
ar
X

iv
:1

60
1.

01
45

7v
1 

 [
m

at
h.

ST
] 

 7
 J

an
 2

01
6

New asymptotic results in principal

component analysis

Vladimir Koltchinskii∗ and Karim Lounici†

School of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332-0160
e-mail: vlad@math.gatech.edu
klounici@math.gatech.edu

Abstract: Let X be a mean zero Gaussian random vector in a separa-
ble Hilbert space H with covariance operator Σ := E(X ⊗ X). Let Σ =∑

r≥1 µrPr be the spectral decomposition of Σ with distinct eigenvalues
µ1 > µ2 > . . . and the corresponding spectral projectors P1, P2, . . . . Given
a sample X1, . . . , Xn of size n of i.i.d. copies of X, the sample covariance
operator is defined as Σ̂n := n−1

∑n
j=1 Xj⊗Xj . The main goal of principal

component analysis is to estimate spectral projectors P1, P2, . . . by their
empirical counterparts P̂1, P̂2, . . . properly defined in terms of spectral de-
composition of the sample covariance operator Σ̂n. The aim of this paper
is to study asymptotic distributions of important statistics related to this
problem, in particular, of statistic ‖P̂r − Pr‖22, where ‖ · ‖22 is the squared
Hilbert–Schmidt norm. This is done in a “high-complexity” asymptotic

framework in which the so called effective rank r(Σ) := tr(Σ)
‖Σ‖∞

(tr(·) being

the trace and ‖ · ‖∞ being the operator norm) of the true covariance Σ is
becoming large simultaneously with the sample size n, but r(Σ) = o(n) as
n → ∞. In this setting, we prove that, in the case of one-dimensional spec-
tral projector Pr, the properly centered and normalized statistic ‖P̂r−Pr‖22
with data-dependent centering and normalization converges in distribution
to a Cauchy type limit. The proofs of this and other related results rely on
perturbation analysis and Gaussian concentration.

AMS 2000 subject classifications: Primary 62H12.

Keywords and phrases: Sample covariance, Spectral projectors, Effective
rank, Principal Component Analysis, Concentration inequalities, Asymp-
totic distribution, Perturbation theory.

1. Introduction

Let X,X1, . . . , Xn, . . . be i.i.d. random variables sampled from a Gaussian dis-
tribution in a separable Hilbert space H with zero mean and covariance operator
Σ := EX⊗X and let Σ̂ = Σ̂n := n−1

∑n
j=1 Xj⊗Xj denote the sample covariance

operator based on (X1, . . . , Xn).
1 We will be interested in asymptotic properties

∗Supported in part by NSF Grants DMS-1509739, DMS-1207808, CCF-1523768 and CCF-
1415498

†Supported in part by Simons Grant 315477 and NSF Career Grant, DMS-1454515
1Given u, v ∈ H, the tensor product u⊗v is a rank one linear operator defined as (u⊗v)x =

u〈v, x〉, x ∈ H.
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of several statistics related to spectral projectors of sample covariance Σ̂ (empir-
ical spectral projectors) that could be potentially useful in principal component
analysis (PCA) and its infinite dimensional versions such as functional PCA
(see, e.g., [18]) or kernel PCA in machine learning (see, e.g., [19], [4]).

In the classical setting of a finite-dimensional space H = R
p of a fixed di-

mension p, the large sample asymptotics of spectral characteristics of sample
covariance were studied by Anderson [1] who derived the joint asymptotic dis-
tribution of the sample eigenvalues and the associated sample eigenvectors (see
also Theorem 13.5.1 in [2]). Later on, similar results were established in the
infinite-dimensional case (see, e.g., [6]). Such an extension is rather straight-
forward provided that the “complexity of the problem” characterized by such
parameters as the trace tr(Σ) of the covariance operator Σ remains fixed when
the sample size n tends to infinity.

In the high-dimensional setting, when the dimension p of the space grows
simultaneously with the sample size n, the problem has been primarily studied
for so called spiked covariance models introduced by Johnstone and co-authors
(see, e.g., [8]). In this case, the covariance Σ has a special structure, namely,

Σ =
m
∑

j=1

λ2
j(θj ⊗ θj) + σ2Ip,

where m < p, θ1, . . . , θm are orthonormal vectors (“principal components”),
λ2
1 > · · · > λ2

m > 0, σ2 > 0 and Ip is the p× p identity matrix. This means that
the observation X can be represented as 2

X =

m
∑

j=1

λjξjθj + σ

p
∑

j=1

ηjθj ,

where ξj , ηj , j ≥ 1 are i.i.d. standard normal random variables. Thus, X can be
viewed as an observation of a “signal”

∑m
j=1 λjξjθj , consisting of m “spikes”,

in an independent Gaussian white noise. For such models, an elegant asymp-
totic theory has been developed based on the achievements of random matrix
theory (see, e.g., the results of Paul [16] on asymptotics of eigenvectors of sam-
ple covariance in spiked covariance models and references therein). The most
interesting results were obtained in the case when p

n → c for some constant
c ∈ (0,+∞). In this case, however, the eigenvectors of the sample covariance
Σ̂n fail to be consistent estimators of the eigenvectors of the true covariance Σ
(see Johnstone and Lu [8]) and this difficulty could not be overcome without
further assumptions on the true eigenvectors such as, for instance, their sparsity.
This led to the development of various approaches to “sparse PCA” (see, e.g.,
[7, 13, 15, 17, 21, 3] and references therein).

In this paper, we follow a somewhat different path. It is well known that to
ensure consistency of empirical spectral projectors as statistical estimators of

2assuming that the orthonormal vectors θ1, . . . , θm are extended to an orthonormal basis
θ1, . . . , θp of Rp
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spectral projectors of the true covariance Σ one has to establish convergence of
Σ̂ to Σ in the operator norm. In what follows, ‖ · ‖∞ will denote the operator
norm (for bounded operators in H), ‖ ·‖2 will denote the Hilbert–Schmidt norm
and ‖ · ‖1 will denote the nuclear norm. We also use the notation tr(Σ) for the
trace of Σ and set

r(Σ) :=
tr(Σ)

‖Σ‖∞
.

The last quantity is always dominated by the rank of operator Σ and it is
sometimes referred to as its effective rank. It was pointed out by Vershynin [20]
that the effective rank could be used to provide non-asymptotic upper bounds
on the size of the operator norm ‖Σ̂ − Σ‖∞ with rather weak (logarithmic)
dependence on the dimension and this approach was later used in statistical
literature (see [5, 14]). In our paper [10], we proved that in the Gaussian case
the size of the operator norm ‖Σ̂ − Σ‖∞ can be completely characterized in
terms of the effective rank r(Σ) of the true covariance Σ and its operator norm
‖Σ‖∞ and that the resulting non-asymptotic bounds are dimension-free (see
theorems 1 and 2 below). This shows that Σ̂ is an operator norm consistent
estimator of Σ provided that r(Σ) = o(n), which makes the effective rank r(Σ)
an important complexity parameter of the covariance estimation problem. This
also provides a dimension-free framework for such problems and allows one
to study them in a “high-complexity” case (that is, when the effective rank
r(Σ) could be large) without imposing any structural assumptions on the true
covariance such as, for instance, spiked covariance models [8]. This approach
has been developed in some detail in our recent papers [10], [11], [12]. The
current paper continues this line of work by studying the asymptotic behavior
of several important statistics under the assumptions that both n → ∞ and
r(Σ) → ∞, r(Σ) = o(n). This includes statistical estimators of bias of spectral
projectors of Σ̂ (empirical spectral projectors) as well as their squared Hilbert-
Schmidt norm errors with a goal to develop “studentized versions” of these
statistics that could be (in principle) used for statistical inference. Before stating
our main results, we provide in the next section a review of the results of papers
[10], [11], [12] that will be extensively used in what follows.

Throughout the paper, we writeA . B iffA ≤ CB for some absolute constant
C > 0 (A,B ≥ 0). A & B is equivalent to B . A and A ≍ B is equivalent to
A . B and A & B. Sometimes, the signs .,& and ≍ could be provided with
subscripts: for instance, A .γ B means that A ≤ CB with a constant C that
could depend on γ.

2. Effective rank and concentration of empirical spectral projectors:

a review of recent results

The following recent result (see, [10]) provides a complete characterization of
the quantity E‖Σ̂−Σ‖∞ in terms of the operator norm ‖Σ‖∞ and the effective
rank r(Σ) in the case of i.i.d. mean zero Gaussian observations.
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Theorem 1. The following bound holds:

E‖Σ̂− Σ‖∞ ≍ ‖Σ‖∞
[

√

r(Σ)

n

∨ r(Σ)

n

]

. (2.1)

In paper [10], it is also complemented by a concentration inequality for ‖Σ̂−
Σ‖∞ around its expectation:

Theorem 2. There exists a constant C > 0 such that for all t ≥ 1 with proba-
bility at least 1− e−t,

∣

∣

∣‖Σ̂− Σ‖∞ − E‖Σ̂− Σ‖∞
∣

∣

∣ ≤ C‖Σ‖∞
[(

√

r(Σ)

n

∨

1

)

√

t

n

∨ t

n

]

. (2.2)

It follows from (2.1) and (2.2) that with some constant C > 0 and with
probability at least 1− e−t

‖Σ̂− Σ‖∞ ≤ C‖Σ‖∞
[

√

r(Σ)

n

∨ r(Σ)

n

∨

√

t

n

∨ t

n

]

, (2.3)

which, in turn, implies that for all p ≥ 1

E
1/p‖Σ̂− Σ‖p∞ ≍p ‖Σ‖∞

[

√

r(Σ)

n

∨ r(Σ)

n

]

. (2.4)

These results showed that the sample covariance Σ̂ is an operator norm con-
sistent estimator of Σ even in the cases when the effective rank r(Σ) becomes
large as n → ∞, but r(Σ) = o(n) and ‖Σ‖∞ remains bounded. Thus, it becomes
of interest to study the behavior of spectral projectors of sample covariance Σ̂
(that are of crucial importance in PCA) in such an asymptotic framework. This
program has been partially implemented in papers [11], [12]. To state the main
results of these papers (used in what follows), we will introduce some further
definitions and notations.

Let Σ =
∑

r≥1 µrPr be the spectral representation of covariance operator
Σ with distinct non zero eigenvalues µr, r ≥ 1 (arranged in decreasing order)
and the corresponding spectral projectors Pr, r ≥ 1. Clearly, Pr are finite rank
projectors with rank(Pr) =: mr being the multiplicity of the corresponding
eigenvalue µr. Let σ(Σ) be the spectrum of Σ. Denote by ḡr the distance from
the eigenvalue µr to the rest of the spectrum σ(Σ) \ {µr} (the r-th “spectral
gap”). It will be also convenient to consider the non zero eigenvalues σj(Σ), j ≥ 1
of Σ arranged in nondecreasing order and repeated with their multiplicities (in
the case when the number of non zero eigenvalues is finite, we extend this
sequence by zeroes). With this notation, let ∆r := {j : σj(Σ) = µr}, r ≥ 1 and

denote by P̂r the orthogonal projector onto the linear span of eigenspaces of Σ̂
corresponding to its eigenvalues {σj(Σ̂) : j ∈ ∆r}. It easily follows from a well
known inequality due to Weyl that

sup
j≥1

|σj(Σ̂)− σj(Σ)| ≤ ‖Σ̂− Σ‖∞.
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If ‖Σ̂ − Σ‖∞ < ḡr
2 , this immediately implies that the eigenvalues {σj(Σ̂) : j ∈

∆r} form a “cluster” that belongs to the interval (µr − ḡr
2 , µr +

ḡr
2 ) and that

is separated from the rest of the spectrum of Σ̂ in the sense that σj(Σ̂) 6∈
(µr − ḡr

2 , µr +
ḡr
2 ) for all j 6∈ ∆r. In this case, P̂r becomes a natural estimator of

Pr. It could be viewed as a random perturbation of Pr and the following result,
closely related to basic facts of perturbation theory (see [9]), could be found in
[11] (see Lemmas 1 and 2 there).

Lemma 1. Let E := Σ̂− Σ. The following bound holds:

‖P̂r − Pr‖∞ ≤ 4
‖E‖∞
ḡr

. (2.5)

Moreover, denote

Cr :=
∑

s6=r

1

µr − µs
Ps.

Then
P̂r − Pr = Lr(E) + Sr(E), (2.6)

where

Lr(E) := CrEPr + PrECr (2.7)

and

‖Sr(E)‖∞ ≤ 14

(‖E‖∞
ḡr

)2

. (2.8)

Remark 1. In the case when 0 is an eigenvalue of Σ, it is convenient to extend
the sum in the definition of operator Cr to s = ∞ with µ∞ = 0 (see, for
instance, the proof of Lemma 5). Note, however, that P∞Σ = ΣP∞ = 0 and
P∞Σ̂ = Σ̂P∞ = 0. Thus, this additional term in the definition of Cr does not
have any impact on Lr(E) (and on the parameters Ar(Σ), Br(Σ) introduced
below).

This result essentially shows that the difference P̂r−Pr can be represented as
a sum of two terms, a linear term with respect to E = Σ̂−Σ denoted by Lr(E)
and the remainder term Sr(E) for which bound (2.8) (quadratic with respect
to ‖E‖2∞) holds. The linear term Lr(E) could be further represented as a sum
of i.i.d. mean zero random operators:

Lr(E) = n−1
n
∑

j=1

(PrXj ⊗ CrXj + CrXj ⊗ PrXj),

which easily implies simple concentration bounds and asymptotic normality
results for this term. On the other hand, it follows from theorems 1 and 2 that
with probability at least 1− e−t

‖Sr(E)‖∞ .
‖Σ‖2∞
ḡ2r

[

r(Σ)

n

∨

(

r(Σ)

n

)2
∨ t

n

∨

(

t

n

)2]

,
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implying that ‖Sr(E)‖∞ = oP(1) under the assumption r(Σ) = o(n) and
‖Sr(E)‖∞ = oP(n

−1/2) under the assumption r(Σ) = o(n1/2) (in both cases,

provided that ‖Σ‖∞
ḡr

remains bounded). Bound on the remainder term Sr(E) of

the order oP(n
−1/2) makes this term negligible if the linear term Lr(E) con-

verges to zero with the rate OP(n
−1/2) (the standard rate of the central limit

theorem). A more subtle analysis of bilinear forms 〈Sr(E)u, v〉, u, v ∈ H given
in [11] showed that the bilinear forms concentrate around their expectations at
a rate oP(n

−1/2) provided that r(Σ) = o(n) (which is much weaker than the
assumption r(Σ) = o(n1/2) needed for the operator norm ‖Sr(E)‖∞ to be of
the order oP(n

−1/2)). More precisely, the following result was proved for the
operator

Rr := Rr(E) := Sr(E)− ESr(E) = P̂r − Pr − E(P̂r − Pr)− Lr(E)

(see Theorem 3 in [11]):

Theorem 3. Suppose that, for some γ ∈ (0, 1),

E‖Σ̂− Σ‖∞ ≤ (1− γ)
ḡr
2
. (2.9)

Then, there exists a constant Dγ > 0 such that, for all u, v ∈ H and for all
t ≥ 1, the following bound holds with probability at least 1− e−t :

|〈Rru, v〉| ≤ Dγ
‖Σ‖2∞
ḡ2r

(

√

r(Σ)

n

∨

√

t

n

∨ t

n

)

√

t

n
‖u‖‖v‖. (2.10)

Condition (2.9) (along with concentration bound of Theorem 2) essentially
guarantees that ‖Σ̂ − Σ‖∞ < ḡr

2 with a high probability, which makes the

empirical spectral projector P̂r a small random perturbation of the true spectral
projector Pr and allows us to use the tools of perturbation theory. Theorem 3
easily implies the following concentration bound for bilinear forms 〈P̂ru, v〉 :
Corollary 1. Under the assumption of Theorem 3, with some constantsD,Dγ >
0, for all u, v ∈ H and for all t ≥ 1 with probability at least 1− e−t,

∣

∣

∣

〈

P̂r − EP̂ru, v
〉∣

∣

∣
≤ D

‖Σ‖∞
ḡr

√

t

n
‖u‖‖v‖

+Dγ
‖Σ‖2∞
ḡ2r

(

√

r(Σ)

n

∨

√

t

n

∨ t

n

)

√

t

n
‖u‖‖v‖. (2.11)

Moreover, it is easy to see that if both u and v are either in the eigenspace of
Σ corresponding to the eigenvalue µr, or in the orthogonal complement of this
eigenspace, then the first term in the right hand side of bound (2.11) could be
dropped and the bound reduces to its second term.

In addition to this, in [11], the asymptotic normality of bilinear forms 〈P̂r −
EP̂ru, v〉, u, v ∈ H was also proved in an asymptotic framework where n → ∞
and r(Σ) = o(n).
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Another important question studied in [11] concerns the structure of the bias
EP̂r−Pr of empirical spectral projector P̂r. Namely, it was proved that the bias
can be represented as the sum of two terms, the main term Pr(EP̂r − Pr)Pr

being “aligned” with the projector Pr and the remainder Tr being of a smaller
order in the operator norm (provided that r(Σ) = o(n)). More specifically, the
following result was proved (see Theorem 4 in [11]).

Theorem 4. Suppose that, for some γ ∈ (0, 1), condition (2.9) holds. Then,
there exists a constant Dγ > 0 such that

EP̂r − Pr = Pr(EP̂r − Pr)Pr + Tr

with PrTrPr = 0 and

‖Tr‖∞ ≤ Dγ
mr‖Σ‖2∞

ḡ2r

√

r(Σ)

n

1√
n
. (2.12)

In the case when mr = rank(Pr) = 1 (so, µr is an eigenvalue of Σ of multi-
plicity 1), the structure of the bias becomes especially simple. Let Pr = θr ⊗ θr,
where θr is a unit norm eigenvector of Σ corresponding to µr. Then it is easy
to see that

EP̂r − Pr = brPr + Tr (2.13)

with br = 〈(EP̂r − Pr)θr, θr〉 and Tr defined in Theorem 4. Moreover,

br = 〈EP̂r − Pr, θr ⊗ θr〉 = E〈θ̂r, θr〉2 − 1,

implying that br ∈ [−1, 0]. Thus, parameter br is an important characteristic of
the bias of empirical spectral projector P̂r. It was shown in [11] that, under the
assumption r(Σ) . n,

|br| .
‖Σ‖2∞
ḡ2r

r(Σ)

n
. (2.14)

Note that this upper bound is larger than upper bound (2.12) on the remainder
‖Tr‖∞ by a factor

√

r(Σ).

Let now P̂r = θ̂r ⊗ θ̂r with a unit norm eigenvector θ̂r of Σ̂. Since the vectors
θ̂r, θr are defined only up to their signs, assume without loss of generality that
〈θ̂r, θr〉 ≥ 0. The following result, proved in [11] (see Theorem 6), shows that the

linear forms 〈θ̂r , u〉 have “Bernstein type” concentration around
√
1 + br〈θr, u〉

with deviations of the order OP(n
−1/2).

Theorem 5. Suppose that condition (2.9) holds for some γ ∈ (0, 1) and also
that

1 + br ≥
γ

2
. (2.15)

Then, there exists a constant Cγ > 0 such that for all t ≥ 1 with probability at
least 1− e−t

∣

∣

∣

〈

θ̂r −
√

1 + brθr, u
〉∣

∣

∣ ≤ Cγ
‖Σ‖∞
ḡr

(

√

t

n

∨ t

n

)

‖u‖.
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Thus, if one constructs a proper estimator of the bias parameter br, it would
be possible to improve a “naive estimator” 〈θ̂r, u〉 of linear form 〈θr, u〉 by
reducing its bias. A version of such estimator based on the double sample
X1, . . . , Xn, X̃1, . . . , X̃n of i.i.d. copies of X was suggested in [11]. If Σ̃ = Σ̃n

denotes the sample covariance based on X̃1, . . . , X̃n (the second subsample) and
P̃r = θ̃r ⊗ θ̃r denotes the corresponding empirical spectral projector (estimator

of Pr), then the estimator b̂r of the bias parameter br is defined as follows:

b̂r := 〈θ̂r, θ̃r〉 − 1,

where the signs of θ̂r, θ̃r are chosen so that 〈θ̂r, θ̃r〉 ≥ 0. Based on estimator

b̂r, one can also define a bias corrected estimator θ̌r := θ̂r√
1+b̂r

(which is not

necessarily a unit vector) and prove the following result, showing that 〈θ̌r, u〉 is
a
√
n-consistent estimator of 〈θr, u〉 (at least in the case when r(Σ) ≤ cn for a

sufficiently small constant c):

Proposition 1. Under the assumptions and notations of Theorem 5, for some
constant Cγ > 0 with probability at least 1− e−t,

|b̂r − br| ≤ Cγ
‖Σ‖2∞
ḡ2r

(

√

r(Σ)

n

∨

√

t

n

∨ t

n

)(

√

t

n

∨ t

n

)

, (2.16)

and, for all u ∈ H, with the same probability

∣

∣

∣〈θ̌r − θr, u〉
∣

∣

∣ ≤ Cγ
‖Σ‖∞
ḡr

(

√

t

n

∨ t

n

)

‖u‖. (2.17)

In addition to this, asymptotic normality of 〈θ̌r, u〉 was also proved in [11]
under the assumption that r(Σ) = o(n).

Finally, we will discuss the results on normal approximation of the (squared)
Hilbert–Schmidt norms ‖P̂r − Pr‖22 for an empirical spectral projector P̂r ob-
tained in [12]. It was shown in this paper that, in the case when r(Σ) = o(n),
the size of the expectation E‖P̂r − Pr‖22 could be characterized by the quantity
Ar(Σ) := 2tr(PrΣPr)tr(CrΣCr) (which, under mild assumption, is of the same
order as r(Σ)):

E‖P̂r − Pr‖22 = (1 + o(1))
Ar(Σ)

n
.

A similar parameter characterizing the size of the variance Var(‖P̂r − Pr‖22) is
defined as Br(Σ) := 2

√
2‖PrΣPr‖2‖CrΣCr‖2. Namely, the following result holds

(Theorem 7 in [12]):

Theorem 6. Suppose condition (2.9) holds for some γ ∈ (0, 1). Then the fol-
lowing bound holds with some constant Cγ > 0 :

∣

∣

∣

∣

n

Br(Σ)
Var1/2(‖P̂r − Pr‖22)− 1

∣

∣

∣

∣

≤ Cγmr
‖Σ‖3∞
ḡ3r

r(Σ)

Br(Σ)
√
n
+

mr + 1

n
. (2.18)
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If ‖Σ‖∞
ḡr

and mr are bounded and r(Σ)
Br(Σ)

√
n
→ 0, this implies that

Var(‖P̂r − Pr‖22) = (1 + o(1))
B2

r (Σ)

n2
.

The main result of [12] is the following normal approximation bounds for
‖P̂r − Pr‖22 :

Theorem 7. Suppose that, for some constants c1, c2 > 0, mr ≤ c1 and ‖Σ‖∞ ≤
c2ḡr. Suppose also condition (2.9) holds with some γ ∈ (0, 1). Then, the following
bounds hold with some constant C > 0 depending only on γ, c1, c2 :

sup
x∈R

∣

∣

∣

∣

P

{

n

Br(Σ)

(

‖P̂r − Pr‖22 − E‖P̂r − Pr‖22
)

≤ x

}

− Φ(x)

∣

∣

∣

∣

≤ C

[

1

Br(Σ)
+

r(Σ)

Br(Σ)
√
n

√

log

(

Br(Σ)
√
n

r(Σ)

∨

2

)

]

(2.19)

and

sup
x∈R

∣

∣

∣

∣

∣

P

{

‖P̂r − Pr‖22 − E‖P̂r − Pr‖22
Var1/2(‖P̂r − Pr‖22)

≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

≤ C

[

1

Br(Σ)
+

r(Σ)

Br(Σ)
√
n

√

log

(

Br(Σ)
√
n

r(Σ)

∨

2

)

]

, (2.20)

where Φ(x) denotes the distribution function of standard normal random vari-
able.

These bounds show that asymptotic normality of properly normalized statis-

tic ‖P̂r − Pr‖22 holds provided that n → ∞, Br(Σ) → ∞ and r(Σ)
Br(Σ)

√
n

→ 0.

In the case of p-dimensional spiked covariance models (with a fixed number of
spikes), these conditions boil down to n → ∞, p → ∞ and p = o(n).

3. Main results

We start this section with introducing a precise asymptotic framework in which
r(Σ) → ∞ as n → ∞. It is assumed that an observation X = X(n) is sampled
from from a Gaussian distributions in H with mean zero and covariance Σ =
Σ(n). The data consists on n i.i.d. copies of X(n) : X1 = X

(n)
1 , . . . , Xn = X

(n)
n

and the sample covariance Σ̂n is based on (X
(n)
1 , . . . , X

(n)
n ). As before, µ

(n)
r , r ≥ 1

denote distinct nonzero eigenvalues of Σ(n) arranged in decreasing order and

P
(n)
r , r ≥ 1 the corresponding spectral projectors. Let ∆

(n)
r := {j : σj(Σ

(n)) =

µ
(n)
r } and let P̂

(n)
r be the orthogonal projector on the linear span of eigenspaces

corresponding to the eigenvalues {σj(Σ̂n), j ∈ ∆
(n)
r }.
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The goal is to estimate the spectral projector P (n) = P
(n)
rn corresponding

to the eigenvalue µ(n) = µ
(n)
rn of Σ(n) with multiplicity m(n) = m

(n)
rn and with

spectral gap ḡ(n) = ḡ
(n)
rn . Define C(n) = C

(n)
rn :=

∑

s6=rn
1

µ
(n)
rn −µ

(n)
s

P
(n)
s and let

Bn := Brn(Σ
(n)) := 2

√
2‖C(n)Σ(n)C(n)‖2‖P (n)Σ(n)P (n)‖2.

Assumption 1. Suppose the following conditions hold:

sup
n≥1

m(n) < +∞; (3.1)

sup
n≥1

‖Σ(n)‖∞
ḡ(n)

< +∞; (3.2)

Bn → ∞ as n → ∞; (3.3)

r(Σ(n))

Bn
√
n

→ 0 as n → ∞. (3.4)

Assumption 1 easily implies that

r(Σ(n)) → ∞, r(Σ(n)) = o(n) as n → ∞.

Also, under mild additional conditions, Bn ≍ ‖Σ(n)‖2.
The following fact is an immediate consequence of bound (2.18) and Theorem

7.

Proposition 2. Under Assumption 1,

Var(‖P̂ (n) − P (n)‖22) =
(

Bn

n

)2

(1 + o(1)).

In addition,

n
(

‖P̂ (n) − P (n)‖22 − E‖P̂ (n) − P (n)‖22
)

Bn

d−→ Z (3.5)

and
(

‖P̂ (n) − P (n)‖22 − E‖P̂ (n) − P (n)‖22
)

√

Var(‖P̂ (n) − P (n)‖22)
d−→ Z as n → ∞, (3.6)

Z being a standard normal random variable.

Our main goal is to develop a version of these asymptotic results for squared
Hilbert–Schmidt norm error ‖P̂ (n)−P (n)‖22 of empirical spectral projector P (n)

with a data driven normalization that, in principle, could lead to constructing
confidence sets and statistical tests for spectral projectors of covariance oper-
ator under Assumption 1. This will be done only in the case when the target
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spectral projector P (n) is of rank 1 (that is, µ(n) is the eigenvalue of multiplicity
m(n) = 1). This problem is also related to estimation of the bias parameter

b(n) = b
(n)
rn of empirical spectral projector P̂ (n). This parameter and its esti-

mator b̂(n) = b̂
(n)
rn were introduced in Section 2. In particular, we will prove

the asymptotic normality of estimator b̂(n) with a proper normalization that
depends on unknown covariances Σ(n) and derive the limit distribution of b̂(n)

with a data-driven normalization.

Let P (n) = θ(n)⊗θ(n) and P̂ (n) = θ̂(n)⊗ θ̂(n) for unit vectors θ(n), θ̂(n). To de-

fine the estimator b̂(n), we need an additional independent sample X̃
(n)
1 , . . . , X̃

(n)
n

consisting of i.i.d. copies of X(n). Let Σ̃n denote the sample covariance based on

(X̃
(n)
1 , . . . , X̃

(n)
n ) and let P̃ (n) = θ̃(n) ⊗ θ̃(n) be its empirical spectral projector

corresponding to P (n). It will be assumed that the signs of θ̂(n), θ̃(n) are chosen
in such a way that 〈θ̂(n), θ̃(n)〉 ≥ 0. Define

b̂(n) = 〈θ̂(n), θ̃(n)〉 − 1.

Theorem 8. Under Assumption 1,

2n

Bn
(b̂(n) − b(n))

d−→ Z as n → ∞,

Z being a standard normal random variable.

In order to use this asymptotic normality result for statistical inference about
bias parameter b(n), one has to find a way to estimate the normalizing factor
2n
Bn

that depends on unknown covariance Σ(n). By the first claim of Proposition
2, under Assumption 1,

2n

Bn
∼ 2

Var1/2(‖P̂ (n) − P (n)‖22)
as n → ∞.

Thus, equivalently, we need to estimate the variance Var(‖P̂ (n) −P (n)‖22). Note
that

Var(‖P̂ (n) − P (n)‖22) = Var
(

‖P̂ (n)‖22 + ‖P (n)‖22 − 2〈P̂ (n), P (n)〉
)

= Var
(

2−2〈P̂ (n), P (n)〉
)

= 4Var
(

〈P̂ (n), P (n)〉
)

= 2E
(

〈P̂ (n), P (n)〉−〈P̃ (n), P (n)〉
)2

.

To estimate the right hand side, consider the third independent sample X̄
(n)
1 , . . . , X̄

(n)
n

consisting of n independent copies of X(n) and denote by Σ̄n the sample covari-

ance based on (X̄
(n)
1 , . . . , X̄

(n)
n ) and by P̄ (n) = θ̄(n) ⊗ θ̄(n) its empirical spectral

projector corresponding to P (n). Assume that the sign of θ̄(n) is chosen in such
a way that 〈θ̃(n), θ̄(n)〉 ≥ 0 and define

b̃(n) := 〈θ̃(n), θ̄(n)〉 − 1.

We will use
〈P̂ (n), P̃ (n)〉 = 〈θ̂(n), θ̃(n)〉2 = (1 + b̂(n))2
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as an “estimator” of 〈P̂ (n), P (n)〉 and

〈P̃ (n), P̄ (n)〉 = 〈θ̃(n), θ̄(n)〉2 = (1 + b̃(n))2

as an “estimator” of 〈P̃ (n), P (n)〉. To estimate Var(‖P̂ (n) − P (n)‖22) ∼ B2
n

n2 , one

can try to use the statistic 2
(

(1 + b̂(n))2 − (1 + b̃(n))2
)2

. In fact, it turns out

that the sequence

n

Bn

(

(1 + b̂(n))2 − (1 + b̃(n))2
)

∼ (1 + b̂(n))2 − (1 + b̃(n))2

Var1/2(‖P̂ (n) − P (n)‖22)

is asymptotically normal with mean zero and variance 3
2 and

E

∣

∣

∣(1 + b̂(n))2 − (1 + b̃(n))2
∣

∣

∣

Var1/2(‖P̂ (n) − P (n)‖22)
→
√

3

2
E|Z| =

√

3

π
as n → ∞.

Therefore, it might be more natural to view π
3

(

(1 + b̂(n))2 − (1 + b̃(n))2
)2

as

an estimator of the variance Var(‖P̂ (n) − P (n)‖22). In any case, we are more
interested in a data driven version of Theorem 8 given below.

Given α ∈ R, β > 0, let Yα,β denote a random variable with density

1

2

[ 1

β
f
(x− α

β

)

+
1

β
f
(x+ α

β

)]

,

f(x) := 1
π(1+x2) , x ∈ R being the standard Cauchy density. The distribution of

Yα,β is a mixture of two rescaled Cauchy densities with locations ±α and with
equal mixing probabilities. This distribution (with proper choices of parameters
α, β) occurs naturally as the distribution of the ration ξ

|η| for mean zero normal

random variables ξ, η. Namely, the following (probably, well known) fact holds.
Its proof is rather elementary and is left to the reader.

Proposition 3. Suppose ξ, η are mean zero normal random variables with
Eξ2 = σ2

ξ > 0, Eη2 = σ2
η > 0 and with correlation coefficient ρ. Then

ξ

|η|
d
= Yα,β

with α :=
σξ

ση
ρ and β :=

σξ

ση

√

1− ρ2.

We now state a data-driven version of Theorem 8.

Theorem 9. Under Assumption 1,

2(b̂(n) − b(n))
∣

∣

∣(1 + b̂(n))2 − (1 + b̃(n))2
∣

∣

∣

d−→ Yα,β as n → ∞,

where α := 1
2 , β :=

√

5
12 .
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Quite similarly, we will determine the asymptotic distribution of statistic
‖P̂ (n) − P (n)‖22 with a data-driven normalization. First note that

E‖P̂ (n) − P (n)‖22 = E

(

‖P̂ (n)‖22 + ‖P (n)‖22 − 2〈P̂ (n), P (n)〉
)

= E

(

2− 2〈P̂ (n), P (n)〉
)

= 2− 2〈EP̂ (n), P (n)〉 = 2− 2(1 + b(n))〈P (n), P (n)〉 = −2b(n) (3.7)

(see Theorem 4 and the comments after this theorem). In the data-driven version

of (3.6) we will replace E‖P̂ (n)−P (n)‖22 by its estimator −2b̂(n) and the standard

deviation Var1/2(‖P̂ (n) − P (n)‖22) by
∣

∣

∣
(1 + b̂(n))2 − (1 + b̃(n))2

∣

∣

∣
. This yields the

following result.

Theorem 10. Under Assumption 1,

‖P̂ (n) − P (n)‖22 + 2b̂(n)
∣

∣

∣(1 + b̂(n))2 − (1 + b̃(n))2
∣

∣

∣

d−→ Yα,β as n → ∞,

where α := 5
6 , β :=

√
47
6 .

4. Proofs: preliminary lemmas

We start with preliminary results that will be formulated in the “non-asymptotic
framework” of Section 2 and the notations of that section will be used. Recall
that X1, . . . , Xn and X̃1, . . . , X̃n are two samples each of size n of i.i.d. copies
of X, Σ̂ and Σ̃ are sample covariances based on (X1, . . . , Xn) and (X̃1, . . . , X̃n),
respectively, and E := Σ̂− Σ, Ẽ := Σ̃− Σ.

In what follows, we will use a concentration result for ‖P̂r−Pr‖22−‖Lr(E)‖22
that was obtained in [12] (see Theorem 5 there) and played a crucial role in the
derivation of normal approximation bound of Theorem 7.

Lemma 2. Suppose that for some γ ∈ (0, 1) condition (2.9) holds. Then, for
all t ≥ 1, with probability at least 1− e−t

∣

∣

∣‖P̂r − Pr‖22 − ‖Lr(E)‖22 − E(‖P̂r − Pr‖22 − ‖Lr(E)‖22)
∣

∣

∣

.γ mr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)2)√

t

n
. (4.1)

The first new result of this section is a useful representation for (1 + b̂r)
2 −

(1 + br)
2 that will be crucial in our proofs.

Lemma 3. Suppose for some γ ∈ (2324 , 1) condition (2.9) holds. Then, there
exists a constant D1 > 0 such that the following representation holds

(1 + b̂r)
2 − (1 + br)

2 =
〈

Lr(E), Lr(Ẽ)
〉

− 1

2

(

‖Lr(E)‖22 − E‖Lr(E)‖22
)

− 1

2

(

‖Lr(Ẽ)‖22 − E‖Lr(Ẽ)‖22
)

+Υr (4.2)
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with the remainder term Υr that, for all t ≥ 1, with probability at least 1− e−t

satisfies the bound

|Υr| ≤ D1
‖Σ‖4∞
ḡ4r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)3)
(

√

t

n

∨ t

n

)

. (4.3)

proof. By the definition of b̂r, we have

(1 + b̂r)
2 =

〈

P̂r, P̃r

〉

=
〈

P̂r − EP̂r, P̃r − EP̃r

〉

+
〈

P̂r − EP̂r, Pr

〉

+
〈

Pr, P̃r − EP̃r

〉

+
〈

P̂r − EP̂r,EP̃r − Pr

〉

+
〈

EP̂r − Pr, P̃r − EP̃r

〉

+
〈

EP̂r ,EP̃r

〉

.
(4.4)

In view of (2.13), we also have

〈

EP̂r ,EP̃r

〉

=
〈

(1 + br)Pr + Tr, (1 + br)Pr + Tr

〉

= (1 + br)
2 + ‖Tr‖22,

since Pr and Tr are orthogonal by definition of the latter. Thus, (4.4) can be
rewritten as

(1 + b̂r)
2 − (1 + br)

2 =
〈

P̂r − EP̂r, P̃r − EP̃r

〉

+
〈

P̂r − EP̂r, Pr

〉

+
〈

Pr, P̃r − EP̃r

〉

+
〈

P̂r − EP̂r,EP̃r − Pr

〉

+
〈

EP̂r − Pr, P̃r − EP̃r

〉

+ ‖Tr‖22.
(4.5)

Denote

ˆ̺r :=
〈

P̂r−EP̂r, Pr

〉

+
1

2

(

‖Lr(E)‖22−E‖Lr(E)‖22
)

, ˜̺r :=
〈

P̃r−EP̃r, Pr

〉

+
1

2

(

‖Lr(Ẽ)‖22−E‖Lr(Ẽ)‖22
)

,

where
E := Σ̂− Σ, Ẽ := Σ̃− Σ.

We immediately get from (4.5) that

(1 + b̂r)
2 − (1 + br)

2 =
〈

P̂r − EP̂r, P̃r − EP̃r

〉

− 1

2

(

‖Lr(E)‖22 − E‖Lr(E)‖22
)

+ ̺r

− 1

2

(

‖Lr(Ẽ)‖22 − E‖Lr(Ẽ)‖22
)

+ ˜̺r +
〈

P̂r − EP̂r ,EP̃r − Pr

〉

+
〈

EP̂r − Pr, P̃r − EP̃r

〉

+ ‖Tr‖22.

Since P̂r − EP̂r = Lr(E) +Rr(E), P̃r − EP̃r = Lr(Ẽ) +Rr(Ẽ),

〈

P̂r − EP̂r , P̃r − EP̃r

〉

=
〈

Lr(E) +Rr(E), Lr(Ẽ) +Rr(Ẽ)
〉

=
〈

Lr(E), Lr(Ẽ)
〉

+
〈

Lr(E), Rr(Ẽ)
〉

+
〈

Lr(Ẽ), Rr(E)
〉

+
〈

Rr(E), Rr(Ẽ)
〉

.
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Combining the last two displays, we get that representation (4.2) holds with the
remainder

Υr := ̺r + ˜̺r +
〈

P̂r − EP̂r,EP̃r − Pr

〉

+
〈

EP̂r − Pr, P̃r − EP̃r

〉

+ ‖Tr‖22
+
〈

Lr(E), Rr(Ẽ)
〉

+
〈

Lr(Ẽ), Rr(E)
〉

+
〈

Rr(E), Rr(Ẽ)
〉

.

It remains to check that Υr satisfies bound (4.3).

In what follows, we frequently use bounds of Theorems 1 and 2 along with
bound (2.3). Under condition (2.9), we have

‖Σ‖∞
(
√

r(Σ)

n

∨ r(Σ)

n

)

.
ḡr
2

≤ ‖Σ‖∞
2

.

This implies that r(Σ)
n . 1 and r(Σ)

n .

√

r(Σ)
n . Thus, the term r(Σ)

n in bounds

of Theorems 1 and 2 and (2.3) could be dropped. This is done in what follows
without further notice.

Our next goal is to provide a bound on the remainder term Υr which can be
done for an arbitrary multiplicity mr of µr. To this end, first note that bound
(2.10) easily implies that for any symmetric operator B of finite rank m the
following bound holds with probability at least 1− e−t :

∣

∣

∣〈Rr(E), B〉
∣

∣

∣ ≤ Dγm‖B‖∞
‖Σ‖2∞
ḡ2r

(

√

r(Σ)

n

∨

√

t+ log(m)

n

∨ t+ log(m)

n

)

√

t+ log(m)

n
.

(4.6)
Indeed, it is enough to use the spectral representation B =

∑m
j=1 λj(φj ⊗φj) of

B with eigenvalues λj and orthonormal eigenvectors φj , to write

∣

∣

∣〈Rr(E), B〉
∣

∣

∣ ≤
m
∑

j=1

|λj |
∣

∣

∣〈Rr(E)φj , φj〉
∣

∣

∣ ≤ m‖B‖∞ max
1≤j≤m

∣

∣

∣〈Rr(E)φj , φj〉
∣

∣

∣,

to use bound (2.10) with t+log(m) instead of t in order to control bilinear forms
∣

∣

∣〈Rr(E)φj , φj〉
∣

∣

∣ and, finally, to use the union bound.

We will use bound (4.6) to control the last three terms in the expression
for the remainder Υr. To control

〈

Lr(Ẽ), Rr(E)
〉

, we use (4.6) conditionally on

X̃1, . . . , X̃n with B = Lr(Ẽ) (that is of rank at most 2mr) to get that with
probability at least 1− e−t

∣

∣

∣〈Rr(E), Lr(Ẽ)〉
∣

∣

∣ .

mr‖Lr(Ẽ)‖∞
‖Σ‖2∞
ḡ2r

(

√

r(Σ)

n

∨

√

t+ log(2mr)

n

∨ t+ log(2mr)

n

)

√

t+ log(2mr)

n
.

This should be combined with an upper bound on ‖Lr(Ẽ)‖∞ that follows from
(2.3) and also holds with probability at least 1− e−t :

‖Lr(Ẽ)‖∞ .
‖Ẽ‖∞
ḡr

.
‖Σ‖∞
ḡr

(
√

r(Σ)

n

∨

√

t

n

∨ t

n

)
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(where it was also used that ‖Cr‖∞ ≤ 1
ḡr
). As a consequence, the following

holds with probability at least 1− 2e−t :
∣

∣

∣〈Rr(E), Lr(Ẽ)〉
∣

∣

∣ .γ

mr
‖Σ‖3∞
ḡ3r

(
√

r(Σ)

n

∨

√

t

n

∨ t

n

)

(

√

r(Σ)

n

∨

√

t+ log(2mr)

n

∨ t+ log(2mr)

n

)

√

t+ log(2mr)

n
. (4.7)

Of course, a similar bound also holds for
∣

∣

∣〈Lr(E), Rr(Ẽ)〉
∣

∣

∣.As to
∣

∣

∣〈Rr(E), Rr(Ẽ)〉
∣

∣

∣,

observe that, by (2.8), (2.3) and Theorem 1, we have that with probability at
least 1− e−t,

‖Rr(Ẽ)‖∞ ≤ ‖Sr(Ẽ)‖∞ + E‖Sr(Ẽ)‖∞ .
‖Ẽ‖2∞
ḡ2r

+
E‖Ẽ‖2∞

ḡ2r

.
‖Σ‖2∞
ḡ2r

(
√

r(Σ)

n

∨

√

t

n

∨ t

n

)2

.

Therefore, using again bound (2.10) conditionally on X̃1, . . . , X̃n with B =
Rr(Ẽ) we get that with probability 1− 2e−t

∣

∣

∣〈Rr(E), Rr(Ẽ)〉
∣

∣

∣ .γ

mr
‖Σ‖4∞
ḡ4r

(
√

r(Σ)

n

∨

√

t

n

)2

(

√

r(Σ)

n

∨

√

t+ log(2mr)

n

∨ t+ log(2mr)

n

)

√

t+ log(2mr)

n
. (4.8)

To bound ‖Tr‖22, note that

‖Tr‖22 = 〈Tr, Tr〉 ≤ ‖Tr‖1‖Tr‖∞,

and, by the definition of Tr,

‖Tr‖1 ≤ ‖EP̂r−Pr‖1+‖Pr(EP̂r−Pr)Pr‖1 ≤ 2mrE‖P̂r−Pr‖∞+mr‖EP̂r−Pr‖∞ ≤ 3mrE‖P̂r−Pr‖∞.

Using (2.5) and Theorem 1, we get

‖Tr‖1 .γ mr
‖Σ‖∞
ḡr

√

r(Σ)

n
.

Therefore, by bound (2.12),

‖Tr‖22 ≤ ‖Tr‖1‖Tr‖∞ .γ m2
r

‖Σ‖3∞
ḡ3r

r(Σ)

n

√

1

n
. (4.9)



V. Koltchinskii and K. Lounici/Asymptotics in principal component analysis 17

We will now control

〈

P̂r − EP̂r,EP̃r − Pr

〉

=
〈

P̂r − EP̂r, PrWrPr

〉

+
〈

P̂r − EP̂r, Tr

〉

, (4.10)

where Wr = EP̃r − Pr. Recall that P̂r − EP̂r = Lr(E) +Rr(E). Since Lr(E) =
PrECr + CrEPr and CrPr = PrCr = 0, it is easy to see that

〈Lr(E), PrWrPr〉 = 〈PrECr, PrWrPr〉+ 〈CrEPr, PrWrPr〉 = 0.

Thus,
〈

P̂r − EP̂r , PrWrPr

〉

= 〈Rr(E), PrWrPr〉.
Note that B = PrWrPr is an operator of rank at most mr and, in view of (2.5)
and Theorem 1,

‖PrWrPr‖∞ ≤ ‖EP̃r − Pr‖∞ ≤ E‖P̃r − Pr‖∞

.
‖Σ‖∞
ḡr

√

r(Σ)

n
.

Thus, bound (4.6) implies that with probability at least 1− e−t :

∣

∣

∣〈P̂r − EP̂r , PrWrPr〉
∣

∣

∣ =
∣

∣

∣〈Rr(E), PrWrPr〉
∣

∣

∣

.γ mr
‖Σ‖3∞
ḡ3r

√

r(Σ)

n

(

√

r(Σ)

n

∨

√

t+ log(mr)

n

∨ t+ log(mr)

n

)

√

t+ log(mr)

n
.

(4.11)

On the other hand,

∣

∣〈P̂r − EP̂r, Tr〉
∣

∣ ≤ ‖P̂r − EP̂r‖1‖Tr‖∞ ≤
(

‖P̂r − Pr‖1 + E‖P̂r − Pr‖1
)

‖Tr‖∞

≤ 2mr

(

‖P̂r − Pr‖∞ + E‖P̂r − Pr‖∞
)

‖Tr‖∞.

Using bounds (2.12), (2.5), (2.3) and Theorem 1, we get

∣

∣〈P̂r − EP̂r, Tr〉
∣

∣ .γ m2
r

‖Σ‖3∞
ḡ3r

(
√

r(Σ)

n

∨

√

t

n

∨ t

n

)
√

r(Σ)

n

1√
n
. (4.12)

It follows from (4.10) and bounds (4.11), (4.12) that with probability at least
1− 2e−t

∣

∣

∣

〈

P̂r − EP̂r ,EP̃r − Pr

〉

∣

∣

∣

.γ m2
r

‖Σ‖3∞
ḡ3r

√

r(Σ)

n

(

√

r(Σ)

n

∨

√

t+ log(mr)

n

∨ t+ log(mr)

n

)

√

t+ log(mr)

n
.

(4.13)

Of course, the term
〈

P̃r − EP̃r,EP̂r − Pr

〉

can be bounded similarly.
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It remains to control ̺r and ˜̺r. Note that 〈Lr(E), Pr〉 = 0, implying that

〈

P̂r − EP̂r, Pr

〉

=
〈

Lr(E) + Sr(E)− ESr(E), Pr

〉

=
〈

Sr(E)− ESr(E), Pr

〉

.

Therefore,

̺r =
〈

Sr(E), Pr

〉

+
1

2
‖Lr(E)‖22 − E

(

〈

Sr(E), Pr

〉

+
1

2
‖Lr(E)‖22

)

.

The following lemma provides a concentration inequality for the random vari-
able

〈

Sr(E), Pr

〉

+ 1
2‖Lr(E)‖22 around its expectation (thus, implying a bound

on ̺r).

Lemma 4. Suppose that condition (2.9) holds for some γ ∈ (2324 , 1). Then, there
exists a constant L > 0 such that for all t ≥ 1 the following bound holds with
probability at least 1− e−t :

∣

∣

∣

∣

〈

Sr(E), Pr

〉

+
1

2
‖Lr(E)‖22 − E

(

〈

Sr(E), Pr

〉

+
1

2
‖Lr(E)‖22

)∣

∣

∣

∣

≤ Lmr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)2)
(

√

t

n

∨ t

n

)

. (4.14)

Combining bounds (4.7), (4.8), (4.9), (4.13) and (4.14), it is easy to derive
the following bound on Υr that holds with probability at least 1− 12e−t :

|Υr| . m2
r

‖Σ‖4∞
ḡ4r

(

r(Σ)

n

∨ t+ log(2mr)

n

∨

(

t+ log(2mr)

n

)3)
(
√

t+ log(2mr)

n

∨ t+ log(2mr)

n

)

.

The probability bound can be written as 1 − e−t by adjusting the constant in
the inequality . . For mr = 1, this yields bound (4.3) completing the proof of
Lemma 3.

We now prove Lemma 4. To this end, we will use the following representations
for operators Sr(E). Given L ⊂ {1, . . . , k + 1}, denote mL := card(L) and

JL := {~j := (j1, . . . , jk, jk+1) : js = r, s ∈ L, js 6= r, s 6∈ L}.

Denote by VL the set of vectors ν = (νl : l ∈ Lc) with nonnegative integer
components such that

∑

l∈Lc νl = mL − 1. Finally, denote by Lk the set of all
L ⊂ {1, . . . , k + 1} such that L 6= ∅, Lc 6= ∅.
Lemma 5. For all r ≥ 1,

Sr(E) =
∑

k≥2

∑

L∈Lk

(−1)mL−1
∑

ν∈VL

Aν(E), (4.15)

where
Aν(E) := B1E . . .BkEBk+1

with Bl = Pr, l ∈ L and Bl = Cνl+1
r , l ∈ Lc.
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proof. It follows from the proof of Lemma 1 in [11] that the following repre-
sentation holds for Sr(E) :

Sr(E) = −
∑

k≥2

1

2πi

∮

γr

(−1)k[RΣ(η)E]kRΣ(η)dη,

where γr denotes the circle centered at µr of radius ḡr/2 with counterclockwise
orientation and

RΣ(η) = (Σ− ηI)−1 =
∑

j≥1

1

µj − η
Pj

denotes the resolvent of Σ.3 Note also that the series in the above representation
of Sr(E) converges in the operator norm provided that ‖E‖∞ < ḡr

4 . It follows
that

Sr(E) = −
∑

k≥2

1

2πi

∮

γr

(−1)k
[

∑

j≥1

1

µj − η
PjE

]k
∑

j≥1

1

µj − η
Pjdη

=
∑

k≥2

∑

j1,...,jk,jk+1≥1

1

2πi

∮

γr

dη
∏k+1

l=1 (η − µjl)
Pj1E . . . PjkEPjk+1

.

We have

∑

j1,...,jk,jk+1≥1

1

2πi

∮

γr

dη
∏k+1

l=1 (η − µjl)
Pj1E . . . PjkEPjk+1

=
∑

L⊂{1,...,k+1}

∑

~j∈JL

1

2πi

∮

γr

dη

(η − µr)mL
∏

l∈Lc(η − µjl)
Pj1E . . . PjkEPjk+1

.

Using Cauchy differentiation formula, we get

1

2πi

∮

γr

dη

(η − µr)mL
∏

l∈Lc(η − µjl)
=

1

(mL − 1)!

(

∏

l∈Lc

(η − µjl)
−1

)(mL−1)

|η=µr

.

In the cases when L = ∅ or Lc = ∅ the integral in the left hand side is equal to
0. By generalized Leibniz rule,

(

∏

j∈Lc

(η − µjl)
−1

)(mL−1)

|η=µr

=
∑

ν∈VL

(mL − 1)!
∏

l∈Lc νl!

∏

l∈Lc

(−1)νlνl!(µr − µjl)
−νl−1.

Thus,
∑

j1,...,jk,jk+1≥1

1

2πi

∮

γr

dη
∏k+1

l=1 (η − µjl)
Pj1E . . . PjkEPjk+1

3In the case when 0 is an eigenvalue of Σ, the sum in the right hand side of the above
formula extends to j = ∞ with µ∞ = 0. See also the remark after Lemma 1



V. Koltchinskii and K. Lounici/Asymptotics in principal component analysis 20

∑

L⊂Lk

∑

~j∈JL

(−1)mL−1
∑

ν∈VL

∏

l∈Lc

(µr − µjl)
−νl−1Pj1E . . . PjkEPjk+1

.

Given ν ∈ VL, recall that Aν(E) = B1E . . . BkEBk+1, where Bl = Pr, l ∈ L and
Bl = Cνl+1

r , l ∈ Lc. It is easy to see that

∑

~j∈JL

∏

l∈Lc

(µr − µjl)
−νl−1Pj1E . . . PjkEPjk+1

= Aν(E).

Therefore,

∑

j1,...,jk,jk+1≥1

1

2πi

∮

γr

dη
∏k+1

l=1 (η − µjl)
Pj1E . . . PjkEPjk+1

=
∑

L∈Lk

(−1)mL−1
∑

ν∈VL

Aν(E)

and (4.15) follows.

Remark 2. By a simple combinatorics,

card

(

⋃

L⊂{1,...,k+1}
VL

)

≤
k+1
∑

m=0

(

k + 1

m

)2

=

(

2(k + 1)

k + 1

)

≤ 22(k+1). (4.16)

It is easy to check that
∑

L∈L2

(−1)mL−1
∑

ν∈VL

Aν(E)

= PrECrECr+CrEPrECr+CrECrEPr−PrEPrEC2
r−PrEC2

rEPr−C2
rEPrEPr.

Using the fact that CrPr = PrCr = 0, this easily implies that

∑

L∈L2

(−1)mL−1
∑

ν∈VL

〈Aν(E), Pr〉 = −tr(PrEC2
rEPr) = −‖PrECr‖22 = −1

2
‖Lr(E)‖22.

Thus, we get

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 =

∑

k≥3

∑

L∈Lk

(−1)mL−1
∑

ν∈VL

〈Aν(E), Pr〉.

The next step is to study the concentration of the random variable 〈Sr(E), Pr〉+
1
2‖Lr(E)‖22 around its expectation. More precisely, we study the concentration
of its “truncated version”

(

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

)

ϕ
(‖E‖∞

δ

)

,

where ϕ is a Lipschitz function with constant 1 on R+, 0 ≤ ϕ(s) ≤ 1, ϕ(s) =
1, s ≤ 1, ϕ(s) = 0, s > 2. The value of δ > 0 will be chosen below in such a way
that ‖E‖∞ ≤ δ with a high probability.

The main ingredient of the proof is the classical Gaussian isoperimetric in-
equality that easily implies the following statement.
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Lemma 6. Let X1, . . . , Xn be i.i.d. centered Gaussian random variables in H

with covariance operator Σ. Let f : Hn 7→ R be a function satisfying the following
Lipschitz condition with some L > 0 :

∣

∣

∣f(x1, . . . , xn)−f(x′
1, . . . , x

′
n)
∣

∣

∣ ≤ L

( n
∑

j=1

‖xj−x′
j‖2
)1/2

, x1, . . . , xn, x
′
1, . . . , x

′
n ∈ H.

Suppose that, for a real number M ,

P {f(X1, . . . , Xn) ≥ M} ≥ 1

4
and P {f(X1, . . . , Xn) ≤ M} ≥ 1

4

Then, there exists a numerical constant D > 0 such that for all t ≥ 1

P

{

|f(X1, . . . , Xn)−M | ≥ DL‖Σ‖1/2∞
√
t
}

≤ e−t.

We will use Lemma 6 that will be applied to the function

f(X1, . . . , Xn) :=

(

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

)

ϕ
(‖E‖∞

δ

)

=
∑

k≥3

∑

L∈Lk

(−1)mL−1
∑

ν∈VL

fν,L(X1, . . . , Xn),

where

fν,L(X1, . . . , Xn) := 〈Aν(E), Pr〉ϕ
(‖E‖∞

δ

)

,

E = Σ̂− Σ, Σ̂ = n−1
n
∑

j=1

Xj ⊗Xj .

With a little abuse of notation, assume for now that X1, . . . , Xn are nonrandom
vectors in H. We now have to check the Lipschitz condition for the function f.

Lemma 7. Let δ > 0 and suppose that ‖Cr‖∞δ ≤ 1/24. Then, there exists a
numerical constant D > 0 such that, for all X1, . . . , Xn, X

′
1, . . . , X

′
n ∈ H,

|f(X1, . . . , Xn)−f(X ′
1, . . . , X

′
n)| ≤ Dmr‖Cr‖3∞δ2

‖Σ‖1/2∞ +
√
δ√

n

( n
∑

j=1

‖Xj−X ′
j‖2
)1/2

.

(4.17)

proof. Consider first each function fν,L separately. Let L ∈ Lk for some k ≥ 3.
Note that

fν,L(X1, . . . , Xn) = 〈B1E . . . BkEBk+1, Pr〉ϕ
(‖E‖∞

δ

)

,

where Bl = Pr, l ∈ L and Bl = Cνl+1
r , l ∈ Lc. Therefore, we get

|fν,L(X1, . . . , Xn)| ≤ ‖B1‖∞ . . . ‖Bk+1‖∞‖E‖k∞‖Pr‖1I(‖E‖∞ ≤ 2δ) (4.18)

≤ ‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(2δ)k.
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For X ′
1, . . . , X

′
n ∈ H, denote

Σ̂′ := n−1
n
∑

j=1

X ′
j ⊗X ′

j , E′ := Σ̂′ − Σ.

Then, we get

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)|

=

∣

∣

∣

∣

〈B1(E − E′)B2 . . . EBkEBk+1, Pr〉ϕ
(‖E‖∞

δ

)

+ 〈B1E
′B2(E − E′)B3 . . . EBkEBk+1, Pr〉ϕ

(‖E‖∞
δ

)

+ . . .

+ 〈B1E
′B2 . . . E

′Bk(E − E′)Bk+1, Pr〉ϕ
(‖E‖∞

δ

)

+ 〈B1E
′B2 . . . E

′BkE
′Bk+1, Pr〉

(

ϕ

(‖E‖∞
δ

)

− ϕ

(‖E′‖∞
δ

))∣

∣

∣

∣

≤ k‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(‖E‖∞ ∨ ‖E′‖∞)k−1‖E − E′‖∞
+ ‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1‖E′‖k∞

1

δ
‖E − E′‖∞,

where we used the assumption that the Lipschitz constant of ϕ is 1. By sym-
metry, ‖E′‖∞ in the right hand side can be replaced by ‖E‖∞ implying that

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| (4.19)

≤ k‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(‖E‖∞ ∨ ‖E′‖∞)k−1‖E − E′‖∞
+ ‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(‖E‖∞ ∧ ‖E′‖∞)k

1

δ
‖E − E′‖∞.

If both ‖E‖∞ ≤ 2δ and ‖E′‖∞ ≤ 2δ, this implies the bound

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤ (4.20)

‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(2δ)k−1‖E − E′‖∞.

If ‖E‖∞ ≤ 2δ, but ‖E′‖∞ > 2δ, then fν,L(X
′
1, . . . , X

′
n) = 0 and, by (4.18),

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| = |fν,L(X1, . . . , Xn)|

≤ ‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(2δ)k.
If, in addition, ‖E−E′‖∞ > δ, then bound (4.20) still holds. On the other hand,
if ‖E − E′‖∞ ≤ δ, then ‖E′‖∞ ≤ 3δ and we get a slightly worse bound than
(4.20):

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤ (4.21)

‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(3δ)k−1‖E − E′‖∞.
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The case when ‖E‖∞ > 2δ and ‖E′‖∞ ≤ 2δ can be handled similarly and
the case when both ‖E‖∞ > 2δ and ‖E′‖∞ > 2δ is trivial since function fν,L
becomes 0. In each of these cases, bound (4.21) holds.

The following bound (see Lemma 5 in [11]) provides a control of ‖E−E′‖∞ :

‖E − E′‖∞ ≤ 4‖Σ‖1/2∞ + 4
√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

∨ 4

n

n
∑

j=1

‖Xj −X ′
j‖2.

(4.22)
Substituting the last bound into (4.21), we get

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤ (4.23)

(

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2)

∨

(

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(3δ)k−1 1

n

n
∑

j=1

‖Xj −X ′
j‖2
)

.

In view of (4.18), the left hand side is also bounded from above by

2‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(2δ)k,
which allows one to get from (4.23) that

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤ (4.24)

(

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2)

∨

(

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(3δ)k−1

(

(k + 2)
1

n

n
∑

j=1

‖Xj −X ′
j‖2
∧

δ

))

.

In the case when
( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

≤
√

δn

k + 2
,

we have

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(3δ)k−1

(

(k + 2)
1

n

n
∑

j=1

‖Xj −X ′
j‖2
∧

δ

)

≤ 4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(3δ)k−1/2
√
k + 2

1√
n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

.

It is equally easy to check that the same bound holds in the opposite case. As
a consequence, (4.24) implies that

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤ (4.25)

4‖B1‖∞ . . . ‖Bk+1‖∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

.
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Note that

‖B1‖∞ . . . ‖Bk+1‖∞ =
∏

l∈Lc

‖Cνl+1
r ‖∞ ≤ ‖Cr‖

∑
l∈Lc (νl+1)

∞ = ‖Cr‖k∞, (4.26)

where we used the facts that
∑

l∈Lc

νl = mL − 1, card(Lc) = k + 1−mL.

Thus, we get from (4.25)

|fν,L(X1, . . . , Xn)− fν,L(X
′
1, . . . , X

′
n)| ≤

4‖Cr‖k∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

,

which, taking also into account (4.16), yields

|f(X1, . . . , Xn)− f(X ′
1, . . . , X

′
n)| (4.27)

≤ 4
∑

k≥3

∑

L∈Lk

∑

ν∈VL

‖Cr‖k∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

≤ 4
∑

k≥3

22(k+1)‖Cr‖k∞‖Pr‖1(k + 2)(3δ)k−1 ‖Σ‖
1/2
∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

≤ 4
∑

k≥3

(k + 2)22(k+1)3k−1

(

1

24

)k−3

‖Cr‖3‖Pr‖1δ2
‖Σ‖1/2∞ +

√
2δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

≤ D‖Cr‖3‖Pr‖1δ2
‖Σ‖1/2∞ +

√
δ√

n

( n
∑

j=1

‖Xj −X ′
j‖2
)1/2

,

where D is a numerical constant and we used the condition ‖Cr‖∞δ ≤ 1/24.

We return to the proof of Lemma 4.

proof. Note that, under condition (2.9), the lower bound of Theorem 1 implies
that r(Σ) . n. Let t ≥ 1 and define

δn(t) := E‖Σ̂− Σ‖∞ + C‖Σ‖∞
[

√

t

n

∨ t

n

]

.

If constant C in the above definition is sufficiently large and r(Σ) . n, then it
follows from Theorem 2 that ‖E‖∞ = ‖Σ̂ − Σ‖∞ ≤ δn(t) with probability at
least 1− e−t. Note also that, under condition (2.9),

δn(t) . ‖Σ‖∞
[
√

r(Σ)

n

∨

√

t

n

∨ t

n

]
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(since r(Σ) . n).

Assume that δn(t) ≤ ḡr
24 . Since ḡr ≤ ‖Σ‖∞, we have

C

[

√

t

n

∨ t

n

]

≤ ḡr
24‖Σ‖∞

≤ 1,

which implies that t . n. Thus, in view of the upper bound of Theorem 1,

δn(t) . ‖Σ‖∞
[
√

r(Σ)

n

∨

√

t

n

]

.

For a random variable ξ, denote by Med(ξ) its median. Let

M := Med

(

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

)

.

In what follows, we set δ := δn(t) in the definition of function f(X1, . . . , Xn).
Suppose that t ≥ log(4) (by adjusting the values of the constants the resulting
bound can be easily extended to t ≥ 1 as it is claimed in Lemma 4). Then, we
have P{‖Σ̂− Σ‖∞ ≥ δn(t)} ≤ 1

4 , and

P {f(X1, . . . , Xn) ≥ M) ≥ P {f(X1, . . . , Xn) ≥ M, ‖E‖∞ < δ}

≥ P

{

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 ≥ M

}

− P {‖E‖∞ ≥ δ} ≥ 1

4
.

Quite similarly, P {f(X1, . . . , Xn) ≤ M} ≥ 1
4 . It follows from Lemma 6 that

with probability at least 1− e−t

|f(X1, . . . , Xn)−M | ≤ Dmr
δ2

ḡ3r
‖Σ‖1/2∞

(

‖Σ‖1/2∞ +
√
δ
)

√

t

n

≤ D′mr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ t

n

)

√

t

n
,

for some numerical constant D′ > 0. Since on the event {‖E‖∞ ≤ δ}

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 = f(X1, . . . , Xn),

we easily obtain that with probability at least 1− 2e−t

∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 −M

∣

∣

∣

∣

≤ D′mr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ t

n

)

√

t

n
. (4.28)

It remains to prove a similar bound in the case when δn(t) >
ḡr
24 . By definition

of δn(t) and in view of assumption (2.9), we get

C‖Σ‖∞
(

√

t

n

∨ t

n

)

>
ḡr
24

− E‖Σ̂− Σ‖∞ ≥ ḡr
24

− ḡr
48

=
ḡr
48

. (4.29)
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In view of (2.7), (2.8), the fact that ‖Pr‖1 = mr and the trace duality in-
equality, we obtain

∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

∣

∣

∣

∣

≤ ‖Sr(E)‖∞‖Pr‖1 + ‖CrEPr‖22

≤ 14
‖E‖2∞
ḡ2r

‖Pr‖1 + ‖Cr‖2∞‖E‖2∞‖Pr‖1

≤ 15mr
‖E‖2∞
ḡ2r

.

Since P{‖E‖∞ ≤ δ} ≥ 1−e−t, we get that for all t ≥ 1 with probability at least
1− e−t that

∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

∣

∣

∣

∣

≤ Dmr
‖Σ‖2∞
ḡ2r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)2
)

for some numerical constant D > 0. Using this bound with t = log 4, we easily
get that

|M | ≤ Med

(∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

∣

∣

∣

∣

)

≤ Dmr
‖Σ‖2∞
ḡ2r

(

r(Σ)

n

∨ log 4

n

∨

(

log 4

n

)2
)

.

Combining the last two displays, we get that for some constant D > 0 and for
all t ≥ 1 with probability at least 1− e−t

∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 −M

∣

∣

∣

∣

≤ Dmr
‖Σ‖2∞
ḡ2r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)2
)

.

(4.30)
If δn(t) >

ḡr
24 , then (4.29) holds and it follows from bound (4.30) that with some

constant D > 0

∣

∣

∣

∣

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22 −M

∣

∣

∣

∣

≤ Dmr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ t

n

∨

(

t

n

)2
)(

√

t

n

∨ t

n

)

.

(4.31)
Of course, in the case when δn(t) ≤ ḡr

24 , bound (4.31) also holds (it follows from
bound (4.28)). By integrating tail probabilities of bound (4.31) that holds for
all t ≥ 1 we easily get
∣

∣

∣

∣

E

[

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

]

−M

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

[

〈Sr(E), Pr〉+
1

2
‖Lr(E)‖22

]

−M

∣

∣

∣

∣

≤

≤ Dmr
‖Σ‖3∞
ḡ3r

(

r(Σ)

n

∨ 1

n

∨

(

1

n

)2
)

√

1

n

for some D > 0. Thus, we can replace the median M in bound (4.31) by the
expectation which yields the bound of Lemma 4.
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Consider now three samples (X1, . . . , Xn), (X̃1, . . . , X̃n) and (X̄1, . . . , X̄n) of
i.i.d. copies of X with Σ̂, Σ̃ and Σ̄ being the sample covariances based on the
corresponding samples of size n. Let E := Σ̂− Σ, Ẽ := Σ̃− Σ and Ē := Σ̄− Σ.
In view of the representation of Lemma 3, to study the asymptotic behavior of
(1+ b̂r)

2−(1+br)
2 and other related statistics we will have to deal with random

vectors

Ξr :=

















√
2
〈

Lr(E), Lr(Ẽ)
〉

√
2
〈

Lr(Ẽ), Lr(Ē)
〉

‖Lr(E)‖22 − E‖Lr(E)‖22
‖Lr(Ẽ)‖22 − E‖Lr(Ẽ)‖22
‖Lr(Ē)‖22 − E‖Lr(Ē)‖22

















=

















2
√
2
〈

PrECr, PrẼCr

〉

2
√
2
〈

PrẼCr, PrĒCr

〉

2(‖PrECr‖22 − E‖PrECr‖22)
2(‖PrẼCr‖22 − E‖PrẼCr‖22)
2(‖PrĒCr‖22 − E‖PrĒCr‖22)

















.

(4.32)

Let {ηj,k, η̃j,k, η̄j,k, k ∈ ∆r, j ∈ ∆s, s 6= r} be i.i.d. standard normal random
variables. Define the random vector

Θr :=



















√
2
∑

k∈∆r

∑

s6=r
µs

(µs−µr)2

∑

j∈∆s
ηj,kη̃j,k√

2
∑

k∈∆r

∑

s6=r
µs

(µs−µr)2

∑

j∈∆s
η̃j,kη̄j,k

∑

k∈∆r

∑

s6=r
µs

(µs−µr)2

∑

j∈∆s
(η2j,k − 1)

∑

k∈∆r

∑

s6=r
µs

(µs−µr)2

∑

j∈∆s
(η̃2j,k − 1)

∑

k∈∆r

∑

s6=r
µs

(µs−µr)2

∑

j∈∆s
(η̄2j,k − 1)



















. (4.33)

Lemma 8. The following representation holds:

nΞr = 2µrΘ̃r + ξ, (4.34)

where Θ̃r is a random vector in R
5 whose distribution coincides with the distri-

bution of Θr and the components ξj of the remainder ξ ∈ R
5 satisfy the following

bound:

max
1≤j≤5

E|ξj | .
‖Σ‖2∞
ḡ2r

(

m
5/2
r√
n

∨ m3
r

n

)

r(Σ).

proof. Set

U =
1√
n

n
∑

j=1

PrXj⊗CrXj , Ũ =
1√
n

n
∑

j=1

PrX̃j⊗CrX̃j , Ū =
1√
n

n
∑

j=1

PrX̄j⊗CrX̄j

and note that

nΞr =















2
√
2
〈

U, Ũ
〉

2
√
2
〈

Ũ , Ū
〉

2(‖U‖22 − E‖U‖22)
2(‖Ũ‖22 − E‖Ũ‖22)
2(‖Ū‖22 − E‖Ū‖22)















.
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Let

Γr = n−1
n
∑

j=1

PrXj⊗PrXj , Γ̃r = n−1
n
∑

j=1

PrX̃j⊗PrX̃j , Γ̄r = n−1
n
∑

j=1

PrX̄j⊗PrX̄j

be the sample covariance operators based, respectively, on the “projected” sam-
ples PrXj , j = 1, . . . , n, PrX̃j , j = 1, . . . , n and PrX̄j, j = 1, . . . , n of i.i.d.
centered Gaussian random variables with covariance operator PrΣPr = µrPr.
Γr, Γ̃r, Γ̄r can be viewed as symmetric positive semi-definite operators acting in
the eigenspace of eigenvalue µr and they admit the following spectral decompo-
sitions:

Γr =
∑

k∈∆r

γrφk ⊗ φk, Γ̃r =
∑

k∈∆r

γ̃rφ̃k ⊗ φ̃k, Γ̄r =
∑

k∈∆r

γ̄rφ̄k ⊗ φ̄k,

where γk ≥ 0 are the eigenvalues of Γr with associated eigenvectors φk, γ̃r ≥ 0
are the eigenvalues of Γ̃r with associated eigenvectors φ̃k and γ̄r ≥ 0 are the
eigenvalues of Γ̄r with associated eigenvectors φ̄k. Note also that {φk, k ∈ ∆r},
{φ̃k, k ∈ ∆r} and {φ̄k, k ∈ ∆r} are three possibly different orthonormal bases
of the eigenspace of µr.

Let X(k), X̃(k), X̄(k), k ∈ ∆r be independent copies of X (also independent
of Xj , X̃j , X̄j , j = 1, . . . , n). Denote

V =
∑

k∈∆r

√
γkφk⊗CrX

(k), Ṽ =
∑

k∈∆r

√

γ̃kφ̃k⊗CrX̃
(k), V̄ =

∑

k∈∆r

√
γ̄kφ̄k⊗CrX̄

(k)

Given {PrX1, . . . , PrXn, PrX̃1, . . . , PrX̃n, PrX̄1, . . . , PrX̄n}, the conditional dis-
tributions of (U, Ũ , Ū) and (V, Ṽ , V̄ ) are the same. To see this note that, con-
ditionally on {PrX1, . . . , PrXn, PrX̃1, . . . , PrX̃n, PrX̄1, . . . , PrX̄n}, U, Ũ , Ū are
independent centered Gaussian random operators and so are V, Ṽ , V̄ .4 Thus, it
is enough to check that conditionally on the same random variables the covari-
ance operators of U and V coincide (of course, the same would apply to the
couples Ũ and Ṽ , Ū and V̄ ). To this end, let T denote a linear mapping from
H⊗H⊗H⊗H into itself such that

T (u1 ⊗ u2 ⊗ u3 ⊗ u4) = (u1 ⊗ u3 ⊗ u2 ⊗ u4)

(note that T is uniquely defined). By an easy computation,

E(U⊗U |PrXj , j = 1, . . . , n) = T (Γr⊗(CrΣCr)) = E(V ⊗V |PrXj, j = 1, . . . , n),

which implies the claim for U and V (see also the proof of Lemma 5 in [12] for
more details on this argument).

4Recall that PrXj and CrXj are independent since they are jointly Gaussian and uncor-
related (the last property follows from the fact that PrCr = CrPr = 0). Thus, conditionally
on {PrXj}, U is a mean zero Gaussian random operator.
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Consequently, the distribution of nΞr coincides with the distribution of

Λr :=















2
√
2
〈

V, Ṽ
〉

2
√
2
〈

Ṽ , V̄
〉

2(‖V ‖22 − E‖V ‖22)
2(‖Ṽ ‖22 − E‖Ṽ ‖22)
2(‖V̄ ‖22 − E‖V̄ ‖22)















.

Note that

〈V, Ṽ 〉 =
∑

k,l∈∆r

√
γk
√

γ̃l〈φk⊗CrX
(k), φ̃l⊗CrX̃

(l)〉 = µr

∑

k,l∈∆r

〈φk, φ̃l〉〈CrX
(k), CrX̃

(l)〉+η,

where
η :=

∑

k,l∈∆r

(
√
γk
√

γ̃l − µr)〈φk, φ̃l〉〈CrX
(k), CrX̃

(l)〉

For the remainder η, the following bound holds:

|η| ≤
(

∑

k,l∈∆r

(
√
γk
√

γ̃l − µr)
2

)1/2(
∑

k∈∆r

‖CrX
(k)‖2

∑

l∈∆r

‖CrX̃
(l)‖2

)1/2

,

which, using the independence of γk, γ̃l, CrX
(k), CrX̃

(l) easily implies that

E|η| ≤
(

E

∑

k,l∈∆r

(
√
γk
√

γ̃l − µr)
2

)1/2(

E

∑

k∈∆r

‖CrX
(k)‖2E

∑

l∈∆r

‖CrX̃
(l)‖2

)1/2

≤ mr

(

E

∑

k,l∈∆r

(
√
γk
√

γ̃l − µr)
2

)1/2

E‖CrX‖2.

Observe also that

∣

∣

∣

√
γk
√

γ̃l − µr

∣

∣

∣ ≤ γkγ̃l − µ2
r

µr
≤ |γk − µr|+ |γ̃l − µr|+

|γk − µr||γ̃l − µr|
µr

,

which implies

∑

k,l∈∆r

(
√
γk
√

γ̃l−µr)
2 ≤ 3mr

∑

k∈∆r

(γk−µr)
2+3mr

∑

l∈∆r

(γ̃l−µr)
2+

3

µ2
r

∑

k∈∆r

(γk−µr)
2
∑

l∈∆r

(γ̃l−µr)
2

≤ 3mr‖Γr − µrPr‖22 + 3mr‖Γ̃r − µrPr‖22 +
3

µ2
r

‖Γr − µrPr‖22‖Γ̃r − µrPr‖22.

Hence, we get (using independence of Γr, Γ̃r)

E

∑

k,l∈∆r

(
√
γk
√

γ̃l−µr)
2 ≤ 3mrE‖Γr−µrPr‖22+3mrE‖Γ̃r−µrPr‖22+

3

µ2
r

E‖Γr−µrPr‖22E‖Γ̃r−µrPr‖22.
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Since Γr, Γ̃r are sample covariances based on n i.i.d. centered Gaussian obser-
vations with the true covariance µrPr, we easily get

E‖Γr − µrPr‖22 = E‖Γ̃r − µrPr‖22 ≤ E‖PrX‖4
n

.

(

tr(µrPr)
)2

n
=

µ2
rm

2
r

n
.

Therefore,

E

∑

k,l∈∆r

(
√
γk
√

γ̃l − µr)
2 .

µ2
rm

3
r

n
+

µ2
rm

4
r

n2
.

This yields the following bound on E|η| :

E|η| .
(

µrm
5/2
r√
n

+
µrm

3
r

n

)

E‖CrX‖2 =

(

µrm
5/2
r√
n

+
µrm

3
r

n

)

tr(CrΣCr)

.
‖Σ‖2∞
ḡ2r

(

m
5/2
r√
n

∨ m3
r

n

)

r(Σ). (4.35)

Similarly, we have

‖V ‖22 =
∑

k∈∆r

γk‖φk ⊗ CrX
(k)‖22 =

∑

k∈∆r

γk‖CrX
(k)‖2,

which implies

‖V ‖22 − E‖V ‖22 = µr

∑

k∈∆r

[

‖CrX
(k)‖2 − E‖CrX

(k)‖2
]

+ ζ,

where
ζ :=

∑

k∈∆r

[

(γk − µr)‖CrX
(k)‖2 − E(γk − µr)‖CrX

(k)‖2
]

.

The following bound is immediate

E|ζ| ≤ 2Emax
k∈∆r

|γk − µr|
∑

k∈∆r

E‖CrX
(k)‖2 ≤ 2mrE‖Γr − µrPr‖∞E‖CrX‖2,

where we used the independence of random variables γk, k ∈ ∆r and CrX
(k), k ∈

∆r. Applying the bound of Theorem 1 to the sample covariance Γr, we easily
get

E‖Γr − µrPr‖∞ . µr

(
√

mr

n
∨ mr

n

)

.

Therefore, we can conclude that

E|ζ| . mrµr

(
√

mr

n
∨ mr

n

)

tr(CrΣCr) .
‖Σ‖2∞
ḡ2r

(

m
3/2
r√
n

∨ m2
r

n

)

r(Σ). (4.36)
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As a consequence of (4.35), (4.36) and similar bounds for other components
of vector Λr, we get that















2
√
2
〈

V, Ṽ
〉

2
√
2
〈

Ṽ , V̄
〉

2(‖V ‖22 − E‖V ‖22)
2(‖Ṽ ‖22 − E‖Ṽ ‖22)
2(‖V̄ ‖22 − E‖V̄ ‖22)















= 2µrΘ̃r + ξ, (4.37)

where

Θ̃r =





















√
2
〈

∑

k∈∆r
φk ⊗ CrX

(k),
∑

k∈∆r
φ̃k ⊗ CrX̃

(k)
〉

√
2
〈

∑

k∈∆r
φ̃k ⊗ CrX̃

(k),
∑

k∈∆r
φ̄k ⊗ CrX̄

(k)
〉

∑

k∈∆r
‖CrX

(k)‖2 −∑k∈∆r
E‖CrX

(k)‖2
∑

k∈∆r
‖CrX̃

(k)‖2 −∑k∈∆r
E‖CrX̃

(k)‖2
∑

k∈∆r
‖CrX̄

(k)‖2 −∑k∈∆r
E‖CrX̄

(k)‖22





















and ξ ∈ R
5 is a random vector with the components satisfying the following

bound:

max
1≤j≤5

E|ξj | .
‖Σ‖2∞
ḡ2r

(

m
5/2
r√
n

∨ m3
r

n

)

r(Σ).

It remains to show that the distribution of Θ̃r coincides with the distribution
of Θr. To this end, note that the following representation holds:

CrX
(k) =

∑

s6=r

1

µr − µs
PsX

(k) =
∑

s6=r

µ
1/2
s

µr − µs

∑

j∈∆s

ηj,kθj , k ∈ ∆r,

where, for all s ≥ 1, θj , j ∈ ∆s is an orthonormal basis of the eigenspace of Σ
corresponding to the eigenvalue µs and {ηj,k} are i.i.d. standard normal random
variables. Similarly, we have

CrX̃
(k) =

∑

s6=r

µ
1/2
s

µr − µs

∑

j∈∆s

η̃j,kθj , k ∈ ∆r,

and

CrX̄
(k) =

∑

s6=r

µ
1/2
s

µr − µs

∑

j∈∆s

η̄j,kθj , k ∈ ∆r,

where {η̃j,k}, {η̄j,k} are i.i.d. standard normal random variables (also indepen-
dent of {ηj,k}). Moreover, in addition {ηj,k}, {η̃j,k}, {η̄j,k} are independent of

the samples X1, . . . , Xn, X̃1, . . . , X̃n, X̄1, . . . , X̄n. Denote

ηj :=
∑

k∈∆r

ηj,kθk, η̃j :=
∑

k∈∆r

η̃j,kθk, η̄j :=
∑

k∈∆r

η̄j,kθk.
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We will also need

η′j :=
∑

k∈∆r

ηj,kφk, η̃
′
j :=

∑

k∈∆r

η̃j,kφ̃k, η̄
′
j :=

∑

k∈∆r

η̄j,kφ̄k.

Note that conditionally on φk, φ̃k, φ̄k, the distributions of random vectors η′j , η̃
′
j , η̄

′
j , j ∈

∆s, s 6= r is the same as the distribution of random vectors ηj , η̃j , η̄j , j ∈ ∆s, s 6=
r (that are independent “standard normal” random vectors in the eigenspace of
the eigenvalue µr). In addition to this,

‖ηj‖2 = ‖η′j‖2, ‖η̃j‖2 = ‖η̃′j‖2, ‖η̄j‖2 = ‖η̄′j‖2.

By a straightforward computation, the vector Θ̃r can be written as follows:

Θ̃r =















√
2
∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
〈η′j , η̃′j〉√

2
∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
〈η̃′j , η̄′j〉

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖ηj‖2 − E‖ηj‖2]

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖η̃j‖2 − E‖η̃j‖2]

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖η̄j‖2 − E‖η̄j‖2]















,

and it has the same distribution as















√
2
∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
〈ηj , η̃j〉√

2
∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
〈η̃j , η̄j〉

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖ηj‖2 − E‖ηj‖2]

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖η̃j‖2 − E‖η̃j‖2]

∑

s6=r
µs

(µr−µs)2

∑

j∈∆s
[‖η̄j‖2 − E‖η̄j‖2]















= Θr.

This completes the proof of the lemma.

5. Proofs: limit theorems

In this section, we turn to the proofs of theorems 8, 9 and 10. Recall the

asymptotic framework of Section 3 in which X
(n)
1 , . . . , X

(n)
n , X̃

(n)
1 , . . . , X̃

(n)
n and

X̄
(n)
1 , . . . , X̄

(n)
n are three samples of size n each consisting of i.i.d. copies of

a centered Gaussian random vector X(n) with covariance Σ(n). Similarly to
the non-asymptotic framework, we consider the spectral decomposition Σ(n) =
∑

r≥1 µ
(n)
r P

(n)
r and we are interested in the estimation of the spectral projector

P (n) = P
(n)
rn of Σ(n) corresponding to its eigenvalue µ(n) = µ

(n)
rn of multiplicity

m(n) = m
(n)
rn . We define three sample covariance operators (based on the three

samples of size n):

Σ̂(n) :=
1

n

n
∑

i=1

X
(n)
i ⊗X

(n)
i , Σ̃(n) :=

1

n

n
∑

i=1

X̃
(n)
i ⊗X̃

(n)
i , Σ̄(n) :=

1

n

n
∑

i=1

X̄
(n)
i ⊗X̄

(n)
i
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and set

E(n) := Σ̂(n) − Σ(n), Ẽ(n) := Σ̃(n) − Σ(n), Ē(n) := Σ̄(n) − Σ(n).

Recall that C(n) = C
(n)
rn =

∑

s6=rn
1

µ
(n)
rn −µ

(n)
s

P
(n)
s and

Bn = Brn(Σ
(n)) = 2

√
2‖C(n)Σ(n)C(n)‖2‖P (n)Σ(n)P (n)‖2.

For a bounded linear operator W : H 7→ H, we will denote,

L(n)(W ) = L(n)
rn (W ) := P (n)WC(n) + C(n)WP (n).

Recall that, in theorems 8, 9 and 10, it is supposed that Assumption 1 is satisfied
and, moreover, that µ(n) is the eigenvalue of multiplicity m(n) = 1. In this case,

∆
(n)
rn = {kn} for some kn ≥ 1.

Define the following sequences of random vectors with values in R
5:

Ξ(n) :=

















√
2
〈

L(n)(E(n)), L(n)(Ẽ(n))
〉

√
2
〈

L(n)(Ẽ(n)), L(n)(Ē(n))
〉

‖L(n)(E(n))‖22 − E‖L(n)(E(n))‖22
‖L(n)(Ẽ(n))‖22 − E‖L(n)(Ẽ(n))‖22
‖L(n)(Ē(n))‖22 − E‖L(n)(Ē(n))‖22

















and

Θ(n) :=



























√
2
∑

s6=rn

µ(n)
s

(µ
(n)
rn −µ

(n)
s )2

∑

j∈∆s
η
(n)
j,kn

η̃
(n)
j,kn

√
2
∑

s6=rn

µ(n)
s

(µ
(n)
rn −µ

(n)
s )2

∑

j∈∆s
η̃
(n)
j,kn

η̄
(n)
j,kn

∑

s6=rn

µ(n)
s

(µ
(n)
rn −µ

(n)
s )2

∑

j∈∆s
[(η

(n)
j,kn

)2 − 1]

∑

s6=rn

µ(n)
s

(µ
(n)
rn −µ

(n)
s )2

∑

j∈∆s
[(η̃

(n)
j,kn

)2 − 1]
∑

s6=rn

µ(n)
s

(µ
(n)
rn −µ

(n)
s )2

∑

j∈∆s
[(η̄

(n)
j,kn

)2 − 1]



























,

where ηj,k, η̃j,k, η̄j,k, j, k ≥ 1 are i.i.d. standard normal random variables. Denote

B̄n :=

(

2
∑

s6=rn

m
(n)
s (µ

(n)
s )2

(µ
(n)
rn − µ

(n)
s )4

)1/2

.

It is immediate to see that Bn = 2µ(n)B̄n and, in view of Lemma 8,

nΞ(n) = 2µ(n)Θ̃(n) + ξ(n),

where Θ̃(n) has the same distribution as Θ(n) and the remainder ξ(n) ∈ R
5

satisfies the bound

max
1≤j≤5

E|ξ(n)j | .
(‖Σ(n)‖∞

ḡ(n)

)2
r(Σ(n))√

n
.
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(where we also used the assumption that m(n) = 1). Under Assumption 1, this
implies that

ξ(n)

Bn
= oP(1) as n → ∞,

and we get
nΞ(n)

Bn
=

Θ̃(n)

B̄n
+ oP(1). (5.1)

We need a simple lemma that will allow us to prove that the sequence of

random variables Θ̃(n)

B̄n
is asymptotically standard normal implying the same

limit distribution for nΞ(n)

Bn
.

Let {η, η(n)k , η̃
(n)
k , η̄

(n)
k , k ≥ 1} be i.i.d. standard normal random variables and

let λ
(n)
k > 0, k ≥ 1, n ≥ 1 be positive real numbers with

∑

k≥1 λ
(n)
k < ∞, n ≥ 1.

Define

ϑn :=



















√
2
∑

k≥1 λ
(n)
k η

(n)
k η̃

(n)
k√

2
∑

k≥1 λ
(n)
k η̃

(n)
k η̄

(n)
k

∑

k≥1 λ
(n)
k [(η

(n)
k )2 − 1]

∑

k≥1 λ
(n)
k [(η̃

(n)
k )2 − 1]

∑

k≥1 λ
(n)
k [(η̄

(n)
k )2 − 1]



















and let

B̄n =

(

2
∑

k≥1

(λ
(n)
k )2

)1/2

, n ≥ 1.

Lemma 9. If
B̄n

supk≥1 λ
(n)
k

→ ∞, n → ∞,

then the sequence of random vectors

1

B̄n
ϑn, n ≥ 1

converges in distribution to a standard normal random vector Z5 in R
5.

proof. The proof of this result is an easy application of Lindeberg version
of the CLT. We will establish the convergence in distribution of 〈ϑn, a〉 to a
normal random variable N(0, |a|2) for an arbitrary a ∈ R

5. For a vector a =
(a1, . . . , a5) ∈ R

5, set

ϑn(a, k) := a1
√
2η

(n)
k η̃

(n)
k +a2

√
2η̃

(n)
k η̄

(n)
k +a3[(η

(n)
k )2−1]+a4[(η̃

(n)
k )2−1]+a5[(η̄

(n)
k )2−1], k ≥ 1.

Without loss of generality, assume that |a| = 1. Note that r.v. ϑn(a, k), k ≥ 1
are i.i.d., Eϑn(a, k) = 0 and Var(ϑn(a, k)) = 2. Therefore, for

ζn(a) :=
1

B̄n
〈ϑn, a〉 =

∑

k≥1 λ
(n)
k ϑn(a, k)

B̄n
,
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it holds that Eζn(a) = 0 and Var(ζn(a)) = 1. In textbook versions of the central
limit theorem, the result is usually stated for sums of finite triangular arrays of
independent random variables. In our case, the sums are infinite. However, it
is easy to reduce the problem to the finite case by truncating the series to pn
terms, where pn is such that

∑

k>pn
λ
(n)
k = o(B̄n). Such a reduction is rather

simple and will be skipped. By the assumption of the lemma,

supk≥1(λ
(n)
k )2E

[

ϑ2
n(a, k)

]

B̄2
n

=
2 supk≥1(λ

(n)
k )2

B̄2
n

→ 0.

It remains to check that the Lindeberg condition holds. To this end, note that

|ϑn(a, k)| ≤ max
(√

2|η(n)k ||η̃(n)k |,
√
2|η̃(n)k ||η̄(n)k |, |(η(n)k )2−1|, |η̃(n)k )2−1|, |(η̄(n)k )2−1|

)

and observe that the random variables involved in the maximum in the right
hand side are sub-exponential. This easily implies the following bound on the
tails of ϑn(a, k)

P{|ϑn(a, k)| ≥ t} ≤ 5e−ct, t ≥ 0

that holds with some numerical constant c > 0 and for all a ∈ R
5, |a| = 1 and

all k ≥ 1. This bound also implies that E|ϑn(a, k)|4 ≤ C, a ∈ R
5, ‖a‖ = 1 for

some numerical constant C > 0. Therefore, for all τ > 0, we have

∑

k≥1(λ
(n)
k )2E

[

ϑ2
n(a, k)I

(

λ
(n)
k |ϑn(a, k)| ≥ τB̄n

)]

B̄2
n

≤ 1

B̄2
n

∑

k≥1

(

λ
(n)
k

)2

E
1/2|ϑn(a, k)|4P1/2

(

λ
(n)
k |ϑn(a, k)| ≥ τB̄n

)

.

∑

k≥1

(

λ
(n)
k

)2

B̄2
n

exp

{

− cτB̄n

2 supk≥1 λ
(n)
k

}

. exp

{

− cτB̄n

2 supk≥1 λ
(n)
k

}

,

which tends to 0 as n → ∞ (under the condition that B̄n

supk≥1 λ
(n)
k

→ ∞).

Lemma 9 will be applied to the sequence of random vectors Θ(n). Under
Assumption 1, the condition of the lemma holds since

1

B̄n
sup
s6=rn

µ
(n)
s

(µ
(n)
rn − µ

(n)
s )2

=
2

Bn
sup
s6=rn

µ(n)µ
(n)
s

(µ
(n)
rn − µ

(n)
s )2

≤ 2

Bn

(‖Σ(n)‖∞
ḡ(n)

)2

→ 0 as n → ∞.

Thus, Lemma 9 implies that Θ(n)

B̄n

d−→ Z5 and, in view of (5.1), we also have
that

nΞ(n)

Bn

d−→ Z5 as n → ∞. (5.2)
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Under Assumption 1, Lemma 2 easily implies that

n

Bn

(

‖P̂ (n) − P (n)‖22 − E‖P̂ (n) − P (n)‖22
)

=
n

Bn
〈Ξ(n), u〉+ oP(1), u = (0, 0, 1, 0, 0).

(5.3)

Under the same assumption, Lemma 3 implies that

n

Bn

(

(1 + b̂(n))2 − (1 + b(n))2
)

=
n

Bn
〈Ξ(n), v〉+ oP(1), v =

(

1√
2
, 0,−1

2
,−1

2
, 0

)

(5.4)

and

n

Bn

(

(1 + b̃(n))2 − (1 + b(n))2
)

=
n

Bn
〈Ξ(n), w〉+ oP(1), w =

(

0,
1√
2
, 0,−1

2
,−1

2

)

.

(5.5)

It follows from the last two relationships that

n

Bn

(

(1 + b̂(n))2 − (1 + b̃(n))2
)

=
n

Bn
〈Ξ(n), v − w〉+ oP(1). (5.6)

Proof of Theorem 8. Note that

n

Bn
(b̂(n) − b(n)) =

n

Bn

(1 + b̂(n))2 − (1 + b(n))2

2 + b̂(n) + b(n)
. (5.7)

Under Assumption 1, Proposition 1 implies that |b̂(n) − b(n)| = OP

(√
r(Σ(n))

n

)

.

Recall also that |b(n)| .
‖Σ(n)‖2

∞
ḡ2
r

r(Σ(n))
n (see bound (2.14)). Thus, under As-

sumption 1, we get that b(n) = o(1) and b̂(n) = oP(1). These facts along with

representations (5.7), (5.4) and also with (5.2) imply that 2n
Bn

(b̂(n) − b(n)) con-

verges in distribution to the same limit as n
Bn

(

(1 + b̂(n))2 − (1 + b(n))2
)

, which

is the distribution of the random variable 〈Z5, w〉. Since |w| = 1, 〈Z5, w〉 is a
standard normal random variable, which completes the proof of Theorem 8.

Proof of Theorem 10. Recall that

E‖P̂ (n) − P (n)‖22 = −2b(n)

(see (3.7)). The following representation holds:

‖P̂ (n) − P (n)‖22 + 2b̂(n)

|(1 + b̂(n))2 − (1 + b̃(n))2|

=
‖P̂ (n) − P (n)‖22 + 2b(n)

|(1 + b̂(n))2 − (1 + b̃(n))2|
+

2(b̂(n) − b(n))

|(1 + b̂(n))2 − (1 + b̃(n))2|

=

n
Bn

(

‖P̂ (n) − P (n)‖22 − E‖P̂ (n) − P (n)‖22
)

∣

∣

∣

n
Bn

(

(1 + b̂(n))2 − (1 + b̃(n))2
)∣

∣

∣

+

2n
Bn

(

b̂(n) − b(n)
)

∣

∣

∣

n
Bn

(

(1 + b̂(n))2 − (1 + b̃(n))2
)∣

∣

∣

.

(5.8)
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In view of (5.2), (5.3), (5.6) and the combination of (5.7) with (5.4), we easily
conclude that the sequence of random variables

‖P̂ (n) − P (n)‖22 + 2b̂(n)

|(1 + b̂(n))2 − (1 + b̃(n))2|

converges in distribution to 〈Z5,u+v〉
|〈Z5,v−w〉| . Using Proposition 3, it is easy to show

that 〈Z5,u+v〉
|〈Z5,v−w〉|

d
= Y 5

6 ,
√

47
6

. This completes the proof of Theorem 10.

Proof of Theorem 9 is quite similar.

References

[1] T. W. Anderson. Asymptotic theory for principal component analysis. Ann.
Math. Statist., 34:122–148, 1963.

[2] T. W. Anderson. An introduction to multivariate statistical analysis. Wi-
ley Series in Probability and Statistics. Wiley-Interscience [John Wiley &
Sons], Hoboken, NJ, third edition, 2003.

[3] A. Birnbaum, I.M. Johnstone, B. Nadler, and D. Paul. Minimax bounds for
sparse PCA with noisy high-dimensional data. Ann. Statist., 41(3):1055–
1084, 2013.

[4] G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel
principal component analysis. Machine Learning, 66(2-3):259–294, 2007.

[5] F. Bunea and L. Xiao. On the sample covariance matrix estimator of
reduced effective rank population matrices, with applications to fPCA.
arXiv:1212.5321v3, December 2012.

[6] J. Dauxois, A. Pousse, and Y. Romain. Asymptotic theory for the princi-
pal component analysis of a vector random function: some applications to
statistical inference. J. Multivariate Anal., 12(1):136–154, 1982.

[7] I.M. Johnstone and A.Y. Lu. Sparse principal component analysis, 2003.
arXiv:0901.4392.

[8] I.M. Johnstone and A.Y. Lu. On consistency and sparsity for princi-
pal components analysis in high dimensions. J. Amer. Statist. Assoc.,
104(486):682–693, 2009.

[9] T. Kato. A short introduction to perturbation theory for linear operators.
Springer-Verlag, New York, 1982.

[10] V. Koltchinskii and K. Lounici. Concentration inequalities and moment
bounds for sample covariance operators. Bernoulli, to appear, 2014.
arXiv:1405.2468.

[11] V. Koltchinskii and K. Lounici. Asymtotics and concentration bounds
for bilinear forms of spectral projectors of sample covariance. Annales
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