,(L) and let

genS (L) = {L' e gen(L) : Ap(L') ~ K}.
For any integer n, we also define
r(n, gen{f(L)) = Z

[L"]egen(L)
Ap(L)~K

K
P

IJ(Ap(L)) = {M < K | M € gen(L)}.

Furthermore, the isometry group O(K) acts on I'}(A,(L)). Each orbit under this
action consists of all isometric lattices in TS (A,(L)), and hence there are exactly

Z((Ig)) lattices that are isometric to L in T'}(A,(L)). There are exactly p® + p + 1

sublattices of K with index p. They are, in fact,

In fact, every Z-lattice in gen;' (L) is isometric to one of Z-lattices in

Ko = Z(pz1) + Zxg + Zzs, Ki, =Z(x1 + uxs) + Z(pra) + Zzs (0 <u<p—1)

and
Ko p = Z(x1 + axs) + Z(x2 + Brs) + Z(pxs) (0 < a, B <p—1).

Among these sublattices of K, there are exactly @ lattices (p? lattices) that
are contained in the genus of L if ord,(4 - dL) = 2 (ord,(4 - dL) > 3, respectively)

(for details, see []).

Proposition 2.8. Assume that Z-lattices L and K and a prime p satisfies the
above condition. Then for any integer n not divisible by p, we have

( _ [ —ndK
P (2 b > T(OT(L’KI? if p#2 and ordy(4-dL) = 2,
r(n, genff (L)) = § (0 K) = r(n, A1 (K)) if p=2 and ord,(4-dL) = 2,
r(n K)O(K)
D o(K) if ord,(4-dL) = 3,

where A1 (K) ={z € K : B(z,K) c Z} is a sublattice of K.

Proof. Since proofs are quite similar to each other, we only provide the proof of the
first case. Assume that Q(z1) = n for some z; € K. We will count the number of
lattices containing the vector 1 in I'} (A, (L)). Note that for any vector y € K and
any integer d not divisible by p, dy € M if and only if y € M for any M € l"ﬁ (Ap(L)).
Hence we may assume that x; is a primitive vector in K. Then there is a basis
{x1, 22,23} of K such that for some integer ¢ not divisible by p,

(B(zi,2;)) = diag(n,n,2) (mod p).
Among all sublattices of K with index p that are contained in the genus of L, those

Z-lattices containing 21 are K o g, for any (3 satisfying (M) =1,and Ky ¢
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only when (#) = 1. Therefore one may easily show that the total number of

(=)

such lattices is ——*—=. The proposition follows from

_ ( zZndK
Z r(n, M) = Z o(K) r(n, M) = MT(TL,K).

MeTL (M, (L)) [M]egenf (L) o(M) 2

This completes the proof. ([l

Proposition 2.9. Under the same assumption given above, if n is divisible by p,
then we have

v K)  plp—1)7 (3 K)

s gen (D)) = 4T oE) 2 o) if ordy(4- dL) = 2,
pT(n,K) JFPQT <p%7K *pT(TL’Ap(K)) otherwise
o(K) o(K) o(K) :

Proof. First we define
R*(n,K) ={z e K | Q(z) =n, z is primitive as a vector in K},

r*(n, K) = |R*(n, K)|, and r®(n, K) = r(n, K) —7*(n, K). Let x1 € K be a vector
such that Q(z1) = n. We will compute the number of lattices containing x; in
I‘ﬁ(Ap(L)). By the similar reasoning to the above, we may assume that there is a
primitive vector 77 € K and a nonnegative integer k such that z; = p*zy. If k > 0,
then ; is contained in all lattices in T'}(A,(L)) .

Assume that k = 0. If ord,(4 - dL) = 2, then there is a basis {z1, 22,23} of K
such that

0 b 0
(B(.’II“CEJ)) =10 0 0 (mOd p)7
0 0 e

where 2b and e are integers not divisible by p. Among all sublattices of K with
index p that are contained in the genus of L, those Z-lattices containing x; are
Ky, for any . Therefore if ord,(4 - dL) = 2, we have

o(K) p(p+1)
(M) 2

r(n,M) =p-r¥(n,K)+

r°(n, K)
[M]egeni (L)

plp—1) (n
=p-r(n,K)+ — (I?’K) .
Suppose that ord,(4 - dL) > 3. If there is a vector y € K such that 2B(z1,y) # 0
(mod p), then there are exactly p lattices in T'}(A,(L)) containing z;. However if
2B(z1, K) C pZ, then there does not exist a lattice in T'} (A, (L)) that contains ;.
Note that

{z € R*(n,K) | 2B(z,K) < pZ}| = r(n,Ap(K)) — r°(n, K).

Therefore we have
o(K)
(M

r(n, M) = p(r(n, K) —r(n,Ap(K))) +p?-r%(n, K).

~—

[M]egens (L)
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This completes the proof. (I

3. FINITE (MULTI-) GRAPHS AND TERNARY QUADRATIC FORMS

Let V be a (positive definite) ternary quadratic space and let L be a (non-classic)

1
ternary Z-lattice on V. Let p be a prime such that L, ~ ((1) (2)) 1 {ey, where
2

€ € Z, . For any nonnegative integer m, let Grp(m) be a genus on W such that
each Z-lattice T € G, ,(m) satisfies

l m

T, ~ ((1) (2)) 1 {ep™) and T, ~ (LP ), for any q # p.
2

Here W =V if m is even, W = VP otherwise.

Lemma 3.1. Let T € G, ,(m) and S € G, ,(m + 1) be ternary Z-lattices. Then we

have
- 1 = 0 »
T(N]\;T) _ {er if m R Z r(M]W,S) _
[N]eGr ,(m+1) o(N) 2p otherwise [M]eGy,p(m) o(M)
Proof. Note that Z[N]EQL (m+1) % is the number of sublattices X of T" such

that
T/X ~Z/pZ®Z/pZ and X7 € Gy p(m+1).

Hence the first equality is a direct consequence of Lemmas 2.2 23] and 2.4
To prove the second equality, it suffices to show that there are exactly two

sublattices of S with index p whose norm is pZ. By Weak Approximation Theorem,
there exists a basis {x1,x2, z3} for S such that

o 1

(B = (1 3) Lm0 mod 72,

2
where ¢ is an integer not divisible by p. Then for the following two sublattices
defined by

Tpi(S) = Zpzy + Zxg + Zxz, Ty 2(S) = Zxy + Zpzs + Zas,

one may easily show that FW(S)% € Gr p(m) for any ¢ = 1, 2. Furthermore, norms
of all the other sublattices of S with index p are not contained in pZ. This completes
the proof. (I

Now we define a multi-graph &, ,(m) as follows: the set of vertices in &1, ,(m) is
the set of equivalence classes in Gy, ,(m), say, {[T1], [T2],-- -, [Tr]}. The set of edges
is exactly the set of equivalence classes in Gy, ,(m+1), say, {[S1], [Sz],- .., [Sk]}. For
each equivalence class [Sy] € Gr, ,(m+1), two vertices contained in the edge named
1

by [Sw] are defined by [[p1(Sw)7] and [T2(Sw)7], where the lattice T ;(Sy)?
that is defined in Lemma[3.1]is contained in Gy, ,(m). Note that the graph &, ,(m)
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is, in general, a multi-graph that might have a loop. We define an h x k integer
matrix My ,(m) = (my;) as follows:

2 if [S;] is a loop of the vertex [T}],
mi; =<1 if [S;] is not a loop of the vertex [T;], though it contains [T}],
0 otherwise.
Therefore My, ,(m) is the incidence matrix of &y ,(m) if the graph &r ,(m) is

simple.
For any Z-lattice T € G, ,(m), we define

®,(T) ={S€Grp(m+1):T,:(S)» =T for some i = 1,2}
and
U, (T)={MeGrp(m+2):\(M)=T}.
Then Lemma Bl implies that |®,(T)|=p+ 1if m =0, |®,(T)| = 2p otherwise.
Lemma 3.2. Let T € G ,(0) and S, 5" € ®,(T) (S # S') be ternary Z-lattices

on 'V and VP, respectively. Then there is o unique Z-lattice M € ¥, (T) such that
1 1
{Lpa(M)7, Ty o(M)7} = {5, 5"}

Proof. For any 5,5’ € ®,(T), we have pS < S’. Furthermore since S # S’ and
ord,(4dS) = 1, S'/pS ~ Z/pZ ® Z/p*Z. Therefore, there is a basis z1, z2, z3 for S’
such that

S" = Zaxy + Zay + Zas, pS = Zxy + Lpxo + Zpxs

and
p’a pb d
(B(zi,xj)) = | pb pc e,
d e f

where a,c, f € Z, b,d,e € %Z and p 1 2d. Define a Z-lattice

19!

p
M = (Z (g) + Zxo + Z$3> € QL,,,(2).

Then one may easily show that A\,(M) = T and {I‘pﬁl(M)%,prg(M)%} = {S,5"}.
As pointed out earlier, the number of Z-lattices M’ € Gy, ,,(2) such that A\,(M') =T
for any T € G ,(0) is p(p—;l). Furthermore for any such a Z-lattice M’, we have
I‘M(M/)% € ®,(T) for any i = 1,2 and |®,(T")| = p + 1. Now the uniqueness of M
follows from this observation. O

The above lemma says that if T € G, ,(0), then there is always an edge containing
[S] and [S] for any S, S’ € ®,(T"). However this is not true in generalif T € G, ,(m)
for a positive integer m.

Lemma 3.3. For a positive integer m, let T € G, ,(m) and S,S8" € ®,(T) be
ternary Z-lattices on V- and VP, respectively. If

Mp(8) =Tpa(T)7  and Ay(S") = Tpa(T)7,

8=
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then there is a unique Z-lattice M € W,(T) such that {I‘p71(M)%,I‘p72(M)%} =
{S,S'}.

Proof. By Weak Approximation Theorem, there is a basis x1, z2, x3 for T such that

1
B = (1 ) L0m mod ),

2

where ¢ is an integer not divisible by p. We may assume that
1 1 1 1

Tpi(T)? = (Zpxy + Zaoy + Zxs)r, Tpo(T)r = (Zz1 + Zpzo + Zaxs)?.

One may easily check that
1
(I)p(T) = {M*”g =(Zpx1 + Z(x2 + Bas) + Zpx3)? :0< B <p—1}
U {Ma x = (Z(z1 + axs) + Zpzs + prg)% 0<a<p-—1}
and
U, (T) = {Map =Z(z1 + azxs) + Z(zs + frs) + Zprs : 0 < o, f < p— 1},

Since A, (My. ) = Tpi(T)7 and Ap(Ma) = Tpa(T)7 for any 0 < o, 8 < p — 1,
there are 7,7 such that S = M, ; and S’ = M, ..

S == M*ﬂ— : )\p S/ = Mn,*
' Ap T ' Ap
Ty (T)? Tpa(T)?

3.1 Figure
Now, one may easily check that M, ; is the unique lattice in ¥, (7T") satisfying
1 1
{Lp1(Myr)?, Tpo(My7)?} = { M r, My}
This completes the proof. (|

Lemma 3.4. For an integer m > 2, let M1, M> € Gr, ,(m) be distinct Z-lattices
such that Ap(M1) = X\p(Ma) = T. Then there is a path from [Mi] to [Ms] of length
4.
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PTOOf. Note that if {Fpﬁl(Ml),Fpﬁg(Ml)} = {Fpﬁl(MQ),FpﬁQ(MQ)}, then Ml = MQ.
Hence, without loss of generality, we may assume that S; = I‘pﬁl(Ml)% is different

from Sy = Fpﬁg(Mg)%. If m > 3, then

1

o (Mi)¥), \p(Tp 2 (M;)7)} = {1 (T)

s =

Tpa(T)7}

for any ¢ = 1,2. Hence we further assume that \,(S1) # A,(S2). Then by Lem-
mas and B3] there is a Z-lattice M € Gr, ,(m) such that A\, (M) = T and
{I‘p,l(M)%,l"pg(M)%} = {51, S2}. We define Z-lattices T} and T» satisfying

{Tp1(51)7,Tp2(S1)7} = {T,T1} and {Ty,1(S2)7,Tp2(S2)7} = {T, T}

Let M/ € G, ,(m) be a Z-lattice in ®,(S;) such that A\,(M]) = T; for ¢ = 1,2. Then
by Lemma B3] there are Z-lattices N1, Na, N7, N4 such that two vertices [M;] and
[M!] are connected by the edge [N;], and two vertices [M] and [M]] are connected
by the edge [N]] for i = 1,2. Therefore two vertices [M;] and [Mz] are connected
by a path of length 4 (see Figure 3.2).

Ny
My _ oM

N

3.2 Figure

The Lemma follows from this. O

Lemma 3.5. For an integer m = 2, let [M],[M'] be vertices of the graph &, ,(m).
Then there is a path from [M] to [M'] of length e([M],[M']) in & ,(m) if and
only if there is a path from [Ap(M)] to [Ap(M')] of length e([Ap(M)], [Mp(M")]) in
&1 p(m —2). Furthermore, in both cases, there is a path satisfying

e([M], [M']) = e([Ap(M)], [Ap(M")])  (mod 2).

Proof. Note that “only if” part is trivial. Assume that [A,(M)] and [A,(M')] are
connected by a path with edges [S1],[Sz2],. .., [Sk] as in Figure 3.3, where

{Tp1(8:)7,Tp2(Si) 7} = {Ti, T3}

forany i =2,3,...,k—1.
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M M() M1 Mk,1 Mk: M/
. S )\\ / Y S -
AN VAN VAN
y \ : \
Ap(M) T Ty Ap(M)

3.3 Figure

Then for any i = 0,1, ..., k, there are Z-lattices M; such that My € U,(A\, (M))n
(I)p(Sl), Mk € \IJP(AP(M/)) N (I)p(Sk), and Mj € \IJP(TJ) N (I)p(SJ) N (I)p(Sj+1) for any
j=1,2,...,k—1. Now by Lemma [3.3] there are Z-lattices N; such that

(Tp (N7, Tpa(N)7 } = {Mi_1, M;} and A (V) = S

for any ¢ = 1,2,...,k. Since both [M],[Mo] and [Mg],[M’] are connected by a
path of length 4 by Lemma B4l [M] and [M’] are connected by a path of length
k+ 8. (I

We investigate the graph &, ,(0) in more detail. Let T' € Gr, ,(0) be a Z-lattice.
Note that the graph Z(T,p) constructed in [9] is slightly different from our graph
(see also [2]). In fact, the graph Z(T,p) is a tree having infinitely many vertices.
However our graph is finite and might have a loop. Two vertices [T}], [1}] € &1,(0)
are connected by an edge if and only if there are Z-lattices T} € [T;] and T} € [T}]
such that 7] and 7] are connected by an edge in the graph Z (T, p). If two lattices
T;,T; € Grp(0) are spinor equivalent, then both [T;] and [Tj] are contained in
the same connected component. Moreover, each connected component of &, ,(0)
contains at most two spinor genera, and it contains only one spinor genus if and
only if j(p) € PDJé , where D is the set of positive rational numbers and

j(p) = (Jg) € Jo such that j, = p and j, = 1 for any prime ¢ # p.

We say that &1, ,(0) is of O-type if each connected component of &y, ,(0) contains
only one spinor genus, and it is of E-type otherwise. If &, ,(0) is of E-type, then
adjacent classes are contained in different spinor genera (for details, see [2]), that
is, each connect component of the graph &y, ,(0) is a bipartite graph.

Assume that

31 Grp0) =A{[T1][T2] ..., [Tn]} and  Gr,(1) ={[S1],[S2], ..., [Sk]}
are ordered sets of equivalence classes in each genus. We define

(TP 5»)) (17, 5))

M = (# € Mh,k(Z) and O = ‘)‘(L (0) = —2=2 € Mh,k(Z)-
o(T:) : o(55)

In fact, M equals to My, ,(0), which is defined earlier. There is a nice relation

between M, N and the Eichler’s Anzahlmatriz m,(T) defined in [5].
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Definition 3.6. Under the assumptions given above, the matrix

w0 = (Ll —5,) a<ig<n

is called the Eichler’s Anzahlmatrix of T" at p.
Note that 7,(T") is independent of the choice of the lattice T € G, ,,(0).

Lemma 3.7. For any Z-lattices T € Gr ,(0) and S € Gr p(1), we have r(SP,T) =
r(T?,S).

Proof. First we show that R(SP,T) = R(S?,T). Suppose that there is a o €
R(SP,T) such that T/o(SP) ~ Z/p*Z. Then there is a basis for T such that

T = Zay + Zay + Zas and  o(SP) = Zxy + Zao + Z(p*x3).
Since n(o(S?)) < pZ, we have
Q(z1) = Q(x2) = 2B(x1,22) =0 (mod p).

This is a contradiction to the fact that 4dT is not divisible by p. Therefore the
lemma follows from Lemma 2.7 O

For Z-lattices X7, X2,Y7 and Y, we write (X7, X2) ~ (Y1,Ys) if X7 ~ Y7 and
Xo~Ys, or X1 Y5 and Xo ~ Y.

Proposition 3.8. Under the notations and assumptions given above, we have
mp(T) + (p+ 1)1 = M - N".
Proof. Let i;; be the set of sublattices X of T} such that
X ~pT; and T;/X # Z/pZL®L/pZ D ZL/pZ,
and let 2U;; be the set of sublattices Y of T} such that

Y+ eGr,(1) and (Fp,l(Y%),FPVQ(Y%)) ~ (TP, TP),

where I‘M(Y%) is a sublattice of Y» with index p defined in Lemma BI Note
that m,(T);; = |ti;|. Now we define a map ® : il;; — 2;; as follows. Assume that
X € $l;;. Then one may easily show that T;/X ~ Z/pZ @® Z/p*Z. Hence there is a
basis x1, 2, 3 for T; such that

T; = Zay + Zag + Zws and X = Zxy + Z(pwe) + Z(p*x3).

Since the integer 4d(T}) is not divisible by p and Q(x1) = 0 (mod p?), 2B(z1,x3) =
0 (mod p), neither Q(x2) nor 2B(z1,x3) is divisible by p. Define ®(X) =Y =
Zzy + Z(px2) + Z(pzs). Clearly, Y = A, (T; n 1—17X). Hence it is independent of the
choice of basis for T;. Furthermore one may easily check that ®(X) =Y € 9,;.
Conversely, there are exactly two sublattices of Y with index p whose norm is
contained in pZ, and one of them is equal to Tf . If we define the other one, as a
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sublattice of Y, by U(Y'), then ® o U = ¥ o & = Id. Therefore m,(T);; = |Uj;].
Now from the definition,

k
r(SE,T;)
Vil = ), —e~ ",
2 oS
where

1 if (Fp,1(Sw), [p,2(Sw)) ~ (TngTip)a
T = .
0 otherwise.

Since (T}, Sy) = (%, T;) by Lemma 3.7

& (8. Ty) ((TF, Su) St My (N if i # j,

Vil = ] 5 %) =5k . L
w=1 O( w) O( Z) Zw:l mlw(m )wj - (p + 1) 1f =17,

by Lemma Bl The proposition follows from this. O

The following theorem states that the rank of My ,(0) = M is related with some
properties of the graph &y, ,(0).

Theorem 3.9. The followings are all equivalent:

(1) &1,(0) is of O-type;

(2) rank(ON) = h;

(3) mp(T') does not have an eigenvalue —(p + 1);

(4) 97(GLp(0)) = g7 (GLp(1))-
Furthermore, if &, ,(0) is of E-type, then g*(Gr,(0)) = 2¢7(Gr (1)), where
97 (G p(0)) is the number of spinor genera in Gr, ,(0).

Proof. (1) « (2): Assume that &, ,(0) is of O-type. Without loss of generality,
we may assume that & ,(0) is connected, that is, every Z-lattice in &, ,(0) is
spinor equivalent. It is well known that the rank of an incidence matrix of a
connected graph G(V, E) over Fy is |[V| — 1. Furthermore if the graph G contains
an odd cycle, then the rank of the incidence matrix of G over Q is equal to the
number of vertices. Hence it suffices to show that the graph &, ,(0) contains an
odd cycle, even though it might contains a loop. Assume that [T1] and [T:] be
adjacent vertices in &, ,(0). Since they are spinor equivalent, there is an isometry
o€ OW)and ¥ = (3,) € J{, such that Ty = ¢X(7>), where V. = Q® 7. Let
b ={qgeP—{p}| (07 (T1))g = (T2)y} and ¥ = P — (® U {p}), where P is the
set of all primes. Now by Strong Approximation Theorem for Rotations, for any
€ > 0, there is a rotation 7 € O’ (V') such that

|7 —%4lq <€ forany ge ¥ and |7||; =1 for any q € ®.
Therefore we have
afl(Tl)q =7(Ty), forany g#p and %,o0 Tﬁl(T(Tg)p) = Uﬁl(Tl)p,

where ¥, o 77! € O'(V,). Consequently, there is an even integer n and a basis
{x1, 22,23} for 7(T%) such that

7(Ty) = Zay + Zay + Zas and o (T1) = Z(p"x1) + Z(p "x2) + Zas,
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by Lemma 4.2 of [2]. This implies that there is a path from [T}] to [T2] with even
edges, and hence the graph &, ,(0) contains an odd cycle.

Assume that &, ,(0) is of E-type. Since any two adjacent vertices are contained
in different spinor genera in this case, it is a bipartite (multi-) graph. Therefore
the rank of the matrix My, ,(0) is h — 1.

(2) < (3) : Note that rank(91) = rank(991"). Hence the assertion follows directly
from Proposition B.8

(1) < (4) : Note that g*(£) = [Jg : PpJ§] for any genus £ with rank greater
than 2. Since

PDJéL,p(l) — PDJQC?LYP(O) uj(p) ,PDJépr(O),

9 (Grp(1) = g7 (GL,p(0)) if and only if j(p) € PpJg"* ), that is, &1,(0) is of
O-type. Furthermore if &, ,(0) is of E-type, then ¢ (G, ,(0)) = 297 (G ,(1)). O

Now, we consider the general case. For any positive integer m, we say that a
graph & ,(m) is of E-type if m is even and &, ,(0) is of E-type, and O-type
otherwise.

Assume that &p, ,(m) is of E-type and M € Gp, ,(m). Since the map )\p% :
spn(K) — spn()\f (K)) is surjective for any K € Gr ,(m), there is a Z-lattice
M’ € Gr, p(m) such that M’ ¢ spn(M) and [M’] is connected to [M] by a path by
Lemma 35 Furthermore, since g% (Gr, ,(m)) = g7 (G ,(0)) for any even m, every
Z-lattice M’ satisfying the above condition forms a single spinor genus. From the
existence of such a Z-lattice [M'], we may define

spn(M) if &1, ,(m) is of O-type,
spn(M) U spn(M’) otherwise,

Cspn(M) = {

Lemma 3.10. For a Z-lattice M € Gy, ,(m), the set of all vertices in the connected
component of &, ,(m) containing [M] is the set of equivalence classes in Cspn(M).

Proof. First, we prove the case when m = 1. Assume that M’ € spn(M). Then
there are 0 € Py and X € Ji{, such that M’ = ¢XM (see [§]). Since ', ;(M)’s are
the only sublattices of M with index p whose norm is pZ, we have
{8 (M)7), 05 (Tp2(M) 7)) = {Tpa (M')7, Tpa(M')7}.

Hence prl(M)% € spn(prl(M’)%) v spn(prg(M’)%). Therefore by Lemma B2
[M'] and [M] are connected by a path in &j, ,(1). Furthermore, as edges of the
graph &y, ,(0), [M] and [M’'] are contained in the same connected component.
Since the number of connected components in &y, ,(0) equals to g* (G (1)) by
Theorem[3.9] each spinor genus in Gy, ,(1) forms a connected component in &, ,,(1).
Furthermore, since g+ (G ,(2m + 1)) = g™ (G »(1)), spn()\p% (M)) = spn()\p% (M"))
if and only if spn(M) = spn(M’) for any M, M’ € G, ,(2m + 1). Therefore by
Lemmal[35] the set of all vertices in the connected component of &, ,(m) containing
[M] is the set of equivalence classes in Cspn(M) for any odd m. The proof of even
case is quite similar to this. ([l
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Theorem 3.11. For any non-negative integer m, the graph &r ,(m) has an odd
cycle (including a loop) if and only if &1, ,(m) is of O-type.

Proof. We already proved the case when m = 0 in Theorem Assume that
m = 1. Let T € Gr ,(0) be any Z-lattice. Then there are at least three Z-lattices,
say S1, 52,53, in ®,(T) nGr, p(1). Now by LemmaB.2] [S;] and [S;] are connected
by an edge for any 1 < i # j < 3. Hence the graph &, ,(1) contains a cycle of
length 3 or a loop. For the general case, we may apply Lemma to prove the
theorem. (]

4. REPRESENTATIONS OF INTEGERS BY TERNARY QUADRATIC FORMS

Throughout this section, we assume that a Z-lattice L and a prime p satisfies
all conditions given in Section 3. For a nonnegative integer m, let T € Gr ,(m)
be a ternary Z-lattice and let S € G, ,(m + 1) be a ternary Z-lattice such that
r(T?,S) # 0. This implies that [T] is one of vertices contained in the edge [S] in
the graph &, ,(m). We assume that

(4.1)  Cspn(T) = {[T1],[T2] --.,[Tu]} and Cspn(S) = {[S1],[S2],---,[Su]}
are ordered sets of equivalence classes. The aim of this section is to show that if

m < 2, then there are rational numbers a; and b; such that for any integer n (any
integer n divisible by p only when m = 2),

v
(4.2) r(n,T) = Z (air(pn, S;) + bir(p*n, S;)) + (some extra term).
i=1
For a while, we assume that m is an arbitrary nonnegative integer. The following
two propositions will be used repeatedly.

Proposition 4.1. For any integer n,

r(pn, S) Zul r(TF,8) r(n, Ti) _ rpn, Ap(S))
o(S5) o(S)  o(Ty) o(9)

i=1
Proof. By Weak Approximation Theorem, there exists a basis {x1,x2,z3} for S

such that )

B = (4 §) L0 o ),
2
where § is an integer not divisible by p. As in Lemma [B1] let

Tpi(S) = Zpzy + Zxy + Zxs, Tp2(S) = Zxy + Zpzo + Zas.

Since Q(x) = ajaz (mod p) for any © = a1x1 + azzs + agxs € S, we have Q(x) =
0 (mod p) if and only if a3 =0 (mod p) or az =0 (mod p). Hence

xz € R(pn,S) if and only if z € R(pn,I'p1(S)) v R(pn,Tp2(S5))
Furthermore since 'y, 1(S) N T'p2(S) = Ap(S), we have
r(pn, §) = r(pn, Tp,1(S)) + 7(pn, Tp2(S5)) — r(pn, Ap(S))

for any integer n. Note that I', 1(S) and I'p, 2(S) € gen(T?) are the only sublattices
of S that are contained in gen(T?). Furthermore, since the edge [S] in &1 ,(0)
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contains the vertex [1'] by assumption, we have I, 1 (S)% ) I‘p72(S)% € Cspn(T). Now
for any Z-lattice T; € Cspn(T'), the number of sublattices in S that are isometric to

D - ’I"(Tip,S)
T, is o(T))

. The proposition follows from this. O

Proposition 4.2. For any integer n,

& (87, T) r(n, S; r(n, TP
Z (n, 55) (n, T?)

rpn,T) | A o@) oS P o) ifm =0,
of) | HSET)r(n,S) | rlpn A(T) e T
Z o(5;) o(T) P o th .

Proof. If we take ¢ = 0 and L = T in Lemma 2.5 then we have

r(pn, T) = >, r(pn, M) = (s,(0,T) — 1)r(n, T?).
MeQ,(0,T)

First, assume that m = 0. Let M € Q,(0,T) be a Z-lattice. Then by Lemmas [2Z3]
and 2.4]

M, ~ (g %) 1 (—4p*dTy and M, ~T, (q # p).
Hence M € gen(S?). Furthermore, since (77, M%) =7(M,T) # 0 and r(T?,S) =
7(S?,T) # 0 by Lemma[2.7] M7 e Cspn(S) by LemmasB2and BI0 Conversely, if
Mv e Cspn(S) satisfies 7(M,T) # 0, then M is isometric to a Z-lattice in ,(0,T).
Note that the number of lattices in ,(0,T) that are isometric to S? is (S(S)T) and
sp(0,T) = p+ 1. The proof of the case when m > 1 is quite similar to this, except
that there is a unique Z-lattice in Q,(0,7") that is not contained in gen(S?), which

is, in fact, A,(T), and s,(0,T) = 2p + 1. O

We define
r(T?,S;) r(T?,S;)
My p(m) = (#>€MU1UZ and N ,(m) = (# € M, .,(Z).
o) = (2535 (@) o) = (U555 @)
Note that these two matrices depend on the order of each set Cspn(-), and My, ,(0)

is one of block diagonal components of My, ,(0) if we take a suitable order in (3.1).
For any integer n, we define vectors

r(n,Ty) r(n,Tz) r(n,Tu)>t
o(Tv) " o(Tz) 7 o(Tu) )

Ré(n, Cspn(A\) (7)) = (r(n’OA(gTZ()Tl))’ T(n;?i()m T T(nj(i()m))

Similarly, we define R(n, Cspn(S)) and R*(n, Cspn(A7*(S))). If Cspn(M) = spn(M),
then we use R(n,spn(M)) rather than R(n, Cspn(M)).

R(n,Cspn(T)) = <

Theorem 4.3. Let T and S be ternary Z-lattices satisfying all conditions given
above when m = 0. If the graph &1, ,(0) is of O-type, then we have

pR(n, spn(T7)) = M-R(n, spn(8))=(M-N) T M-(R(p*n, spn(S)) +R(n, spn(S5))).
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Proof. By Lemma [3.7] and Propositions 1] 2] we have the following two equali-
ties:
(43)  R(pn,spn(S)) = N* - R(n,spn(T)) — R¥(pn, spn(A,(9))),
(4.4) R(pn,spn(T)) = M- R(n,spn(S5)) — pR(n, spn(T")).
Since A, (A, (Si)) =~ S; for any S; € spn(S), we have

RF(p*n,spn(A,(5))) = R(n, spn(5)).
Hence
(4.5) R(p’n,spn(S)) = N* - R(pn, spn(T)) — R(n, spn(S)).
Note that

O(spn(T)) - N' = M- O(spn(S5)),

where O(spn(T)) is the u x u diagonal matrix with entries o(7;)~!. Furthermore,

since we are assuming that rank(M) = u, the u X u square matrix M - N is
invertible. Therefore the equation follows directly from (4.4) and (4.5). O

Now assume that & ,(0) is of E-type, then Cspn(7T) consists of two spinor
genera and each connected component is a bipartite graph. Hence the rank of the
matrix M is u — 1 and M - N'* is no longer invertible. To get a similar result for
an F-type graph, we need to make some adjustments.

Assume that Cspn(T') = spn(T) U spn(T) and

spn(T) = {[Ti1]7 S [Ti ]}7 spn(T) = {[Tj1]7 R [ij]}v
where {i1,42,...,%0,J1,---, 06} = {1,2,...,u}. Note that
1
o(K)’

w(spn(T")) =
[Kespn(1”)

is independent of 7" for any T € gen(T"). Define
~ Jw(spn(T)) ifle{i1,... %},
" {w@pn(T))l i€ (o),
and define a u x (v + 1) matrix N = (n;;) by
(17, 55)

nij = o(5;5)
€ ifj=v+1.

if j <o,

Lemma 4.4. The rank of the matriz N defined above is .

Proof. Let n; be the i-th row vector of the matrix N. Suppose that ajng + --- +
ayun, = 0 for some integers «;, that is,

o S o (T S)
(4.6) Tols) T (s

o€ + o+ aye, = 0.

=0 forany j=1,...,v,
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For any j such that 1 < j < v, the edge named by [S;] contains two vertices, one
of them, say [T7, ], is contained in spn(7’) and the other, say [T}, ], is contained in

e

spn(T). Hence the first equation in (4.6) implies that

’I”(Tip,Sj) T(Tjﬁasj)
j, ——e Iy A
o(S;) o(S;)

Therefore o, - a;, < 0. Since the subgraph of &, ,(0) consisting of vertices in

Cspn(T') is a connected bipartite graph, each a;, (aj,) is 0, or it has the same sign

to a;, (aj,, respectively). Therefore oy = 0 for any [ = 1,...,u and rank(N) = .
This completes the proof. (I
For a vector v = (v1,...,v,), we define (v, w1, ..., ws) = (V1,...,0p, W1,...,Ws).

Note that the equation (4.5) implies that

(47)  Ro= A R(pn, Cspn(T)) = | B@50n(S)) + R(n,spn(s) |

r(pn,spn(T)) — r(pn, spn(T))
where
1 r(pn,T;)
r(pn,spn(T)) = ————- > = — ==
wlspn() 2 olT)
Theorem 4.5. If &, ,(0) is of E-type, then we have

pR(n, Cspn(T?)) = M - R(n, spn(S)) — (N - N©)"N - R.

Proof. From the above lemma, we know that rank(N') = u. The theorem follows
directly from the equations (4.4) and (4.7). O

Note that r(pn,spn(T)) — r(pn,spn(T)) can easily be computed by the formula
given in [I1].

Ezample 4.6. Let p =11 and L ={1,1,16). Then

1 0 0 2 0 -1
Grp(0)/ ~= {le 01 0|, =0 2 1 }

0 0 16 -1 1 5

3 1 1 6 2 3
Grp(l)/ ~= {Sl= 1 6 —1],8=[2 61 }

1 -1 11 3.1 7

One may easily compute that M = (1 1) and N' = (g i) Since rank(M) = 1,

the graph &, ,(0) is of E-type by Theorem 3.9 Note that N = (2 i 1f6>'



A GENERALIZATION OF WATSON TRANSFORMATION 21

Therefore, by Theorem (.5, we have

38 2 39 1
11r(n, TH) = gr(n Sy) — gr(112n S1) + 1Or(n, Sa) — Er(112n,5’2)
1 1
— <—T(11n,T1) — —r(lln,T2)> ,
2 2
38 2 39
1r(n, T} = 5 r(n,Sy) — gT(HQn S1) + 10r(n, Sa) — ET(112TL7SQ)
1 1
+ <§r(11n,T1) - ir(lln,T2)> .
Note that by Korollar 2 of [I1], one may easily check that
0 if n # 11m?2,

11n,T1) — r(11n,T3) 1— m
r( D 2) < > (—1)"2" - 44m  ifn = 11m2

Theorem 4.7. Let T € Gr (1) and S € G, ,(2) be ternary Z-lattices satisfying
r(T?,S) # 0. Then we have

@t = Y T (W 5 - L 5 )

[Slegen(S)
Ap(8)=Tp 2(T)

[Slegen(S)

A\ (8)=Ty 1 (T)F

1
P

Proof. First, we assume that

(I)p()\p(S)) = {T = Tl,TQ,...,Tp+1} and \pr()\p(S)) = {S = 51,52,...,5%}.

Without loss of generality, we may assume that A, (S) = I‘p71(T)%. Define, for any

integer n,
R(”’ (I)P()‘P(S))) = (T(nv T1)7 T(TL, T2)7 cee ,T(TL, Tp+1))t
and
t
R(n, (A (9))) = (r(n, 81,71, 82), o7 (m S ) )
We also define a vector I(n, A, (S)) = r(n, Ap(S5)) - (1,1,..., ) of length %.
Now by Proposition [4.1], we have
n

R(om, %, (5)) = U R, 2,0,(5)) -1 (2.0,(5)).

where U? € M(p+1)>< pp+1) (Z) is the incidence matrix of the complete graph of order
2

p+ 1 by Lemma [3:21 Therefore U'U = (p — 1)I + J and

1
- if ’I”(Tip, SJ) #0

(U'U)'Uh); =1 P

if T‘(TZ—Z),SJ‘) =0
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Here J is a matrix of ones. Therefore we have

(4.8) r(n,T) = %Zr(pn, Zr pn, S) + (g, A,,(S’)) ,

1
where )}, is the summation of all lattices S’ in W, (X, (S)) such that »(T%,5") # 0
and ), is the summation of all lattices S" in W, (\,(S)) such that r(T?,5") = 0
We define, for simplicity, Ui (pn,S) = >}, r(pn,S) and Us(pn,S) = >, 7(pn,S).
Now, by Proposition 2.9 we have

r(pn pp—1) (n _ . gen )
prlm () + 22 (2005)) Ot (5)
) = ) rmsy
i=1

= Ul(pn,S) + Uz(pn,S).

Let S be a Z-lattice such that \,(S) = I‘p)g(T)%. We may similarly define
R(n, ¥, (A\:(5))), Ui(pn, S) and Us(pn, S). Then, equations (4.8) and (4.9) hold
even if we replace S by S. Furthermore, by Proposition [4.2]

r(p*n —Dr(n,T) = wr n, S’
(1.10) (p*n, T) + (2p = 1)r(n, T) [S/];n(s) oGy S

= Ui(pn, S) + Ui (pn, S).
By combining (4.8)~(4.10), we have
S=2r(n, T) = p(Ui(pn, 8) + Us(pn, 8)) = p (L0100, ) = 555 U2 (0%, ) )
— 22 (104 (pn, §) — 5ol Us(on, S) ) =4 (Us(pn, S) + Us(pn, S))

) (n, s)) |

Since the above equation holds even if we exchange S for S , we have
3 ~ ~
(3p? —p)r(n,T) = ?p (Ul(pn, S) + Ui (pn, S)> - Z% (Ul(p?’n,S') + Ul(p3n,5’)>

1 ~ ~
+ =7 (00°n.8) + Ual™n. 9) + Ua(p*n, §) + Ua(p'n, 5) )

- Biion.) + o0 . 3) = (0360, 5) -

This completes the proof. (I

Remark 4.8. In the above theorem, one may easily check that the sets ¥, (A,(5))
and W,(),(5)) are contained in Cspn(S).

Assume that m = 2. Recall that T € G, ,(2) and S € G ,(3) are ternary Z-
lattices satisfying r(T?,S) # 0. If we define ¢; and N as before for the E-type,
then Lemma [.4] still holds under this situation.

Theorem 4.9. Let T and S be ternary Z-lattices satisfying all conditions given
above. Assume that the graph &, ,(2) is of O-type. If n is not divisible by p, then
we have

(4.11) R(n, spn(T)) = (N - NN - R(pn, spn(S)).
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If n is divisible by p, then R(n, spn(T)) is equal to

St (MRl spn($) = (VA7) (R(pr, spa($)) + R, ().
If 81,,(2) is of E-type, then we have
ARy #pin
R(n, Copn(T) = {

(M -R(pn, spn(S)) — (N -NH7IN - IN{Q) otherwise,

2p—1
where
Ry - R (pn, spn(9)) Ra- R(pn, spn(S)) + R(p*n, spn(S))
r(n, spr(T)) = r(n, spn(T) (2p — 1)(r(n, spn(T)) — r(n, spn(T))

Proof. The proof is similar to that of Theorem 43 First, assume that &1, ,(2) is
of O-type. Since the rank of A is u, we may define Z = (N - N*)7IN. From the
equation (4.3), we have

(4.12) R(n,spn(T)) = Z (R(pn, spn(9)) + R¥ (5, spn()\p(S)))) ,
and
(4.13) R(p*n,spn(T)) = Z (R(p3n, spn(S)) + R' (pn,spn()\p(S)))) )

1

If (Ty1(S)¥,Tpa(S)7) ~ (T}, Ty), then

(Cpi(Ap(9)7, Ty 2\ (9))7) = (Ap(T1), Ap(T2)).

S

Hence we have

(4.14)  R¥(pn,spn(X,(S))) = N* - R¥(n,spn(A, (1)) — R¥(n,spn(A5(S))),

that is,

(4.15) R¥(n,spn(A, (1)) = Z(RF(pn,spn(A,(5))) + RE(n,spn(A3(5))).

By Proposition [£.2 we also have

(4.16) R(p*n, spn(T))+2p R(n,spn(T)) = M-R(pn, spn(S)) +RF(n, spn(A,(1))).
If n is not divisible by p, then (4.11) comes directly from (4.12). Assume that n is
divisible by p. Since A3(S) ~ X,(5), we have

(4.17) R (. spn(3,(5)) ) = REGn,spnO2(5),

Therefore, the theorem follows from equations (4.12), (4.13), (4.15) and (4.16).
If we replace N by N, then the proof of the case when &1 p(2) is of E-type is
quite similar to this. (I
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Ezample 4.10. Let p = 3 and let L = (1,1,2). Then T = (1,2,9) € Gr, ,(2) and
S1 =<1,2,27) € Gr, p(3). In fact, the graph & ,(2) is of O-type and

31 1 10 0 2 0 0
gL,p(3)/~={Sl,S2= 1 4 2], 8=(05 1], S4=]0 4 1}
1 2 6 0 1 11 01 7

In this case, one may easily check that there are no rational numbers a; and b;
satisfying the equation

4 4
r(n,T) = Z a; - r(3n,S;) + Z b; - r(27n,S;) for any integer n.
i=1 i=1
Finally, assume that m > 3. Let T € G, ,(m) and S € G, ,(m + 1) be Z-lattices
such that r(T7,5) # 0. We additionally assume that &y, ,(m) is of O-type. Recall

that M = (T(Tip’sj)) and N = (T(()T(iiﬁj)>. We define Z = (NN)7IN.

o(T%)

Theorem 4.11. Under the assumptions given above, if n is not divisible by p, then

R(n, spn(T)) = Z (R(pn, spn(S))) and R(pn,spn(T)) = M - R(n, spn(S)).
For an arbitrary integer n, we have

PR(p"n, spn(T)) — p*R(n, spn(T))

=Z (2pR(p3n7 spn(S)) + p"Ropn, spn(S)) + R’ (pn, spn(S))) — pM - R(pn, spn(5)),
where

_ [ o(Ap(51)) (51 o(Ap(Sv)) »(Su '
Rb(pn7 spn(S)) = (Wr(pm gen; (s )(51))7... 5 r(pn, gen; (s )(Su))> .

Proof. By Propositions 1] and E.2] we have
(4.18) R(pn,spn(S)) = N* - R(n,spn(T)) — R (g, spn()\p(S))) :

and
R(pn,spn(T)) = M - R(n,spn(S5))

+ R <g spn()\p(T))> 2 R <g spn(T)) .

The first two equations follow directly from (4.18) and (4.19).
Now by applying Ap-transformation to the equation (4.18), we also have

(4.19)

(420) R (pn,spn(An(S))) = A - RE(m, spn(Ay(T))) — R? (g, spn(A,%(s») |

Our final ingredient is the following equation which is directly obtained from Propo-
sition

PR (pm, spu(Ay(S))) + pR? (g,spnup(s») R (g,spn@z(s»)

= R’(pn, spn(9)).

(4.21)



A GENERALIZATION OF WATSON TRANSFORMATION 25

By multiplying Z to (4.18), we have

R(n,spn(T)) = Z (R(pn, spn(S)) + R (g spn(/\p(S))>> .

Hence we have
2pR(p*n, spn(T)) + p°R(n,spn(T)) = 2pZ (R(psn, spn(S)) + R (pn, spn(/\p(S))))

+p’Z R(pn,spn(S)) + R/ (%ﬁpn()\p(S’)))) .
On the other hand, by combining (4.19) and (4.20), we have
R (p*n,spn(T))+2pR(n,spn(T")) — M - R(pn, spn(S))

- 2 (Repn,spn0n () + R (Zsm02(5))) ).
The theorem follows from the above two equations and (4.21). O
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