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Abstract: 

Evolutionary motions in a bouncing ball system consisting of a ball having a free fall in the Earth’s 
gravitational field have been studied systematically. Because of nonlinear form of the equations of 
motion, evolutions show chaos for certain set of parameters for certain initial conditions. Bifurcation 
diagram has been drawn to study regular and chaotic behavior. Numerical calculations have been 
performed to calculate Lyapunov exponents, topological entropies and correlation dimension as 
measures of complexity. Numerical results are shown through interesting graphics.  
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1. Introduction   

  A simple system evolves in simple ways but a complex or complicated system evolve in complicated 

ways and between simplicity and complexity there cannot be a common ground [1]. Chaos and irregular 

phenomena may not require very complicated equations. Complexity in a dynamical system can be 

viewed as its systematic nonlinear properties. It is the order that results from the interaction among 

multiple agents within the system. A system is complex means its evolutionary behavior do not show 

regularity but chaotic or some other kind of irregularity. Complexity and chaos observed in a system can 

well be understood by measuring elements like Lyapunov exponents (LCEs), topological entropies, 

correlation dimension etc.  Topological entropy, a non-negative number, provides a perfect way to 

measure complexity of a dynamical system. For a system, more topological entropy means the system is 

more complex. Actually, it measures the exponential growth rate of the number of distinguishable orbits 

as time advances [2, 3]. Though, positivity measure of Lyapunov exponents (LCEs) signifies presence of 

chaos, LCEs, topological entropies and correlation dimensions all these three together provide measure of 

complexities in the system. Motion of a bouncing ball system represented with equations in coupled form 

of variables, have been appeared in various literatures [4–8] and regular and chaotic motions observed 

during evolution have been discussed. The models discussed vary with different kind of assumptions and 

so the variation of nonlinearities. 

The present article consisting of a model of bouncing ball system occurring due to a free fall of a ball in 

the Earth’s gravitational field and impacting kinematically certain forced plate [9]. Bifurcation diagrams 

have been drawn to study some characteristic evolutionary phenomena, (e.g., chaos adding), with 

increasing numerical value of the driving frequency. Prior to this chaos adding, one observes period 

doubling bifurcation followed by chaos. Periodic windows appearing within chaos are also subject to 

study. Numerical investigations carried forward to obtain Lyapunov exponents (LCEs), topological 

entropies and correlation dimensions for different sets of parameters of the system. Results obtained are 

shown through graphics.  
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1. Bouncing Ball Model: 

Neglecting the air drag, free fall motion of the bouncing ball, with a restitution coefficient k < 1 be 

written as, [9], 

n + 1  = n + q vn , 

  vn  + 1  =k vn + (1 + k) cos (n + 1 )       (1.1) 

The system contains an another parameter, q, the driving frequency and q  1. Bifurcation diagrams for 

above system are drawn with k = 0.3 and different ranges of values of q shown, respectively, by Fig.1, 

(Figures (a) - (f)). These shows, initially, the system evolving with period doubling bifurcation followed 

by chaos and then, a chaos adding phenomena with increasing values of q.  

                        

                         

                      

Fig. 1: Bifurcation diagrams of map (1) with k = 0.3 and varying q: (a)1 q  5, (b) 1.5  q  24,  

(c) 1.5  q  3.4, (d)  1.5  q  3.5, (e) 3.95  q  4.2, (d) 9.1  q  9.7.    
  
As it appears through bifurcations, before evolving into chaos, system shows regularity for certain rage of 

parameter value of q while keeping k fixed, k = 0.3. In Fig.2, the figures in upper row are two time series 

and a two periodic regular attractor for q = 2.5. The lower row figures correspond to those of the upper 

row for chaotic case when q = 3.8.  
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 Fig.2: Upper row plots showing clearly 2-periodic attractors for k = 0.3 and q = 2.5; the corresponding 

plots in the lower row, when q is changed to the value q = 3.8, shows motion is chaotic.  

2. Lyapunov Exponents (LCEs), Topological Entropies & Correlation Dimensions: 
Lyapunov exponents: LCEs, have been calculated and plotted, shown in Fig. 3, for regular and chaotic 

cases as discussed above. In regular case, though the LCEs are negative at each iteration, their numerical 

values are different. Similarly, for chaotic case, values are pos  itive but different. 

          

     

Fig. 3: Plots of LCEs for chaotic and regular cases for fixed k = 0.3. Figures in the upper row are for 

regular case when q = 3.8 and those of lower row are for q = 2.5.  

Magnitude of the positive values of LCEs provide the answer that how chaotic the system be. These 

differences explain the complexity within the system. With k = 0.3 and q, approximately, q = 3.31, the 
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system shows regular behavior as it is evident from the bifurcation diagrams as well as from the LCEs 

plot shown in Fig. 4. 

                                  

Fig. 4: A plot of LCEs for k = 0.3 and q = 3.31. As LCEs are negative, motion is regular 

Topological Entropy: Next, let us have calculated topological entropy for the bouncing ball system (1.1) 

and plotted in Fig. 5.  

    

Fig. 5: Plots of topological entropy for k = 0.3 and four ranges of values of parameter q; (a) 0.1  q  2.5,  

(b) 1  q  3.8,  (c)3.5  q  4.5,  (d) 6  q  8.5. 
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With k = 0.3 and q approximately, q = 3.31, what we observed in Fig. 4 in LCEs plot, the results obtained 

here are very different. For 1  q  2.6, in the former case the system is non-chaotic and shows 

regularity but in this later case one obtains significant value of topological entropy. As topological 

entropy measures the complexity, though the system is regular, it is complex. Thus, a non-chaotic 

nonlinear system can also be complex one. Next, we have plots of 3-Dimension image of topological 

entropy for 1  q  3.8, 0.1  k  0.6, and shown in Fig. 6, which clear picture of complexity.   

  

 

Fig. 6: Two 3-D plots of topological entropies for 1  q  3.8, 0.1  k  0.6. 

 Correlation dimensions: 
 A chaotic set, has fractal structure and so, its correlation dimension gives its measure of dimensionality. 

Being one of the characteristic invariants of nonlinear system dynamics, the correlation dimension 

actually gives a measure of complexity for the underlying attractor of the system. To determine 

correlation dimension a statistical method can be used. It is an efficient and practical method then other 

methods, like box counting etc. The procedure to obtain correlation dimension follows from some perfect  

steps calculation [10 – 12]: 
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Consider an orbit O(x1) = {x1, x2, x3, x4, . . ….}, of a map f: U → U, where U is an open bounded set in 
n
. To compute correlation dimension of O(x1), for a given positive real number r, we form the 

correlation integral,  
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is the unit-step function, (Heaviside function). The summation indicates the the number of pairs of vectors 

closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures the density of pair of distinct vectors xi and xj that are 

closer to r.  

The correlation dimension Dc  of O(x1) is defined as 
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To obtain Dc, log C(r) is plotted against log r and then we find a straight line fitted to this curve. The 

intercept of this straight line on y-axis provides the value of the correlation dimension Dc. 

 

In case of bouncing ball, with k = 0.3 and q = 3.8, the obtained correlation curve is shown in Fig. 7.   

 

  

                       

Fig. 7: Plot of correlation curve for bouncing ball system (2.1) 

A linear fit to the correlation data be obtained as  

  Y = 2.1792 – 1.0374 x       (3.3) 

The y – intercept of this straight line is 2.1792 and so the correlation dimension of the chaotic set be 
measured, approximately, as  Dc = 2.197.  
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3. Discussions: 

The problem of complexity and chaos observed during evolution of bouncing ball has been studied in 

detail and certain measures of complexity such as Lyapunov exponents, topological entropies, correlation 

dimension are calculated. The non-negative real number, the topological entropy, describes a perfect 

measure complexity of dynamical system in the sense that more the topological entropy a system has 

means it is more complex. Actually, a topological entropy measures the exponential growth rate of the 

number of distinguishable orbits as time advances in the system. However positivity of its value does not 

justify the system be chaotic. For k = 0.3 the system studied in this article, chaos happens when q values 

be increased from 3.31 (approximately). Before this the system is regular. However, we find even much 

before q reaching this value, within the range 1  q  2.6, the system is complex as the topological 

entropies are more than zero. Also, as shown in Fig. 5, for k = 0.3 and values of q in intervals 3.5  q  

4.5 and 6  q  8.5, where the system showing highly chaotic, topological entropy appears to be very 

low. Another interesting thing be observed the correlation dimension for q = 2.4, (a regular case), is non-

zero and it is given by Dc = 1.653 (approximately). However, there are nonlinear systems   

Finally, one can conclude in case of bouncing ball dynamics, complexity and chaos are certainly mixed 

phenomena.   
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