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Abstract: Let X be a mean zero Gaussian random vector in a separa-
ble Hilbert space H with covariance operator ¥ := E(X ® X). Let ¥ =
> .~1 trPr be the spectral decomposition of 3 with distinct eigenvalues
w1 > p2 > ... and the corresponding spectral projectors Pi, Pa,. ... Given
a sample X1,..., X, of size n of i.i.d. copies of X, the sample covariance
operator is defined as S, i=nt Z;'l::[ X;®X. The main goal of principal
component analysis is to estimate spectral projectors Pi, Pa,... by their
empirical counterparts Pl, ﬁg, ... properly defined in terms of spectral de-
composition of the sample covariance operator .. The aim of this paper
is to study asymptotic distributions of important statistics related to this
problem, in particular, of statistic || P — Py||2, where || - ||2 is the squared
Hilbert—Schmidt norm. This is done in a “high-complexity” asymptotic

framework in which the so called effective rank r(X) := “tg‘il (tr(-) being
the trace and || - ||co being the operator norm) of the true covariance ¥ is
becoming large simultaneously with the sample size n, but r(X) = o(n) as
n — oo. In this setting, we prove that, in the case of one-dimensional spec-
tral projector P, the properly centered and normalized statistic ||]57n — P ||§
with data-dependent centering and normalization converges in distribution
to a Cauchy type limit. The proofs of this and other related results rely on
perturbation analysis and Gaussian concentration.
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1. Introduction

Let X, X1,...,X,,... beiid. random variables sampled from a Gaussian dis-
tribution in a separable Hilbert space H with zero mean and covariance operator
Y :=EX®X andlet ¥ =%, :=n"' Y7 | X;®X; denote the sample covariance

operator based on (X1, ..., X,).! We will be interested in asymptotic properties
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LGiven u,v € H, the tensor product u®uw is a rank one linear operator defined as (u®uv)z =
u(v, x),z € H.
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of several statistics related to spectral projectors of sample covariance ) (empir-
ical spectral projectors) that could be potentially useful in principal component
analysis (PCA) and its infinite dimensional versions such as functional PCA
(see, e.g., [18]) or kernel PCA in machine learning (see, e.g., [19], [4]).

In the classical setting of a finite-dimensional space H = RP of a fixed di-
mension p, the large sample asymptotics of spectral characteristics of sample
covariance were studied by Anderson [1] who derived the joint asymptotic dis-
tribution of the sample eigenvalues and the associated sample eigenvectors (see
also Theorem 13.5.1 in [2]). Later on, similar results were established in the
infinite-dimensional case (see, e.g., [6]). Such an extension is rather straight-
forward provided that the “complexity of the problem” characterized by such
parameters as the trace tr(X) of the covariance operator ¥ remains fixed when
the sample size n tends to infinity.

In the high-dimensional setting, when the dimension p of the space grows
simultaneously with the sample size n, the problem has been primarily studied
for so called spiked covariance models introduced by Johnstone and co-authors
(see, e.g., [8]). In this case, the covariance ¥ has a special structure, namely,

S =) N0 ®6)) + 0”1,
j=1

where m < p, 01,...,0,, are orthonormal vectors (“principal components”),
A > o> A2 >0,0%>0and I, is the p x p identity matrix. This means that
the observation X can be represented as 2

m p
X = N&ibj+0d nb;,
j=1 j=1

where &;,7;,7 > 1 are i.i.d. standard normal random variables. Thus, X can be
viewed as an observation of a “signal” Z;n:l A;&;0;, consisting of m “spikes”,
in an independent Gaussian white noise. For such models, an elegant asymp-
totic theory has been developed based on the achievements of random matrix
theory (see, e.g., the results of Paul [16] on asymptotics of eigenvectors of sam-
ple covariance in spiked covariance models and references therein). The most
interesting results were obtained in the case when £ — ¢ for some constant
¢ € (0,+00). In this case, however, the eigenvectors of the sample covariance
33, fail to be consistent estimators of the eigenvectors of the true covariance X
(see Johnstone and Lu [8]) and this difficulty could not be overcome without
further assumptions on the true eigenvectors such as, for instance, their sparsity.
This led to the development of various approaches to “sparse PCA” (see, e.g.,
[7, 13, 15, 17, 21, 3] and references therein).

In this paper, we follow a somewhat different path. It is well known that to
ensure consistency of empirical spectral projectors as statistical estimators of

2assuming that the orthonormal vectors 61, ..., 60, are extended to an orthonormal basis
01,...,0p of RP



V. Koltchinskii and K. Lounici/Asymptotics in principal component analysis 3

spectral projectors of the true covariance ¥ one has to establish convergence of
3 to ¥ in the operator norm. In what follows, || - ||oc will denote the operator
norm (for bounded operators in H), || - || will denote the Hilbert—Schmidt norm
and | - ||; will denote the nuclear norm. We also use the notation tr(X) for the

trace of ¥ and set )
tr
r(¥%) = ——.
(D[

The last quantity is always dominated by the rank of operator ¥ and it is
sometimes referred to as its effective rank. It was pointed out by Vershynin [20]
that the effective rank could be used to provide non-asymptotic upper bounds
on the size of the operator norm || — ¥s with rather weak (logarithmic)
dependence on the dimension and this approach was later used in statistical
literature (see [5, 14]). In our paper [10], we proved that in the Gaussian case
the size of the operator norm ||% — ¥|[o can be completely characterized in
terms of the effective rank r(X) of the true covariance ¥ and its operator norm
|IZ|lcc and that the resulting non-asymptotic bounds are dimension-free (see
theorems 1 and 2 below). This shows that 3 is an operator norm consistent
estimator of ¥ provided that r(X) = o(n), which makes the effective rank r(X)
an important complexity parameter of the covariance estimation problem. This
also provides a dimension-free framework for such problems and allows one
to study them in a “high-complexity” case (that is, when the effective rank
r(X) could be large) without imposing any structural assumptions on the true
covariance such as, for instance, spiked covariance models [8]. This approach
has been developed in some detail in our recent papers [10], [11], [12]. The
current paper continues this line of work by studying the asymptotic behavior
of several important statistics under the assumptions that both n — oo and
r(¥X) — oo, r(X) = o(n). This includes statistical estimators of bias of spectral
projectors of by (empirical spectral projectors) as well as their squared Hilbert-
Schmidt norm errors with a goal to develop “studentized versions” of these
statistics that could be (in principle) used for statistical inference. Before stating
our main results, we provide in the next section a review of the results of papers
[10], [11], [12] that will be extensively used in what follows.

Throughout the paper, we write A < B iff A < C'B for some absolute constant
C>0(A,B>0). AZ Bis equivalent to B < A and A < B is equivalent to
A < B and A 2 B. Sometimes, the signs <, 2 and < could be provided with

subscripts: for instance, A <, B means that A < OB with a constant C' that
could depend on 7.

2. Effective rank and concentration of empirical spectral projectors:
a review of recent results

The following recent result (see, [10]) provides a complete characterization of
the quantity E||X — X||» in terms of the operator norm ||X||o and the effective
rank r(X) in the case of i.i.d. mean zero Gaussian observations.
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Theorem 1. The following bound holds:

B - Sl = 151 [y T2y 22 (2.1)

In paper [10], it is also complemented by a concentration inequality for |3 —
Y|l around its expectation:

Theorem 2. There exists a constant C > 0 such that for all t > 1 with proba-
bility at least 1 —e™¢,

15l 515 - S| < el (V) TV 2

It follows from (2.1) and (2.2) that with some constant C' > 0 and with
probability at least 1 — e™*

M YA VEC VAV VA R

which, in turn, implies that for all p > 1

EVPS - SJ2, =, m{@ Ve (2.4

These results showed that the sample covariance 3 is an operator norm con-
sistent estimator of ¥ even in the cases when the effective rank r(¥) becomes
large as n — oo, but r(X) = o(n) and ||X||s remains bounded. Thus, it becomes
of interest to study the behavior of spectral projectors of sample covariance by
(that are of crucial importance in PCA) in such an asymptotic framework. This
program has been partially implemented in papers [11], [12]. To state the main
results of these papers (used in what follows), we will introduce some further
definitions and notations.

Let ¥ = ) -, urP- be the spectral representation of covariance operator
Y with distinct non zero eigenvalues p.,.,7 > 1 (arranged in decreasing order)
and the corresponding spectral projectors P,.,r > 1. Clearly, P, are finite rank
projectors with rank(P.) =: m, being the multiplicity of the corresponding
eigenvalue p,.. Let o(32) be the spectrum of . Denote by g, the distance from
the eigenvalue pu, to the rest of the spectrum o(X) \ {u,} (the r-th “spectral
gap”). It will be also convenient to consider the non zero eigenvalues 0;(X), j > 1
of ¥ arranged in nondecreasing order and repeated with their multiplicities (in
the case when the number of non zero eigenvalues is finite, we extend this
sequence by zeroes). With this notation, let A, := {j : 0;(X) = p,},7 > 1 and
denote by P, the orthogonal projector onto the linear span of eigenspaces of by
corresponding to its eigenvalues {o; (2) 1 j € A} Tt easily follows from a well
known inequality due to Weyl that

sup o (X) — 05(2)] < [[E = 2 e
j=>1
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If |2 — 2o < 9 this immediately implies that the eigenvalues {o; ():je

A,} form a “cluster” that belongs to the interval (p, — %, pu, + %) and that

is separated from the rest of the spectrum of 3 in the sense that oj (2) &
(r — L, pur+ %) for all j € A, In this case, P, becomes a natural estimator of
P,. It could be viewed as a random perturbation of P, and the following result,
closely related to basic facts of perturbation theory (see [9]), could be found in
[11] (see Lemmas 1 and 2 there).

Lemma 1. Let E:=% —X. The following bound holds:

R Ella
[P = Prlloc < Pt ,H : (2.5)
Moreover, denote
1
C, = P,.
s;ézr My — s
Then A
P.—P.=L.(E)+ S-(E), (2.6)
where
L.(F):=C.EP.+ P.EC, (2.7)
and 5
1]
15 (B) o0 < 14( =) (2.8)
Remark 1. In the case when 0 is an eigenvalue of ¥, it is convenient to extend
the sum in the definition of operator C, to s = 0o with i~ = 0 (see, for

instance, the proof of Lemma 5). Note, however, that PsoX = Py = 0 and
PY = X P, = 0. Thus, this additional term in the definition of C,. does not

have any impact on L,.(E) (and on the parameters A,(X), B.(X) introduced
below).

This result essentially shows that the difference P.— P, can be represented as
a sum of two terms, a linear term with respect to E = ¥ — ¥ denoted by L.(F)
and the remainder term S, (E) for which bound (2.8) (quadratic with respect
to ||E||%,) holds. The linear term L,.(E) could be further represented as a sum
of i.i.d. mean zero random operators:

L.(E)=n"") (P.X; ® C.X; + C,X; ® P, X;),
j=1
which easily implies simple concentration bounds and asymptotic normality

results for this term. On the other hand, it follows from theorems 1 and 2 that
with probability at least 1 — e™*

15, (Bl 5 P20 OB\ PV £ (1)),
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implying that ||S;(E)|lcc = op(l) under the assumption r(X) = o(n) and
115+ (E)|lo = op(n~'/?) under the assumption r(X) = o(n'/?) (in both cases,
provided that 1Zl= ”°° remains bounded). Bound on the remainder term S, (E) of

the order op(n -1 2) makes this term negligible if the linear term L, (E) con-
verges to zero with the rate Op(n~'/2) (the standard rate of the central limit
theorem). A more subtle analysis of bilinear forms (S, (E)u,v),u,v € H given
in [11] showed that the bilinear forms concentrate around their expectations at
a rate op(n~'/2) provided that r(X) = o(n) (which is much weaker than the
assumption r(X) = o(n'/?) needed for the operator norm ||S,(F)|l« to be of
the order op(n~'/2)). More precisely, the following result was proved for the
operator

R, := R.(E) :== S8,(E) —ES,(E) = P, — P, —E(P, — P,) — L,(E)
(see Theorem 3 in [11]):
Theorem 3. Suppose that, for some v € (0,1),

S gr
BIS - Sl < (1 - (2.9)

Then, there exists a constant D, > 0 such that, for all w,v € H and for all
t > 1, the following bound holds with probability at least 1 — e~t :

L AV AVAS N M CSTS

Condition (2.9) (along with concentration bound of Theorem 2) essentially

guarantees that |2 — Bfs < % with a high probability, which makes the

empirical spectral projector P, a small random perturbation of the true spectral
projector P, and allows us to use the tools of perturbation theory. Theorem 3
easily implies the following concentration bound for bilinear forms (P,u,v) :

Corollary 1. Under the assumption of Theorem 3, with some constants D, D~ >
0, for all u,v € H and for all t > 1 with probability at least 1 — e~ ¢,

(7, 2R < DI [Ty
”mﬁ(¢__\/¢_v )/ Sl @.11)

Moreover, it is easy to see that if both u and v are either in the eigenspace of
> corresponding to the eigenvalue .., or in the orthogonal complement of this
eigenspace, then the first term in the right hand side of bound (2.11) could be
dropped and the bound reduces to its second term.

In addition to this, in [11], the asymptotic normality of bilinear forms (PT —

EP.u, v),u,v € H was also proved in an asymptotic framework where n — oo
and r(X) = o(n).
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Another important question studied in [11] concerns the structure of the bias
EP, — P, of empirical spectral projector b, Namely, it was proved that the bias
can be represented as the sum of two terms, the main term P, (EP P.)P,
being “aligned” with the projector P, and the remainder T, being of a smaller
order in the operator norm (provided that r(¥) = o(n)). More specifically, the
following result was proved (see Theorem 4 in [11]).

Theorem 4. Suppose that, for some v € (0,1), condition (2.9) holds. Then,
there ewists a constant D, > 0 such that

EP. — P, = P.(EP, — P,)P. + T,
with P, T,P, =0 and

b
HmuéDm”” (2.12)

f’

In the case when m, = rank(P,) = 1 (so, p, is an eigenvalue of ¥ of multi-
plicity 1), the structure of the bias becomes especially simple. Let P, = 6, ®6,,
where 6, is a unit norm eigenvector of ¥ corresponding to pu,.. Then it is easy
to see that

EP, — P, = b, P, + T, (2.13)

with b, = ((EI:’T — P.)0,,6,) and T, defined in Theorem 4. Moreover,

by = (EP, — P, 0, ® 0,) = E(6,,0,)% — 1,

implying that b, € [—1,0]. Thus, parameter b, is an important characteristic of
the bias of empirical spectral projector P,. It was shown in [11] that, under the
assumption r(3) < n,

(2.14)

Note that this upper bound is larger than upper bound (2.12) on the remainder
IT ]| by a factor y/r(X).

Let now PT = ér ® éT with a unit norm eigenvector éT of 3. Since the vectors
éT, 0, are defined only up to their signs, assume without loss of generality that
(6,,0,) > 0. The following result, proved in [11] (see Theorem 6), shows that the
linear forms (0, u) have “Bernstein type” concentration around /T + b, (6,, u)
with deviations of the order Op(n~="/2).

Theorem 5. Suppose that condition (2.9) holds for some v € (0,1) and also
that

1+hT2%. (2.15)
Then, there exists a constant C, > 0 such that for all t > 1 with probability at
least 1 — et

(b, = V1500, < cw'zg# <\/%\/ %) .
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Thus, if one constructs a proper estimator of the bias parameter b,., it would
be possible to improve a “naive estimator” (f,,u) of linear form (6,,u) by
reducing its bias. A version of such estimator based on the double sample
X1, X, X1,..., X, of i.id. copies of X was suggested in [11). If =3,
denotes the sample covariance based on Xi,..., X » (the second subsample) and

P, = 0, ® 0, denotes the correspondmg empirical spectral projector (estimator
of P,), then the estimator br of the bias parameter b, is defined as follows:

= <éraér> -

where the signs of ér,ér are chosen so that (ér,@} > 0. Based on estimator
0,
14b, 3
necessarily a unit vector) and prove the following result, showing that (6,., u) is
a y/n-consistent estimator of (f,,u) (at least in the case when r(X) < ¢n for a
sufficiently small constant c):

IST, one can also define a bias corrected estimator ér = (which is not

Proposition 1. Under the assumptions and notations of Theorem 5, for some
constant C, > 0 with probability at least 1 — e~ ",

R Rl AVRVERVAS TCVERYAS RCET)

and, for all u € H, with the same probability

6.~ 0r0] < 0, ([T D (2.17)

In addition to this, asymptotic normality of (f,,u) was also proved in [11]
under the assumption that r(X) = o(n).

Finally, we will discuss the results on normal approximation of the (squared)
Hilbert-Schmidt norms ||P, — P,||? for an empirical spectral projector P, ob-
tained in [12]. It was shown in this paper that, in the case when r(X) = o(n),
the size of the expectation E| P, — P,||3 could be characterized by the quantity
A (2) :=2tr(P.X P )tr(C.XC,.) (which, under mild assumption, is of the same
order as r(X)):

BB, — Pyl = (14 o(1) ).

A similar parameter characterizing the size of the variance Var(|| P, — P,|2) is
defined as B,.(X) := 2v/2||P.XP,||2||C.XC.||2. Namely, the following result holds
(Theorem 7 in [12]):

Theorem 6. Suppose condition (2.9) holds for some v € (0,1). Then the fol-
lowing bound holds with some constant C., > 0 :

12, (2 -+ 1
IS _r() _ met1

Var'/2(|| P, — P.||2) — 1| < C,m,.
ar (H ||2) — 'Ym gg BT(E)\/ﬁ n

55 (2.18)
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If —”%?ll“’ and m, are bounded and BT?(EE))\/H — 0, this implies that

Var(|, - BoJ3) = (1 +0(1) 2202

The main result of [12] is the following normal approximation bounds for
1P = Pr3:

Theorem 7. Suppose that, for some constants c1,c2 > 0, m,. < ¢1 and || X <
caGr. Suppose also condition (2.9) holds with some~ € (0,1). Then, the following
bounds hold with some constant C' > 0 depending only on v, c1,¢s :

P{ s (1P - P13 - BIP, - PIE) <o - 2(0)

L 2B fo (BvR
B B 1g< ) \/2)] (2.19)

sup
z€eR

<C

and

sup
z€R

Var/(||P PH

e f\/ ) \/2)] o e

where ®(x) denotes the distribution function of standard normal random vari-
able.

<C

These bounds show that asymptotic normality of properly normalized statis-
tic ||P, — P.||3 holds provided that n — oo, B.(X) — oo and 3 r(g))\/ﬁ — 0.
In the case of p-dimensional spiked covariance models (with a fixed number of

spikes), these conditions boil down to n — 0o, p — oo and p = o(n).

3. Main results

We start this section with introducing a precise asymptotic framework in which
r(¥) — 0o as n — oo. It is assumed that an observation X = X is sampled
from from a Gaussian distributions in H with mean zero and covariance ¥ =

(") The data consists on n i.i.d. copies of X : X1 = Xl(n), X, = x
and the sample covariance 3, is based on (Xl("), ceey n ) As before, ui”’, r>1
denote distinct nonzero eigenvalues of X(") arranged in decreasing order and
P r > 1 the corresponding spectral projectors. Let A := {j:o;(2M) =
ui”’} and let PT(") be the orthogonal projector on the linear span of eigenspaces
corresponding to the eigenvalues {0;(%,),7 € Ag")}.
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The goal is to estimate the spectral projector P(") = Pr(:f ) corresponding

to the eigenvalue p(™ = u{™ of ™ with multiplicity m™ = m{" and with

spectral gap g = gﬁf). Define C'(") = Cﬁ:) = ZS# ﬁPs(n) and let
™ My —Hs

B, := B, (2(")) — 2&”0(”)2(")0(")||2Hp(n)2(n)P(n)H2.

Assumption 1. Suppose the following conditions hold:

supm(™ < +oo; (3.1)
n>1
DN
sup u < +o0; (3.2)
B, — 00 as n — o0; (3.3)
»(n)
il ) — 0 as n — oo. (3.4)

B

Assumption 1 easily implies that
(™) = 00, r(Z™) =o0(n) as n — co.

Also, under mild additional conditions, B, =< ||£)|,.

The following fact is an immediate consequence of bound (2.18) and Theorem
7.

Proposition 2. Under Assumption 1,
) B \?2
Var( 1P P = (B2) (14 o)
n
In addition,

n(||P™ — P™|2 — B[P - POV|2)

d
— Z .
T (35)

and

(116 — P03 — B[ P™ - POIZ)
— Z as n — 00, (3.6)

\/ Var(| P) — P [2)
Z being a standard normal random variable.

Our main goal is to develop a version of these asymptotic results for squared
Hilbert-Schmidt norm error || P(") — P(")||2 of empirical spectral projector P
with a data driven normalization that, in principle, could lead to constructing
confidence sets and statistical tests for spectral projectors of covariance oper-
ator under Assumption 1. This will be done only in the case when the target
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spectral projector P is of rank 1 (that is, (™ is the eigenvalue of multiplicity
m(") = 1). This problem is also related to estimation of the bias parameter
b = biﬁ? of empirical spectral projector P(™)_ This parameter and its esti-
mator b(™ = 135«2) were introduced in Section 2. In particular, we will prove
the asymptotic normality of estimator b(™ with a proper normalization that
depends on unknown covariances (™ and derive the limit distribution of b
with a data-driven normalization.

Let P = () @9 and P = (™) ™ for unit vectors o) 6 To de-
fine the estimator b(™), we need an additional independent sample X 1(") xm
consisting of i.i.d. copies of X (™). Let ¥, denote the sample covariance based on
()N(l(n), ceey ~7(L")) and let P = 6(") @ 9(") be its empirical spectral projector
corresponding to P It will be assumed that the signs of () ,0(™ are chosen
in such a way that (§(™), (") > 0. Define

geeey

pm) — <9A(n)7 g(n)> 1.
Theorem 8. Under Assumption 1,

2n

B (b — (™)) s Zasn— 00,

Z being a standard normal random variable.

In order to use this asymptotic normality result for statistical inference about
bias parameter b("™), one has to find a way to estimate the normalizing factor
]23—: that depends on unknown covariance (™). By the first claim of Proposition
2, under Assumption 1,

2_n 2
B, " Narl ([P0 — PO

as n — oQ.

Thus, equivalently, we need to estimate the variance Var(|P(™) — P(™|2). Note
that

Var(||P™ — PM|2) = Var(|u5<n>||g P2 — 2P, P<n>>)

- Var(2—2<15<”>, P<”>>) - 4Var(<15<">, P<”>>) - 2E(<P<">, Py (P, P(”)>)2.

To estimate the right hand side, consider the third independent sample X 1("), Lxm
consisting of n independent copies of X(™) and denote by %,, the sample covari-
ance based on ()_(1("), - ,X,S")) and by P(™ = (") @ (") its empirical spectral
projector corresponding to P, Assume that the sign of (™) is chosen in such

a way that (9™, (™) > 0 and define

B . () gy _ 1.

We will use A . o .
<p(")7p(n)> — <9(n),9(n)>2 =1+ b(n))2
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as an “estimator” of (]3("), P™) and
<15(n)715(n)> - <§(n),§(n)>2 =1+ B(n))2

as an “estimator” of (P(™ P(™) To estimate Var(||P(™ — P()||2) ~

n2 , one

. . 2
can try to use the statistic 2((1 +bmM)2 — (1 + b("))z) . In fact, it turns out
that the sequence

(14b0M)2 — (1 +b™)2
Var!/2(|| (") — P(V2)

n 7(n 7(n
B—((1+b< N2 (1+ B >)2) ~

is asymptotically normal with mean zero and variance s and

E‘(1+IS(">) (1+b<">
TR \/7E|Z| \/jasn—M)o
Var'/?(|[P(m) — P(V2)

. - 2
Therefore, it might be more natural to view %((1 +b™M)2 — (1 + b(n))2) as

an estimator of the variance Var(|P™ — P(™||2). In any case, we are more
interested in a data driven version of Theorem 8 given below.

Given o € R, 3 > 0, let Y,, g denote a random variable with density
1 [ 1 /-« T+«
355 + 3 (5]
2B g g g
f(z) = m, x € R being the standard Cauchy density. The distribution of
Y.,3 is a mixture of two rescaled Cauchy densities with locations +a and with

equal mixing probabilities. This distribution (with proper choices of parameters
a, B) occurs naturally as the distribution of the ration Inl for mean zero normal

random variables £, 7. Namely, the following (probably, well known) fact holds.
Its proof is rather elementary and is left to the reader.

Proposition 3. Suppose &,m are mean zero normal random variables with
E¢? = 0’? >0, En? = 0727 > 0 and with correlation coefficient p. Then

£ iY,ﬂ
Inl

Un 1—p2.

with o := —p and 3 :=
We now state a data-driven version of Theorem 8.
Theorem 9. Under Assumption 1,
2(}}(71) — b))

‘(1 £ hm)2 (1 4 bm)2

d
— Yo, 3 as n — 00,

5

1 —
where a 1= 5, B 1=/ 15
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Quite similarly, we will determine the asymptotic distribution of statistic
| P(™) — P(™)||2 with a data-driven normalization. First note that

E|IP") — POY3 = E(IP™ 3+ | PO — 2P0, P™)) = E(2 - 2(P™), P™))
=2 —2(EP™, PM) =2 _2(1 4+ pM™) (P pM)y = _gp(m (3.7)

(see Theorem 4 and the comments after this theorem). In the data-driven version
of (3.6) we will replace E[| P(™) — P(")|2 by its estimator —2b(") and the standard

deviation Var'/?(|[P(") — P(")||2) by ‘(1 +bmM)2 — (14 B("))Q‘. This yields the
following result.
Theorem 10. Under Assumption 1,
P — p(m)12 4 2p(n)
” - H2+~ i>YO¢7@ as n — oo,
(14 Bm)2 = (14 52|

where o := 2, 3 :=

4. Proofs: preliminary lemmas

We start with preliminary results that will be formulated in the “non-asymptotic
framework” of Section 2 and the notations of that section will be used. Recall
that Xy,..., X, and X1,..., X, are two samples each of size n of i.i.d. copies
of X, % and E are sample covariances based on (Xi,..., X,) and (X1,...,X,),

respectively, and E := o Y, E:=Y-3.

In what follows, we will use a concentration result for | P, — P,||2 — || L. (E)||2
that was obtained in [12] (see Theorem 5 there) and played a crucial role in the
derivation of normal approximation bound of Theorem 7.

Lemma 2. Suppose that for some v € (0,1) condition (2.9) holds. Then, for
all t > 1, with probability at least 1 —e~*

1Pr = Poll3 — ILo (I3 — B2 = Pr3 = I Lo (E)I3)

o (S (1))

The first new result of this section is a useful representation for (1 + b,)? —
(1+b,)? that will be crucial in our proofs.

Lemma 3. Suppose for some v € (32,1) condition (2.9) holds. Then, there

exists a constant D1 > 0 such that the following representation holds
- 1
E), Ly(E)) = 5 (IL-(B)]5 — EIIL,(E)|13)
(1L (B3 — ENL(BE)]3) + s (4.2)

(1+b,)% = (1+b,)?

= (Lr
1
2
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with the remainder term Y, that, for all t > 1, with probability at least 1 — e™¢
satisfies the bound

e p L (X Ly (1)) Wg\/%)_ (1.3

PROOF. By the definition of by, we have

(1+0b,)2 = (P, P,)
:<p’l‘_EPT‘7P’I‘_EP’I‘>+<PT‘_]E raPr>+<Pr7Pr_E 7‘>
+<PT_EPT7EPT_PT>+<E T‘_P’r‘7 ~7‘

In view of (2.13), we also have
(EPEP) = ((1+b0) P + Ty, L+ b)) P+ Tp) = (14 0,) + | T3,

since P. and T, are orthogonal by definition of the latter. Thus, (4.4) can be
rewritten as
(1+b,)%— (1 +b,)? = (P —EP,, P, —EP,) + (P, - EP,, P,) + (P., P, —EP,)
+ (b —EP,EP, - P.) + (EP, — P, P, —EP,) + | T;[|3.
(4.5)

Denote
. . 1 B . . 1 . _
= <PT_EPT7 Pr>+§(HLT(E)H%_EHLT(E)”%)a Or ‘= <P’I‘_]EP’I‘7 Pr>+§(”LT(E)H%_E”LT(E)H%)7
where R ~ ~
E=Y-% FE:=X-3.
We immediately get from (4.5) that

(1452~ (14 b,) ~EP) = 31 (B)IE — EIL (B)IB) +r

= (b
1 ~ . L
5(IIL (E)||2 E|L.(E)|3) + &, + (P> —EP,,EP, — P,)
+(EP, — P, P, —EP,) + ||T3|13.

Since P, — EP, = L,(E) + R.(E), P, —EP, = L,.(E) + R.(E),

<PT - EPT’PT - EPT> = <LT(E) + R’I‘(E)7LT‘(E) + RT(E)>
= (Ln(B), Ln(E)) + (Ly(E), R (E)) + (Lr(E), Ry (E)) + (Ro(E), R, (E)).
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Combining the last two displays, we get that representation (4.2) holds with the
remainder

Tr = Qr+§r+<pr_EPruEpr_Pr>+<Epr_Prapr_Epr>+”TrH§
(Lo (B B (B)) + (Lo (B), R (B)) + (R, (E). Ry ().
It remains to check that T, satisfies bound (4.3).

In what follows, we frequently use bounds of Theorems 1 and 2 along with
bound (2.3). Under condition (2.9), we have

2R (Fv ) 5% < b2k

This implies that @ <1 and @ </ @ Thus, the term 22 in bounds

n

of Theorems 1 and 2 and (2.3) could be dropped. This is done in what follows
without further notice.

Our next goal is to provide a bound on the remainder term Y,. which can be
done for an arbitrary multiplicity m,. of u,. To this end, first note that bound
(2.10) easily implies that for any symmetric operator B of finite rank m the
following bound holds with probability at least 1 — e~

MMDM<DMMMWP®/ Iy tﬂmm>tﬂﬂml

n n
(4.6)

Indeed, it is enough to use the spectral representation B = Z;n:l Aj(¢; ® ;) of

B with eigenvalues \; and orthonormal eigenvectors ¢;, to write

|(R.(E), B)| < ZMW B)6;, ;)| < mi|Blloo max [(R.(E)o;, 6]

to use bound (2.10) with ¢+log(m) instead of ¢ in order to control bilinear forms
‘(RT (E)¢j,¢j>‘ and, finally, to use the union bound.

We will use bound (4.6) to control the last three terms in the expression
for the remainder Y. To control (L,(E), R,(E)), we use (4.6) conditionally on

Xi,..., X, with B = L, ( ) (that is of rank at most 2m,) to get that with
probab1hty at least 1 —

(Re(E), Lo(E))| <

- 2 r og(2m,. og(2m, og(2m.
mTHLr(E)HooHEHOO <\/ (nz) \/\/t+1 i(2 )\/t-‘rl g(2 )) t + log(2 )

g2 n n

This should be combined with an upper bound on ||L,(E)||« that follows from
(2.3) and also holds with probability at least 1 —e~* :

|MUMNWM mmgf_va>
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(where it was also used that ||Crlleo < ,l) As a consequence, the following
holds with probability at least 1 — 2¢~!

(BB, Lo(E))] 5,

w2 [y Ty )
(\/r(nz)\/\/t+loi(2mT)\/t+loi(2mr)) t+10i(2mr)' (4.7)

(Lo (E), Ro(E))|- As to | (R, (E), Ro(E))|.
observe that, by (2.8), (2.3) and Theorem 1, we have that with probability at

least 1 — e ¢,

Of course, a similar bound also holds for

~ ~ 2
«&wnwsw<nw+mw<nkw'@ +

'm2<J__VJ_V )

Therefore, using again bound (2.10) conditionally on X1,..., X, with B =
R,.(E) we get that with probability 1 — 2e~*

E|E|%
gz

|(Ro(B), RA(B))| 5,
o ISl

B (D7)

(\/r(nz)\/\/t+loi(2mT)\/t+loi(2mr)) t+10i(2mr)' (4.8)

To bound ||7}||3, note that

T3 = (T, Tr) < NT 1[I T oo
and, by the definition of 7.,
1Tl < ”EPT_PT||1+HPT(EPT_PT)PTH1 < 2mTEHpr—PrHOO"'mTHEPT_PTHoo < 3mTIE||PT—PT||OO.
Using (2.5) and Theorem 1, we get

Sl )

”TTHl SV My

Therefore, by bound (2.12),

1212 r(%)

Tol2 < T | Tr oo Sy M2
172 < N Tl T oo Sy s 7 "

%. (4.9)
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We will now control
(P, —~EP,,EP, — P,) = (P, - EP,,P,W,P,) + (P, —~EP,,T,),  (4.10)

where W, = EP, — P,. Recall that P, — EP, = L,(E) + R,(E). Since L,(E) =
P.EC, + C.EP, and C, P, = P.C,. =0, it is easy to see that
(L.(E), P,W,P,) = (P.EC,, PW,P,) + (C,EP,, P,W,P,) = 0.
Thus, . R
(P, —EP,,P,W,P,) = (R.(E), P,W,P,).

Note that B = P,W, P, is an operator of rank at most m, and, in view of (2.5)
and Theorem 1,

IPWrPrlloo < |EP: = Prlloc < E||Pr — Prloo
X[l /x(E)

Gr n

<
Thus, bound (4.6) implies that with probability at least 1 — et :

<P’I" _EPT)PTWT‘PT>

- ‘(RT(E),PTWTPT>

<, mrlilgi.’o\/r(f) (\/r(nz)v\/t%—lo;gb(mr)\/t—l-los(mr)) t+1o§(m,d).
(4.11)

On the other hand,
By —BP, )| < 1B = R Ty oo < (I8 = Pelly + BB = Polly) 1Ty

< 2mr(Hpr = Prlloo + E”pr - PT”OO) (7]l oc-
Using bounds (2.12), (2.5), (2.3) and Theorem 1, we get

: : 1215 [ /r(®) tyyt), /r(®) 1

It follows from (4.10) and bounds (4.11), (4.12) that with probability at least
1—2et

(P —EB.EP, - P,)

<, m? IEQI;o \/r(nE) <\/r(nE) \ \/t + 10§(mr) \ t+ IOS(mr)) t+ 1o§(mT)'
(4.13)

Of course, the term <PT - IEPT, IEPT - PT> can be bounded similarly.
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It remains to control g, and p,.. Note that (L,.(F), P.) = 0, implying that
(P, —~EP,,P,) = (L.(E) + S,(E) — ES,(E), P,) = (S.(E) — ES,(E), P,).
Therefore,

o = (SB)P,) + SILB)IE - B ((5.(8), ) + SIL. ()R

The following lemma provides a concentration inequality for the random vari-
able (S,(E), P,) + 1||L,(E)||3 around its expectation (thus, implying a bound
on o).

Lemma 4. Suppose that condition (2.9) holds for some v € (32, 1). Then, there

exists a constant L > 0 such that for all t > 1 the following bound holds with
probability at least 1 —e™¢

()P + BB - B (508, P) + LB )

o I (D £y >> Wg\/%) (14

Combining bounds (4.7), (4.8), (4.9), (4.13) and (4.14), it is easy to derive
the following bound on Y, that holds with probability at least 1 — 12e~* :

S 1B (1(2) |, t+ log(2m,.) t+ log 2m,.) t+ log (2m,)\ ,t+ log (2m,.)
rlsm e (S V"V \/ .

The probability bound can be written as 1 — e~! by adjusting the constant in
the inequality < . For m, = 1, this yields bound (4.3) completing the proof of
Lemma 3. |

We now prove Lemma 4. To this end, we will use the following representations
for operators S, (F). Given L C {1,...,k+ 1}, denote my, := card(L) and

Jo={7 =01, ks jrs1) i js=r,s € L, js # 1,5 ¢ L}.

Denote by Vi the set of vectors v = (1 : | € L°) with nonnegative integer
components such that ZleLC v; = myp — 1. Finally, denote by L; the set of all
Lc{l,...,k+ 1} such that L # 0, L¢ # (.

Lemma 5. Forallr > 1,
=YD (=)t Y AL(E), (4.15)
k>2 LeLly, veVy

where
A (F):=B1E ... ByEBi1

with By = Pr,l € L and B; = C»*1 [ € L°.



V. Koltchinskii and K. Lounici/Asymptotics in principal component analysis 19

PROOF. It follows from the proof of Lemma 1 in [11] that the following repre-
sentation holds for S,.(F) :

5.(8) ==Y 5z § (~DFIRsEF Rs(a)in,

k>2 Ir

where v, denotes the circle centered at p, of radius g,/2 with counterclockwise
orientation and

-~ 1
Re(p)=(E—nl)' =) ——P
=1 Hj =1

denotes the resolvent of ¥.2 Note also that the series in the above representation
of S,.(E) converges in the operator norm provided that [|El|o < 4. It follows
that

ST(E)_—Zﬁj{(—nk[z ! PjE]kzﬂll_nden

k>2 . S A =1 H

1 dn
:Z Z %% k+1 leE"'ijEij+1'
Ir 1=1

k22 g1,k dk+121 = (77 - Mjl)
We have
1 dn
> %j{ i B P EPR
Jisesdksdk+121 T 1li=1 (77 - sz)

1 % dn
= Z Z ; m leE"'ijEij+1'
LC{l,...k+1} Jeg, 2mi Ir (n — pr)me HleLc (n— .ujz)

Using Cauchy differentiation formula, we get

%7{ (1 — pr)s 1d11u<n — ) <mL1— ] <H ("‘““1>

leLe [n=per

(mp—1)

In the cases when L = () or L¢ = () the integral in the left hand side is equal to
0. By generalized Leibniz rule,

—1 (me=1) (mL - 1)’ 7 —v—1
1T 0= w) => oot IT 0wt = p50) :
jeLe In=per vev, Lliere ¥l ycpe

Thus,

1 dn
Z %7{ Hl—leE"'ijEij+1
J1seeodksdr+121 Yr L li=1 (77 - /sz)

3In the case when 0 is an eigenvalue of ¥, the sum in the right hand side of the above
formula extends to j = oo with pee = 0. See also the remark after Lemma 1
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m 1 - —1
2 2 T 3 [ =) T P E L P B
LCLk ey, veVy lele

Given v € Vp, recall that A, (E) = B1E ... BLEBj41, where B, = P,.,l € L and
By =Cutl € L. Tt is easy to see that

ST (e = i)™ 'PLE ... P EP;, = A (E).
JGJL leLe
Therefore,
L ————fﬁ————P \E...P, EP;,, = )=t ST AR
Z % k+1 ] Jk+1 T Z (_ ) Z u(
J1seodksJk+121 Tr =1 (77 - /'LJL) LeLy vevy
and (4.15) follows. i

Remark 2. By a simple combinatorics,
k+1 2
k+1 2(k+1) 2k
d Vi) < = < 22D (4,16
i U w)= 3 (00) - (0)) < (410

It is easy to check that
> (D™ AJE)
LeLls veVy

= P,EC,.EC,+C,EP,EC,+C,EC,EP,—P,EP,EC?*~P,EC?*EP,—C*EP,EP,.
Using the fact that C,.P. = P.C,. = 0, this easily implies that

> (-t 3 oA = ~w(P,ECER,) = ~| B.EC, |} = ~3 | L ()|}
LeLls veVvy
Thus, we get
1 -
k>3 Leﬁk veVy

The next step is to study the concentration of the random variable (S, (F), P.)+
$||L,(E)||3 around its expectation. More precisely, we study the concentration
of its “truncated version”

(151,82 + 5L, 2)18) o (LE),

where ¢ is a Lipschitz function with constant 1 on Ry, 0 < ¢(s) < 1, o(s) =
1,8 <1, ¢(s) =0,s > 2. The value of 6 > 0 will be chosen below in such a way
that || F|jcc < 0 with a high probability.

The main ingredient of the proof is the classical Gaussian isoperimetric in-
equality that easily implies the following statement.
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Lemma 6. Let Xy,...,X,, be i.i.d. centered Gaussian random variables in H

with covariance operator ¥. Let f : H™ — R be a function satisfying the following
Lipschitz condition with some L >0 :

n 1/2
§L(2||:vj—x;-|2> y L1y Ty, @,y 2, € HL
j=1

Suppose that, for a real number M,

fxy, .o )= f(2h, . 2)

PUf(X0,. o Xa) 2 M} > ¢ and BS(X, ., Xo) < M) >

B~ =

Then, there exists a numerical constant D > 0 such that for all t > 1
P{If(X1,..., Xa) = M| 2 DLIS|Y2VE} < e

We will use Lemma 6 that will be applied to the function

f(X1,. 0 X)) = <<ST(E),PT> T %IILT(E)H%) (p(%)

)
- Z Z (_1)mL_1 Z fV,L(le ce. 7X’n«)a
k>3 LeL, veVL
where 12|
fu,L(Xl7 ey Xn) = <AV(E)7 PT>SD(TOO)7
E=%-%, S=n') X;®X;.
j=1

With a little abuse of notation, assume for now that X, ..., X,, are nonrandom

vectors in H. We now have to check the Lipschitz condition for the function f.

Lemma 7. Let § > 0 and suppose that ||C||d < 1/24. Then, there exists a
numerical constant D > 0 such that, for all Xq,...,X,, X],..., X € H,

||E||(];é2+\/g n 1/2
|F( X1y X)) = (X7, X0 SDmrHCrH2052T ZHXJ‘_XJ/‘HQ :
J=1

(4.17)

PROOF. Consider first each function f, j, separately. Let L € Ly, for some k > 3.
Note that

Pl
for(X1, ... X)) = (BLE. ..BkEBkH,PTW(%),

where B; = P,,l € L and B; = C%*1 [ € L. Therefore, we get
e (X1s s X))l S IBilloo - - [1Brtlloo | EIS I PALI(| Elloo < 26)  (4.18)
< |IBillos - - 1 Brt1lloo | P11 (26)"
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For X7,..., X/ € H, denote

A/, IZX/®X/ :z/\:/_z
Then, we get
|fV,L(X17"'7X’ﬂ)_fV7L(X{7"'7X7/1)|
| £l oo
={(B1(E - E'\By...EBLEBy1, P, <| H >

+(B1E'By(E — E')Bs . EBkEBk+1,P>gp< 5 >_|_

Ell
+(B\E'By ... E'By(E — E')Byi1, P, (” ” )

Ellos E'||oo
+ <BlE’BQ...E’BkE’Bk+1,PT><<p<” 5” > - <” 5” ))‘
< EllBilloo - -- IIBk+1||oo||Pr||1(||E||oo VIIE o) HIE = E'lloo

+ 1 Billoo - 1Brst oo P11 1B 115 IIE Eloo,

where we used the assumption that the Lipschitz constant of ¢ is 1. By sym-
metry, ||E'||o in the right hand side can be replaced by || E||» implying that

|fV,L(X17-~-7Xn)_fV,L(Xia-“valz)l (419)
< k| Billos - - 1 Brtilloo |1 Pl (1 Ellos V 1B llo0)* 1B = B[l

1
+1Billoe - [Brsilloo | Pl (1E oo AE lloo) " SI1E = E'l|oc.

If both || F||s < 26 and || E'||c < 26, this implies the bound

|fV,L(X15"'7Xn) _fV,L(X]ia"'va/z” < (420)
IBillo - - - [1Brrllool| Prll1 (k +2)(26)* | E — E'||oc.
TF || El|oe < 26, but | B[l > 26, then fy.1(X],...,X") = 0 and, by (4.18),
|fon (X1, X)) = fun(XTs o, X)) = [fon(Xa, o0, X))

< 1Billoo - - - I Brsalloo | Prl11.(26)".
If, in addition, ||E'— E’||e > ¢, then bound (4.20) still holds. On the other hand,
if ||F— F'||oo < 0, then ||E'||oc < 3§ and we get a slightly worse bound than
(4.20):
|fV,L(X17---7Xn)_fV,L(X{w-'erlz)l < (421)
1Billso - - - | Biralloo | Prllv (K +2)(38)* | B — E'| .
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The case when ||Fll > 2 and ||E'||« < 2 can be handled similarly and
the case when both ||E||« > 26 and ||E'||s > 20 is trivial since function f, 1,
becomes 0. In each of these cases, bound (4.21) holds.

The following bound (see Lemma 5 in [11]) provides a control of ||F — E'||« :

4252 + V26 (- EVER
o e v e DL & IAVED DI LR
j=1 i=1

(4.22)
Substituting the last bound into (4.21), we get
|fV,L(X15"'7Xn)_fvyL(X]ia"'aX;z” < (423)
<4|Bllloo-~||Bk+1||oo||Pr|1(k+2)(35)k ' \/— le*’fj—X}H2

(4132 B 1P+ 209 5 1, - X;|2).
j=1

In view of (4.18), the left hand side is also bounded from above by
2| Billss - - | Brallool | Prl[1(26)",
which allows one to get from (4.23) that
|fV,L(X17-'-7Xn)_fV,L(Xiu"'erlz)l < (424)

N—

V

1/2 1/2
(4|Bl||oo...||Bk+1||oo||Pr|1<k+2><36>’f1'2' +*r(ZuX X||2) )\/

-
(4|Bl||oo...||Bk+1||oo||Pr|1<36>’f-1(k+2 ZHX X112 /\6))

In the case when
n ) 1/2 on
i
(Sio-x) <y
J=1
we have

4|Blnm...|Bk+1||oo||Pr||1<36>’f-1(k+2 ZHX X|2/\6)

/2

< 4Bil . | Bl | P11 (36)5 12 VE 53 (Z IX, - X ||2>

It is equally easy to check that the same bound holds in the opposite case. As
a consequence, (4.24) implies that

|fV,L(X17"'7X’ﬂ)_fVL(Xiu"' XI)|< (425)

> 1/2+\/— 1/2
A Bulloo | Bus ool Pl (k 4+ 2) 30y 12+ V20 — (ZHX X|2) .
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Note that

v c(ri+1)
IBilloo -+ 1Brsilloe = JT 1CF + lloo < IG5 = |ICrll,  (4.26)
leLe

where we used the facts that

Z vy=mp—1, card(L) =k+1—my.
leLe

Thus, we get from (4.25)
[fon (X, Xn) = fun (XY, X0) <

) » 1/2+\/— ) 1/2
G, Pk + 230y I 20 (DX X||> |

which, taking also into account (4.16), yields

P X)) = F(XT o X)) (4.27)
|21 + V29 2
S43° 30 2 NCHIS NPk + 2)(30) T = mm— ZHX - x|
k>3 LeLy veVy
||L/2 1/2
<43 220G Pk + 230 EEIEE V2D +W(an - x1°)
k>3 \/_
1\ S| + V33 12
a2 (1) e B YR (5 )
k>3 j=1

> 1/2+\/— 1/2
< DJC,|P |1y 52 1 Ele V0 'f (ZHX X|2) |

where D is a numerical constant and we used the condition ||Cy||sd < 1/24.
O

We return to the proof of Lemma 4.

PROOF. Note that, under condition (2.9), the lower bound of Theorem 1 implies
that r(2) <n. Let ¢t > 1 and define

61 (t) = EI = Bl + C11 5| l\/%\/ ﬂ .

If constant C' in the above definition is sufficiently large and r(X) < n, then it
follows from Theorem 2 that ||Fllcc = |2 — X|eo < dn(t) with probability at
least 1 — e~ t. Note also that, under condition (2.9),

VRV v

t) S 1%l
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(since r(X) < n).
Assume that 6, () < 2. Since g, < [|X[|o, we have

\/Z\/i < _ 9 <1,
nVon 24|12 0

which implies that ¢ < n. Thus, in view of the upper bound of Theorem 1,

Vv

For a random variable £, denote by Med(¢) its median. Let

C

n(t) S 11%]loo

M := Med (<ST<E>,PT> n §||LT<E>|§) |

In what follows, we set § := §,,(¢) in the definition of function f(X7,...,X,).
Suppose that ¢ > log(4) (by adjusting the values of the constants the resulting
bound can be easily extended to ¢t > 1 as it is claimed in Lemma 4). Then, we
have P{[|2 — X[|ls > 8,()} < 1, and

P{A(Xy, . Xn) 2 M) 2 P{f(Xy, ..., Xn) 2 M, ||Ello < 0}

> P{(5.(8). ) + SIL (BN 2 M b~ P{1E]l 2 0} >

Quite similarly, P{f(X1,...,X,) <M} > 1. It follows from Lemma 6 that
with probability at least 1 — e~

5 t
- M| < —||2|/2 1/2 -
|f(X1, ., Xn) — M| _Dmrggl\EHoo (IIEIIOO +\/5) Vo

S (D), ¢t t
< o I 0 [T
=am g3 n \/n n’

T

for some numerical constant D’ > 0. Since on the event {||E||c < d}
1
(Sn(E), Pr) + 5L (B3 = F(X1,.., Xn),

we easily obtain that with probability at least 1 — 2e~!

1 2 o IBIE (x(E) st t
’<ST(E),PT>+§|LT(E)H2—M’ SDmr? <T\/ﬁ) o (4.28)

It remains to prove a similar bound in the case when 6, (t) > %. By definition
of 6, (t) and in view of assumption (2.9), we get

t t gT S gr gr gr
C”E”oo (\/;\/ E) > Byl _EHE - E||oo > Y E = E (4.29)

RNy
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In view of (2.7), (2.8), the fact that ||P.||; = m, and the trace duality in-
equality, we obtain

1
<ST(E)aPr> + §||LT(E)H§ < HST(E)HOOHPrnl + ||OTEPT||§

£ Hoo
s ==k +C, BN ENZ NP1
£

< 15mr,—2

Since P{||El|oc <} > 1—e !, we get that for all ¢ > 1 with probability at least

_ HEIP < V& \/( ))

for some numerical constant D > 0. Using this bound with ¢ = log4, we easily

get that
)SD ||2||2 ( v10g4\/<10g4> )

Combining the last two displays, we get that for some constant D > 0 and for
all t > 1 with probability at least 1 —e~*

‘<ST(E),PT> + %HLT(E) 2l < Dm

) < vea [(5,(8). P+ SIE(B)IS

‘<ST(E),PT> + %HLT(E)Hg _M‘ < Dm HEH <

Vi)

(4.30)
If 6, (t) > 2, then (4.29) holds and it follows from bound (4.30) that with some
constant D > 0

(5:(E). P+ LB ~ M| < Din, 'E”3< VIV (L ))(\f\/ )

(4.31)
Of course, in the case when 6, (t) < £, bound (4.31) also holds (it follows from
bound (4.28)). By integrating tail probabilities of bound (4.31) that holds for

all £ > 1 we easily get

‘E [(ST(E), P+ %HLT(E)@} _ M‘ < ]E} [@(E), B+ %|LT(E)||§] - M} <

< Dm ||z||3< V& \/<>>\[

for some D > 0. Thus, we can replace the median M in bound (4.31) by the
expectation which yields the bound of Lemma 4. O
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Consider now three samples (X1, ..., X,), (X1,...,X,) and (X1,...,X,) of
i.i.d. copies of X with 2, Y and © being the sample covariances based on the
corresponding samples of size n. Let F := S-S FE:=Y—Yand E:=% 3.
In view of the representation of Lemma 3, to study the asymptotic behavior of
(14-b,)2 — (14b,)? and other related statistics we will have to deal with random
vectors

V2(Ln( LT<E)> 2v2(P,EC,, P,EC,)
V2(L.(E),L.(E)) 2v2(P.EC,, P,EC,)
= lLr (E)H% EHL (B3 | = 201P-EC:|3 - E|PEC,|3)
IL-(E)|I3 — EIL(E)]3 2(|P,EC, |13 — EIlPEC,3)
1L (E)I3 — EllL(B)]3 2(|P-EC, |13 — E| PEC,[|3)
(4.32)

Let {1k, Mj,k, M.k, k € Ay, j € Ag, s # 7} be 1.i.d. standard normal random
variables. Define the random vector

\/izkem Dstr (Hﬁﬁ D ien, Mk
\/52;@% D st (Hﬁﬁ > ien, Tk
O = D okea, Zs;ﬁr (#5&7;“)2 ZjeAs (77]2,1@ —1) : (4.33)
DokeA, Dstr TP > jen, (7, — 1)
dokeA, Dustr wﬁiu)z > ieA., (ﬁ?‘,k - 1)
Lemma 8. The following representation holds:

n=, = 24,0, + ¢, (4.34)

where ér is a random vector in R whose distribution coincides with the distri-
bution of ©, and the components &; of the remainder & € RS satisfy the following

bound: 2
b 2 3
max Elg;| 5 12l 70V e(s),
1<j<5 g2 Vn n

PROOF. Set

1 O -1 ; v oo L ¢

and note that

Jj=1 Jj=1 Jj=1

2v2(U,T)
2V2(U,U)
nZ, = | 2(|U|2 - E|U|2)

2(|13 ~ E|03)
2(|013 - EIT13)
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Let

I, =n"'Y PX;®PX;, T,=n"Y PX;0P.X;, Tr=n"'Y P.X;0PX;
j=1 j=1 j=1

be the sample covariance operators based, respectively, on the “projected” sam-
ples P.X;,j = 1,. nPX]_l noand PX;,5 = 1,...,n of iid.
centered Gaussian random variables With covariance operator PTEPT = - Pr.
I, T, T, can be viewed as symmetric positive semi-definite operators acting in
the eigenspace of eigenvalue u,- and they admit the following spectral decompo-
sitions:

D= wox @bk, Tr=Y Hdr@dr, Tr= > %6 ®d,

kEA, kEA, kEA,

where v, > 0 are the eigenvalues of T, with associated eigenvectors ¢, 3 > 0
are the eigenvalues of [, with associated eigenvectors qﬁk and 7, > 0 are the
eigenvalues of ', with associated eigenvectors ¢. Note also that {¢p, k € A},
{gi;k, k€ A} and {¢y, k € A,} are three possibly different orthonormal bases
of the eigenspace of ..

Let X®) X®#_ X&) ke A, be independent copies of X (also independent
of X, f(j, X;,j=1,...,n). Denote

V=" ViaeCX®, V=" iugot,X®, V=" /Aaec.X®

kEA, kEA, kEA,

Given{P, X1,...,P.X,,, P, > Xi1,.... P Xp, P X1,..., P X, }, the conditional dis-
tributions of (U U U) and (V, f/ V) are the same. To see this note that, con-
ditionally on {P,X,,...,P,X,,P.X1,...,P.X,, P.X,,..., P, X, s U, U,U are
independent centered Gaussian random operators and so are V,V, V.4 Thus, it
is enough to check that conditionally on the same random variables the covari-
ance operators of U and V' coincide (of course, the same would apply to the
couples U and V, U and V). To this end, let 7' denote a linear mapping from

H®H®H® H into itself such that

T(u1 @uz @ug @ uq) = (U1 @ uz @ uz @ uy)
(note that T is uniquely defined). By an easy computation,
EU®U|PX;,j=1,...,n) =TT, o(C,2C,)) =E(VeV|PX,,j=1,...,n),

which implies the claim for U and V (see also the proof of Lemma 5 in [12] for
more details on this argument).

4Recall that P X j and Cr X are independent since they are jointly Gaussian and uncor-
related (the last property follows from the fact that P.C) = CyP,. = 0). Thus, conditionally
on {P-X;}, U is a mean zero Gaussian random operator.
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Consequently, the distribution of n =, coincides with the distribution of

2VAV.V)
2v2(V,V)
A= 2|VIE-E|VI2)

2(| V13 = E[V]15)
2(IVII5 - EIVI)

Note that
<Va ‘7> = Z mﬁ<¢k®OrX(k)v (5I®CTXU)> = M Z <¢k7 (5I><OTX(]€)7 CTX(”>+775
ke, k€A,
where

ni= 3 (VA - )bk GG X, C, X W)

k,leA,

For the remainder 7, the following bound holds:

1/2 . 1/2
i< (X wava-m?) (T Iex®R T jex0p)

kleA, ke, leA,

which, using the independence of v, %, Cr X ), C,. X1 easily implies that

1/2 ) 1/2
Eln] < (E S (v %—um) <E S jGx®PE S |crx<l>|2)

k€A, keA, leA,

1/2
<o (B Y (Vi -w?)  EICXI

kleA,
Observe also that

~ 2 ~
KV — ~ k — I —
VI Br o~ 4 Bt — ] + v = w1 ur|7

Hr Hor

<

VA =

which implies

Y VA=) <3me Y (=) 43me Y (%—ur)%r% o =) Y Gi—pe)?

kleA, kEA, IEA,. " keA, leA,

. 3 .
<3m, T — NTPTH% + 3m. [T — NTPTH% + E”Fr - NTPTH%”FT - MTPT”g'

T

Hence, we get (using independence of T, f‘r)

= ~ 3 ~
E Z (V7% ’W_Mr)2 < 3mTE||FT_MTPT”%‘i‘?’mrEHFT_MTPTH%""EEHPT_NTPTH%EHPT_NTPT”%
k€A, r
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Since I',., I, are sample covariances based on n i.i.d. centered Gaussian obser-
vations with the true covariance p, P, we easily get

2
- Dl G
EHFT_NTPT”g :E”FT_.UTPTH% < " < " = n

Therefore,
2,3 2, 4
uTmT ILL’I"m’I"
-
n n

E Z (\/% :Yl_,ur)2§

kilEA,

This yields the following bound on E|n| :

oy e o (e pem?
Elnl < N E|C.X|* = N tr(C,2C,)

1212 m2/2 m3
< I v =L ). 4.35

Similarly, we have

VIE= Y wlor 0 CXPI3 =3 wllC- X @2,
keA,. keA,

which implies

IVIE-EIVIE = 3 [ICX 92 ~ B, XO2] 4+,
keA,

where

(=Y {(% — 1) |Cr X B2 = By, — Mr)||CrX(k)||2]
keEA,

The following bound is immediate

E[¢| < 2E max [y, — pr| Z EHCTX(k)HQ < 2m,E|T; — pr Pr || B[ C- X |12,
keA, Py

where we used the independence of random variables v, k € A, and C, X *) ke
A,.. Applying the bound of Theorem 1 to the sample covariance I',., we easily

get
Im m
E”FT _,UTPTHoo < ,Ur( —V _T>
n n

Therefore, we can conclude that

E|¢| < Ty I V(o zc><”z”g° mi/vag (%) (4.36)
S myfy - (GG S 7 NG (). .
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As a consequence of (4.35), (4.36) and similar bounds for other components
of vector A,., we get that

2V2(V,V)

2V2(V,V)
2(|VIZ—E|VI3) | =2m6r +& (4.37)
2(|VI13 - EIV]3)
2(|V3 — E[V]3)

where

\/5<Ekem ¢ @ Cr XM, 37 A b1 ® CTX(k)>

V2 Yea, 060 CX0, 55 o0 CXW)
T > keA, |C X B2 — D kea, E||C.X®)|12
Srea ICXB2 =, EIC X2
ZkeAT HCTX(IC)HQ - ZkeAr EHCTX(IC)H%

and ¢ € R® is a random vector with the components satisfying the following
bound: 5/2
) 2 3
max E|¢;| < [Zllse (e~ me ) sy,
1<;5<5 g2 Vn n

It remains to show that the distribution of (:)T coincides with the distribution
of ©,.. To this end, note that the following representation holds:

1/2

1 s
Y Y S e,
SF#T Hr = Hs s#T For % jen,

where, for all s > 1, 6;,7 € A, is an orthonormal basis of the eigenspace of ¥
corresponding to the eigenvalue ps and {n; 1} are i.i.d. standard normal random
variables. Similarly, we have

1/2
XM =3 N6, ke A,
s Hr T Hs jeR,
and
H1/2
C.X®) = 5 ikl k€A,
Z Hr — Hs Z S

S#T

where {7}, {7; 1} are i.i.d. standard normal random variables (also indepen-
dent of {n;x}). Moreover, in addition {n;x},{7;x}, {7k} are independent of
the samples X1,..., X, X1,..., X, X1,..., X,. Denote

nj = Z nj.kOk, 1j = Z 15,k 15 = Z 7.k Ok

keA, keA,. keA,

JEA
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We will also need

= > Mkl = Y kO T = Mk

keA,. keA, ke,

Note that conditionally on ¢, ¢, dr, the distributions of random vectors 055155 €
Ag, s # r is the same as the distribution of random vectors 7;,7;,7;,j € As, s #

r (that are independent “standard normal” random vectors in the eigenspace of

the eigenvalue p,.). In addition to this,

I? I? I

g 1% = g1, 1172512 = 1112, 11711 = 175

By a straightforward computation, the vector O, can be written as follows:

V2Y . T 2jen, (15, 105)
) V2t Gy Ziea, ;1)
Or = | Y iy Zjen, lnil? = Elns 7] |,
s T ”Ls)z e Nil? = Ella; 7]
Dortr Gitir jen, il — Bl

and it has the same distribution as

ﬁzs;ﬁr ﬁ ZjeAs <77j7 77]>

V2Y L e Yjen, (750715
o Ttz Ljea il = Ellngl?] | = O,
Dstr W > jea, i1 = Ell7;1?]
Dotr tieyr Ljen, ITil1* = Ella; %]

This completes the proof of the lemma. O

5. Proofs: limit theorems

In this section, we turn to the proofs of theorems 8, 9 and 10. Recall the
asymptotic framework of Section 3 in which X( moL X, Xl("), X5 and
Xl(n) X0 ) are three samples of size n each consisting of i.i.d. copies of
a centered Gaussian random vector X (™ with covariance (). Similarly to
the non-asymptotic framework, we consider the spectral decomposition (" =

ZT>1 ,ugn)Pr(") and we are interested in the estimation of the spectral projector

P = r(n) of X(™ corresponding to its eigenvalue (") = ,ug ") of multiplicity

m(") = m(") We define three sample covariance operators (based on the three
samples of size n):

. 1 < - 1 <& - . _ 1O _
50 = =3 xMex™, 20 .= -3 xMPex™, =0 .= -3 xMexY
nZ::l K2 ® 3 ) n 3 ® 3 ) n 3 ® K2

i=1 =1
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and set

EM 50 _xm) B S0 _sm) pm) . 5m) _ nm),

3

Recall that C(™ = CT(Z) =3 L P™ and

B, = B, (™) = 2y2||cM 2™ ||| P p))),.
For a bounded linear operator W : H +— H, we will denote,

LMW) = LIM(W) = PMWwc™ 4+ ctwpn,

33

Recall that, in theorems 8, 9 and 10, it is supposed that Assumption 1 is satisfied
and, moreover, that 1™ is the eigenvalue of multiplicity m(” = 1. In this case,

Ag:) = {k,} for some k,, > 1.

Define the following sequences of random vectors with values in R®:

V2(LM(EM), LM (B))

V(L (B n> M(EM))
= — | L (B2 - EHL M (EM)||3
LM (EM)|12 = B LM (E™))|2
ILM (EM)|1 — B LM (EM))|2

and

\/§ZS¢rn WL)(MP > jea., nﬁ’? ﬁﬁ)
\/_Es;érn B2 W(n)) E;eA 77_5;’;9)7177.5;,1)71
O i= | Yo, ity Syea ) -1 |
Yt s S jea [, )2 1
Y trn, s Lea, [0, 2 = 1]

where 05 1, 7j.%, k. J, k = 1 areii.d. standard normal random variables. Denote

ugz) gn) 4

It is immediate to see that B,, = 2u(™ B,, and, in view of Lemma 8,

nEM = 2,(MGM) 4 ¢

where ©(™ has the same distribution as ©" and the remainder ¢ e R®

satisfies the bound

N SO\ 2r(n®
s Bje| < (120l ) =),
1<5<5 g N
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(where we also used the assumption that m () = 1). Under Assumption 1, this
implies that

and we get
n=m) @(n)

B, B,

We need a simple lemma that will allow us to prove that the sequence of

+ op(1). (5.1)

random variables % is asymptotically standard normal implying the same
o)

n=

limit distribution for =

Let {n, 77("), 77,(@") ,(C") k > 1} be i.i.d. standard normal random variables and
let A\, (") 5 0,k > 1,n > 1 be positive real numbers with D k>1 M

\()

< oo,n > 1.

Deinc (1)) )
\/_Ek>1 kM
\/_Ek>1 kn)nl(cn) (n)
In = | o N0~ 1]
Y A1) = 1]
S M @) - 1]
and let 172
B, = (2 Z(A,ﬁ"))z‘) ,n> 1
E>1
Lemma 9. If -
By,
7 % %,
SUPg>1 )‘k
then the sequence of random vectors
1
— ¥, n>1
By

converges in distribution to a standard normal random vector Zs in R>.

PROOF. The proof of this result is an easy application of Lindeberg version
of the CLT. We will establish the convergence in distribution of (J,,a) to a
normal random variable N (0, |a|?) for an arbitrary a € R®. For a vector a =
(al, . a5) S R5 set

In(a, k) = ar V20 i +as V2R +as[(n{™) 2 1] +aa (7)) —1]+as (7)) 2 1], k> 1.

Without loss of generality, assume that |a| = 1. Note that r.v. ¥,(a, k), k > 1
are i.i.d., Ed,(a, k) = 0 and Var(9,,(a,k)) = 2. Therefore, for

(n)
1 2z1 A Un(a, k)
n = = 19,’“ = — — y
Gala) = 5 (0ns0) L
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it holds that E¢,(a) = 0 and Var(¢,(a)) = 1. In textbook versions of the central
limit theorem, the result is usually stated for sums of finite triangular arrays of
independent random variables. In our case, the sums are infinite. However, it
is easy to reduce the problem to the finite case by truncating the series to p,
terms, where p,, is such that >, /\Egn) = o(B,). Such a reduction is rather
simple and will be skipped. By the assumption of the lemma,

Supkzl()\én))QE [1931(@, k)} 2supy-, (A)?

BZL BZL — 0.

It remains to check that the Lindeberg condition holds. To this end, note that
(W, k)] < max (V20 17 V21 L )2 =1, )2 =11 )2 -11)

and observe that the random variables involved in the maximum in the right
hand side are sub-exponential. This easily implies the following bound on the
tails of ¥y, (a, k)

P{h?n(avk” > t} < 5eict7t >0

that holds with some numerical constant ¢ > 0 and for all a € R, |a| = 1 and
all k > 1. This bound also implies that E[J,,(a,k)|* < C, a € R®,|a|]| = 1 for
some numerical constant C' > 0. Therefore, for all 7 > 0, we have
SO0V |02 (A10,0. 0] 2 78, ) |
By
2 _
(A,ﬁ”’) EY2|9, (a, k)| 1P/ (A;")mn(a, k)| > TBn)

1
< 52
B: &

< Zk>£_§ ) exp{— B, _ }ﬁexp{— ¢t B, }7

2 SUPg>1 )\,(c ) 2 SUPg>1 )\,(cn)

which tends to 0 as n — oo (under the condition that Bi(n) — 00). i
Upg>1 A

Lemma 9 will be applied to the sequence of random vectors ©(™. Under
Assumption 1, the condition of the lemma holds since

1 pd 2 s 2 (||z<n>|oo>
B strn (/Lgn) _ Hg ))2 By, sr, (/Lgn) _ Hg ))2 B, g

Thus, Lemma 9 implies that % A, Z5 and, in view of (5.1), we also have

that
n=® 4
— 75 as n — 00. (5.2)

n
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Under Assumption 1, Lemma 2 easily implies that

o (pm — pr2 g pm — pey2) — st —
g (1P¢) = PWI3 —E[PW — POIR) = 2=, u) 4 0p(1), u = (0,0,1,0,0).

n

(5.3)
Under the same assumption, Lemma 3 implies that
n - n 1 1 1
— (A + b2 — (1 +bp™)2) = — (= 1), v=—=,0,—=,—=,0
g (1500 = (14 60)7) = 2@ 0) 4 op(1), v= 5.0, -5. 5,
(5.4)
and
i ((1+B<">)2 - (1+b<">)2) = =™ ) 4 op(1), w= (0, —=,0,—= —1).
Bn Bn ) ) 7\/57 ) 27 2
(5.5)
It follows from the last two relationships that
2= ()2 — (1450)2) = = (EW, v —w) +ox(1).  (5.6)
Proof of Theorem 8. Note that
. 1+ 5(M2 — (1 & p(n))2
T ) _pyy = (LB = (14 0) (5.7)

B, B, 2 4+ h(n) 4 p(n)
Under Assumption 1, Proposition 1 implies that |5(") — (™| = Op <7ﬂ(§(n)))

Recall also that [b(™] < HEW I x (:l)) (see bound (2.14)). Thus, under As-
sumption 1, we get that b(") = 0(1) and b(™ = o0p(1). These facts along with
representations (5.7), (5.4) and also with (5 2) imply that %—:(b(") —b™) con-
verges in distribution to the same limit as £~ ((1 +bm)2 — (1 + b(”))Q) , which

is the distribution of the random Varlable <Z5, w). Since |w| = 1, (Z5,w) is a
standard normal random variable, which completes the proof of Theorem 8.

Proof of Theorem 10. Recall that
E”p(n) _ P(”)H% — _9p)
(see (3.7)). The following representation holds:
||f3(n) — P2 4+ 2p(n)
[(1+ b(m)2 — (1 + b(m)2|
B Hp(n) — P12 4 2p(™) N 2([,(n) — p(m)
(14 bM)2 — (1+bM)2]  |[(1+bm)2 — (1 +bm)?2|
o (HP ) _ pm|2 _E||P — p<n>||§) 2 (i,(n) _ b(n))

B R e | I Y (R e |
(5.8)
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In view of (5.2), (5.3), (5.6) and the combination of (5.7) with (5.4), we easily
conclude that the sequence of random variables

| P — p)||2 1 2p(n)
[(1 4+ b()2 — (14 b()2|

converges in distribution to % Using Proposition 3, it is easy to show
that % 4 Y%_’ iz - This completes the proof of Theorem 10.

Proof of Theorem 9 is quite similar.
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