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Abstract
In the classical literature on infinite series there are various tests to determine if a given infinite

series converges, diverges, or oscillates. But unfortunately, for very many infinite series all the
existing tests can fail to provide definitive answers. In this article we propose a novel Bayesian
theory for assessment of convergence properties of any given infinite series. Remarkably, this theory
attempts to provide conclusive answers to the question of convergence even where all the existing
tests of convergence fail. We apply our ideas to seven different examples, obtaining very encouraging
results. Importantly, we also apply our ideas to investigate the Riemann Hypothesis, and obtain
results that do not completely support the conjecture.

We also extend our ideas to develop a Bayesian theory on oscillating series, where we allow
even infinite number of limit points. Analysis of Riemann Hypothesis using Bayesian multiple limit
points theory yielded almost identical results as the Bayesian theory of convergence assessment.

Keywords: Bayesian theory; Dirichlet process; Infinite series; Möbius function; Riemann Hypoth-
esis; Tests of series convergence.

1 Introduction

Determination of convergence, divergence or oscillation of infinite series has a very rich tradition in
mathematics, and a large number of tests exist for the purpose. Unfortunately, there does not seem to
exist any universal test that provides conclusive answers to all infinite series; see, for example, Ilyin
and Poznyak (1982), Knopp (1990), Bourchtein et al. (2012). Attempts to resolve the issue as much
as possible using hierarchies of tests, with the successive tests in the hierarchy providing conclusive
answers to successively larger ranges of infinite series, are provided by Knopp (1990), Bromwich (2005),
Bourchtein et al. (2011) and Liflyand et al. (2011). These tests are based on the Kummer approach for
positive series and the chain of the Ermakov tests for positive monotone series. The hierarchy of tests
provided in Bourchtein et al. (2012) are based on Bromwich (2005) and are related to the well-known
Cauchy’s test (see, for example, Fichtenholz (1970), Rudin (1976), Spivak (1994)). Below we briefly
discuss the approach of Bourchtein et al. (2012).

1.1 Hierarchical tests of convergence

The tests of Bourchtein et al. (2012) are based on the following theorem, which is a refinement of a
result of Bromwich (2005).

Theorem 1 (Bourchtein et al. (2012)) Let
∑∞

i=1 F
′(i) be a divergent series where F (x) > 0, F ′(x) >

0 and F ′(x) is decreasing. If
∑∞

i=1Xi is a positive series, then denoting
log

{
F ′(i)
Xi

}
logF (i) = Wi, the following

hold:

If lim inf
i→∞

Wi > 1, then
∞∑
i=1

Xi converges;

If lim sup
i→∞

Wi < 1, then
∞∑
i=1

Xi diverges.
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Letting F (z) = z in the above theorem, Bourchtein et al. (2012) obtain their first test, which we provide
below.

Theorem 2 (Test T1 of Bourchtein et al. (2012)) Consider a positive series
∑∞

i=1Xi and let T1,i =

i
log i

(
1−X

1
i
i

)
. Then

If lim inf
i→∞

T1,i > 1, then
∞∑
i=1

Xi converges;

If lim sup
i→∞

T1,i < 1, then
∞∑
i=1

Xi diverges.

This result is the same as that of Bromwich (2005), but a proof was not supplied in that work.
Now choosing F (z) = log z, Bourchtein et al. (2012) form their second test of the hierarchy; we

provide the result below. Again, the result has been formulated by Bromwich (2005), but a proof was
not given.

Theorem 3 (Test T2 of Bourchtein et al. (2012)) Consider a positive series
∑∞

i=1Xi and let T2,i =
log i

log log i (T1,i − 1). Then

If lim inf
i→∞

T2,i > 1, then
∞∑
i=1

Xi converges;

If lim sup
i→∞

T2,i < 1, then
∞∑
i=1

Xi diverges.

Setting F (z) = log log z, the following result has been proved by Bourchtein et al. (2012):

Theorem 4 (Test T3 of Bourchtein et al. (2012)) Consider a positive series
∑∞

i=1Xi and let T3,i =
log i

log log i (T2,i − 1). Then

If lim inf
i→∞

T3,i > 1, then
∞∑
i=1

Xi converges;

If lim sup
i→∞

T3,i < 1, then
∞∑
i=1

Xi diverges.

Successively selecting F (z) = log log log z, F (z) = log log log log z, etc. successively more refined
tests T4, T5, etc. can be constructed, with each test having wider scope compared to the preceding test
with regard to obtaining conclusive decision on convergence or divergence of the underlying series.

However, if, say, at stage k, lim inf
i→∞

Tk,i < 1 < lim sup
i→∞

Tk,i so that Tk is inconclusive, then all

the subsequent tests will also fail to provide any conclusion. Thus, in spite of the above developments,
conclusion regarding the series can still be elusive. For instance, an example considered in Bourchtein
et al. (2012) is the following series:

S1 =

∞∑
i=3

(
1− log i

i
− log log i

i

{
cos2

(
1

i

)}(
a+ (−1)ib

))i
, (1.1)

where a ≥ 0 and b ≥ 0. For a = b = 1, lim inf
i→∞

T2,i = 0 < 1 < 2 = lim sup
i→∞

T2,i. Hence, the hierarchy

of tests {Tk; k ≥ 1} fails to provide definitive answer to the question of convergence of the above series.
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In fact, we can generalize the series (1.1) such that the hierarchy of tests fails for the general class
of series. Indeed, consider

S2 =
∞∑
i=3

(
1− log i

i
− log log i

i
f(i)

(
a+ (−1)ib

))i
, (1.2)

where 0 ≤ f(i) ≤ 1 for all i = 1, 2, 3, . . ., and f(i) → 1 as i → ∞. Such a function can be
easily constructed as follows. Let g(i) be positive and monotonically increase to c, where c > 0.
Then let f(i) = g(i)/c, for i = 1, 2, 3, . . .. A simple example of such a function g is g(i) = c − 1

i ;
g(i) = cos2

(
1
i

)
is another example, showing the generality of (1.2) compared to (1.1).

1.2 Riemann Hypothesis and series convergence

It is well-known that the famous Riemann Hypothesis is equivalent to convergence of an infinite series on
a certain interval. A brief introduction to the problem, along with the necessary background, is provided
in Section 6. Studying the relevant infinite series, if at all possible, is then the most challenging problem
of mathematics. The existing mathematical literature, however, does not seem to be able to provide any
directions in this regard. Hence, innovative theories and methods for analyzing infinite series should be
particularly welcome.

In this paper, we attempt to provide an alternative method of characterization of series convergence
and divergence using Bayesian theory, whch we also subsequently extend to infinite series with multiple
or even infinite number of limit points. For the Bayesian purpose we must formulate our theory stochas-
tically, that is, in terms of random infinite series, noting that the theory regarding deterministic infinite
series is a special case of our Bayesian formulation.

2 The key concept

Let us consider the random infinite series

S =
∞∑
i=1

Xi. (2.1)

It is required to determine whether the series of the above form converges, diverges or oscillates. Observe
that convergence or divergence of the sum S may be thought of as a mapping f(S) = p, where f is some
appropriate transformation and p is either 0 or 1, where 0 stands for divergence and 1 is associated with
convergence. Since we assume that it is not known if the underlying series S converges of diverges,
the value of p is unknown, signifying that we must acknowledge uncertainty about p. Conceptually,
given the the value of a partial sum of the form

∑n
i=mXi, for large m and n, one may have a subjective

expectation whether or not the series S converges, which may be quantified as

E
(
I{|∑n

i=mXi|≤cm,n}
)

= P

(∣∣∣∣∣
n∑

i=m

Xi

∣∣∣∣∣ ≤ cm,n
)

= pm,n,

where, for any setA, IA denotes indicator ofA, and cm,n are non-negative quantities satisfying cm,n → 0
as m,n→∞. Thus, the expectation depends on how large m and n are. With this, one may expect that

f(S) = lim
m,n→∞

P

(∣∣∣∣∣
n∑

i=m

Xi

∣∣∣∣∣ ≤ cm,n
)

= lim
m,n→∞

pm,n = p.

To convert this key concept to a practically useful theory, one requires the Bayesian paradigm, where,
for each pair (m,n), belief regarding pm,n needs to be quantified using prior distributions. The terms
Xi need to be viewed as realizations of some random process so that the partial sums

∑n
i=mXi provide
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coherent probabilistic information on p when quantified by the posterior distribution of pm,n. As m
and n are updated, the posterior of pm,n must also be coherently updated, utilizing the new partial sum
information. In particular, as m,n → ∞, it is desirable that the posterior of pm,n converges to either
δ{1} or δ{0} in some appropriate sense, accordingly as S converges or diverges. Here, for any x, δ{x}
denotes point mass at x.

In Section 3 we devise a recursive Bayesian methodology that achieves the goal discussed above.
It is important to remark that no restrictive assumption is necessary for the development of our ideas,
not even independence of Xi. With this methodology, we then characterize convergence and divergence
of infinite series in Section 4, illustrating in Section 5 our theory and methods with seven examples. In
Section 6 we apply our ideas to Riemann Hypothesis, obtaining results that are not in complete favour
of the conjecture. We then extend our theory and methods to infinite series with multiple or inifinite
number of limit points; details are provided in Section 7. Illustrations of our Bayesian multiple limit
point theory are provided in Sections 8 and 9, the latter section detailing the application to Riemann
Hypothesis in order to vindicate our results obtained in Section 6. Finally, we make concluding remarks
in Section 10.

3 A recursive Bayesian procedure for studying infinite series

Since we view Xi as realizations from some random process, we first formalize the notion in terms of
the relevant probability space. Let (Ω,A, µ) be a probability space, where Ω is the sample space, A is
the Borel σ-field on Ω, and µ is some probability measure. Let, for i = 1, 2, 3, . . ., Xi : Ω 7→ R be real
valued, random variables measurable with respect to the Borel σ-field B on R. As in Schervish (1995),
we can then define a σ-field of subsets of R∞ with respect to which X = (X1, X2, . . .) is measurable.
Indeed, let us define B∞ to be the smallest σ-field containing sets of the form

B =
{
X : Xi1 ≤ r1, Xi2 ≤ r2, . . . , Xip ≤ rp, for some p ≥ 1,

some integers i1, i2, . . . , ip, and some real numbers r1, r2, . . . , rp} .

Since B is an intersection of finite number of sets of the form
{
X : Xij ≤ rj

}
; j = 1, . . . , p, all of

which belong to A (since Xij are measurable) it follows that X−1(B) ∈ A, so that X is measurable
with respect to (R∞,B∞, P ), where P is the probability measure induced by µ.

3.1 Development of the stage-wise likelihoods

For j = 1, 2, 3, . . ., let

Sj,n =

jn∑
i=(j−1)n+1

Xi, (3.1)

where n ≥ 1. In view of this definition, and for notational convenience we shall often denote S by S1,∞.
Also let {cj}∞j=1 be a decreasing sequence and

Yj,n = I{|Sj,n|≤cj}(Sj,n). (3.2)

Let, for j ≥ 1 and n ≥ 1,
P (Yj,n = 1) = pj,n. (3.3)

Hence, the likelihood of pj,n, given yj,n, is given by

L (pj,n) = p
yj,n
j,n (1− p)1−yj,n (3.4)

It is important to relate pj,n to convergence, divergence or oscillation of the underlying series. Note that
pj,n is the probability that |Sj,n| falls below cj . Thus, pj,n can be interpreted as the probability that the
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series S1,∞ is convergent when the data observed is Sj,n. If S1,∞ is convergent, then it is to be expected
a posteriori, that

pj,n → 1 as j →∞ for all n ≥ 1. (3.5)

Note that the above is expected to hold not only for large n but all n ≥ 1. This is related to Cauchy’s
criterion of convergence of partial sums: for every ε > 0 there exists a positive integer N such that for
all n ≥ m ≥ N , |

∑n
i=mXi| < ε. Hence, in the case of convergence, by Cauchy’s criterion, for any

ε > 0 there must exist a positive integer j0 such that for j ≥ j0, |Sj,1| = |Xj | < ε. Indeed, as we will
formally show, condition (3.5) is both necessary and sufficient for convergence of the series.

On the other hand, if the series is divergent (but not oscillatory), then there exist j0 ≥ 1 and n0 ≥ 1
such that |Sj,n| > cj for all j > j0 and n > n0. Here we expect, a posteriori, that

pj,n → 0 as j →∞, for n ≥ n0. (3.6)

Again, we will prove formally that the above condition is both necessary and sufficient for divergence.
Now, if the series S1,∞ is oscillating with two limit points occurring with equal frequency, then one

may expect that in the long run, in 50% cases |Sj,n| will fall below the respective cj . Thus, here one
may expect, a posteriori, that

pj,n →
1

2
as j →∞, for n ≥ n0. (3.7)

We will formally prove that the above is both necessary and sufficient for oscillations of the sbove type.
A general theory, which encompasses finite as well as infinite number of limit points, with perhaps
unequal frequencies of occurrences, is developed in Section 7.

In what follows we shall first construct a recursive Bayesian methodology that formally characterizes
convergence, divergence and oscillation in terms of formal posterior convergence related to (3.5), (3.6)
and (3.7), respectively.

3.2 Development of recursive Bayesian posteriors

We assume that {yj,n; j = 1, 2, . . .} is observed successively at stages indexed by j. That is, we first ob-
serve y1,n, and based on our prior belief regarding the first stage probability, p1,n, compute the posterior
distribution of p1,n given y1,n, whch we denote by π(p1,n|y1,n). Based on this posterior we construct a
prior for the second stage, and compute the posterior π(p2,n|y1,n, y2,n). We continue this procedure for
as many stages as we desire. Details follow.

Consider the sequences {αj}∞j=1 and {βj}∞j=1, where αj = βj = 1/j2 for j = 1, 2, . . .. At the first
stage of our recursive Bayesian algorithm, that is, when j = 1, let us assume that the prior is given by

π(p1,n) ≡ Beta(α1, β1), (3.8)

where, for a > 0 and b > 0, Beta(a, b) denotes the Beta distribution with mean a/(a+ b) and variance
(ab)/

{
(a+ b)2(a+ b+ 1)

}
. Combining this prior with the likelihood (3.4) (with j = 1), we obtain

the following posterior of p1,n given y1,n:

π(p1,n|y1,n) ≡ Beta (α1 + y1,n, β1 + 1− y1,n) . (3.9)

At the second stage (that is, for j = 2), for the prior of p2,n we consider the posterior of p1,n given y1,n
associated with the Beta(α1 + α2, β1 + β2) prior. That is, our prior on p2,n is given by:

π(p2,n) ≡ Beta (α1 + α2 + y1,n, β1 + β2 + 1− y1,n) . (3.10)

The reason for such a prior choice is that the uncertainty regarding convergence of the series is reduced
once we obtain the posterior at the first stage, so that at the second stage the uncertainty regarding the
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prior is expected to be lesser compared to the first stage posterior. With our choice, it is easy to see that
the prior variance at the second stage, given by

{(α1 + α2 + y1,n)(β1 + β2 + 1− y1,n)} /
{

(α1 + α2 + β1 + β2 + 1)2(α1 + α2 + β1 + β2 + 2)
}
,

is smaller than the first stage posterior variance, given by

{(α1 + y1,n)(β1 + 1− y1,n)} /
{

(α1 + β1 + 1)2(α1 + β1 + 2)
}
.

The posterior of p2,n given y2,n is then obtained by combining the second stage prior (3.10) with
(3.4) (with j = 2). The form of the posterior at the second stage is thus given by

π(p2,n|y2,n) ≡ Beta (α1 + α2 + y1,n + y2,n, β1 + β2 + 2− y1,n − y2,n) . (3.11)

Continuing this way, at the k-th stage, where k > 1, we obtain the following posterior of pk,n:

π(pk,n|yk,n) ≡ Beta

 k∑
j=1

αj +
k∑
j=1

yj,n, k +
k∑
j=1

βj −
k∑
j=1

yj,n

 . (3.12)

It follows from (3.12) that

E (pk,n|yk,n) =

∑k
j=1 αj +

∑k
j=1 yj,n

k +
∑k

j=1 αj +
∑k

j=1 βj
; (3.13)

V ar (pk,n|yk,n) =
(
∑k

j=1 αj +
∑k

j=1 yj,n)(k +
∑k

j=1 βj −
∑k

j=1 yj,n)

(k +
∑k

j=1 αj +
∑k

j=1 βj)
2(1 + k +

∑k
j=1 αj +

∑k
j=1 βj)

. (3.14)

Since
∑k

j=1 αj =
∑k

j=1 βj =
∑k

j=1
1
j2

, (3.13) and (3.14) admit the following simplifications:

E (pk,n|yk,n) =

∑k
j=1

1
j2

+
∑k

j=1 yj,n

k + 2
∑k

j=1
1
j2

; (3.15)

V ar (pk,n|yk,n) =
(
∑k

j=1
1
j2

+
∑k

j=1 yj,n)(k +
∑k

j=1
1
j2
−
∑k

j=1 yj,n)

(k + 2
∑k

j=1
1
j2

)2(1 + k + 2
∑k

j=1
1
j2

)
. (3.16)

4 Characterization of convergence properties of the underlying infinite
series

Based on our recursive Bayesian theory we have the following theorem that characterizes convergence
of S1,∞ in terms of the limit of the posterior probability of pk,n, as k →∞.

Theorem 5 S1,∞ is almost surely convergent if and only if

π (N1|yk,n)→ 1, (4.1)

k →∞, almost surely for all Yn = {yk,n}∞n=1, for any n ≥ 1, whereN1 is any neighborhood of 1 (one).

Proof. If S1,∞ is convergent, then there exists a finite j0 such that for all j > j0, |Sj,n| ≤ cj for all n,
so that yj,n = 1 for all j > j0, for all n. Hence, in this case,

∑k
j=1 yj,n = k − k0, where k0 ≥ 0. Also,
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∑k
j=1

1
j2
→ π2

6 , as k →∞. Consequently, it is easy to see that

µk = E (pk,n|yk,n) ∼
π2

6 + k − k0
k + π2

3

→ 1, as k →∞, and, (4.2)

σ2k = V ar (pk,n|yk,n) ∼
(π

2

6 + k)(π
2

6 )

(k + π2

3 )2(1 + k + π2

3 )
→ 0 as k →∞. (4.3)

In the above, for any two sequences {ak}∞k=1 and {bk}∞k=1, ak ∼ bk indicates ak
bk
→ 1, as k →∞. Now

letN1 denote any neighborhood of 1, and let ε > 0 be sufficiently small such thatN1 ⊇ {1− pk,n < ε}.
Combining (4.2) and (4.3) with Chebychev’s inequality ensures that (4.1) holds.

Now assume that (4.1) holds. Then for any given ε > 0, for all n ≥ 1,

π (pk,n > 1− ε|yk,n)→ 1, as k →∞. (4.4)

Hence,

E (pk,n|yk,n)→ 1; (4.5)

V ar (pk,n|yk,n)→ 0, (4.6)

as k → ∞, for all n ≥ 1. If S1,∞ does not converge then there exist j0 and n0 such that for n ≥ n0,
|Sj,n| > cj , for j ≥ j0. Hence, in this situation, for n ≥ n0, 0 ≤

∑k
j=1 yj,n ≤ j0. Substituting this in

(3.15) and (3.16), it is easy to see that, for n ≥ n0, as k →∞,

E (pk,n|yk,n)→ 0; (4.7)

V ar (pk,n|yk,n)→ 0, (4.8)

so that (4.5) is contradicted.
A somewhat different stuation may arise if S1,∞ does not converge in the sense that it is an oscillatory

series. Then it need not hold that |Sj,n| > cj , for j ≥ j0 for n ≥ n0. Instead, for n ≥ n0, we may have
|Sj0+2r,n| > cj and |Sj0+2r+1,n| ≤ cj , for r = 0, 1, 2, . . .. Assuming without loss of generality that k is
even, it follows that for n ≥ n0,

∑k
j=1 yj,n = k

2 − k0, for k0 ≥ 0. Substituting this in (3.15) and (3.16),
we obtain, for n ≥ n0, that

E (pk,n|yk,n)→ 1

2
; (4.9)

V ar (pk,n|yk,n)→ 0, (4.10)

as k →∞, so that (4.5) is again contradicted.
We now prove the following theorem that provides necesary and sufficient conditions for divergence

of S1,∞ in terms of the limit of the posterior probability of pk,n, as k →∞.

Theorem 6 S1,∞ is almost surely non-oscillating divergent if and only if there exists n0 ≥ 1 such that

π (N0|yk,n)→ 1, (4.11)

k → ∞, almost surely for all Yn = {yk,n}∞n=1, for all n ≥ n0, where N0 is any neighborhood of 0
(zero).

Proof. Assume that S1,∞ is non-oscillating divergent. Then then there exist j0 and n0 such that for
n ≥ n0, |Sj,n| > cj , for j ≥ j0. From the proof of the sufficient condition of Theorem 5 it follows that
(4.7) and (4.8) hold. Let ε > 0 be small enough so thatN0 ⊇ {pk,n < ε}. Then combining Chebychev’s
inequality with (4.7) and (4.8) it is easy to see that (4.11) holds.
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Now assume that (4.11) holds. Then for any given ε > 0, for all n,

π (pk,n < ε|yk,n)→ 1, as k →∞. (4.12)

It follows that

E (pk,n|yk,n)→ 0; (4.13)

V ar (pk,n|yk,n)→ 0, (4.14)

as k →∞.
If S1,∞ is convergent, then by Theorem 5, π (N1|yk,n) → 1 as k → ∞, so that E (pk,n|yk,n) → 1,

which is a contradiction to (4.13).
If S1,∞ is oscillatory, then from the proof of the sufficient condition of Theorem 5, E (pk,n|yk,n)→

1
2 , which is again a contradiction to (4.13).

We now characterize the oscillatory behaviour of S1,∞ in terms of the limit of the posterior proba-
bility of pk,n, as k →∞.

Theorem 7 S1,∞ is almost surely oscillatory if and only if there exists n0 ≥ 1, such that

π
(
N 1

2
|yk,n

)
→ 1, (4.15)

as k →∞, almost surely for all Yn = {yk,n}∞n=1, for all n ≥ n0. In the above,N 1
2

is any neighborhood
of 1/2.

Proof. Here we assume that k is even, that is, k = 2k̃, where k̃ → ∞. If S1,∞ is oscillatory, then
by the proof of sufficiency of Theorem 5 it follows that there exists n0 ≥ 1, such that (4.9) and (4.10)
hold for n ≥ n0. Now let N 1

2
be any neighborhood of 1/2. Let ε > 0 be sufficiently small so that

N 1
2
⊇
{
|pk,n − 1

2 | < ε
}

. Then by Chebychev’s inequality π
(
N 1

2
|yk,n

)
→ 1, as k → ∞, for all

n ≥ n0. Thus, (4.15) holds.
Now assume that there exists n0 ≥ 1 such that (4.15) holds for n ≥ n0. Then π

(
|pk,n − 1

2 | < ε|yk,n
)
→

1, as k → ∞, for n ≥ n0. Combining this with Chebychev’s inequality it follows that (4.9) and (4.10)
hold for n ≥ n0. If S1,∞ is non-oscillating, then by Theorems 5 and 6 E (pk,n|yk,n) tends to either 0 or
1, which contradict (4.9). Hence S1,∞ must be oscillatory.

5 Illustrations

We now illustrate our ideas with seven examples. These seven examples can be categorized into three
categories in terms of construction of the upper bound cj,n. With the first example we demonstrate that
it may sometimes be easy to devise an appropiate upper bound. In Examples 2 – 5, we show that usually
simple bounds such as that in Example 1, are not adequate in practice, but appropriate bounds may be
constructed if convergence and divergence of the series in question is known for some values of the
parameters; the resultant bounds can be utilized to learn about convergence or divergence of the series
for the remaining values of the parameters. In Examples 6 and 7, the series in question are stand-alone
in the sense they are not defined by parameters with known convergence/divergence for some of their
values which might have aided our construction of cj,n. However, we show that these series can be
embedded into appropriately parameterized series, facilitating similar analysis as Examples 2 – 5.

For these examples, we construct the partial sums Sj,n setting n = 106, and run our recursive
Bayesian methodology forK = 105 stages. Since we needed to sum 106 terms at each step of 105 stages,
the associated computation is extremely demanding. For the purpose of efficiency, we parallelized
the computation of the sums of 106 terms, splitting the job on many processors, using the Message
Passing Interface (MPI) protocol. In more details, we implemented our parallelized codes, written in
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Figure 5.1: Example 1: The series (5.1) is divergent.

C, in VMware consisting of 60 double-threaded, 64-bit physical cores, each running at 2793.269 MHz.
Parallel computation of our methods associated with Examples 1 to 5 take, respectively, 1 minute, 4
minutes, 7 minutes, 6 minutes, and 9 minutes. Examples 6 and 7 require about 6 minutes and 4 minutes
of computational time.

5.1 Example 1

In their first example Bourchtein et al. (2012) study the following divergent series with their methods:

S =

∞∑
i=2

1

log(i)
. (5.1)

We test our Bayesian idea on this series choosing the monotonically decreasing sequence as cj,n =
1/
√
nj, where we represent cj as cj,n to reflect dependence on n. Figure 5.1, a plot of the posterior

means of
{
pk,n; k = 1, . . . , 105

}
, clearly and correctly indicates that the series is divergent. We also

constructed approximate 95% highest posterior density credible intervals at each recursive step; how-
ever, thanks to very less variances at each stage, the intervals turned out to be too small to be clearly
distinguishable from the plot of the stage-wise posterior means.

5.2 Example 2

Example 2 of Bourchtein et al. (2012) deals with the following series:

Sa =

∞∑
i=2

(
1−

{
log(i)

i

}
− a log log(i)

i

)i
, (5.2)

where a ∈ R. Bourchtein et al. (2012) prove that the series converges for a > 1 and diverges for a ≤ 1.

5.2.1 Choice of cj

Now, however, selecting the monotone sequence as cj,n = 1/
√
nj turn out to be inappropriate for this

series, the behaviour of which is quite sensitive to the parameter a, particularly around a = 1. Hence,
any appropriate sequence {cj,n}∞j=1 must depend on the parameter a of the series (5.2).

Denoting cj,n by caj,n to reflect the dependence on a and n, we first set

uaj,n = Sa0j,n +
(a− 1− 9× 10−11)

log(j + 1)
, (5.3)

9



and then let

caj,n =

{
uaj,n, if uaj,n > 0;

Sa0j,n, otherwise.
(5.4)

where a0 = 1 + 10−10. The reason behind such a choice of caj,n is provided below.
Let, for ε > 0,

S̃ = sup {Sa : a ≥ 1 + ε} . (5.5)

Thus, S̃ may be interpreted as the convergent series which is closest to divergence given the convergence
criterion a ≥ 1 + ε. Since Sa is decreasing in a, it easily follows that equality of (5.5) is attained at
a0 = 1 + ε.

From the above arguments it follows that Sa0j,n in (5.4) is decreasing in j and n due to Cauchy’s
convergence criterion. We assume that ε is chosen to be so small that convergence properties of the series

for {a ≤ 1} ∪ {a ≥ 1 + ε} are only desired. Indeed, since
(

1−
{

log(i)
i

}
− a log log(i)

i

)i
is decreasing

in a for any given i ≥ 3, our method of constructing caj,n need not be able to correctly identify the
convergence properties of the series for 1 < a < 1 + ε.

For the purpose of illustrations we choose ε = 10−10. Note that for a > 1 the term (a−1−9×10−11)
log(j+1)

inflates caj making Saj,n more likely to fall below caj,n for increasing a, thus paving the way for diagnosing
convergence. The same term also ensures that for a ≤ 1, caj,n < Sa0j,n, so that Saj,n is likely to exceed
caj , thus providing an inclination towards divergence. The term −9 × 10−11 is an adjustment for the
case a = 1 + 10−10, ensuring that caj,n marginally exceeds Saj,n to ensure convergence. The scaling

factor log(j + 1) ensures that the part (a−1−9×10−11)
log(j+1) of (5.4) tends to zero at a slow rate so that caj,n is

decreasing with j and n even if a− 1− 9× 10−11 is negative.
Figure 5.2, depicting our Bayesian results for this series, is in agreement with the results of Bourchtein

et al. (2012). In fact, we have applied our methods to many more values of a ∈ Aε with ε = 10−10, and
in every case the correct result is vindicated.

5.3 Example 3

Let us now consider the following series analysed by Bourchtein et al. (2012):

S =

∞∑
i=3

(
1−

(
log(i)

i

)
a

log log(i)
log(i)

)i
, (5.6)

where a > 0. As is shown by Bourchtein et al. (2012), the series converges for a > e and diverges for
a ≤ e.

5.3.1 Choice of cj

Here we first set

uaj,n = Sa0j,n +
(a− e− 9× 10−11)

log(j + 1)
, (5.7)

and then let caj,n defined by (5.4). In this example we set a0 = e + 10−10. The rationale behind the
choice remains the same as detailed in Section 5.2.1.

As before, the results obtained by our Bayesian theory, as displayed in Figure 5.3, are in complete
agreement with the results obtained by Bourchtein et al. (2012).

5.4 Example 4

We now consider the series (1.1). It has been proved by Bourchtein et al. (2012) that the series is
convergent for a − b > 1 and divergent for a + b < 1. As mentioned before, the hierarchy of tests of
Bourchtein et al. (2012) are inconclusive for a = b = 1.
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(c) Convergence: a = 1 + 10−10.
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(d) Convergence: a = 1 + 20−10.
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(e) Divergence: a = −1.

Figure 5.2: Example 2: The series (5.2) converges for a > 1 and diverges for a ≤ 1.
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(a) Divergence: a = e− 10−10.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
.0

0
.2

0
.4

0
.6

Example 3: a = e

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(b) Divergence: a = e.
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(c) Convergence: a = e+ 10−10.
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(d) Convergence: a = e+ 20−10.

Figure 5.3: Example 3: The series (5.6) converges for a > e and diverges for a ≤ e.
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In this example we denote the partial sums by Sa,bj,n and the actual series S by Sa,b to reflect the
dependence on both the parameters a and b.

Sa,bj,n =

3+nj−1∑
i=3+n(j−1)

(
1− log i

i
− log log i

i

{
cos2

(
1

i

)}(
a+ (−1)ib

))i
, (5.8)

We then have the following lemma, the proof of which is presented in Appendix A.

Lemma 8 For the series (1.1), for j ≥ 1 and n even, Sa,bj,n given by (5.8) is decreasing in a but increasing
in b.

Since Sa,b is just summation of the partial sums, it follows that

Corollary 9 Sa,b is decreasing in a and increasing in b.

We let
Aε = {a : 0 ≤ a ≤ 1} ∪ {a : a ≥ 1 + ε} , (5.9)

and
S̃ = inf

a∈Aε
sup
b≥0

{
Sa,b : a− b > 1

}
. (5.10)

It is easy to see in this case, due to Corollary 9 and the convergence criterion a−b > 1, that S̃ is attained
at a0 = 1 + ε and b0 = 0. As before, we set ε = 10−10. Hence, arguments similar to those in Section
5.2.1 lead to the following choice of the upper bound for Sa,bj,n, which we denote in this example by ca,bj,n:

ca,bj,n =

{
ua,bj,n, if ua,bj,n > 0;

Sa0,b0j,n , otherwise,
(5.11)

where a0 = 1 + 10−10, b0 = 0, and

ua,bj,n = Sa0,b0j,n +
(a− 1− b− 9× 10−11)

log(j + 1)
. (5.12)

Note that −b in (5.12) takes account of the fact that the partial sums are increasing in b, thus favouring
divergence for increasing b.

Setting aside panel (c) of Figure 5.5, observe that the remaining panels of Figures 5.4 and 5.5 are
in agreement with the results of Bourchtein et al. (2012), but in the case a = b = 1, the tests of
Bourchtein et al. (2012) turned out to be inconclusive. Panel (c) of Figure 5.5 demonstrates that the
series is divergent for a = b = 1.

5.5 Example 5

Now consider the following series presented and analysed in Bourchtein et al. (2012):

S =

∞∑
i=3

(
1−

(
log(i)

i

)(
a

(
1 + sin2

(√(
log (log(i))

log(i)

)))
+ b sin

(
iπ

4

)))i
; a > 0, b > 0.

(5.13)
Bourchtein et al. (2012) show that the series converges when a − b > 1 and diverges when a + b < 1.
Again, as in the case of Example 4, the following lemma holds in Example 5, the proof of which is
provided in Appendix B. Note that for mathematical convenience we consider partial sums from the 5-th
term onwards. We also assume n to be a multiple of 4.
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(a) Convergence: a = 3, b = 1.
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(b) Convergence: a = 1 + 10−10, b = 0.
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(c) Convergence: a = 1 + 20−10, b = 10−10.
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(d) Divergence: a = 1/2, b = 1/3.

Figure 5.4: Example 4: The series (1.1) converges for (a = 3, b = 1),
(
a = 1 + 10−10, b = 0

)
,(

a = 1 + 20−10, b = 10−10
)

and diverges for (a = 1/2, b = 1/3).
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(a) Divergence: a = 1
2

(
1− 10−11

)
, b =

1
2

(
1− 10−11

)
.
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(b) Divergence: a = 1, b = 0.
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(c) Divergence: a = 1, b = 1.

Figure 5.5: Example 4: The series (1.1) diverges for
(
a = 1

2

(
1− 10−11

)
, b = 1

2

(
1− 10−11

))
, (a =

1, b = 0) and (a = 1, b = 1).
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Lemma 10 For the series (5.13), let

Sa,bj,n =

5+nj−1∑
i=5+n(j−1)

(
1−

(
log(i)

i

)(
a

(
1 + sin2

(√(
log (log(i))

log(i)

)))
+ b sin

(
iπ

4

)))i
,

(5.14)
for j ≥ 1 and n, a multiple of 4. Then Sa,bj,n is decreasing in a and increasing in b.

The following corollary with respect to Sa,b again holds:

Corollary 11 Sa,b is decreasing in a and increasing in b.

Thus, we follow the same method as in Example 4 to determine ca,bj,n, but we need to note that in this
example a > 0 and b > 0 instead of a ≥ 0 and b ≥ 0 of Example 4. Consequently, here we define
b ≥ ε, for ε > 0, the set Aε given by (5.9) and

S̃ = inf
a∈Aε

sup
b≥ε

{
Sa,b : a− b > 1

}
. (5.15)

In this case, Corollary 11 and the convergence criterion a− b > 1 ensure that S̃ is attained at a0 = 1 + ε
and b0 = ε. As before, we set ε = 10−10. The rest of the arguments leading to the choice of ca,bj,n
remains the same as in Example 4, and hence in this example ca,bj,n has the same form as (5.11), with
a0 = 1 + 10−10, b0 = 10−10.

Figure 5.6 depicts the results of our Bayesian analysis of the series (5.13) for various values of a and
b. All the results are in accordance wth those of Bourchtein et al. (2012).

5.6 Example 6

We now investigate whether or not the following series converges:

S =

∞∑
i=1

1

i3| sin i|
. (5.16)

This series is a special case of the generalized form of the Flint Hills series (see Pickover (2002) and
Alekseyev (2011)).

For our purpose, we first embed the above series into

Sa,b =
∞∑
i=1

ib−3

a+ | sin i|
, (5.17)

where b ∈ R and |a| ≤ η, for some η > 0, specified according to our purpose. Note that, S = S0,0, and
we set η = 10−10 for our investigation of (5.16).

Note that for any fixed a 6= 0, Sa,b converges if b < 2 and diverges if b ≥ 2. Since Sa,b increases in
b it follows that the equality in

S̃ = sup
{
Sa,b : a = ε, b ≤ 2− ε

}
(5.18)

is attained at (a0, b0) = (ε, 2− ε).
Arguments in keeping with those in the previous examples lead to the following choice of the upper

bound for Sa,bj,n, which we again denote by ca,bj,n:

ca,bj,n =

{
ua,bj,n, if b < 2;

va,bj,n, otherwise,
(5.19)

16



0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
.4

0
.6

0
.8

1
.0

Example 5: a = 2, b = 1

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) Convergence: a = 2, b = 1.
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(b) Convergence: a = 1 + 20−10, b = 10−10.
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(c) Convergence: a = 1 + 30−10, b = 20−10.
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(d) Divergence: a = 1/2, b = 1/2.
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(e) Divergence: a = 1
2

(
1− 10−11

)
, b =
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Figure 5.6: Example 5: The series (5.13) converges for (a = 2, b = 1), (a = 1 +
20−10, b = 10−10), (a = 1 + 30−10, b = 20−10) and diverges for (a = 1/2, b = 1/2) and(
a = 1

2

(
1− 10−11

)
, b = 1

2

(
1− 10−11

))
.
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(a) Convergence: a = −10−10, b = 2− 10−10.
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(b) Divergence: a = −10−10, b = 2 + 10−10.
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(c) Convergence: a = 10−10, b = 2− 10−10.
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(d) Divergence: a = 10−10, b = 2 + 10−10.

Figure 5.7: Example 6: The series (5.17) converges for (a = −10−10, b = 2− 10−10), (a = 10−10, b =
2− 10−10), and diverges for (a = −10−10, b = 2 + 10−10), (a = 10−10, b = 2 + 10−10).

where

ua,bj,n = Sa0,b0j,n +
(|a| − b+ 2− 2ε+ 10−5)

log(j + 1)
; (5.20)

va,bj,n = Sa0,b0j,n +
(|a| − b+ 2− 2ε− 10−5)

log(j + 1)
. (5.21)

Notice that we add the term 10−5 when b < 2 so that our Bayesian method favours convergence and
subtract the same when b ≥ 2 to facilitate detection of divergence. Since convergence or divergence of
Sa,b does not depend upon a ∈ [−η, η] \ {0}, we use |a| in (5.20) and (5.21).

Setting ε = 10−10, Figures 5.7 and 5.8 depict convergence and divergence of Sa,b for various values
of a and b. In particular, panel (e) of Figure 5.8 shows that our main interest, the series S, given by
(5.16), converges.

5.7 Example 7

We now consider

S =
∞∑
i=1

| sin i|i

i
. (5.22)
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(a) Convergence: a = −10−10, b = −10−10.
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(b) Convergence: a = −10−10, b = 10−10.
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(c) Convergence: a = 10−10, b = −10−10.
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(d) Convergence: a = 10−10, b = 10−10.
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(e) Convergence: a = 0, b = 0.

Figure 5.8: Example 6: The series (5.17) converges for (a = −10−10, b = −10−10), (a = −10−10, b =
10−10), (a = 10−10, b = −10−10), (a = 10−10, b = 10−10), and (a = 0, b = 0).
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(a) Divergence: a = π−1, b = 1.
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(b) Divergence: a = 5/(2× 7), b = 1.

Figure 5.9: Example 7: The series (5.23) diverges for (a = π−1, b = 1), (a = 5/7, b = 1).

We embed this series into

Sa,b =
∞∑
i=1

| sin aπi|i

ib
, (5.23)

where a ∈ R and b ≥ 1. The above series converges if b > 1, for all a ∈ R. But for b = 1, it is easy to
see that the series diverges if a = `/2m, where ` and m are odd integers.

Letting a0 = π−1 and b0 = 1 + ε, with ε = 10−10, we set the following upper bound:

ua,bj,n = Sa0,b0j,n +
ε

j
. (5.24)

Thus, ua,bj,n corresponds to a convergent series which is also sufficiently close to divergence. Addition of
the term ε

j provides further protection from erroneous conclusions regarding divergence.
Panel(a) of Figure 5.9 demonstrates that the series of our interest, given by (5.22), diverges. Panel

(b) confirms that for a = 5/(2× 7) and b = 1, the series indeed diverges, as it should.

6 Application to Riemann Hypothesis

6.1 Brief background

Consider the Riemann zeta function given by

ζ(a) =
1

1− 21−a

∞∑
n=0

1

2n+1

n∑
k=0

(−1)k
n!

k!(n− k)!
(k + 1)−a, (6.1)

where a is complex. The above function is formed by first considering Euler’s function

Z(a) =

∞∑
n=1

1

na
, (6.2)

then by multiplying both sides of (6.2) by
(
1− 2

2a

)
to obtain(

1− 2

2a

)
Z(a) =

∞∑
n=1

(−1)a+1

na
, (6.3)
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and then dividing the right hand side of (6.3) by
(
1− 2

2a

)
. The advantage of the function ζ(a) in

comparison with the parent function Z(a) is that, Z(a) is divergent if the real part of a, which we denote
by Re(a), is less than or equal to 1, while ζ(a) is convergent for all a with Re(a) > 0. Importantly,
ζ(a) = Z(a) whenever Z(a) is convergent.

Whenever 0 < Re(a) < 1, ζ(a) satisfies the following identity:

ζ(a) = 2sπa−1 sin
(πa

2

)
Γ(1− a)ζ(1− a), (6.4)

where Γ(·) is the gamma function. This can be extended to the set of complex numbers by defining a
function with non-positive real part by the right hand side of (6.4); abusing notation, we denote the new
function by ζ(a). Because of the sine function, it follows that the trivial zeros of the above function
occur when the values of a are negative even integers. Hence, the non-trivial zeros must satisfy 0 <
Re(a) < 1.

Riemann (1859) conjectured that all the non-trivial zeros have the real part 1/2, which is the famous
Riemann Hypothesis. For accessible account of the Riemann Hypothesis, see Borwein et al. (2006),
Derbyshire (2004).

One equivalent condition for the Riemann Hypothesis is related to sums of of the Möbius function,
given by

µ(n) =


−1 if n is a square-free positive integer with an odd number of prime factors;
0 if n has a squared prime factor;
1 if n is a square-free positive integer with an even number of prime factors,

(6.5)

where, by square-free integer we mean that the integer is not divisible by any perfect square other than
1. Specifically, the condition

x∑
n=1

µ(n) = O
(
x

1
2
+ε
)

(6.6)

for any ε > 0, is equivalent to Riemann Hypothesis. This condition implies that the Dirichlet series for
the Möbius function, given by

M(a) =

∞∑
n=1

µ(n)

na
=

1

ζ(a)
, (6.7)

is analytic in Re(a) > 1/2. This again ensures that ζ(a) is meromorphic in Re(a) > 1/2 and that it has
no zeros in this region. Using the functional equation (6.4) it follows that there are no zeros of ζ(a) in
0 < Re(a) < 1/2 either. Hence, (6.6) implies Riemann Hypothesis. The converse is also certainly true.

The above arguments also imply that convergence of M(a) in (6.7) for Re(a) > 1/2 is equivalent
to Riemann Hypothesis, and it is this criterion that is of our interest in this paper. Now, M(a) converges
absolutely for Re(a) > 1 and

∑N
n=1 µ(n) = o(N), as N → ∞, showing that M(1) < ∞. The latter

is equivalent to the prime number theorem stating that the number of primes below x is asymptotically
x/ log(x), as x → ∞. Thus, M(a) converges for Re(a) ≥ 1. That M(a) diverges for Re(a) ≤ 1/2
can be seen as follows. Note that if M(a) converged for any a∗ such that Re(a∗) ≤ 1/2, then analytic
continuation for Dirichlet series of the form M(a) would guarantee convergence of M(a) for all a with
Re(a) > Re(a∗). But ζ(a) is not analytic on 0 < Re(a) < 1 because of its non-trivial zeros on the
strip. This would contradict the analytic continuation leading to the identity M(a) = 1/ζ(a) on the
entire set of complex numbers. Hence, M(a) must be divergent for Re(a) ≤ 1/2.

In this paper, we apply our ideas to particularly investigate convergence ofM(a) when 1/2 < a < 1.

6.2 Choice of the upper bound and implementation details

To form an idea of the upper bound we first plot the partial sums Saj,n, for j = 1000 and n = 106,
with respect to a. In this regard, panel (a) of Figure 6.1 shows the decreasing nature of the partial sums
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Figure 6.1: Plot of the partial sums Sa1000,1000000 versus a. Panel (a) shows the plot in the domain [0, 5]
while panel (b) magnifies the same in the domain (0.5, 1).

with respect to a, and panel (b) magnifies the plot in the domain 1/2 < a < 1 that we are particularly
interested in. The latter shows that the partial sums decrease sharply till about 0.7, getting appreciably
close to zero around that point, after which the rate of decrease diminishes. Thus, one may expect a
change point around 0.7 regarding convergence. Specifically, divergence may be expected below a point
slightly larger than 0.7 and convergence above it.

Since M(1) <∞, we consider this series as the basis for our upper bound, with the value of a also
taken into account. Specifically, we choose the upper bound as

cj,n =

∣∣∣∣S1
j,n +

a

j + 1

∣∣∣∣ . (6.8)

Since Figure 6.1 shows that the partial sums are of monotonically decreasing nature, the above choice
of upper bound facilitates detection of convergence for relatively large values of a. The part a

j+1 , which
tends to zero as j → ∞, takes care of the fact that the series may be convergent if a < 1, by slightly
inflating S1

j,n.
For our purpose, we compute the first 109 values of the Möbius function using an efficient algorithm

proposed in Lioen and van de Lune (1994), which is based on the Sieve of Eratosthenes (Horsley (1772)).
We setK = 1000 and n = 106. A complete analysis with our VMware with our parallel implementation
takes about 2 minutes.

6.3 Results of our Bayesian analysis

Panels (a)–(e) of Figure 6.2 and panels (d)–(f) of Figure 6.3 show the M(a) diverges for a = 0.1,
0.2, 0.3, 0.4, 0.5, but converges for a = 1 + 10−10, 2 and 3. In fact, for many other values that we
experimented with, M(a) converged for a > 1 and diverged for a < 1/2, demonstrating remarkable
consistency with the known, existing results.

Certainly far more important are the results for 1/2 < a < 1. Indeed, panel (f) of Figure 6.2 and
panels (a)–(c) of Figure 6.3 show thatM(a) diverged for a = 0.6 and 0.7 and converged for a = 0.8 and
0.9. It thus appears that M(a) diverges for a < a∗ and converges for a ≥ a∗, for some a∗ ∈ (0.7, 0.8).
Figure 6.4 displays results of our further experiments in this regard. Panels (a) and (b) of Figure 6.4 show
the posterior means for the full set of iterations and the last 500 iterations, respectively, for a = 0.71.
Note that from panel (a), convergence seems to be attained, although towards the end, the plot seems
to be slightly tilted downwards. Panel (b) magnifies this, clearly showing divergence. Panels (c) and
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(d) of Figure 6.4 depict similar phenomenon for a = 0.715, but as per panel (d), divergence seems to
ensue all of a sudden, even after showing signs of convergence for the major number of iterative stages.
Convergence of M(s) begins at a = 0.72 (approximately); panels (e) and (f) of Figure 6.4 take clear
note of this.

Thus, as per our methods, M(s) diverges for a < 0.72 and converges for a ≥ 0.72. This is
remarkably in keeping with the wisdom gained from panel (b) of Figure 6.1 that convergence is expected
to occur for values of a exceeding 0.7. Note that neither the upper bound (6.8), nor our methodology, is
in any way biased towards a ≈ 0.7; hence, our result is perhaps not implausible.

6.4 Implications of our result

As per our results, M(s) does not converge for all s > 1/2, and hence does not completely support
Riemann Hypothesis. However, convergence of M(s) fails only for the relatively small region 0.5 <
a < 0.72, which perhaps is the reason why there exists much evidence in favour of Riemann Hypothesis.

7 Oscillatory series with multiple limit points

In this section we assume that the sequence {S1,n}∞n=1 has multiple limit points, including the possibility
that the number of limit points is countably infinite. For the time being, let us assume that each term of
the series is non-negative.

7.1 Finite number of limit points

Let us assume that there are M (> 1) limit points. We define

Yj = m if cj,m−1 < S1,j ≤ cm,j ; m = 1, 2, . . . ,M, (7.1)

where, for j ≥ 1, c0,j , c1,j , . . . , cM,j appropriately partition R+, the non-negative part of the real line.
Choice of these quantities will be discussed in Section 7.2.

Note that unlike our ideas appropriate for non-oscillating series, here do not consider blocks of
partial sums Sj,n =

∑jn
i=(j−1)n+1Xi, but S1j =

∑j
i=1Xi. In other words, for Bayesian analysis of

non-oscillating series we compute sums of n terms in each iteration, whereas for oscillating series we
keep adding a single term at every iteration. Thus, computationally, the latter is a lot simpler.

We assume that

(I(Yj = 1), . . . , I(Yj = M)) ∼Multinomial (1, p1,j , . . . , pM,j) , (7.2)

where pm,j can be interpreted as the probability that S1,j ∈ (cj,m−1, cj,m]. As j →∞ it is expected that
cm−1,j and cm,j will converge to appropriate constants depending upon m, and that pm,j will tend to the
correct proprotion of the limit point indexed by m. Indeed, let {pm,0; m = 1, . . . ,M} denote the actual
proportions of the limit points indexed by {1, . . . ,M}, as j →∞.

Following the same principle discussed in Section 3, at the k-th stage we arrive at the following
posterior of {pm,k : m = 1, . . . ,M}:

π (p1,k, . . . , pM,k|yk) ≡ Dirichlet

 k∑
j=1

1

j2
+

k∑
j=1

I (yj = 1) , . . . ,

k∑
j=1

1

j2
+

k∑
j=1

I (yj = M)

 .

(7.3)
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(a) Divergence: a = 0.1.
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(b) Divergence: a = 0.2.
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(c) Divergence: a = 0.3.
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(d) Divergence: a = 0.4.
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(e) Divergence: a = 0.5.

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

Riemann Hypothesis: a = 0.6

Stage

Po
st

er
io

r m
ea

n

(f) Divergence: a = 0.6.

Figure 6.2: Riemann Hypothesis: The mobius function based series diverges for a = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6.
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(a) Divergence: a = 0.7.
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(b) Convergence: a = 0.8.
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(c) Convergence: a = 0.9.
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(d) Convergence: a = 1 + 10−10.

0 200 400 600 800 1000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Riemann Hypothesis: a = 2

Stage

Po
st

er
io

r m
ea

n

(e) Convergence: a = 2.
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(f) Convergence: a = 3.

Figure 6.3: Riemann Hypothesis: The mobius function based series diverges for a = 0.7 but converges
for a = 0.8, 0.9, 1 + 10−10, 2, 3.
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(a) Divergence: a = 0.71.
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(b) Divergence: a = 0.71.
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(c) Divergence: a = 0.715.

0 100 200 300 400 500

0.
99

50
0.

99
55

0.
99

60
0.

99
65

0.
99

70

Riemann Hypothesis: a = 0.715

Stage

Po
st

er
io

r m
ea

n

(d) Divergence: a = 0.715.
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(e) Convergence: a = 0.72.
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(f) Convergence: a = 0.72.

Figure 6.4: Riemann Hypothesis: The left panels show the posterior means for the full set of iterations,
while the right panels depict the posterior means for the last 500 iterations, for a = 0.71, 0.715 and
0.72. It is evident that the mobius function based series diverges for a = 0.71 and 0.715 but converges
for a = 0.72.
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The posterior mean and posterior variance of pm,k, for m = 1, . . . ,M , are given by:

E (pm,k|yk) =

∑k
j=1

1
j2

+
∑k

j=1 I (yj = m)

M
∑k

j=1
1
j2

+ k
; (7.4)

V ar (pm,k|yk) =

(∑k
j=1

1
j2

+
∑k

j=1 I (yj = m)
)(

(M − 1)
∑k

j=1
1
j2

+ k −
∑k

j=1 I (yj = m)
)

(
M
∑k

j=1
1
j2

+ k
)2 (

M
∑k

j=1
1
j2

+ k + 1
) .

(7.5)

Let k = Mk̃, where k̃ → ∞. Then, from (7.4) and (7.5) it is easily seen, using
∑k
j=1 I(yj=m)

k → pm,0
almost surely as k →∞, that almost surely,

E (pm,k|yk)→ pm,0, and (7.6)

V ar (pm,k|yk) = O

(
1

k

)
→ 0, (7.7)

as k →∞.
We can now characterize the m limit points of S1,∞ in terms of the limits of the marginal posterior

probabilities of pm,k, denoted by πm (·|yk), as k →∞.

Theorem 12 {S1,n}∞n=1 has M (> 1) limit points if and only if for m = 1, . . . ,M ,

πm
(
Npm,0 |yk

)
→ 1, (7.8)

as k →∞, almost surely for all Y = {yk}∞k=1. In the above, Npm,0 is any neighborhood of pm,0.

Proof. Follows using the same ideas as the proof of Theorem 7.

7.2 Choice of cj,0, . . . , cj,M
Let us define, for j = 1, 2, . . . , k,

p̃`,j =

{
0 if ` = 0;

E (p`,j |yj) if ` = 1, 2, . . . ,M.
(7.9)

We then set cj,0 ≡ 0 for all j = 1, 2, . . . , k, and, for m ≥ 1, define

cj,m =

∑m
`=1 p̃`,k

1−
∑m

`=1 p̃`,k
, (7.10)

for j = 1, 2, . . . , k. Thus, the inequality cj,m−1 < S1,j ≤ cm,j in (7.1) is equivalent to

m−1∑
`=1

p̃`,k <

(
S1,j

1 + S1,j

)ρ(θ)
≤

m∑
`=1

p̃`,k, (7.11)

where ρ(θ) is some relevant power depending upon the set of parameters θ of the series, responsible
for appropriately inflating or contracting the quantity S1,j

1+S1,j
for properly diagnosing the limit points. If(

S1,j

1+S1,j

)ρ(θ)
≥ 1, we set Yj = M . By (7.1) and (7.2) it then holds that the probability of the event

(7.11) converges to pm,0, as k →∞.
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7.3 Infinite number of limit points

We now assume that the number of limits points of {S1,n}∞n=1 is countably infinite, and that {pm,0;m = 1, 2, 3, . . .},
where 0 ≤ pm,0 ≤ 1 and

∑∞
m=1 pm,0 = 1, are the true proportions of the limit points.

Now we define
Yj = m if cj,m−1 < S1,j ≤ cm,j ; m = 1, 2, . . . ,∞, (7.12)

where, for j ≥ 1, c0,j , c1,j , . . . , are appropriately chosen constants that partition R+.
Let X = {1, 2, . . .} and let B (X ) denote the Borel σ-field on X (assuming every singleton of X is

an open set). Let P denote the set of probability measures on X . Then, at the j-th stage,

[Yj |Pj ] ∼ Pj , (7.13)

where Pj ∈ P . We assume that Pj is the following Drichlet process:

Pj ∼ DP
(

1

j2
G

)
, (7.14)

where, the probability measure G is such that, for every j ≥ 1,

G (Yj = m) =
1

2m
. (7.15)

It then follows using the same previous principles that, at the k-th stage, the posterior of Pk is again a
Dirichlet process, given by

[Pk|yk] ∼ DP

 k∑
j=1

1

j2
G+

k∑
j=1

δyj

 , (7.16)

where δyj denotes point mass at yj . It follows from (7.16) that

E (pm,k|yk) =

1
2m
∑k

j=1
1
j2

+
∑k

j=1 I (yj = m)∑k
j=1

1
j2

+ k
; (7.17)

V ar (pm,k|yk) =

(∑k
j=1

1
j2

+
∑k

j=1 I (yj = m)
)(

(1− 1
2m )

∑k
j=1

1
j2

+ k −
∑k

j=1 I (yj = m)
)

(∑k
j=1

1
j2

+ k
)2 (∑k

j=1
1
j2

+ k + 1
) .

(7.18)

As before, it easily follows from (7.17) and (7.18) that for m = 1, 2, 3, . . .,

E (pm,k|yk)→ pm,0, and (7.19)

V ar (pm,k|yk) = O

(
1

k

)
→ 0, (7.20)

almost surely, as k →∞.
The theorem below characterizes countable number of limit points of S1,∞ in terms of the limit of

the marginal posterior probabilities of pm,k, as k →∞.

Theorem 13 {S1,n}∞n=1 has countable limit points if and only if for m = 1, 2, . . .,

πm
(
Npm,0 |yk

)
→ 1, (7.21)

as k →∞, almost surely for all Y = {yk}∞k=1.

Proof. Follows using the same ideas as the proof of Theorem 7.
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As regards the choice of the quantities cj,m, we simply extend the construction detailed in Section
7.2 by only letting M →∞, and with obvious replacement of the posterior means with those associated
with the posterior Dirichlet process.

It is useful to remark that our theory with countably infinite number of limit points is readily ap-
plicable to situations where the number of limit points is finite but unknown. In such cases, only a
finite number of the probabilities {pm,j ; m = 1, 2, 3 . . .} will have posterior probabilities around posi-
tive quantities, while the rest will concentrate around zero. For known finite number of limit points, it is
only required to specify G such that it gives positive mass to only a specific finite set.

7.4 Characterization of convergence and divergence with our approach on limit points

Note that for convergent series, πm (N1|yk)→ 1 as k →∞ for smaller values of m, while for divergent
series, πm (N1|yk) → 1 as k → ∞ for much larger values of m. We formalize these statements below
as the following theorems.

Theorem 14 Let there beM number of possible limit points, whereM may be infinite. Then S1,∞ =∞
if and only if

πm,k (N1|yk)→ 1, (7.22)

as k →∞ and m→M .

Proof. Let S1,∞ =∞. Then there exists k0 ≥ 1 such that given any λ > 0, S1,k > λ for k ≥ k0. Then
as k →∞, (

S1,k
1 + S1,k

)ρ(θ)
→ 1. (7.23)

In other words, for any fixed M (> 1), yk → M , almost surely, as k → ∞. Hence, as k → ∞ and
m → M , it easily follows using the same techniques as before, that (7.22) holds. Consequently, for
infinite number of limit points (7.22) holds as m→∞.

Now assume that (7.22) holds. It then follows from the formula of the posterior mean that yk →M ,
almost surely, as k →∞, for fixed M . Hence, (7.23) holds, from which it follows that S1,∞ =∞.

Theorem 15 S1,∞ <∞ if and only if for some finite m0 ≥ 1,

πm0,k (N1|yk)→ 1, (7.24)

as k →∞.

Proof. Let S1,∞ <∞. Then as k →∞,(
S1,k

1 + S1,k

)ρ(θ)
→ c, (7.25)

for some constant 0 ≤ c < 1. Hence, there exists some finite m0 ≥ 1 such that yk → m0, almost surely,
as k →∞. Using the same techniques as before, it is seen that that (7.24) holds.

Now assume that (7.24) holds. It then follows from the formula of the posterior mean, that yk → m0,
almost surely, as k →∞. Hence, (7.25) holds, from which it follows that S1,∞ <∞.

7.5 A rule of thumb for diagnosis of convergence, divergence and oscillations

Based on the above theorems we propose the following rule of thumb for detecting convergence and
divergence when M is finite: if m

M > 0.9 such that πm,k (N1|yk) → 1 as m → M and k → ∞, then
declare the series as divergent. If, on the other hand, mM ≤ 0.9 such that πm,k (N1|yk)→ 1, then declare
the series as convergent.
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If, instead, there exist m`; ` = 1, . . . , L (L > 1) such that πm`,k
(
Npm`,0 |yk

)
→ 1 as k → ∞,

where 0 < pm`,0 < 1 for ` = 1, . . . , L and
∑L

`=1 pm`,0 = 1, then say that the sequence {S1,n}∞n=1 has
L limit points. Note that the value of m

M is not important in this situation.
Next, we illustrate our theory on limit points with Example 5, arguably the most complex series in

our set of examples (other than Riemann Hypothesis) and in Section 9, validate our result on Riemann
Hypothesis with our Bayesian limit point theory.

8 Illustration of the Bayesian limit point theory with Example 5

Since there is at most one limit point in the cases that we investigated, application of our ideas to
these cases must be able to re-confirm this. We consider the theory based on Dirichlet process devel-
oped in Section 7.3, assuming for the sake of illustrations that G is concentrated on M values, with
G (Yj = m) = 1

M ; m = 1, 2, . . . ,M . We set M = 10 for our experiments. Thus, by our rule of thumb,
divergence is to be declared only if πm=10,k (N1|yk)→ 1, as k →∞.

As regards implementation, notice that here there is no scope for parallelization since at the j-th step
only yj is added to the existing S1,j−1 to form S1,j = S1,j−1 + yj . As such, on our VMware, using a
single processor, only about two seconds are required for 105 iterations associated with the series (5.13),
for various values of a (> 0) and b (> 0).

8.1 Choice of ρ(θ) in
(

S1,k

1+S1,k

)ρ(θ)
In our example, θ = (a, b). We choose, for j ≥ 1,

ρ̃(θ) = a− b+ ε, (8.1)

and set (
S1,j

1 + S1,j

)ρ(θ)
= min

{
1,

(
S1,j

1 + S1,j

)ρ̃(θ)}
(8.2)

Recall that the series (5.13), defined for a > 0 and b > 0, converges for a − b > 1 and diverges for
a+b < 1. In keeping with this result, (8.2) decreases as (a−b) increases, so that the chance of correctly
diagnosing convergence increases. Moreover, if both a and b are between 0 and 1 such that a + b < 1,
then (8.2) tends to be inflated, thereby increasing the chance of correctly detecting divergence. The term
ε in (8.2) prevents the power from becoming zero when a = b. It is important to note here that for
a+ b = 1 convergence or divergence is not guaranteed, but if ε = 0 in (8.2), then a = b would trivially
indicate divergence, even if the series is actually convergent. A positive value of ε provides protection
from such erroneous decision. Note that if a < b − ε, the convergence criterion a − b > 1 is not met
but the divergence criterion a+ b < 1 may still be satisfied. Thus, for such instances, greater weight in
favour of divergence is indicated. In our illustration, we set ε = 10−10.

8.2 Results

Figure 8.1 shows the results of our Bayesian analysis of the series (5.13) based on our Dirichlet process
model. Based on the rule of thumb proposed in Section 7.5 all the results are in agreement with the
results based on Figure 5.6.
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(a) Convergence: a = 2, b = 1. The posterior of p1,k
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(b) Convergence: a = 1 + 20−10, b = 10−10. The
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(c) Convergence: a = 1 + 30−10, b = 20−10. The
posterior of p2,k converges to 1 as k →∞.
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(d) Divergence: a = 1/2, b = 1/2. The posterior of
p10,k converges to 1 as k →∞.
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Figure 8.1: Illustration of the Dirichlet process based theory with Example 5: For (a = 2, b = 1)
in the series (5.13), m

M = 1
10 < 0.9, indicating convergence, for (a = 1 + 20−10, b = 10−10),

m
M = 2

10 < 0.9, indicating convergence, for (a = 1 + 30−10, b = 20−10), m
M = 2

10 < 0.9, in-
dicating convergence, for (a = 1/2, b = 1/2), m

M = 10
10 > 0.9, indicating divergence, and for(

a = 1
2

(
1− 10−11

)
, b = 1

2

(
1− 10−11

))
, mM = 10

10 > 0.9, indicating divergence.
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9 Application of the Bayesian multiple limit points theory to Riemann
Hypothesis

To strengthen our result on Riemann Hypothesis presented in Section 6 we consider application of our
Bayesian multiple limit points theory to Riemann Hypothesis.

9.1 Choice of ρ(θ) in
(
|S1,k|

1+|S1,k|

)ρ(θ)
For Riemann Hypothesis, θ = a; we choose, for j ≥ 1,

ρ̃(θ) = a6. (9.1)

The reason for such choice with a relatively large power is to allow discrimination between
(
|S1,k|

1+|S1,k|

)ρ(θ)
for close values of a. However, substantially large powers of a are not appropriate because that would
make the aforementioned term too small to enable detection of divergence. In fact, we have chosen
the power after much experimentation. Implementation of our methods takes about 25 seconds on our
VMWare, with 106 iterations.

9.2 Results

The results of application of our ideas on multiple limit points are depicted in Figures 9.1, 9.2 and 9.3.
The values of m/M and the thumb rule proposed in Section 7.5 show that all the results are consistent
with those obtained in Section 6. There seems to be a slight discrepancy only regarding the location of
the change point of convergence. In this case, unlike a = 0.72 as obtained in Section 6, we obtained
a = 0.74 as the change point (see panel (b) of Figure 9.2). In fact, it turned out that m

M = 1 for all the
values of a ∈ (0.7, 0.74) that we experimented with.

This (perhaps) negligible difference notwithstanding, both of our methods are remarkably in agree-
ment with each other, emphasizing our point that Riemann Hypothesis can not be completely supported.

10 Summary and conclusion

In this paper, we proposed and developed a novel Bayesian methodology for assessment of convergence
of infinite series; we further extended the theory to infinite series with possibilities of multiple or even
infinite number of limit points. Our developments do not require any restrictive assumption, not even
independence of the elements Xi of the infinite series.

We demonstrated the reliability and efficiency of our methods with varieties of examples, the most
important one being associated with Riemann Hypothesis.

Both methods proposed in this paper, namely the convergence assessment method and the multiple
limit points method are almost completely in agreement that the Riemann Hypothesis can not be com-
pletely supported. Indeed, both the methods agree that there exists some a∗ in the neighborhood of 0.7
such that the infinite series based on the Möbius function diverges for a < a∗ and converges for a ≥ a∗.
The results that we obtained by our Bayesian analyses are also supported by informal plots of the partial
sums depicted in Figure 6.1.

The theory that we developed readily applies to random series; we shall carry out a detailed investi-
gation including comparisons with existing theories on random infinite series. We then intend to extend
these works to complex infinite series, both deterministic and random.
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Figure 9.1: Riemann Hypothesis based on Bayesian multiple limit points theory: Divergence for a =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
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Figure 9.2: Riemann Hypothesis based on Bayesian multiple limit points theory: Divergence for a = 0.7
but convergence for a = 0.74, 0.8, 0.9, 1, 1 + 10−10.
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Figure 9.3: Riemann Hypothesis based on Bayesian multiple limit points theory: Convergence for a = 2,
3.

Appendix

A Proof of Lemma 8

Since each term of the series (1.1) is decreasing in a, it is clear that Sa,bj,n is decreasing in a. We need to

show that Sa,bj,n is decreasing in b.
Let, for i ≥ 3,

g(i) =

(
1− log i

i
− log log i

i

{
cos2

(
1

i

)}(
a+ (−1)ib

))i
. (A.1)

Since n is even, observe that all our partial sums of the form Sa,bj,n for j ≥ 3 admit the form

Sa,bj,n =
r+n−1∑
i=r

g(i), (A.2)

where r = 3 + n(j − 1), which is clearly odd. Now,

r+n−1∑
i=r

g(i) = {g(r) + g(r + 1)}+ {g(r + 2) + g(r + 3)}+ · · ·+ {g(r + n− 2) + g(r + n− 1)} ,

(A.3)
where the sums of the consecutive terms within the parentheses have the form

g(r + `) + g(r + `+ 1)

=

(
1− log(r + `)

r + `
− log log(r + `)

r + `

{
cos2

(
1

r + `

)}(
a+ (−1)(r+`)b

))(r+`)

+

(
1− log(r + `+ 1)

r + `+ 1
− log log(r + `+ 1)

r + `+ 1

{
cos2

(
1

r + `+ 1

)}(
a+ (−1)(r+`+1)b

))(r+`+1)

.

(A.4)

Since r is odd, and since the terms are represented pairwise in (A.3) it follows that in (A.4), r + ` is
odd and r + ` + 1 is even. That is, in (A.4), a + (−1)(r+`)b = a − b and a + (−1)(r+`+1)b = a + b.
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Since cos2 (θ) is decreasing on
[
0, π2

]
, and since 1

i ≤
π
2 for i ≥ 3, it follows that cos2

(
1
i

)
is increasing

in i. Moreover, log log i
i decreases in i at a rate faster than cos2

(
1
i

)
increases, so that log log i

i × cos2
(
1
i

)
decreases in i. It follows that

log log(r + `)

r + `
cos2

(
1

r + `

)
>

log log(r + `+ 1)

r + `+ 1
cos2

(
1

r + `+ 1

)
. (A.5)

Note that in g(r+`)+g(r+`+1), log log(r+`)
r+` cos2

(
1
r+`

)
is associated with bwhile log log(r+`+1)

r+`+1 cos2
(

1
r+`+1

)
involves −b. Hence, increasing b increases g(r + `) but decreases g(r + `), and because of (A.5),
g(r + `) + g(r + `+ 1) increases in b. This ensures

∑r+n−1
i=r g(i) given by (A.3), is increasing in b. In

other words, partial sums of the form (A.2) are increasing in b, proving Lemma 8 when n is even.

B Proof of Lemma 10

That Sa,bj,n is decreasing in a follows trivially since each term of (5.13) is decreasing in a. We need to

show that Sa,bj,n is increasing in b.
Let, for i ≥ 5,

g(i) =

(
1−

(
log(i)

i

)(
a

(
1 + sin2

(√(
log (log(i))

log(i)

)))
+ b sin

(
iπ

4

)))i
. (B.1)

Now note that, with r = 5 + n(j − 1),

r+n−1∑
i=r

g(i) =

n
4∑

m=1

Zr,m

= {Zr,1 + Zr,2}+ {Zr,3 + Zr,4}+ · · ·+
{
Zr,n

4
−1 + Zr,n

4

}
, (B.2)

where

Zr,m =

5+4(m−1)+3∑
`=5+4(m−1)

g(r + `). (B.3)

Now, for any ` ≥ 1, observe that in {Zr,` + Zr,`+1}, the term Zr,` consists of only negative signs
of the sine-values, while in Zr,`+1 the corresponding signs are positive although the magnitudes are the
same. Since log(i)/i is decreasing in i, it follows that {Zr,` + Zr,`+1} is increasing in b for ` ≥ 1.
Hence, it follows that (B.2), and Sa,bj,n, defined by (5.14), are increasing in b for j ≥ 1 and n, a multiple
of 4, proving Lemma 10.
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