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Well-posedness for the Navier-Stokes equations
with datum in Sobolev-Fourier-Lorentz spaces
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Abstract: In this note, for s € R and 1 < p,r < oo, we introduce and study
Sobolev-Fourier-Lorentz spaces Hg,.(R%). In the family spaces Hg,.(R%),
the critical invariant spaces for the Navier-Stokes equations correspond to
the value s = ;?l — 1. When the initial datum belongs to the critical spaces

.4 q
HZ,. (RY) withd > 2,1 < p < oo, and 1 < r < 0o, we establish the existence
of local mild solutions to the Cauchy problem for the Navier-Stokes equations

.d_q
in spaces L>([0,T]; HE, (R?)) with arbitrary initial value, and existence of

L
global mild solutions in spaces L*°([0,00); H Ep,rl(Rd)) when the norm of the

,O0

.
initial value in the Besov spaces B (RY) is small enough, where p may

5,00
take some suitable values.

81. INTRODUCTION

We consider the Navier-Stokes equations (NSE) in d dimensions in spe-
cial setting of a viscous, homogeneous, incompressible fluid which fills the
entire space and is not submitted to external forces. Thus, the equations we
consider are the system:

Ou=Au—V.(u®u)— Vp,
div(u) = 0,
u(0, ) = uy,

which is a condensed writing for

1<k<d, Ouy=~A0uy— 37, d(wug) — O,

Sy Oy = 0,
1 <k<d, ug(0,2)=ug.
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The unknown quantities are the velocity u(t,z) = (ui(¢,x), ..., uq(t,z)) of
the fluid element at time ¢ and position = and the pressure p(t, x).

A translation invariant Banach space of tempered distributions £ is called a
critical space for NSE if its norm is invariant under the action of the scaling
f(.) — Af(X\.). One can take, for example, & = L4(R?) or the smaller space
E=H %’1(Rd). In fact, one has the chain of critical spaces given by the
continuous imbedding

. : g_ -
HEYRY) 5 LYRY) < Bl (RY) pene) = BMOT'(RY) = BLL (RY). (1)

It is remarkable feature that the NSE are well-posed in the sense of Hadar-
mard (existence, uniqueness and continuous dependence on data) when the
initial datum is divergence-free and belongs to the critical fun(czltion spaces
(except By listed in () (see [4] for H 5~L(RY), LY(RY), and B . (RY), see
[23] for BMO~(R?), and the recent ill-posedness result [3] for B;O{M(Rd)).

In the 1960s, mild solutions were first constructed by Kato and Fujita ([17],
[18]) that are continuous in time and take values in the Sobolev space H*(R?),
(s> 2—1),say u € C([0,T]; H*(R?)). In 1992, a modern treatment for mild
solutions in H*(R?), (s > ¢ — 1) was given by Chemin [§]. In 1995, using the
simplified version of the bilinear operator, Cannone proved the existence for
mild solutions in H*(R?), (s > 4 — 1), see [4]. Results on the existence of
mild solutions with value in LP(R?), (p > d) were established in the papers of
Fabes, Jones and Riviere [9] and of Giga [10]. Concerning the initial datum
in the space L™, the existence of a mild solution was obtained by Cannone
and Meyer in ([4], [7]). Moreover, in ([4], [7]), they also obtained theorems
on the existence of mild solutions with value in Morrey-Campanato space
M3(R?), (p > d) and Sobolev space Hy(R?), (p < d,; — 5 < 3), and in gen-
eral in the case of a so-called well-suited sapce W for NSE. The NSE in the
Morrey-Campanato spaces were also treated by Kato [2I] and Taylor [27].

In 1981, Weissler [29] gave the first existence result of mild solutions in the
half space L?(R3). Then Giga and Miyakawa [I1] generalized the result to
L3(82), where € is a bounded domain in R®. Finally, in 1984, Kato [20]
obtained, by means of a purely analytical tool (involving only Hoélder and
Young inequalities and without using any estimate of fractional powers of
the Stokes operator), an existence theorem in the whole space L3(R?). In
([, [5], [6]), Cannone showed how to simplify Kato’s proof. The idea is to
take advantage of the structure of the bilinear operator in its scalar form.
In particular, the divergence V and heat e operators can be treated as a,
single convolution operator. In 1994, Kato and Ponce [22] showed that the
NSE are well-posed when the initial datum belongs to homogeneous Sobolev

Ld_
spaces Hp 1(Rd), (d < p < 00). Recently, the authors of this article have
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considered NSE in mixed-norm Sobolev-Lorentz spaces, see [13]. In [15], we
showed that NSE are well-posed when the initial datum belongs to Sobolev
spaces Hs(Rd) with non-positive-regular indexes (p > d £-1<s<0). In
[14], we showed that the bilinear operator

B(u,v)(t) = /0 e(t_T)AIP’V.(u(T) ® v(7))dr (2)

is bicontinuous in L*([0,T7; H;(Rd)) with super-critical and non-negative-
regular indexes (0 < s <d,p>1, and § < % < %), and we established the
inequality

1 d
< O, pqTHOT

HB<u’v)HL°°([O,T};H;) )HuHLOO([O,T};H;) UHLOO([O,T};H;)'

In this case existence and uniqueness theorems of local mild solutions can
therefore be easily deduced. In [16] we prove that NSE are well-posed when

da
the initial datum belongs to the Sobolev spaces Hp;_l(]Rd) with (1 < p <d).
In this paper, for s € R and 1 < p,r < 0o, we first recall the notion of the
Fourier-Lebesgue spaces £P(R?), introduced and investigated in [12]; then we
introduce and study Sobolev-Fourier-Lebesgue spaces H 2,(R?), and Sobolev-
Fourier-Lorentz spaces H,,(R%). After that we show that the Navier-
Stokes equations are well-posed when the initial datum belongs to the crit-

ical Sobolev-Fourier-Lorentz spaces H z:pw (RY) with d > 2,1 < p < oo,
and 1 <r < oo. The spaces H Lo (Rd) are more general than the spaces

ng (]Rd) In particular, HEW (RY) = Hﬁ"p (Rd) when 2 5+ =1

In 1997, Le Jan and Sznitman [26] considered a very simple space con-
venient to the study of NSE, which is the space E of tempered distribu-
tions f € S'(R%) so that f(f) is a locally integrable function on R¢ and
sup|€|41|f(€)] < oo, with " standing for the Fourier transform. This space

may be defined as a Besov space based on the spaces PM of pseudomea-
sures (PM is the space of the image of the Fourier transforms of essentially
bounded functions: PM = FL®). More precisely, E = B% 1>°(R%). They
showed that the bilinear operator B is bicontinuous in L*([0, T; B4, 1™) for
all 0 < T < oco. Therefore they can easily deduce the existence of global mild
solutions in spaces L*([0, 00); B4, 1™) when norm of the initial value in the
spaces Bh 1™ (RY) is small enough. From Definitions [l and B in Section 2,
we have

PM = Ll d 1, OO(Rd) Hg;l(Rd)



In 2011, Lei and Lin [25] showed that NSE are well-posed when the initial
datum belongs to the spaces X ~1(IR?), which is defined by

~

S

They established the existence of global mild solutions in the space
L>([0,00); X~1) when norm of the initial value in the spaces X~!(R%) is
small enough. From Definitions [I] and 2 in Section 2, we see that

f e & Y(R?) if and only if H(—A)_%fHX < 00, where HfHX =

Lt

XHRY) = HL(RY).

Thus, the spaces B,y ™ and X!, studied in [26] and [25], are particular cases
el

of the critical Sobolev-Fourier-Lebesgue spaces H g;l with p =1 and p = o0,
respectively. Note that estimates in the Lorentz spaces were also studied in
[1], [19] (see also the refererences therein). Very recently, ill-poseness of NSE
in critical Besov spaces Bo_ol,q was investigated in [28].

The paper is organized as follows. In Section 2 we introduce and inves-
tigate the Sobolev-Fourier-Lorentz spaces and some auxiliary lemmas. In
Section 3 we present the main results of the paper. Due to some technical
difficulties we will consider three cases 1 < p < d,d < ¢ < oo, and p = 1
separately. In subsection 3.1 we treat the case 1 < p < d. In subsection 3.2
we consider the case d < ¢ < co. Finally, in subsection 3.3 we study the case
p = 1. In the sequence, for a space of functions defined on RY, say E(R?),
we will abbreviate it as E. Throughout the paper, we sometimes use the
notation A < B as an equivalent to A < C'B with a uniform constant C'.
The notation A ~ B means that A < Band B < A

§2. SOBOLEV-FOURIER-LORENTZ SPACES

Definition 1. (Fourier-Lebesgue spaces). (See [12].)
For 1 < p < oo, the Fourier-Lebesgue spaces £P(R?) is defined as the space
FH LY (RY)), (]% + % = 1), equipped with the norm

HfHLP(]Rd) = H‘F<f)HLp’(Rd)7

where F and F~! denote the Fourier transform and its inverse.

Definition 2. (Sobolev-Fourier-Lebesgue spaces). '
For s € R, and 1 < p < oo, the Sobolev-Fourier-Lebesgue spaces Hp, (RY) is
defined as the space A=*LP(R?), equipped with the norm

= A%l

ol
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where A = v/=A is the homogeneous Calderon pseudo-differential operator
defined as

—

Ag(€) = I€l9(€).

Definition 3. (Lorentz spaces). (See [2].)
For 1 < p,r < oo, the Lorentz space LP"(R?) is defined as follows.
A measurable function f € LP"(RY) if and only if

HfHLP,r(Rd) = (fooo(t%f*(t))r%)% < oo when 1 <7 < oo,

HfHLP,oooRd) ‘= sup t%f*(t) < 00 when r = o0,
t>0
where [*(t) = inf {7+ M({z : |f(@)| > 7}) < t}, with M being the

Lebesgue measure in R

Definition 4. (Fourier-Lorentz spaces).
For 1 < p,r < 0o, the Fourier-Lorentz spaces £ (RY) is defined as the space
FYLP'7T(RY)), (I% + % = 1), equipped with the norm

HfHﬁp,r(Rd) = H‘F(f)HLp/,r(Rd)’

Definition 5. (Sobolev-Fourier-Lorentz spaces). .
Forse Rand 1 < r,p < 00, the Sobolev-Fourier-Lorentz spaces Hj, - (Rd)
is defined as the space A=*LP"(R?), equipped with the norm

|l As
lull s, , = (1A o

Theorem 1. (Holder’s inequality in Fourier-Lorentz spaces).
Let 1 <r,q,Gg<oo and 1 < h,h,h <400 satisfy the relations
1 1

1 1
=4 and = =
; q—i-qan A

+

> =
=o| =

Suppose that u € L9% and v € L3 Then wv € L™ and we have the
inequality

e S Nl ool o (3)

Proof. Let ', ¢, and ¢’ be such that

o]

1 1 1 1 1 1
—tS=lL-+>=1and-+==1

v 7 4q q 7
It is easily checked that the following conditions are satisfied
1 1 1
1<r,¢,¢ <4ocoand — +1=—+ —.
r q q
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We have ]

Llh = WH'&*@HLH,M (4)

lwv] g = (0]

Applying Proposition 2.4 (c) in ([24], p. 20), we have

2 ol o S Nl o illoll o = lull gonllol] gan- (5)

Now, the estimate (3]) follows from the equality (@) and the inequality (B). O

Theorem 2. (Young’s inequality for convolution in Fourier-Lorentz spaces).
Let 1 <r,q,qg < oo, and 1 < h,h,h < oo satisfy the relations

1 1 1 1 1 1
—+1:—+jand—:7—|—7.
T q q h b h

Suppose that u € L% gnd v € LE*. Then uxv € L™ and the following
inequality holds
l s ol o S ull sl 0] o (6)

Proof. Let r',¢’, and ¢’ be such that

1+l/:1,1+1/:1, andi—i—i’:l.
r.r q g qa q
By definition
ot ol g = [T . = 2720 )

We can check that the following conditions are satisfied

1 1 1
1<7.q¢,§ < +oo and = = 4 —.

Applying Proposition 2.3 (c) in ([24], p. 19), we have

a0l o S Nl o slloll o = Tull gonllo ] gan- (8)
Now, the estimate (@) follows from the equality (7)) and the inequality (). O

Theorem 3. (Sobolev inequality for Sobolev-Fourier-Lorentz spaces).
Letl<q§cj<oo,5,§€]R,s—§:§—§, and 1 <r < oo. Then

full g, %l Vo€ o)



Proof. We have

iy, =Wl = T 0
where
1 1
-+ == 1.
q 7
Note that
€™ € L%’W(Rd) for all r satisfying 0 < r < d.
Applying Proposition 2.3 (c) in ([24], p. 19), we have
1€l Ay S 11617ty e MRl s = 0y, - (A1)

LT
The estimate (@) follows from the equality (I0) and the inequality (I1). O

Lemma 1. Let s e R, 1 <p<oo, and 1 <r <7 < 00.
(a) We have the following imbedding maps
LPY ey LPT sy [PT ey P

Hppy = Hppr = Hjpr = Hppoo.

(b) Hp, = ngp (equality of the norm), where % + ]% =1.

Proof. It is easily deduced from the properties of the standard Lorentz
spaces. ]

Lemma 2. Let s € R and 1 <p < oco. We have
(a) If 1 < q <2 then Hy — Hp,.
(b) If2 < q < oo then Hz, — H.

Proof. It is deduced from Theorem 1.2.1 ([2], p. 6). O

Lemma 3. Assume that 1 < r,p < oo and k € N, then the two quantities

lull s, and > [10%]l,.

Lo
o=k

are equivalent.

Proof. First, we prove that

> 0l S Tl

|al=k



We have
S 100l = X tate) = X [ pletate

laf=k |al=k |al=k

< S el S | Aku(e)

la|=k

— 1l
Mo = llell s, ,

Next, we prove that

T~ B
lull,, < > 10l .

o=k
It is easy to see that for all £ € RY, we have
k a
€ <dz Y el
la|=k

This gives the desired result

lall e, . = M€l a@)],, < d

> [gla(g)

la|=k
<d? 37 € ae)] o = dF D7 10U o
la|=k |a|=k

Lemma 4. Let k e Nyp € R, and r € R be such that

ko1 1 k
<EkE<d-1l-<-<—-—+4+— dl<r<oo.
0< k< ,d<p<2+2d,cm <r<oo

Then the following inequality holds
ool . S Nullgg, Mol Vv € Heor,

where

12k
¢ p d
Proof. First, we estimate H@a(uv)HU’T, where
a = (ag,qy,...,0q) €N |af = Zal—k:

By the general Leibniz rule, we have
O () = > (O‘) (07u)(0°v).
Y+B=a K

8



Set

1 1 k=1 1 k-|8
P d "¢ p d =
We have
1,12 2k sl _2 k1
@ ¢ p d d p d q

Therefore applying Theorems [, 3, and Lemma [ (a) in order to obtain

@ )(@%0)| .. S 07

0| e S 1070 o100l
u”qurHa v £42:° ~O d"u HZ;,WHa UHHZ;,@

SN0 ull gz 1970l gz S Nall g, Mol -
Thus, for all @ € N? with |a| = k, we have
107 (w0l o S Ml s, (10l
Applying Lemma [3, we have

lwolly,, S lullg,, ol Vov € B B

Lemma 5. Assume‘ that 1 < p,r < oo and s € R. If uy € Hf:p,r then
e®ug € L=([0,00); H,.) and

HetAuOHLoo([opo);Hzp,,ﬂ) < }}uo}}Hzp,r'

Proof. For t > 0, we have
e unl| 5, = lle*Aup| .. = [Je™"" €] o]

e = R = A6 = Juoll - T

o' <

1€ ] a0

Finally, let us recall the following result on solutions of a quadratic equation
in Banach spaces (Theorem 22.4, [24], p. 227).

Theorem 4. Let E be a Banach space, and B : E X E — E be a continuous
bilinear form such that there exists n > 0 so that

1Bz, y)ll < allz]lyl,

for all x and y in E. Then for any fired y € E such that |y|| < ﬁ, the

equation x =y — B(x,z) has a unique solution T € E satisfying ||T|| < %

9



§3. MAIN RESULTS

For T > 0, we say that u is a mild solution of NSE on [0, T'] corresponding
to a divergence-free initial data uy when u satisfies the integral equation

t
u = ePuy — / e(t_T)AIP’V.(u(T) ® u(r))dr.
0

Above we have used the following notation: For a tensor F' = (F;;) we define
the vector V.F by (V.F); = Zle 0;F;; and for vectors u and v, we define
their tensor product (v ® v);; = w;v;. The operator PP is the Leray projection
onto the divergence-free fields

(Pf); =1+ > RiRufr,

1<k<d

where R; is the Riesz transforms defined as

0 e oo =5,
R; = L0 e R;g(§) ‘g‘g(f)

The heat kernel 2 is defined as
ePuz) = ((4mt)~ Y2 P ) (z).

If X is a normed space and u = (uq, ug, ..., uqg),u; € X,1 < i < d, then we

write .
1/2
we X, llullx = (D [luill)

1=1

In this main section we investigate mild solutions to NSE when the initial
.d_q
datum belongs to critical spaces Hp, . (Rd) with 1 <p<ooand 1<r < .
We consider three cases 1 < p < d,d < g < oo, and p = 1 separately.
3.1. Solutions to the Navier-Stokes equations with the initial

. d_q
value in the critical spaces H}, . (Rd) with 1 <p<dand 1<r < oo.

We define an auxiliary space ’Cf;nT which is made up by the functions
u(t, x) such that

o
HUHK,; = sup {2
p,T o<t<T

u(t, x)HH%I < 00,

L£b,r

10



and

lim ¢ u(t,x)H =0, (12)
t—0 HY.
LPT
with
. 1 1 1
l<p<<p<oo,——=<=,1<r<o00,7>0,
p d p
and

o =a(p) = d(> - <)

In the case p = p, it is also convenient to define the space IC;rvT as the natural

.d_q
space L> ([0, T); Hfp.r ) with the additional condition that its elements u(¢, )
satisfy

lim HU(t, x)‘ o 0. (13)

Lemma 6. Let 1 <r <7 < oo. Then we have the following imbedding

D D D D
Kp,l,T = ICp,r,T = ICPf,T = ICp,oo,T'

Proof. It is easily deduced from Lemma [ (a) and the definition
of KV O

p,r, 1"

.d_q
Lemma 7. Suppose that ug € Hf,., (RY) with 1 < p<dandl <7 < oo,
then e"®ug € K | . with % -i< % < %.
Proof. Before proving this lemma, we need to prove the following lemma.

Lemma 8. Suppose that ug € L‘”(Rd) with 1 < qg < oo and 1 <r < co.
Then lim HlBauoHLw =0, where n € N,B, = {z € R? : |z| < n}, B¢ =
n—oo

RAB,, and 1p. is the indicator function of the set B on R? : 1pc(x) =1
for x € B, and 1p:(x) = 0 otherwise.

Proof. With § > 0 being fixed, we have
{x : [1geug(x)| > 5} D {x : |137cl+1u0(:p)| > 5}, (14)

and .
i {x: 1peuo(x)| > 0} = 0. (15)

Note that

M ({z: 1pguo(z)| > 6}) = M ({z : |uo(z)| > 6}).

11



We prove that
Md({:zc uo(x)] > 6}) < oo, (16)

assuming on the contrary
M ({z : Jug(z)] > 6}) = oo.
Set
uh(t) = inf {7 : M*({z : |uo(z)| > 7}) < t}.

We have uj(t) > 0 for all t > 0, from the definition of the Lorentz space, we
get

Jooller = ([ ) = ([Thor ) =a( [ e ) <o,
a contradiction.

From (I4)), (I3)), and ([I6]), we have

JLIT;OMd({x :|1peug(z)] > 6}) = 0. (17)
Set
up(t) = inf {7 : Md({x D |1peuo(x)| > 7)) < t}.
We have

U (1) = Uy (1) (18)
Fixed ¢ > 0. For any ¢ > 0, from (I7) it follows that there exist
ng = no(t, €) is large enough such that
M ({x: 1peug(z)| > €}) < t,Yn > ng.
From this we deduce that
Uy (t) < €,Yn > no,

therefore
limu; (t) = 0. (19)
n—oo
From (I8) and (I9), we apply Lebesgue’s monotone convergence theorem to
get

n—oo n—oo

= dty 7
im |1, =t ([ 0y ) =0 O
0
Now we return to prove Lemma [l We prove that

sup t2 emuoH 4 < Hu()’ Ny (20)

0<t<oo Hﬁﬁ,l Hﬁp,r

12



Let p’ and p’ be such that

1 1 1
—+—=1and - +—:1
p 7 p 7
We have
2o g = [l el ()] g (21)
L

Applying Holder’s inequality in the Lorentz spaces (see Proposition 2.3 (c)
in [24], p. 19), we have

=€ €5 ao (€ HL,l < J|eter H 22 el ao(©)] e =
AT T 0 e S 7 E 1€ (O] o
= o] g1 (22)

The estimate (20) follows from the equality (2I]) and the estimate (22]).
We claim now that

lim #2
t—0

etAuoH i, =0. (23)

£p1

From the equality (21I), we have

t2

¢! UOH 4 <t2H€7t‘5‘ 1Bc|£|__1A ()] 2
Hm1 ¢

+ 12 He_t\ﬁ\ 1g, |§|771A )HL?’l

For any € > 0. Applying Holder’s inequality in the Lorentz spaces and using
Lemma 8 we have

t%He_t‘f\QlB% €|§71 HLP, < Ct2 He t|¢|? H HlBC|§|_71A

)HLP”OO =

< C’HlBg\arlamHm <5 (@9

Olle™ | e, lILas €17 ol

HLP”OO

for large enough n. Fixed one of such n and applying Holder’s inequality in
the Lorentz spaces, we have

£3]|e 15, €)7o (©)]|, a < C13 |15, | 2 2 1€l @o(€)]] e

Oll.z

< Ct3 ||, | g 167 0O e < C" ()R [E1F t0(E)]]

UQ’ d
HP

= C’”(n)t% d_y <

LDP>T

(25)

13



for small enough t = ¢(n) > 0. From estimates (24)) and (25), we have,

t2 o(&)|| b + C"(n)E2

e’ UOH S C/H135|f|%_1ﬁ €3]

U()H _%_1 <e O
Hpr

In the following lemmas a particular attention will be devoted to the study
of the bilinear operator B(u,v)(t) defined by (2I).

In the following lemmas, denote by [z] the integer part of x and by {z} the
fraction part of z.

Lemma 9. Let 1 < p < d. Then for all p be such that

1 -1 1 HIEEHES!
< =z < —, = 26
w2 mm{d RNy } (26)
the bilinear operator B(u,v)(t) is continuous from K, o X KP, , into
[417%% 4%
ICZ,LT and the following inequality holds
<
1B ) <CJu , Mells, (27)
Fh [l
where C is a positive constant and independent of T.
Proof. We have
t
HB(u,v)(t)‘ g/ He<t*T>Apv.<u<7)@v(T))H,d_ldT
nr, "r
/ H/r1 E-DEPY (u(r) @ o(r))||  dr. (28)
L,

Note that
A

(Ar e 2B (u(r) @ v(m) ) ()

= (AP 2BY A u(r) 0 () ) (6)

J

~ fel(Phe <“52MZI(6 - S5 i (A ) ©),

Thus
(A1, (u(r) @ (r) )

J

i ) (o)

(t—7)" =

14



where

Kipy(€) =

€1 (g0 fjk )&). (30)

Setting the tensor K(x) = {K  (x)}, we can rewrite the equality ([29) in
the tensor form

(27r)d/2

i ~1etAPY. (u(1) @ u(r))
1

_ )MK< \/t;—7> « (AP (w(r) @ v(m) ).

(t—r

Applying Theorem [2] for convolution in the Fourier-Lorentz spaces, we have

<

~

H/r1 t-DAPY (u(7) ® v(T))‘

Lp:1

1 . g
(t {gh+d K(\/t — 7') ’ £l }A[P] (U(T) ®v(7‘))”am, (31)
where
12 -1 1 12 [f-1
PR and — =1+~ — =+ F——. 32
¢ p d r p b d (32)

Note that from the inequality (26]), we can check that r and ¢ satisfy the
relations

1 1 1
l<rg<oo,—+1=—-+4-.
p q T
Applying Lemma [, we have
A u(m) @ () e S g llo@] g0e (33)
Lpoo Lpoo

From the equalities (B80) and (32]), we obtain

k(=) = - nf|ri=r )., -
(t—7)5 57 || K], = (¢ = )2 || K|, = (£ —7)2 2(101_2 B ”

From the estimates (B1]), (33)), and (B4]), we deduce that

HAfil (t—7 APV.(U(T) ® ’U(T)) < (t— T)[%F%*lHu(T)H

[]1

Lpl H P




where

this gives the desired result

t
|Bwo@], e [ = o) o] gt
Hipa 0 H 5,00 H 500

U(Tl)H &)1 Sup 77%

HE%OO 0<n<t

¢
< / (t — 7‘)0‘_17'_0‘ sup 77%
0

0<n<t

v a, ,dT
(n) HHL%;],OS

t
= sup 0 [l g2 500 0 o) g0 [ 6=
0<n<t H % o 0<n<t £hoo S0
= sup 0 ()| g1 sup 0 o) o (35)
0<n<t H 5 0<n<t H 5o

Let us now check the validity of the condition (I3) for the bilinear term
B(u,v)(t). Indeed, from (B3]

limHB(u,v)(t)H 4, =0,

=0 e
whenever
ltig%) 2 u(t)” '[%5],;,1 = l}ir%)t% v(t)H .[%ﬁ]’ﬂ =0.
The estimate (27) is deduced from the inequality (35]). O

Lemma 10. Let 1 < p < d. Then for all p be such that

4 -1 1 41 @1
< = <ming 2, - + 2 } 36
d B mm{ a2 T 2d I (36)
the bilinear operator B(u,v)(t) is continuous from K7, o X KP, p into
~ 417 417>
Kk, L and the following inequality holds
g
| B(u,v)|| < C’Hu’ ] vl , (37)
K:pi T K:pi oo, T ’Cp— oo, T
(g (g (g1

where C is a positive constant and independent of T.
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Proof. First, arguing as in Lemma [9, we derive

Al Let=nApy, (u(t) @ v(1))

- (=) (7 o)),
where
Ky s(6) = (27T1>d/2 e Ier <5jk - fé—%)(z‘&). (38)

Applying Theorem Pl for the convolution in the Fourier-Lorentz spaces, we
have

H/\[g]*le(t_T)AIP’V. (u(r) @ v(r))

LP:1
1 . . rd
- [4]-1
et 1 G | P LS CO TG PICD
where
12 -1 1 1 [ -1
5 d and;—1—5+ T (40)

Note that from the inequality (B6]), we can check that r and ¢ satisfy the

relations
1 1 1
l<rg<oo,—+1=—-+4-.
p q

Applying Lemma [, we have

Y E1Co) PR %)

L£D,0 L£D,00

JAR (w(m) @ v(r) | e S [0l

From the equalities ([B8)) and (40), we obtain

:t—T%lA{ / :t—T%(k%jL d
Er,l L1

(=]
H t—T7
From the estimates (39), (41)), and ([@2), we deduce that

H/'\[g]_le(t*T)AIP’V. (u(T) ® v(T))

L1
<(t— T)%([%}*%)*lHu(T)H d)-1 U(T)H L 141-1
Y HJE
o
= =0 ) g o) g
L£P,00 LP,oo

17



where

this gives the desired result

t
[B@o®],5- 5 [ =0 fum)] g o] g
H 51 0 H 500 H p o0
¢
< / (t—7)2 "' 77 sup n2 U(n)H ] , sup 72 (U)H (-1 dT
0 0<n<t 0o 0<n<t Hﬁﬁ,oo

t
= sup n? U(TI)H [d _, sup n? (n)H -[d]l/ (t—7)F v odr
0<n<t H o 0<n<t HL;;;’OO :
~ t_% sup 775 u 77 H (411 sup n% v(n)H ) (43)
0<n<t Huioo O<n<t Hijoo

Now we check the validity of condition (I2]) for the bilinear term B(u,v)(t).
From (43) we infer that

lim 15| Bu,0)(0)]| - = 0.
£P:1
whenever
im0 ut) | g0 =t 5 ot6)| g0 =0
LP,0 P,
Finally, the estimate (B7) can be deduced from the inequality (43)]). O

Theorem 5. Let 1 <p <d and 1 <r <oo. Then for all p be such that
1 -1 1 ([ G-t
_ < — —_ =
o 24 P mm{ PRy }
there exists a positive constant 6,54 such that for all T > 0 and for all

Ld_
ug € pr,rl(Rd) with div(ug) = 0 satisfying

Sup tg([ } )
0<t<T

€ AUOH [ 1-1 S 5p,ﬁ,d7 (44>
LPOO

.d_q
NSE has a unique mild solution u € /de 1D LOO([O, T); Hfp.r )

(4
.d_q
In particular, the inequality (@) holds for arbitrary ug € HE,. (R?) when
T'(ug) is small enough, and there exists a positive constant o, ;4 such that we

can take T' = oo whenever Pad-

’LLQH d_ <0'p
Br %

18



Proof. From Lemmas [( and [I0] the bilinear operator B(u,v)(t) is con-

tinuous from K7, oo X KP, ot into P, . and we have the inequality
4y gy’ 4y
HB(U ke = HB(U’U) K? < Copd )u’ K? Yllicr ’
o g, Ao A
14 14 (4] (4]

where C), ; 4 is positive constant independent of 7". From Theorem Ml and the

.d_q
above inequality, we deduce that for any ug € Hf,, such that

1
e 6 U/(] . [i

AT
Lﬁ,oo pvﬁvd
the Navier-Stokes equations has a solution w on the interval (0,7") so that

ue kP, (45)

,00,T"
[]

From Lemmas [6] and @, and (43]), we have

_ sup 308D

0<t<T

muOH

™
ke

,00,T

[

hS]sy

]

B(u,u) € Kb, C KL . C L™([0,T]; Hgm).

pr, T =

Ld_
From Lemma [, we also have e®ug € L>([0,T]; H L”p,rl). Therefore
Ld_
u = ey — B(u,u) € L=([0,T; Hgml).

Ld_
For all ug € H Ewl, applying Theorem [3] we deduce that
[£1-1

/4],

ug € H (46)

From (@8)), applying Lemma [, we get e'®ug € le - From the definition
[ i o
of KP

»rr: We deduce that the left-hand side of the inequality (44) converges
to 0 when 7T tends to 0. Therefore the inequality (44]) holds for arbitrary

Ld_
uy € Hpp, Tl when T'(ug) is small enough. Applying Lemmas [7] and [0, we
conclude that v € K Ry
4y
Next, applying Theorem 5.4 (2 ] p. 45), we deduce that the two quanti-
tA
€ UO’

and sup ¢a(l5]-

0<t<oo
exists a positive constant o, 54 such that T = co and (44]) holds whenever

ties HuOH Lot o are equivalent, then there
Bgﬁ,oo P,00

dt00 S Opgd - O

19



Remark 1. From Theorem [3] and the proof of Lemma [l and Theorem 5.4
([24], p. 45), we have the following imbedding maps

. d_ . [d1—
Hﬁppﬁﬂl(Rd) N H[p} 1

Ld/[%]m(]Rd) = B;

LPl’ (Rd> Bp

Lo (RY).

Ld_
On the other hand, a function in H E”p rl (R%) can be arbitrarily large in the

d_

L4
Hzp,rl (R%) norm but small in the BZ, o (R%) norm.

L£ho0

3.2. Solutions to the Navier-Stokes equations with the initial

.d_q
value in the critical spaces HZ,, (R?) with d <p < oo and 1 <7 < co.

d

L4
Lemma 11. Suppose that ug € Hp,, withd < p < oo and 1 < r < oo.
Then e®ug € Ky, o, for all p > p.

Proof. We prove that

sup #8005 o
LPsT

0<t<oo
where p
d,p)=1——
a(d,p) = 5
Let p’ and p’ be such that
1 1 1 1
- + —/ — 1, - T, — ]_
p p b D
We have
e uall o = o™ a0(E) | 1 = el lel> (&)

Applying Holder’s inequality in the Lorentz spaces to obtain

e 1t wlel " aal©)] 1, = [l 1] l1El @)
= t7%(177 *|§|2‘£‘1** pp 1H|£|771A HLP/’OO
e e 80O S T =]
LP>T
Therefore this gives the desired result
HemuoHﬁl Ste ’H%—l'
LP;T
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We claim now that
lim t%}

} etA
t—0

U()HEZ;’I = 0
For any € > 0. Applying Lemma [8 and from the above proof we deduce that

a tA
£ e o)l <

1—4

1|9 e gl an(6) |y, + #3 | el L el a0l |, <
" Ly Lyt
_d d_q .
Cufle Il 2| o[ ol (€],
Lp—p’ Ly oo
o _d d_q
+ Cot || L, €7 || [P o€ e
Lp—p
d_1 . a
< G| lelsao(©)|, + Ca(m)t|fuof| 4 <
Lr'r HE, .
for large enough n and small enough ¢ = ¢(n) > 0. O
Lemma 12. Let
p>dandd<p<2p. (47)

Then the bilinear operator B(u, v)(t) is continuous from K5 __ . x Kb __ . into
Ky 1 and we have the inequality

Bl <Clulg_ ol (49

where C' is a positive constant and independent of T.

Proof. First, arguing as in Lemma [0, we derive
1 .
K
(t—7)2G™ \WVi—T
where the tensor K(x) = {K ;(x)} is given by the formula

_— . ) 2 |
Kip(€) = Ww;*le%é\ <5jk _ %

Applying Theorem Pl for the convolution in the Fourier-Lorentz spaces, we
have

AT eIAPY (u(r) @ o(7)) =

) * (u(r) @ v(r)),
). (49)

H/'\%_le(t’T)AIP’V.(u(T) ® U(T))’

Lp:1

: ()@ o), g0 (50)

<

k(=)

Lr,l

21



where

1 1 2
-—=14-—-=

- —t (51)

Note that from the inequality (@), we can check that 1 < r < co. Applying
Theorem [I, we have

le(m) ® ()] . S N oo [l - (52)

From the equalities ([49)) and (EII) it follows that

s | e [ R R R

From the estimates (B0), (52)), and (53]), we deduce that

eIAPY (u(r) @ (7))

i S(t— T>_% H“<T)Hz:@oo HU(T)HL@OO

= (¢ =) ul]| gpoo [l g5

where
a=ald,p)=1-—

el

This gives the desired result

s /0 (t = 7)) g [P ] T

P
Han

HB(u,v)(t)’

t
< / (t — 7')0‘_17'_0‘ sup 'r]% Hu(n)Hﬁﬁm sup 'r]% Hv(n)HUade
0 0<n<t 0<n<t

n%}}v(ﬂ)Hgﬁ,w/o (t —7)>trodr

= oiggtnf HU(T]) ‘‘13‘5’00(JS<171781€T]5 Hv(n) Hz:ﬁ’oo : (54)

= sup 1 Hu(n)HM,wOigg

0<n<t t

From (B4)) it follows the validity of (I3]) since

limHB(u,v)(t)‘ 4, =0,
t—0 anl
whenever
tim, 5 [u(t) | gy = lim £2[0(8)] g = 0.
The estimate (A8) can be deduced from the inequality (54)). ]
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Lemma 13. Let p > d, then the bilinear operator B(u,v)(t) is continuous
from K4 o X K o into K| 1, and we have the inequality

1Bl <Clully ol (59

where C is a positive constant and independent of T

Proof. First, arguing as in Lemma [0, we derive

elt=mA u(t) ®@u(r)) = L ' * (u(T) @ v(T

PY.(ur) ® 0() = =gz K (=) * () 90(0).

where the tensor K(x) = {Kj ;(
1

x)} is given by the formula

- —1€|2 Sjgk‘
Kl,kJ(&) = (27T)d/26 €l (5]/€ |§|2>(Z€l)

Applying Theorem Pl for the convolution in the Fourier-Lorentz spaces, we

have

(56)

e"TAPY. (u(r) @ v(1))

L£P:1
1 .
< _
L [ I PR
where
1 1
Applying Theorem [I], we have
lu(r) @ v(T)| g S (] oo [l e (59)
From the equalities (B6]) and (58]) it follows that
. o % A~ -~ . d(lié)
(- =
From the estimates (57), (59), and (60), we deduce that
- _1d
|en289 (uiry 0 0], £ 6= ) e o] e

= (t = 7) 2 H[u(r)|| gooe [0 | e
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where
a=a(d,p) =1-

el

This gives the desired result
t
B0 0) O gsa S [ (€= 78 ) g )l

t
< /0 (t—7)2 17 sup 2 Hu('r])HLﬁmOiug nz Hv(n)HUade

O<n<t n<t
t
= s 72 [[u(m)]| 5. ﬂu)n%vaﬂHgﬁwl/m@-—7ﬁ%“f—“df
O0<n<t 0<n<t 0
~ 172 sup 02 ||u(n) || e sUP 7% [0(D)]] 2o (61)
0<n<t 0<n<t

From (€1)) it follows the validity (I2]) since

lim ¢2 HB(u,v)(t)Hﬁ’1 =0,

t—0
whenever
tim, 5 [u(t) | gy = lim £2[0(8)] gy = 0.
Finally, the estimate (BI) can be deduced from the inequality (&1]). n

The following lemma is a generalization of Lemma

Lemma 14. Let d < p; < 00 and d < py < oo be such that one of the
following conditions is satisfied

I
d<py<2d,d<p,<—2
2d —py
or
p1 = 2d,d < ps < 00,
or

2d<]§1<oo,% < iy < 0.
Then the bilinear operator B(u,v)(t) is continuous from Kg}oo’T X ICZ}OQT into
ICZ?LT, and we have the inequality

1B )|z < Cllullc

D2 HUH D1 )
Kd,l,T d,00, T Kd,oo,T

where C is a positive constant and independent of T.
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Theorem 6. Let p > d and 1 <r < oo. Then for any p such that

p>p, (62)
there ezists a positive constant o;4 such that for all T > 0 and for all

Ld_
ug € HE”,,,: (R%), with div(ug) = 0 satisfying

sup 15%(17%)HemuoHU;,c>o < 0p.d; (63)
0<t<T

L
NSE has a unique mild solution w € N K2, N L>([0,T7; Hl:”p,rl).
q>p Y

.d_q
In particular, the inequality (G3) holds for arbitrary uy € Hp,. (R?) with
T'(ug) is small enough, and there exists a positive constant oz 4 such that we

can take T' = oo whenever Huo e L 0p4d.
BY.

L£P,00
Proof. Applying Lemma [I3] and Theorem (], we deduce that there exists

.4 q
a positive constant d;4 such that for all T > 0 and for all ug € HE,. (R?),
with div(ug) = 0 satisfying the inequality (€3)) then NSE has a unique mild
solution u € K| . Next, we prove that u € qu/Cg’l -

Consider two cases d < p < 2d and 2d < p < oo separately.
First, we consider the case d < p < 2d. We consider two possibilities p > 42
and p < 4d. In the case p > 3 , we apply Lemmas [I1] and [14] to obtamed

u € lCle for all ¢ satisfying p < ¢ < p; where p; = % > 2d. Thus,

u € K34 ;. Applying again Lemmas [T and I4, we deduce that u € Kj, ,

for all ¢ > p. In the case p < 24, we set up the following series of numbers
{pi}0<,~<N by inductive. Set po = pand p; = 23152)0 We have p1 > po. If
P > 4 then set N = 1 and stop here. In the case p; < 3¢ set p, = 2521.

We have D2 > Pi. If Do > 4d then set N = 2 and stop here In the case

Do < set p3 . We have P3 > po, and so on, there exists k£ > 0 such
that pp < ,pk+1 = 2;”’; 4;. We set N = k + 1 and stop here, and we
have
dpi-r . _ . .
150 :ﬁaﬁl = pi»«lapl > Pi—1 for i = 172737 "7N7
2d — Pi—1

4d
2d > pn > 3 > PN-1-

From u € ICle, applying Lemmas [ and 4 to obtained u € KCf, , fo
all ¢ satlsfymg p < q < p;. Then applying again Lemmas [I1] and 4 to
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obtained u € ICZ’LT for all ¢ satisfying p < g < po, and so on, finishing we

have u € ICZIT for all ¢ satisfying p < ¢ < py. Therefore u € ICZJ’T for

4d — ¢ < py. From the proof of the case p > 24, we have

all ¢ satisfying < 1 5

u € ICd,l,T for all q>p.
Next, we consider the case 2d < p < 0o. Let 7 € N be such that

P> max{2d, p} > %

2i—1

From p > max{2d, p}, we have i > 1. Applying the Lemmas [l and [I4] to
obtained u € Kf,  for all ¢ > . Applying again Lemmas [I1] and 14 to
obtamed u € K, for all ¢ >
all ¢ > 5.
all ¢ > max{p, ;} If p > & then we have u € ICle forallg>p. Ifp <L
then 2d > 5’ Thus u € ]Cd,l,T for all ¢ satisfying % < ¢ < 2d. Therefore,
from the proof of the case d < ]5 < 2d, we have u € ICZ . forall ¢ > p.

The fact that u € L>([0,T]; HE, Tl) can be deduced from Lemmas [ and [12

Applying Lemma 1], we get e'®u, € /CdooT From the definition of ICer,

we deduce that the left-hand side of the mequahty (63)) converges to 0 when

41
T tends to 0. Therefore the inequality (G3) holds for arbitrary ug € H,.

when T'(ugp) is small enough.

Next, applying Theorem 5.4 ([ ] p. 45), we deduce that the two quan-
1
2(1

l\.’)I'Ux

2 and so on, finishing we have u € Kg | ;. for

Applying agaln Lemmas [I1] and [14] to obtained u € lCd LT f

tities ||ug|| ¢, . and sup t He uOH rhoe are equivalent, then there
s ,
D,

0<t<oo
exists a positive constant o4 such that 7" = oo and (63) holds whenever

Ug < 0pd - O

1—1 ,00

Remark 2. From the proof of Lemma [Tl and Theorem 5.4 ([24], p. 45), we
have the following imbedding maps
.d_q
g, (RY) < Bf

M’ (Rd)%BP b (Rd).

LP>0

L4
On the other hand, a function in H L”p ! (RY) can be arbitrarily large in the
Ld_
Hzp,rl (R?) norm but small in the Bp e (R?) norm.

£hoo

3.3. Solutions to the Navier-Stokes equations with initial value

in the critical spaces Hzli(Rd) with 1 <r < co.
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We define an auxiliary space K, r which is made up by the functions
u(t, x) such that

il = sup ¢ Juct. ) i, ©
and )
ltig}) t2 u(t,x)’ . =0, (64)
with
d—1<s<d,1<r<oo,T>0,
and

a=a(s)=s+1—d.

In the case s = d — 1, it is also convenient to define the space K4_1, 1 as
the natural space L“([O,T];Hg;}) with the additional condition that its
elements u(t, x) satisfy

lim Hu(t’x)HHZilr = 0. (65)

t—0

Lemma 15. Let 1 <r <7 < o0o. Then we have the following imbedding
’Cs,l,T — ’CS,T‘,T — ’CS,F,T — ’Cs,oo,T~
Proof. It is deduced from Lemma[I] (a) and the definition of K5, 7. O

Lemma 16. Suppose that ug € Hd’l(]Rd) with 1 < r < oo, then e®uy €

El,r
Ksroo withd—1<s<d.
Proof. We prove that
sup t2 etAuoH . < HuOH ., for 1 <r <oo. (66)
0<t<oo HZl,T HEI,T
We have
oo, = Nl Plglao(©)]] = = 61—l o ()| or
rlr
_s+1-—d s _ _1e12 1A _a
< gt () e 2 E oL, (67)
rlr

We claim now that

lim ¢2 =0 forl <r < oo.
t—0

etAuO’ |
Hzl,'r
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From the inequality (67]), we have
t2 etAuo‘

<
HZI,T
e+ 2561 e 1 el 0 (€)oo

[ P
& ag(©)]]

For any ¢ > 0, applying Lemma [§, we have
e < M+t |15
(68)

€

13 H|€|S+1_d6_t|£|2183|§|d 1
g)HLoo,'r < 57

= C|| 15 [€]* ol
for large enough n. Fixed one of such n, we have the following estimates

3]
| oerr

£5| || e o 1 )4
A ()]
(69)

<13 [|1p,[¢" e -““Hmmw :

< 12|15, 61 e [[1E1* T 0 ()| e, = tE
_ tgnerldeuO

for small enough t = ¢(n) > 0. From the estimates (68]) and (69]), we have
U

€

<
2

rd—1
rlr

o _
+t2pstt dHu0’ < e
bis

e < Clmslel aol©)] e
clr
Lemma 17. Let d — 1 < s < d. Then the bilinear operator B(u,v)(t) is
continuous from Ks oo X Ky oo into Ks 11 and we have the inequality
< CHu’ v’ , 70
’Cs’l’T B ’Cs,oo,T Ks,oo,T ( )

|B(u, v)]
where C is a positive constant and independent of T

Proof. Using the Fourier transform we get

F(B(u, v>~<t>)<g> -
) i€) ()

* 0(7)) (£)dr.

1 /_(”522(5

d
(2m)> k=1

Thus
/ €[2e= IR | (Ju(T)] * [o(7)]) (€)dr.

[16]°F (B(u,v)
28



We have

€O < sup €U E)] = 075, ot IO < o)y,
therefore
B oy e
u(T —= (7 < —F=
ek 195
A standard argument shows that
L
€= lgls Jge

From the above estimates and Lemma [I] (b), we have

ey, o),

(W ) €)= g e 2
G e P TP e T
|£|2sfd o |£|237d )

this gives the desired result
s _— 7)|€)2
/ €€ ] (ju(r)] * (7)) (€)dr

< / e (D),

Thus
llerF (Buvw)@©]| s
3

t

J s T T P e P

0 L§7 rl,00 rl,00

t
- [e=s" | M) g, o), ar

v(n)HHs dr

El,oo

t
o), / (t—r)5 7 odr
HZI oo J 0

o, ()

rl,00

U(n)H o supn?
H71 oo 0<n<t

t
< / (t — T)%_lT_O‘ sup 77%
0

0<n<t

o), s ot

fe3
= Sup ’r] 2
HY oo O<n<t

O<n<t

—a e
~{ 2 sup n?
o<n<t

ul)|, s n?

1 ,00 0<n<t
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Let us now check the validity of the condition (64]) for the bilinear term
B(u,v)(t). Indeed, from ([7T])

lim 3 BW)@)HHZM =t ¢l F (B0 ) ©)] . =0
whenever
lim ¢2 u(t)‘ . = lim ¢2 v(t)‘ . = 0.
t—0 HZI,oo t—0 Hzl
The estimate (7)) is deduced from the inequality (T]). O

Lemma 18. Let d — 1 < s < d. Then the bilinear operator B(u,v)(t) is
continuous from Ks oo X Ky oo into Kg_11,7 and we have the inequality

where C is a positive constant and independent of T.

(72)

)
’Cs,oo,T

[E=ZCS) =Yl 1

sooT

Proof. First, arguing as in Lemma [I7, we have the following estimates

€141 F (B, v)(£)) €))
/ €41 TR g (jaD)] * [o()]) (€)dr

/ |§|2d 2s f(t T\&\QHU ’

this gives the desired result

|61 (B, v)(0)(©)

/ H|§|2d 25— (t—7)l¢|?
t

:/(t_s)s—dH|€|2d—256—§
0

t
S [=ntee sup gt
0

O<n<t

: dr,

s
Hﬁl,oo

LMol

: dr

s
Hﬁl,oo

L@l

()] e

Lool

dr

Hu(ﬂ! lo()]

TS TS
o051 Hﬁl,oo Hﬁl,oo

, dr
HZl,oo

o(n)|

U(n)H . supn?

H7 oo O<n<t

t
= sup 7?2 u(n)H. sup 72 v(n)) | /(t—T)“‘lf‘“dT
0<n<t H71 oo 0<n<t H7 oo
~ sup 1% ||u(n) sup 7? H (73)

0<n<t H71 oo 0<n<t
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From (73) it follows ([63]) since

. T d—1 .
iy [0, =tim [l F (B @)@ =0
whenever
lim ¢2 u(t)’ . = lim ¢2 v(t)’ . = 0.
t—0 HZI,oo t—0 Hzl,oo
The estimate (72)) can be deduced from the inequality (73]). O

Theorem 7. Letd—1<s<dand1l <r < oco. Th‘en there exists a positive
constant 8.4 such that for allT > 0 and for allug € HE H(RY), with div(ug) =
0 satisfying

sup t%(SJ’l_d)Hemuo‘ e < 0sd, (74)
o<t<T cl
NSE has a unique mild solution u € Ky, N L*([0,T7; Hld;})
In particular, the inequality (T4) holds for arbitrary uy € H ! (RY) when
T'(ug) is small enough, and there exists a positive constant o4 such that we
can take T = oo whenever Huo 0 S Osa
-

rl

Proof. The proof of Theorem [7lis similar to that of Theorem [ Applying
Lemma [I'7] and Theorem Fl we deduce that there exists a positive constant
85, such that for any ug € Hg,}(R?) with div(up) = 0 such that
s+1—d) H N

3(
= sup t2
1,00 0<t<T

1
sup L uo}

s+1—d) H oA
o<t<T

e UO} s, < 0s.d;

the Navier-Stokes equations has a solution u € Ky o 7. Applying Lemmas
and [I8 we deduce that u € L*([0,T]; HZI}) Applying Lemma [16, we get
ePug € Ksrr. From the definition of KCg, 7, we deduce that the left-hand
side of the inequality (74]) converges to 0 when T' tends to 0. Therefore
the inequality (74)) holds for arbitrary ug € Hg;}(Rd) when T'(ug) is small
enough.

Next, from the inequality (66) with » = co, we deduce that

sup t2

L(s+1-d) Hem
0<t<oo

UQ’ :
Hs rd—1"
L HL1

then there exists a positive constant o, 4 such that 7' = oo and (74) holds
<o d - 0

. — S
) d—1 )
Hﬁ1

whenever |[|ug
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Remark 3. The case r = oo was studied by Le Jan and Sznitman in [26].
They showed that NSE are well-posed when the initial datum belongs to the

space Hg;io. For 1 < r < oo we have the following imbedding map

5N RY) — A L(RY) = HITHRY).

However, note that for 1 < r < co a function in Hg;}(Rd) can be arbitrarily

large in the Hg;}(Rd) norm but small in the Hgl_l(]Rd) norm. Theorem [7]

shows the existence of global mild solutions in the spaces L>([0, 00); H%; }(R%))
(with 1 <7 < 00) when the norm of the initial value in the spaces HZ?I(Rd)

is small enough.
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