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Abstract. We study the general relativistic hydrodynamic evolution of neutron stars

in binary orbits and analyze the equation of state dependence of the orbits as the stars

approach the inner most last stable circular orbit. We show that by employing a

conformally flat condition on the metric, one can stably numerically evolve ∼ 100

quasi-circular orbits and could straightforwardly extend the calculation to the ∼ 104

orbits needed to follow stars through the LIGO frequency band. We apply this code to

orbiting neutron stars in the quasi-circular orbit approximation to both demonstrate

the stability of this approach and explore the equation of state dependence of the

orbital properties. We employ variety of available realistic neutron star equations of

state as well as a Γ = 2 polytrope. We confirm that both the orbital and emergent

gravity wave frequency evolve more slowly for a softer equation of state as the stars

approach the innermost stable circular orbit.
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1. Introduction

Current interferemetric gravity wave observatories such as LIGO [1], GEO600 [2], GEO-

HF [3, 4], TAMA300 [5] and VIRGO [6] have been taking data for some time [7, 8, 9, 10],

while a number of second generation observatories such as Advanced LIGO [11],

Advanced VIRGO [12] and KAGRA [13] will soon be online. These observatories seek

to detect gravity-wave emission from various sources, e.g. from core collapse supernovae,

neutron star orbits, the stochastic cosmic background, etc. [1]. Of the many systems that

emit gravitational waves, compact neutron-star and/or black-hole binaries are thought

to be the best candidates for detecting gravitational radiation [14]. The number of such

systems detectable by Advanced LIGO is estimated [14, 15, 16, 17, 18, 19, 20, 21] to

be of order several events per year based upon observed close binary-pulsar systems

[22, 23].

To date there have been numerous attempts to calculate theoretical templates for

gravity waves from compact binaries based upon numerical and/or analytic approaches

(see for example [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]). However, most approaches

utilize a combination of Post-Newtonian (PN) techniques supplemented with quasi-

circular orbit calculations and then applying full GR for only the last few orbits before

disruption. In this paper we report on a general relativistic hydrodynamics approach

that can compute many orbits stably and efficiently from the PN regime until the

last stable orbits. Here, we establish the numerical stability of this approach based

upon many orbit simulations of quasi-circular orbit and show that this approach is

straightforwardly scalable to evolve the ∼ 104 orbits within the LIGO frequency range.

We also study the equation of state dependence of the orbit periods and associated

gravity wave emission.

When binary neutron stars are well separated, the Post-Newtonian (PN)

approximation is sufficiently accurate [34]. In the PN scheme, the stars are often treated

as point masses, either with or without spin. At third order, for example, it has been

estimated [35, 36, 37] that the errors due to assuming the stars are point masses is

less than one orbital rotation [35] over the ∼ 16, 000 cycles that pass through the

LIGO detector frequency band [14]. Nevertheless, it has been noted in many works

[32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] that relativistic hydrodynamic effects

might be evident even at the separations (∼ 10−100 km) relevant to the LIGO window.

Indeed, the templates generated by PN approximations, unless carried out to fifth

and sixth order [35, 36], may not be accurate unless the finite size and proper fluid

motion of the stars is taken into account. In essence, the signal emitted during the last

phases of inspiral depends on the finite size and equation of state (EoS) through the

tidal deformation of the neutron stars and the cut-off frequency when tidal disruption

occurs.

Numeric and analytic simulations [50, 51, 52, 53, 54, 55, 56, 57, 58] of binary neutron

stars have explored the approach to the innermost stable circular orbit (ISCO). While

these simulations represent some of the most accurate to date, many simulations have
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only followed the evolution for a handful of orbits and are based upon an extrapolation

of quasi-circular orbits. With ∼ 16, 000 cycles passing though the LIGO frequency band,

it may be questionable whether templates based on only a small number of orbits are

sufficiently accurate to describe the full evolution of the system. Moreover, although

one can obtain a solution to Einstein equations in the quasi-circular orbit condition,

there is no guarantee that the true dynamical evolution of the system actually passes

through a given set of quasi-circular solutions.

Accurate templates may eventually require the ability to calculate many orbits,

keep track of the radiation back reaction along with relativistic hydrodynamic effects.

Ideally, one would like to calculate from the post-Newtonian regime to near the inner

most stable circular orbit (ISCO).

Toward that end, we describe in this paper an approach based upon the general

relativistic hydrodynamics formalism developed in [39, 41, 59, 60] that can evolve from

the post-Newtonian to ISCO regimes in a single calculation. We show that it can

quickly and stably compute up to ∼ 100 orbits and is straightforwardly scalable to the

computation of the continuous evolution through the ∼ 104 orbits in the LIGO window.

Here, we report here on the formalism and calculate a large number ∼ 100 orbits in

the quasi-circular limit to prove its stability. We also analyze the EoS dependence of

these quasi-circular orbits and make a preliminary estimate of the emergent gravity wave

signal. In a subsequent works we will describe the extraction of the gravity wave signal

[61] and evolve the stars through the ∼ 104 orbits of the LIGO window.

This paper is organized as follows. In Section 2 the basic method is summarized

and in Section 3 a summary of the relevant equations of state is given. In Section 4

a number of code tests are performed in the quasi-equilibrium circular orbit limit to

demonstrate the stability of the technique. The EoS dependence of the gravity wave

frequency and the binding energy of the systems in analyzed in Section 5. Conclusions

are presented in Section 6.

2. Method

2.1. Field Equations

The field equations and hydrodynamic equations of motion are solved in three spatial

dimensions and explained in detail elsewhere [38, 39, 59, 62]. Here, we present a brief

summary to introduce the variables relevant to the present discussion. We start with

the slicing of spacetime into the usual one-parameter family of hypersurfaces separated

by differential displacements in a time-like coordinate as defined in the (3+1) ADM

formalism [63, 64].

In Cartesian x, y, z isotropic coordinates, proper distance is expressed as

ds2 = −(α2 − βiβ
i)dt2 + 2βidx

idt+ φ4δijdx
idxj (1)

where the lapse function α describes the differential lapse of proper time between two

hypersurfaces. The quantity βi is the shift vector denoting the shift in space-like
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coordinates between hypersurfaces. The curvature of the metric of the 3-geometry

is described by a position dependent conformal factor φ4 times a flat-space Kronecker

delta (γij = φ4δij). This conformally flat condition (together with the maximal slicing

gauge, tr{Kij} = 0) requires [64],

2αKij = Diβj +Djβi −
2

3
δijDkβ

k (2)

whereKij is the extrinsic curvature tensor andDi are 3-space covariant derivatives. This

conformally flat condition on the metric provides a numerically valid initial solution to

the Einstein equations. The vanishing of the Weyl tensor for a stationary system in three

spatial dimensions guarantees that a conformally flat solution to the Einstein equations

exists.

One consequence of this conformally-flat approximation to the three-metric is that

the emission of gravitational radiation is not explicitly evolved. Nevertheless, one can

extract the gravitational radiation signal and the back reaction via a multipole expansion

[39, 65]. An application to the determination of the gravity wave emission from the

quasi-circular orbits computed here is given in a subsequent paper [61]. The advantage

of this approximation is that conformal flatness stabilizes and simplifies the solution to

the field equations.

As a third gauge condition, one can choose separate coordinate transformations for

the shift vector and the hydrodynamic grid velocity to separately minimize the field and

matter motion with respect to the coordinates. This set of gauge conditions is key to the

present application. It allows one to stably evolve up to hundreds and even thousands

of binary orbits without the complexity of other solutions in strong gravity.

Given a distribution of mass and momentum on some manifold, then one first

solves the constraint equations of general relativity at each time for a fixed distribution

of matter. One then evolves the hydrodynamic equations to the next time step. Thus,

at each time slice a solution to the relativistic field equations and information on the

hydrodynamic evolution is obtained.

The solution of the field variables φ, α, and βi reduce to simple Poisson-like

equations in flat space. The Hamiltonian constraint [64], is used to solve for the

conformal factor φ [39, 66],

∇2φ = −2πφ5

[

W 2(ρ(1 + ǫ) + P )− P +
1

16π
KijK

ij
]

. (3)

In the Newtonian limit, the RHS is dominated [39] by the proper matter density ρ, but

in strong fields there are also contributions from the internal energy density ǫ, pressure

P , and extrinsic curvature. The source is also significantly enhanced by the generalized

curved-space Lorentz factor W ,

W = αU t =
[

1 +

∑

U2

i

φ4

]1/2

, (4)

where U t is the time component of the relativistic four velocity and Ui are the covariant

spatial components. This factor, W , becomes important near the last stable orbit as

the specific kinetic energy of the stars rapidly increases.
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In a similar manner [39, 66], the Hamiltonian constraint, together with the maximal

slicing condition, provides an equation for the the lapse function,

∇2(αφ) = 2παφ5

[

3W 2[ρ(1 + ǫ) + P ]− 2ρ(1 + ǫ) + 3P +
7

16π
KijK

ij
]

.(5)

Finally, the momentum constraints yields [64] an elliptic equation for the shift

vector [41, 67],

∇2βi =
∂

∂xi

(1

3
∇ · β

)

+ 4πρi
3
, (6)

where

ρi
3
= 4αφ4Si +

1

4π

∂ln(α/φ6)

∂xj

(∂βi

∂xj
+

∂βj

∂xi
−

2

3
δij

∂βk

∂xk

)

. (7)

Here the Si are the spatial components covariant momentum density as defined below.

2.2. Relativistic Hydrodynamics

To solve for the fluid motion of the system in curved spacetime it is convenient to use

an Eulerian fluid description [68]. We begin with the perfect fluid stress-energy tensor,

Tµν = Pgµν + (ρ(1 + ǫ) + P )UµUν , (8)

where Uν is the relativistic four velocity.

By introducing the usual set of Lorentz contracted state variables it is possible to

write the relativistic hydrodynamic equations in a form which is reminiscent of their

Newtonian counterparts [68]. The hydrodynamic state variables are: the coordinate

baryon mass density,

D = Wρ ; (9)

the coordinate internal energy density,

E = Wρǫ ; (10)

the spatial three velocity,

V i = α
Ui

φ4W
− βi ; (11)

and the coordinate momentum density,

Si = (D + E + PW )Ui . (12)

In terms of these state variables, the hydrodynamic equations are as follows: The

equation for the conservation of baryon number takes the form,

∂D

∂t
= −6D

∂ log φ

∂t
−

1

φ6

∂

∂xj
(φ6DV j) . (13)

The equation for internal energy evolution becomes,

∂E

∂t
= − 6(E + PW )

∂ log φ

∂t
−

1

φ6

∂

∂xj
(φ6EV j)

− P
[∂W

∂t
+

1

φ6

∂

∂xj
(φ6WV j)

]

. (14)
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Momentum conservation takes the form,

∂Si

∂t
= − 6Si

∂ log φ

∂t
−

1

φ6

∂

∂xj
(φ6SiV

j)− α
∂P

∂xi

+ 2α(D + E + PW )(W −
1

W
)
∂ logφ

∂xi
+ Sj

∂βj

∂xi

− W (D + E + PW )
∂α

∂xi
− αW (D + ΓE)

∂χ

∂xi
. (15)

where the last term in Eq. (15) is the contribution form the radiation reaction potential

χ as defined in [39, 61]. In the quasi-circular orbit approximation we set this term

to zero. Including this term allows for a calculation of the realistic complete orbital

evolution via gravity-wave emission.

2.3. Angular momentum and orbital frequency

In the quasi-circular approximation (neglecting angular momentum in the radiation

field), this system has a Killing vector corresponding to rotation in the orbital plane.

Hence, for these calculations the angular momentum is well defined and given by an

integral over the space-time components of the stress-energy tensor [69], i.e.,

J ij =

∫

(T i0xj − T j0xi)dV. (16)

Aligning the z axis with the angular momentum vector then gives,

J =

∫

(xSy − ySx)dV. (17)

To find the orbital frequency detected by a distant observer corresponding to a fixed

angular momentum we employ a slightly modified derivation of the orbital frequency

than that of [59]. In asymptotically flat coordinates the angular frequency detected by

a distant observer is simply the coordinate angular velocity, i.e., one simply evaluates

ω ≡
dφ

dt
=

Uφ

U0
, (18)

In our ADM conformally flat (3+1) curved space, our only task is then to deduce

Uφ from code coordinates. For this we make a simple polar coordinate transformation

keeping our conformally flat coordinates, so

Uφ = Λφ
νU

ν =
xUy − yUx

x2 + y2
(19)

Now, the code uses covariant four velocities, Ui = giνU
ν = βiU

0 + φ4U i. This gives

U i = Uiβi(W/α)/φ4. Finally, one must density weight and volume average ω over the

fluid differential volume elements. This gives,

ω =

∫

d3xφ2(D + ΓE)[(α/W )(xUy − yUx)− (xβy − yβx)]/(x
2 + y2)

∫

d3xφ6(D + ΓE)
. (20)

This differs slightly from that of [59], but leads to very similar results. A key point

in the present application, however, is the implementation of a grid three velocity V i
G
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Table 1. TABLE PRESENTING CENTRAL DENSITY, BARYON MASS, AND

GRAVITATIONAL MASS FOR THE FIVE ADOPTED EQUATIONS OF STATE

EoS ρc (×1015g cm−3) MB (M⊙) MG (M⊙)

Γ = 2 Polytrope 0.474 1.50 1.40

MW 1.39 1.54 1.40

LS 220 0.698 1.54 ∼ 1.40

LS 375 0.492 1.54 ∼ 1.40

GLN 1.56 1.54 1.40

that minimizes the matter motion with respect to Ui and βi. Hence, the total angular

frequency to a distant observer ωtot = ω + ωG, and in the limit of rigid co-rotation,

ωtot → ωG, where ωG = xV y + yV x.

For the orbit calculations described here we model corotating stars, i.e. no spin

in the corotating frame. This minimizes matter motion on the grid. We at first run

the hydrodynamics calculation with viscous damping for sufficiently long time (a few

thousand cycles) to relax to a steady state. Then we then run with no damping. In the

present application we examine stars at large separations which are in quasi-equilibrium

circular orbits and stable hydrodynamic configurations. These orbits span the time from

the last several minutes up to orbit inspiral. Our goal is to establish the stability of

the multiple orbit hydrodynamic simulation and to examine where the strong field orbit

dynamics computed here deviates from the post-Newtonian regime.

3. Equations of state

In the following we utilize several representative equations of state spanning a range

from relatively soft to a stiff nuclear matter. The first is a polytropic equation of state

as is often employed in the literature, i.e., p = KρΓ, with Γ = 2, where in cgs units,

K = 0.0445(c2/ρn), and ρn = 2.3×1014 g cm−3. These parameters, with ρc = 4.74×1014

g cm−3, produce an isolated star having radius = 17.12 km and baryon mass = 1.5

M⊙. The second is the zero temperature, zero neutrino chemical potential EoS used to

model core-collapse supernovae [39, 59, 70]. We label this EoS as MW. The third is the

equation of state developed by Lattimer and Swesty [71] with two different choices of

compressibility, one having compressibilityK = 220 MeV, and the other havingK = 375

MeV. We denote these as LS 220 and LS 375. The fourth EoS has been developed by

Glendenning [72]. This EoS has K = 240 MeV, which is close the experimental value

[73]. We denote this EoS as GLN. Table 1 summarizes the properties of isolated neutron

stars generated with each EoS. For each case the baryon mass was chosen to obtain a

gravitational mass for each star of 1.4M⊙.

In Fig. 1 we plot the equation of state index, Γ versus density, ρ, for the various

EoS’s considered here. These are compared the simple polytropic Γ = 2 EoS often



Multiple-Orbit Simulations of Binary Neutron Stars 8

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1e+11  1e+12  1e+13  1e+14  1e+15  1e+16

Γ
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LS 220
LS 375

Figure 1. EoS index Γ vs. central density for various equations of state. Large Γ

implies a stiff EoS.

employed in the literature.

4. Code validation

4.1. Code Tests

To evolve stars at large separation distance we have decomposed the grid into a high

resolution domain with a fine matter grid around the stars and a coarser domain with

an extended grid for the fields. Figure 2 shows a schematic of this decomposition.

In the simulations presented here, the number of zones across each star is between

25 and 40 [60]. This keeps the error in the numerics below 0.5%. We utilize an artificial

viscosity (AV) shock capturing scheme. An advantage of AV schemes over Riemann

solvers is that only about half as many zones are required to accurately resolve the stars

when an AV scheme is employed compared to a Riemann solver. Figure 3 shows a plot

of orbital velocity vs. time for various Courant parameters. This figure establishes that

the routines for the hydrodynamics are stable (e.g. changing the Courant condition has

little to effect) as long as k < 0.5. Figure 4 illustrates the central density vs. number of

zones across the star when calculated with the MW EoS. This figure illustrates that here

is only a 1% error in central density with ≈ 15 zones across the star, while increasing the

number of zones across the star to > 35 produces less than a 0.1%. In the simulations
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xmax

0

ymax

0−xmax

Offset

Figure 2. Schematic representation of the field and hydrodynamics grid used in the

simulation. The inner blue grid represents the higher resolution matter grid and the

outer white grid represents the field grid. The offset will be small for small separations

and large for large separations.

below we maintain k = 0.5 and ≈ 25 zones across each star as the best choice for both

speed and accuracy needed to compute ∼ 16, 000 of orbits [16, 14].

4.2. Orbit stability

As an illustration of the orbit stability a long run was performed in which the angular

momentum was fixed at J = 2.7× 1011 cm2 and the Courant parameter set to k = 0.5.

For this orbital calculation we have used the MW EoS and each star was fixed at a

baryon mass of MB = 1.54 M⊙ and a gravitational mass in isolation of MG = 1.40 M⊙.

Figure 5 shows the evolution of the orbital angular velocity ω, versus computational

cycle for the first 30,000 code cycles corresponding to≈ 20 orbits. The stars were initially

placed on the grid using a solution of the TOV equation in isotropic coordinates for an

isolated star. The stars were initially set to be corotating but were allowed to settle

into their binary equilibrium. Notice that is takes ∼ 5, 000 cycles, corresponding to

∼ 3 orbits, just to approach the quasi-equilibrium binary solution. Indeed, the stars

continued to gradually compact and slightly increase in orbital frequency until ∼ 10

orbits, afterward, the stars were completely stable. This particular figure extends to

≈ 20 orbits.
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0.6

0.25
0.33333
0.5

Figure 3. Comparison of the orbital angular velocity ω vs. time for different values of

the Courant parameter k. As can be seen, the simulations with k = 0.25−0.5 result in

stable runs that converge to the same value, implying that a smaller k, or equivalently

a smaller δt, is not necessary and would only use extra CPU time. For comparison, we

plot a simulation with k = 0.6 to show that the stability is lost for k > 0.5.

15 20 25 30 35 40 45 50 55

Number of zones 

0.000

0.002

0.004

0.006

0.008

0.010

A
bs

[ 
   

   
   

  ]
 / 

   
 

ρ c
-

ρ 52
52ρ

Figure 4. Plot of the error in the central density versus the number of zones across

the star. It is clear that there is only a 1% error with ≈ 15 zones across the star.

Increasing the number of zones across the star so that there are > 35 zones across the

star produces less than a 0.1% error.
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Figure 5. Plot of the orbital angular velocity, ω, versus cycle. When ω stops changing

with time the simulation has reached a circular binary orbit solution. This run, which

goes over 30, 000 cycles, lasts for ≈ 20 orbits. The geometrized unit of ω in simulation

here is used.

Fig. 6 shows the contours of the lapse function α (roughly corresponding to the

gravitational potential) and corresponding density profiles at cycle numbers, 0, 5200,

and 25800 (≈ 0, 5, and 19 orbits). Figure 7 shows the contours of central density

and the orientation of the binary orbit corresponding to these cycle numbers. One can

visibly see from these figures the relaxation of the stars after the first few orbits, and

the stability of the density profiles after multiple orbits.

We note, however, that this orbit is on the edge of the ISCO. As such it could

be unstable to inspiral even after many orbits. Figures 8 and 9 illustrate this point.

In these simulations various angular momenta were computed with a slightly higher

neutron-star mass (Mb = 1.61 M⊙, Mg = 1.44 M⊙), but the same MW EoS. In this case

the orbits were followed for nearly 100 orbits.

Figure 8 illustrates orbital angular frequency vs. cycle number for three

representative angular momenta bracketing the ISCO. The orbital separation for the

lowest angular momentum (J = 2.7 × 1011 cm−2) shown on Figure 8 is just inside

the ISCO. Hence, even though it requires about 10 orbits before inspiral, the orbit is

eventually unstable.

Similarly, Figure 9 shows the central density vs. number of orbits for 11 different

angular momenta, five of which have orbits inside the ISCO. Here one can see that only

orbits with J ≥ 3.0 × 1011 cm−2 are stable. Indeed, for these cases, after about the
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Figure 6. Contours of the lapse function (left) and central density (right) at cycle

numbers 0 (top) , 5,200 (middle) , and 25,800 (bottom) corresponding to roughly 0, 5,

and 19 orbits.

first 3 orbits the orbits continue with almost no discernible change in orbit frequency

or central density. The inference is that one could easily extend this calculation from

∼ 100 to > 104 orbits with no numeric instability. As an illustration of the practicality

of that calculation, the run with J = 3.0× 1011 cm−2 required about 2 days (∼ 50 hrs)

CPU time with an Intel Haswell 2.5 Ghz CPU. Hence 104 orbits would require about 7

months of computation with our available platform.

As mentioned previously, the numerical relativistic neutron binary simulations of

[50, 51, 52, 53, 54, 55, 56, 57, 58] all start with initial data that are subsequently evolved

in a different manner than those with which they were created. One conclusion that

may be drawn from the above set of simulations, however, is that the initial data must

be evolved for ample time (> 3 orbit) for the stars to reach a true quasi-equilibrium
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Figure 7. Contours of the central density for the binary system at the approximate

number of orbits as labelled.
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Figure 8. Plot of the orbital angular velocity, ω, versus cycle. When ω stops changing

with time the simulation has reached a circular binary orbit solution. The run (a

J = 2.7 × 1011 cm2) goes over ∼ 10 obits and then becomes unstable to inspiral and

merger after ∼ 104 cycles. The stable two runs (b for J = 2.8 × 1011 cm−2 and c for

J = 2.9× 1011 cm−2), were run for 100, 000 cycles, and ≈ 100 orbits.

binary configuration. That has not always been the case.

4.3. Sensitivity of orbital parameters to the equation of state

One hope in the forthcoming detections of gravity waves is that a sensitivity exists to

the neutron star equation of state. Hence, having established the stability of the orbits,

in Table 2 we summarize the orbit parameters at various fixed angular momenta for

the various equations of state considered in this work. In the case of orbits unstable to

merger, we list the orbit parameters just before inspiral. These orbits span a range in

specific angular momenta J/M2

0
of ∼ 5 to 10. We note that, for comparable angular

momenta, our results are consistent with the EoS sensitivity study of [44] based upon a

set of equations of state parameterized by a segmented polytropic indices and an overall

pressure scale. Their calculations, however, were based upon two independent numerical

relativity codes. The similarity of their simulations to our results further confirms the

validity of the CFC approach adopted here.

The equations of state listed in Table 2 are in approximate order of increasing

stiffness from the top to the bottom. As expected, the central densities are much

higher for the relatively soft MW and GLN equations of state. Also, the orbit angular

frequencies are considerably different for the extended mass distributions of the stiff

equations of state than for the more compact soft equations of state. These extended
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Figure 9. Plot of the central density, ρc, versus the number of orbit. The dashed

lines from left (a) to right (b) correspond to J = 2.0, 2.2, 2.4, 2.6, 2.8× 1011 cm2 and

the solid lines from top (c) to bottom (d) are for J = 3.0, 3.2, 3.4, 3.6, 3.8, 4.0× 1011

cm2. The case of J = 2.8× 1011 cm2 shows stable obits until ∼ 30.

mass distributions induce a sensitivity of the emergent gravity wave frequencies and

amplitude due to the strong dependence of the gravity wave frequency to the quadrupole

moment of the mass distribution.

5. EoS dependence of Gravitational Wave Frequency

The physical processes occurring during the last orbits of a neutron star binary are

currently a subject of intense interest. As the stars approach their final orbits it is

expected that the coupling of the orbital motion to the hydrodynamic evolution of the

stars in the strong relativistic fields could provide insight into various physical properties

of the coalescing system [62, 74]. In this regard, careful modeling is needed which

includes both the nonlinear general relativistic and hydrodynamic effects as well as a

realistic neutron star equation of state.

Fig. 10 shows the EoS sensitivity of the gravity wave frequency in as a function

of proper separation dp between the stars for the various orbits and equations of state

summarized in Table 2. These are compared with the circular orbit condition in the

(post)5/2-Newtonian, hereafter PN, analysis of reference [75]. In that paper a search was

made for the inner most stable circular orbit in the absence of radiation reaction terms

in the equations of motion. This is analogous to the calculations performed here which
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Table 2. Orbital parameters for each EoS

EoS J(cm2) ω(rad s−1) dp(km) dc(km) MADM (M⊙) ρc(g cm−3)

MW 2.6× 1011 780.92 65.22 51.52 1.391 1.67× 1015

2.7× 1011 671.85 71.18 57.24 1.393 1.62× 1015

2.8× 1011 602.80 76.94 61.86 1.394 1.60× 1015

3.0× 1011 482.30 86.91 72.36 1.396 1.55× 1015

3.5× 1011 300.46 116.13 100.8 1.399 1.44× 1015

3.8× 1011 235.72 136.93 119.74 1.401 1.39× 1015

GLN 2.7× 1011 666.5 71.62 57.67 1.390 1.73× 1015

2.8× 1011 592.34 77.82 62.81 1.391 1.69× 1015

3.0× 1011 475.05 88.06 73.53 1.394 1.61× 1015

3.2× 1011 391.75 100.34 84.31 1.396 1.56× 1015

LS 220 2.7× 1011 523.59 90.77 77.34 1.403 7.18× 1014

2.8× 1011 472.08 97.53 83.08 1.404 7.14× 1014

3.0× 1011 389.96 109.78 94.84 1.405 7.06× 1014

3.2× 1011 327.04 122.51 107.10 1.407 6.98× 1014

LS 375 2.7× 1011 490.09 97.09 83.92 1.404 5.00× 1014

2.8× 1011 442.40 103.95 90.04 1.405 4.98× 1014

3.0× 1011 366.67 116.65 102.50 1.406 4.95× 1014

3.2× 1011 307.80 130.72 115.60 1.407 4.92× 1014

Polytrope 1.8× 1011 804.70 63.30 51.20 1.395 6.78× 1014

2.1× 1011 826.03 67.85 55.18 1.396 7.00× 1014

2.3× 1011 762.37 74.64 61.72 1.397 6.55× 1014

2.5× 1011 624.33 85.87 72.71 1.399 6.24× 1014

2.6× 1011 532.83 94.04 80.45 1.400 6.17× 1014

2.7× 1011 477.19 101.34 86.95 1.400 6.05× 1014

also analyzes orbit stability in the absence of radiation reaction.

In the (post)5/2-Newtonian equations of motion, a circular orbit is derived by setting

time derivatives of the separation, angular frequency, and the radial acceleration to zero.

This leads to the circular orbit condition [75],

ω2

0
= mA0/d

3

h , (21)

where ω0 is the circular orbit frequency and m = 2M0

G, dh is the separation in harmonic

coordinates, and A0 is a relative acceleration parameter which for equal mass stars

becomes,

A0 = 1−
3

2

m

dh

[

3−
77

8

m

dh
+ (ω0dh)

2

]

+
7

4
(ω0dh)

2 . (22)

Equations (21) and (22) can be solved to find the orbit angular frequency as a function

of harmonic separation dh. The gravity wave frequency is then twice the orbit frequency,

f = ω0/π.
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Figure 10. Computed gravitational wave frequency, f , versus proper separation for

each EoS as labelled. The black line corresponds to the (post)5/2-Newtonian estimate.

Frequencies obtained from the stiff and polytropic equations of state do not deviate

by more than ∼ 10% from the PN prediction until a frequency greater than ∼ 300 Hz.

The gray line is an extrapolation of the frequencies obtained using the soft MW and

GLN EoSs. These begin to deviate by more than 10% from the PN prediction at a

frequency of ∼ 100 Hz.

For illustration we show in Fig. 10 the calculated gravitational wave frequency

f = ω/π is compared to the PN expectation as a function of proper binary separation

distance up to 200 km. Although there is some uncertainty in associating our proper

distance with the PN parameter (m/r), it is nevertheless instructive to search for where

our strong field calculations deviate from the Post-Newtonian regime. For the polytropic

and stiff EoS’s there is no significant deviation (> 10%) from the 2.5PN result until

frequencies in excess of several hundred Hz. This is consistent with the results of [44] for

their multi-segmented polytropic EoSs. We find, however, that for the softer equations

of state (MW and GLN) the simulations begin to deviate ( by > 10%) from the 2.5PN

results for a gravity wave frequency as low as ∼ 100 Hz.

Indeed, a striking feature of Figure 10 is that as the stars approach one another,

the frequency varies more slowly with diminishing separation distance for the softer

equations of state. A gradual change in frequency can mean more orbits in the LIGO

window, and hence, a stronger signal to noise. In a subsequent paper [61] we will

investigate this point.
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Also, for a soft EoS the orbit becomes unstable to inspiral at a larger separation.

At least part of this difference can be attributed to the effects of the finite size of the

stars rather than point masses. Some of the effect can also be attributed to the slowing

of clocks and stretching of distance in the strong field of the neutrons stars [39].

The main parameter characterizing the last stable orbit in the post-Newtonian

calculation is the ratio of coordinate separation to total mass (in isolation) dh/m.

The analogous quantity in our non-perturbative simulation is proper separation to

gravitational mass, dP/m. The separation corresponding to the last stable orbit in

the post-Newtonian analysis does not occur until the stars have approached 6.03 m.

For M0

G = 1.4M⊙ stars, this would correspond to a separation distance of about 25 km.

In the results reported here the last stable orbit occurs somewhere just below 7.7 m0

G at

a proper separation distance of dP ≈ 30 km for both the polytropic and the MW stars.

5.1. Binding Energy

Another quantity that may be compared with PN predictions is the binding energy.

The binding energy of an isolated star is defined as

Eb = Mg −M0. (23)

The total binding energy of the system is defined as

Et = M − 2M0. (24)

In Equations (23) and (24), Mg is the ADM mass of a spherical star in isolation and M0

is the baryon mass. Also of interest is Mt = 2Mg. M is the ADM mass of the binary

system and will be different from Mt due to the binding energy between the stars [76].

The (post)2-Newtonian approximation to the binding energy is given by [76],

E2PN = −ηMgv
2

(

1−
9 + η

12
v2 −

81− 57η + η2

3
v4
)

+ 2Eb. (25)

Here, η is the ratio of the reduced mass to Mt (η = 1/4 for equal mass binaries) and

v = (Mtω)
1/3, where ω is the orbital angular velocity.

The (post)3-Newtonian approximation has also been derived [35, 36] and is

E3PN = −
muv2

2

(

1 +

(

−
3

4
−

1

12
η

)

v2

+

{

−
27

8
+

19

8
η −

1

24
η2
)

v4

+
[

−
675

64
+

(

209323

4032
−

205

96
π2 −

110

9
λ

)

η

−
155

96
η2 −

35

5184
η3
]

v6
)

. (26)

In Figures 11 and 12 we plot the total binding energy per baryon, Et/M0 versus

v2. The simulations diverge from the PN results for v > 0.15. However, as expected,

extending from from 2PN to 3PN diminishes the discrepancy. The simulations which use
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Figure 11. Plot of the total binding energy of the stars, Et, versus the three-velocity

v2 for the MW and GLN EoS’s. This is compared with the 2nd and 3rd order PN

prediction. Notice that the 2nd- and 3rdPN approximation to the binding energy is

the same for both stars while the simulation begins to deviate for v > 0.15.

the MW EoS give the same Et as the (post)
3-Newtonian solution at angular momentum

J = 3.8 × 1011 cm2. Higher order corrections in the PN expansion should bring

agreement between the simulations and the PN expansion at lower J values. This would

require (post)6-Newtonian order, where finite size effects must be taken into account in

the expansion [35]. Note also, that even though the gravitational and baryon masses

generated with the MW and GLN EoS are the same (see Fig. 10), the resulting binary

binding energies are different. Since the gravity wave frequencies are the same, but the

binding energies are different, it should be possible to distinguish the “true” EoS from

the gravitational wave signal which depends strongly on the mass distribution associated

with a given binding energy.

6. Conclusions

We have shown that we can stably evolve the relativistic hydrodynamics of binary

neutron star systems over many orbits (∼ 100) and this approach is easily scalable

to the ∼ 104 orbits within the LIGO frequency band. We also have shown that such

multiple orbit simulations are necessary to precisely determine the location of the ISCO
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Figure 12. Same as Fig. 11 for the LS 220 and LS 375 EoS’s. (Note the change of

scale for the horizontal axis).

and the true circular orbit configuration. Moreover, we have examined the sensitivity of

the orbit parameters and gravity-wave frequency to the equation of state and confirmed

that the orbital properties (e.g. central densities, orbital velocities, binding energies)

and location of the ISCO are significantly effected by the stiffness of the EoS. Having

established the viability of this approach, in future work a calculation incorporating the

gravitational back-reaction will be done to evolve various binary systems through the

∼ 104 orbits of the LIGO window.
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Tichy W 2015 Phys. Rev. D 92 124007

[50] Duez M D, Marronetti P, Shapiro S L and Baumgarte T W 2003 Phys. Rev. D 67 024004

[51] Marronetti P, Duez M D, Shapiro S L and Baumgarte T W 2003 Phys. Rev. Lett. 92 141101

[52] Miller M, Gressman P, and Suen W-M, 2004 Phys. Rev. D 69 064026

[53] Miller M 2005 Phys. Rev. D 71 104016

[54] Miller M 2007 Phys. Rev. D 75 024001

[55] Uryu K, Limousin F, Friedman J L, Gourgoulhon E and Shibata M 2006 Phys. Rev. Lett. 97

171101

[56] Kiuchi K, Sekiguchi Y, Shibata M and Taniguchi K 2009 Phys. Rev. D 80 064037

[57] Bernuzzi, Sebastiano; Nagar, Alessandro; Dietrich, Tim; Damour, Thibault 2015 Phys. Rev. Lett.

114 161103

[58] De Pietri R, Feo A, Maione F and Löffler F 2015 eprint arXiv:1509.08804
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