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Abstract

A simple approach for modelling multivariate extremes is to consider the

vector of component-wise maxima and their max-stable distributions. The

extremal dependence can be inferred by estimating the angular measure or,

alternatively, the Pickands dependence function. We propose a nonparametric

Bayesian model that allows, in the bivariate case, the simultaneous estimation

of both functional representations through the use of polynomials in the Bern-

stein form. The constraints required to provide a valid extremal dependence

are addressed in a straightforward manner, by placing a prior on the coeffi-

cients of the Bernstein polynomials which gives probability one to the set of

valid functions. The prior is extended to the polynomial degree, making our

approach fully nonparametric. Although the analytical expression of the poste-

rior is unknown, inference is possible via a trans-dimensional MCMC scheme.

We show the efficacy of the proposed methodology by means of a simulation

study. The extremal behaviour of log-returns of daily exchange rates between

Great Britain pound vs USA dollar and Great Britain pound vs Japan yen is

analysed for illustrative purposes.
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1 Introduction

The estimation of future extreme episodes of a real process, such as for instance

heavy-rainfall, heat-waves and simultaneous losses in the financial market, is of crucial

importance for risk management. In most applications, an accurate assessment of

such types of risks requires an appropriate modelling and inference of the dependence

structure of multiple extreme values.

A simple definition of multiple extremes is obtained by applying the definition of

block (or partial)-maximum (Coles 2001, Ch. 3) to each of the variables considered.

Then, the probabilistic modelling concerns the joint distribution of the so-called ran-

dom vector of component-wise (block) maxima, in short sample maxima, whose joint

distribution is named a multivariate extreme value distribution (de Haan and Ferreira

2006, Ch. 6). Within this approach parametric models for the dependence structure

have been widely discussed and applied in the literature (e.g. Coles 2001, Beranger

and Padoan 2015), but a major downside is that a model which may be useful for a

specific application is often too restrictive for many others. As a consequence, more

recently, much attention has been devoted to the study of nonparametric estimators

or estimation methods for assessing the extremal dependence (see e.g. de Haan and

Ferreira 2006, Ch. 7). Some examples focused on the estimation of the Pickands

dependence function (Pickands 1981) are provided in Capéraà et al. (1997), Genest

and Segers (2009), Bücher et al. (2011), Berghaus et al. (2013) and Marcon et al.

(2014), among others.

In order to provide a comprehensive discussion of our approach, we restrict our

attention to the bivariate case, that is a two-dimensional vector of sample maxima.

Specifically, we describe how Bernstein polynomials can be used to model the extremal

dependence within a Bayesian nonparametric framework. The proposal has two key

features. Firstly, the use of this particular polynomial expansion makes it possible

to accommodate different representations of the dependence structure, such as the

Pickands dependence function and the angular (or spectral) distribution. This ensures

that in each case, there is the fulfillment of some specific constraints which guarantee

that a proper extreme value distribution is defined. Secondly, model fitting, inference

and model assessment can be achieved via MCMC methods, preserving the relation

between both extremal dependence forms. Information about the polynomial degree

is yielded from the data as part of the inferential procedure, and there is no need for
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a preliminary estimate as is often the case when regularization methods are applied,

(e.g. Fils-Villetard et al. 2008, Marcon et al. 2014). Additionally, there is no need

to choose between representing the dependence by means of the angular distribution

or the Pickands dependence function.

The paper is organised as follows. In Section 2 we briefly describe some basic

concepts regarding the extremal dependence structure. In Section 3 we propose a

Bayesian nonparametric model for the extremal dependence along with an MCMC

approach for posterior simulation. Section 4 illustrates the flexibility of the proposed

approach by estimating the dependence structure of data simulated from some pop-

ular parametric dependence models. Section 5 provides a real data application, in

which we analyse the exchange rates of the Pound Sterling against the U.S. Dollar

and Japanese Yen, jointly, at extremal levels during the past few decades.

2 Extremal Dependence

In this section, we present some main ideas regarding multivariate extreme theory,

which we use for the development of the framework we propose. For more details see

e.g. Chapter 6 of de Haan and Ferreira (2006).

Assume that Z = (Z1, Z2) is a bivariate random vector of sample maxima with

an extreme value distribution G. A distribution as such has the attractive feature

of being max-stable, that is for all n = 1, 2, . . ., there exists sequences of constants

an, cn > 0 and bn, dn ∈ R such that Gn(anz1 + bn, cnz2 + dn) = G(z1, z2), for all

z1, z2 ∈ R. Hereafter, we refere to G as a bivariate max-stable distribution. In

particular, the margins of G, denoted by Gi(z) = P(Zi ≤ z), for all z ∈ R and

i = 1, 2, are members of the Generalised Extreme Value (GEV) distribution (Coles

2001, Ch. 3), i.e.

Gi(zi;µi, σi, ξi) = exp

{
−
(

1 + ξi
zi − µi
σi

)−1/ξi

+

}
, (2.1)

where zi, µi, ξi ∈ R, σi > 0 for i = 1, 2 and (x)+ = max(0, x) and, hence, are univariate

max-stable distributions. Taking the transformation, with the marginal parameters

assumed to be known,

Yi =

(
1 + ξi

Zi − µi
σi

)−1/ξi

+

, i = 1, 2, (2.2)
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then, the marginal distributions of Y = (Y1, Y2) are unit Fréchet, i.e. P(Yi ≤ y) =

e−1/y, for all y > 0 with i = 1, 2, and the bivariate max-stable distribution takes the

form

G0(y1, y2) = exp{−L(1/y1, 1/y2)}, y1, y2 > 0, (2.3)

where L : [0,∞)2 → [0,∞), named the stable-tail dependence function (de Haan and

Ferreira 2006, pp. 221–226) is given by

L(x1, x2) = 2

∫
S

max{x1u, x2(1− u)}H(du), x1, x2 ≥ 0. (2.4)

S = [0, 1] denotes the one-dimensional simplex and H, named the angular (or spec-

tral) distribution, is a probability distribution supported on S and satisfying the

following condition ∫
S
uH(du) =

∫
S
(1− u)H(du) = 1/2, (C1)

that is, the center of the mass must be at 1/2. We stress that marginal parameters

can always be estimated separately using some standard methods (e.g. de Haan

and Ferreira 2006, Ch. 3, Coles 2001, Ch. 3,9) and hence be used to achieve the

representation (2.3).

Furthermore, for any max-stable distribution G0 there exists a finite measure, H∗

on S, satisfying the mean conditions
∫
S uH

∗(du) =
∫
S(1 − u)H∗(du) = 1, which

implies H∗(S) = 2, such that G0 can be represented by the general form (2.3), where

the angular distribution is given by the normalization H := H∗/H∗(S). We will use

H to denote both the probability measure and its distribution function, since the

difference can be derived from the context. Conversely any probability distribution

H, satisfying (C1), generates a valid bivariate max-stable distribution (de Haan and

Ferreira 2006, Ch. 6).

Consider the partition ({0}, S̊, {1}) of S, where S̊ = (0, 1) is the interior of the

simplex. The angular distribution H can place mass on S̊ as well as on the vertices

{0} and {1} and, if H is absolutely continuous on S̊, we can write

H(u) = p0 + 1S̊(u)H̊(u) + p11{1}(u), u ∈ S (2.5)

where 1A denotes the indicator function of the set A, p0, p1 ∈ [0, 1/2] denotes point

masses at the vertices of the simplex, and H̊(u) =
∫ u

0
h(t) dt for some continuous
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h : S̊ → [0, 1] such that
∫ 1

0
h(u) du = 1−p0−p1. Notice that, by the mean constraint

(C1), the following two identities must be satisfied

p1 = 1/2−
∫ 1

0

uh(u) du, p0 = 1/2−
∫ 1

0

(1− u)h(u) du. (2.6)

In the following sections, we will denote by H the space of angular distributions

defined in this way, so that each H ∈ H is defined by a valid triplet (p0, p1, H̊). The

properties of the stable-tail dependence function are: a) it is homogeneous of order

1, that is L(vx1, vx2) = vL(x1, x2) for all v, x1, x2 > 0; b) L(x, 0) = L(0, x) = x

for all x > 0; c) it is continuous and convex, i.e. L(v(x1, x2) + (1 − v)(x′1, x
′
2)) ≤

vL(x1, x2) + (1 − v)L(x′1, x
′
2) for all x1, x2, x

′
1, x
′
2 ≥ 0 and v ∈ S; d) max(x1, x2) ≤

L(x1, x2) ≤ x1 + x2 for all x1, x2 ≥ 0. The lower and upper bounds of the last

condition represent the cases of complete dependence and independence, respectively.

By the homogeneity of L we have that, for all x1, x2 ≥ 0,

L(x1, x2) = (x1 + x2)A(w), A(w) = 2

∫
S

max{w(1− u), (1− w)u}H(du), (2.7)

where w = x2/(x1 + x2) ∈ S. The function A is called the Pickands dependence

function and, by the properties of L, it satisfies the following conditions:

(C2) A(w) is convex, i.e., A(aw+(1−a)w′) ≤ aA(w)+(1−a)A(w′), for a, w,w′ ∈ S;

(C3) A(w) has lower and upper bounds

1/2 ≤ max (w, 1− w) ≤ A(w) ≤ 1; w ∈ S.

In condition (C3), the lower and upper bounds represent the cases of complete de-

pendence and independence, respectively. In other words, any Pickands dependence

function belongs to the class A of functions A : S → [1/2, 1] satisfying the above

conditions (Falk, Hüsler, and Reiss, 2010, Ch. 4). Conversely, if a function A ∈ A
has second derivatives on S̊, then a proper angular distribution H exists, such that

A(w) = 1 + 2

∫ w

0

H(u)du− w

and therefore A′(w) = −1 + 2H(w) and A′′(w) = 2h(w). Finally, it follows from (2.6)

that the masses placed by H on the vertices of the simplex can be expressed in terms

of the Pickands dependence function as p0 = {1 + A′(0)}/2 and p1 = {1− A′(1)}/2.
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The angular distribution is also used to define another important tail dependence

function, R, given by

R(x1, x2) = 2

∫
S

min{x1u, x2(1− u)}H(du), x1, x2 ≥ 0, (2.8)

or equivalently, by R(x1, x2) = x1 + x2 − L(x1, x2). This function can be used to

approximate the probability of simultaneous exceedances, i.e.

P(Y1 > y1, Y2 > y2) ≈ R(1/y1, 1/y2), (2.9)

for high enough thresholds y1, y2 > 0 (see e.g. Beranger and Padoan 2015), as well as

to compute the coefficient of upper tail dependence (see e.g. Coles 2001, p.163), i.e.

χ = lim
y→+∞

P(Y1 > y|Y2 > y) = lim
y→+∞

P(Y2 > y|Y1 > y) ≡ R(1, 1) ∈ [0, 1]. (2.10)

This is an important summary measure of the extremal dependence between two

random variables. Y1 and Y2 are independent in the upper tail when χ = 0, whereas

they are completely dependent when χ = 1.

3 Bayesian nonparametric modeling of H and A

3.1 Bernstein Polynomials Representation

The basic idea behind our proposal is to define both the angular distribution function

and the Pickands dependence function as polynomials, restricted to S, of the form∑k
j=0 ajbj(x), where each aj is a real-valued coefficient and the bj(·), j = 1, 2, . . . form

an adequate polynomial basis. Denote by Pk the space of polynomials of degree k, and

let H and A be the sets of angular distributions and Pickands dependence functions,

respectively, as in the previous section. Since
⋃∞
k=0Pk is dense in the spaces H and

A, we know that any angular distribution function in H as well as any Pickands

dependence function in A, can be arbitrarily well approximated by a polynomial in

Pk for some k. Due to their shape preserving properties, it is convenient to use

a Bernstein polynomial basis that, when restricted to S, will allow us to construct

proper functions on H and A by identifying valid sets of coefficients.

For each k = 1, 2, . . ., the Bernstein basis polynomials of degree k are defined as

bj(x; k) =

(
k

j

)
xj(1− x)k−j, j = 0, . . . , k. (3.1)
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where (
k

j

)
=

k!

j!(k − j)!
.

is the binomial coefficient. For x ∈ S, a simple identity relates the polynomial basis

and Beta density functions, namely (k + 1)bj(x; k) = Be(x|j + 1, k − j + 1), where

Be(·|a, b), denotes the beta density function with shape parameters a, b > 0.

We start to develop the model by defining the continuous component H̊ of an

angular distribution in expression (2.5) as polynomial of degree k in the Bernstein

form (see e.g., Lorentz 1986), for some k = 0, 1, . . . i.e.

H̊k(u) :=
k∑
j=0

ηjbj(u; k). (3.2)

Notice that, in order to construct an angular distribution, we only require the restric-

tion of H̊ to S̊, but the polynomial itself is well defined and infinitely differentiable

on the whole real line. It is straightforward to show that the first derivative of H̊k

with respect to u can be expressed as a finite linear combination of beta densities.

H̊ ′k(u) =
k−1∑
j=0

(ηj+1 − ηj)Be(u|j + 1, k − j) =: hk−1(u), u ∈ S. (3.3)

It can be verified that∫ 1

0

hk−1(u) du =
k−1∑
j=0

(ηj+1 − ηj) = ηk − η0 (3.4)

and ∫ 1

0

uhk−1(u) du =
k−1∑
j=0

(ηj+1 − ηj)
j + 1

k + 1
, (3.5)

∫ 1

0

(1− u)hk−1(u) du =
k−1∑
j=0

(ηj+1 − ηj)
k − j
k + 1

. (3.6)

In order for H̊ to define a valid angular distribution H, the coefficients, η0, . . . , ηk,

must be such that the integrals (3.4)-(3.6) take the values 1− p0 − p1, 1/2− p1 and

1/2−p0, respectively. Furthermore, recall from the previous section that, p0 = H({0})
and p1 = H({1}), so we must have that H̊k(1) = 1 − p0 − p1 and H̊k(0) = 0. All of

these conditions hold under the following restrictions
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(R1) 0 = η0 ≤ η1 ≤ . . . ≤ ηk = 1− p0 − p1;

(R2) η1 + · · ·+ ηk = (k + 1)(1/2− p0);

(R3) 0 < p0 < 1/2 and max{0, kp0 − (k − 1)/2} < p1 < p0/k + (k − 1)/2k

Alternatively, we can start by defining a Pickands dependence function as poly-

nomial of degree r in the Bernstein form, for some r = 0, 1, . . ., i.e.

Ar(w) :=
r∑
j=0

βjbj(w; r), w ∈ S, (3.7)

Ar must satisfiy conditions (C2)-(C3) in order to be a proper Pickands dependence

function, and this happens if and only if the following restrictions on the coefficients

hold

(R4) β0 = βr = 1 ≥ βj, for all j = 1, . . . , r − 1;

(R5) for some 0 < p0 < 1/2 and max{0, (r − 1)p0 − (r − 2)/2} < p1 < p0/(r − 1) +

(r − 2)/2(r − 1), β1 = r−1+2p0
r

and βr−1 = r−1+2p1
r

;

(R6) βj+2 − 2βj+1 + βj ≥ 0, j = 0, . . . , r − 2.

Taking the second derivative of Ar with respect to w we obtain

A
′′

r (w) = r
r−2∑
j=0

(βj+2 − 2βj+1 + βj) Be(w|j + 1, r − j − 1) =: hr−2(w), w ∈ S. (3.8)

It can be checked that∫ 1

0

hr−2(w) dw = r(2− β1 − βr−1) ≡ 2− {1 + A′r(0)} − {1− A′r(1)}, (3.9)

where A′r is the first derivative of Ar with respect to w, and∫ 1

0

w hr−2(w) dw = r(1− βr−1) ≡ 1− {1− A′r−1(1)}, (3.10)∫ 1

0

(1− w)hr−2(w) dw = r(1− β1) ≡ 1− {1 + A′r−1(0)} (3.11)

and these results are consistent with the theoretical arguments discussed in Section

2. The following result provides a major benefit of defining the angular distribution

function and the Pickands dependence function through polynomials.
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Proposition 3.1. Let H be defined by (2.5) with point masses p0 and p1, and H̊ as

in (3.2). And let A be defined by (3.7). Then, the following are equivalent:

i) Starting from H, given by H̊k, one may recover A = Ar by setting r = k + 1

and the coefficients:

βj =
2

k + 1

(
j−1∑
i=0

ηi + j p0 +
k + 1− j

2

)
, j = 0, . . . , k + 1 (3.12)

Conversely, starting from A = Ar one may recover H from the point masses p0

and p1 and the polynomial H̊k given by k = r − 1 and the coefficients:

ηj =
k + 1

2

(
βj+1 − βj +

1− 2p0

k + 1

)
, j = 0, . . . , k. (3.13)

ii) Restrictions (R1)-(R3) are satisfied and H meets condition (C1), if and only if

restrictions (R4)-(R6) are verified and A meets conditions (C2)-(C3).

This result tells us that, by using Bernstein polynomials, the two representations

of the extremal dependence namely, the angular distribution and the Pickands de-

pendence function can be recovered simultaneously, through a one-to-one relationship

between their corresponding coefficients. In other words the ηj coefficients in equation

(3.2) can be calculated from the βj coefficients of equation (3.7) and vice versa. And

when one set of coefficients satisfies restrictions (R1)-(R3) the corresponding trans-

formation also satisfies conditions (R4)-(R6). As a consequence, for inference, there

is no need to choose between different characterizations of the dependence structure.

3.2 Prior, likelihood and posterior

We provide details of the key components of a Bayesian nonparametric model for the

extremal dependence, which can be formulated in terms of H or A, indifferently since,

as seen in Section 3.1, one expression can always be recovered from the other. We

show that the explicit forms of the prior distribution and the likelihood function for

one approach are linked to those of the other.

We construct a prior distribution on the space H of valid angular distributions

through the expression H(u) = p0 + 1S̊(u)H̊(u) + 1{1}(u)p1 for all u ∈ S, by writing

H̊ := H̊k as in (3.2), for some polynomial order k. For simplicity we assume in the
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present work that p0 and p1 are known constants. Thus, the prior on H is induced

by a joint prior on (k, η0, . . . , ηk). which we denote by

Π(ηk, k) = Π(ηk|k) · Π(k). (3.14)

Note that for k < 3, the resulting dependence structure is trivial, so we will only

consider the case when k ≥ 3. A convenient choice for the prior distribution of the

polynomial order is to use Π(k) = Pois(k + 3|κ), where κ > 0 is the rate of Poisson

distribution. We propose to set the hyperparameter equal to κ = exp(−2χ + 3.5),

where χ is as in (2.10). In this way the range of κ is between around 4 and 33,

favoring low values in the case of strong dependence and high values in the case of

weak dependence. In order to define a valid prior on H, Π(ηk|k) must assign for each

k ∈ N, probability one to the set E = E (k) ⊂ Sk+1 of (k + 1)-dimensional vectors

satisfying (R1)-(R3). Recalling that η0 and ηk are fixed values depending only on

p0 and p1, we construct such a prior by focusing on the differences Xj = ηj − ηj−1,

j = 1, . . . , k − 1, and assuming that they are conditionally uniformly distributed on

appropriate intervals that we will now specify. It follows from the restrictions that

k−1∑
j=1

ηj =
k−1∑
j=1

(k − j)Xj = (k − 1)/2 + p1 − kp0. (3.15)

Thus, letting X1 = η1, it follows, with few manipulations, that

max(0, (3− k)/2 + p1 − k p0) ≤ X1 ≤ 1/2 + (p1 − k p0)/(k − 1).

We repeat this reasoning sequentially, for j = 1, . . . , k − 1. Since ηj−1 ≤ ηj ≤ 1 we

have that 0 ≤ Xj ≤ 1 − (X1 + · · · + Xj−1) and from (3.15) with few algebraic steps

we obtain the inequalities

Xj ≥ max

(
0,

2j + 1− k
2

+ p1 − kp0 −
j−1∑
i=1

(j + 1− i)Xi

)
and

Xj ≤ min

(
1−

j−1∑
i=1

Xi,
(k − 1)/2 + p1 − kp0 −

∑j−1
i=1 (j + 1− i)Xi

k − j

)
.

Re-expressing the inequalities we have that, for j = 1, . . . , k − 1, ηj ∈ Ej, given by

Ej =

{
max

(
ηj−1,

2j + 1− k
2

+p1−kp0−
j−1∑
i=1

ηi

)
,
(k − 1)/2 + p1 − kp0 −

∑j−1
i=1 ηi

k − j

}
.
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We therefore let ηj|(η1, . . . , ηj−1) ∼ unif(ηj|Ej), for j = 1, . . . , k − 1, i.e., conditional

on (η1, . . . , ηj−1), ηj is chosen, a priori, to be uniform in Ej. Thus, given k, we obtain

a valid prior

Π(ηk|k) = 1{0}(η0) Π(η1)
k−1∏
j=2

Π(ηj|η1, . . . , ηj−1)1{1−p0−p1}(ηk)

= 1{0}(η0)
k−1∏
j=1

unif(ηj|Ej)1Ej
(ηj)1{1−p0−p1}(ηk). (3.16)

A direct consequence of Proposition 3.1 is that a valid prior distribution is induced

also on the space A of Pickands dependence functions, as expressed by the following

result.

Corollary 3.2. Let B = B(k) ⊂ Sk+2 be the space of (k + 2)-dimensional vectors

satisfying restrictions (R4)-(R6). Then, for any fixed k ≥ 3 the prior distribution

(3.16) induces a prior on the beta coefficients of A given by

Π(βk|k) = 1{1}(β0)1{(k+2p0)/(k+1)}(β1)

(
k + 1

2

)k−2 k−1∏
j=2

unif(βj|Bj)1Bj
(βj)

× 1{(k+2p1)/(k+1)}(βk)1{1}(βk+1).

In other words, βj|(β2, . . . , βj−1) ∼ unif(βj|Bj), where

Bj =

[
max

{
2 βj−1 − βj−2,

1

k + 1

(
j + 2p1 − 2p0(k − j)

)}
,

1

k − j + 1

(
k + 2p1

k + 1
+ (k − j)βj−1

)]
.

This result follows from the multivariate change of variables. Let β(η| k) denotes

the inverse transformation, with expression (3.12), of the transformation η(β| k), with

expression (3.13). The Jacobian of the inverse transformation is {(k+1)/2}k−2. Then,

by applying the change of variable formula we obtained the conditional probability

density function reported above.

We derive the analytical expression of the likelihood function and we focus on the

joint distribution for the bivariate observations based on the Pickands dependence

function (2.7), therefore avoiding the need for computing an integral that would be
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required by the alternative representation in (2.8). With this, the joint probability

density function (p.d.f.) is given by

g(y1, y2) = |J(y1, y2)| ∂2

∂x1∂x2

G(1/x1, 1/x2)
∣∣∣
x1=1/y1,x2=1/y2

,

for all y1, y2 > 0, where J(y1, y2) = (y1y2)−2. Therefore, we obtain

g(y1, y2) = G(y1, y2)

[
{A(w)− wA′(w)} {A(w) + (1− w)A′(w)}

(y1y2)2
+

A′′(w)

(y1 + y2)3

]
.

Let Y 1:n = (Y 1, . . . ,Y n) be i.i.d. copies of a bivariate max-stable random vector,

with joint density g(y1, y2) and polynomial Pickands dependence function given by

expression (3.7), for fixed r = k + 1 (following Proposition 3.1). Then, the log-

likelihood function for the data is

`(y1:n|θθθ) = −
n∑
i=1

(
1

y1,i

+
1

y2,i

) k+1∑
j=0

βj bj(wi; k + 1)

+
n∑
i=1

log

{∑k+1
j=0 βj bj(wi; k + 1)− wi (k + 1)

∑k
j=0(βj+1 − βj) bj(wi; k)

(y1,iy2,i)2

×
∑k+1

j=0 βj bj(wi; k + 1) + (1− wi) (k + 1)
∑k

j=0(βj+1 − βj) bj(wi; k)

(y1,iy2,i)2

+
k (k + 1)

∑k−1
j=0(βj+2 − 2 βj+1 + βj) bj(wi; k − 1)

(y1,i + y2,i)3

}
, (3.17)

where θθθ = (k, β0, . . . , βk+1) ∈ ΘΘΘ ⊆ (N×Sk+2). We denote by L(y1:n|θθθ) the associated

likelihood function. We may once again apply Proposition 3.1, to obtain the log-

likelihood function in terms of θθθ = (k, η0, . . . , ηk) ∈ ΘΘΘ ⊆ (N × Sk+1) which, abusing

terminology, can be seen as a reparametrization. More formally, this corresponds to

the representation of the angular distribution (2.5), in the joint distribution (2.3), by

means of a polynomial angular distribution given by the expression (3.2).

There is no closed form for the posterior distribution Πn(θθθ|Y 1:n) ∝ Π(θθθ)L(y1:n|θθθ),
regardless of the representation considered. For this reason we base the model infer-

ence on a complex MCMC posterior simulation scheme and, to be concise, we only
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describe the estimation procedure of the polynomial angular distribution, since it has

been established that the Pickands dependence function can be obtained through a

transformation. The main difficulty stems from the fact that, at each MCMC iter-

ation, the dimension of the vector of coefficients ηk changes with k. We therefore

resort to a trans-dimensional MCMC scheme proposed by Godsill (2001) and, in the

infinite-dimensional case, applied by Antoniano-Villalobos and Walker (2013). Thus,

we extend Π(ηk, k) to

Π(η∞, k) = Π(ηk|k) Π(k)
∏
j>k

Π(ηj),

where η∞ = (η0, η1, . . .) denotes an infinite sequence of which, given k only the first

k + 1 elements are relevant, and Π(ηj) is any fully known distribution. In order to

update the pair (k(s),η
(s)
∞ ) to the current state s of the Markov chain, we propose a

Metropolis-Hastings step with the following proposal distribution,

q(k,η∞|k(s),η(s)
∞ ) = qk(k|k(s)) · qη(ηk|k) ·

∏
j>k

Π(ηj)

where qη(ηk|k) coincides with the prior Π(ηk|k), Π(ηj) is a fully specified density on

S and

qk
(
k = k(s) + 1|k(s)

)
=

1 if k(s) = 3

1/2 if k(s) > 3

and

qk
(
k = k(s) − 1|k(s)

)
=

0 if k(s) = 3

1/2 if k(s) > 3.

Thus, given the current states s of the Markov chain and the proposals indexed by

s+ 1, the acceptance probability depends on the ratio

p
(
k(s+1),η

(s+1)

k(s+1) , k
(s),η

(s)

k(s)

)
=

Πn(k(s+1),η
(s+1)
∞ |Y 1:n) q(k(s),η

(s)
∞ |k(s+1),η

(s+1)
∞ )

Πn(k(s),η
(s)
∞ |Y 1:n) q(k(s+1),η

(s+1)
∞ |k(s),η

(s)
∞ )

which, for any k(s) > 3, simplifies to

p
(
k(s+1),η

(s+1)

k(s+1) , k
(s),η

(s)

k(s)

)
=

(k(s) − 3)!κk
(s+1)−k(s)

(k(s+1) − 3)!

L(y1:n; k(s+1),η
(s+1)

k(s+1))

L(y1:n; k(s),η
(s)

k(s)
)

,

For k(s) = 3, we have k(s+1) = k(s) + 1 with probability one, so there is a 1/2 factor

multiplying the ratio.

This leads to the following algorithm

13



Algorithm 3.3. MCMC scheme to draw samples from the posterior distribution

Πn(k,ηk|Y 1:n) of the polynomial order and coefficients.

1. Set s = 0 and some starting values for the parameters
(
k(s),η

(s)

k(s)
∈ Ek(s)

)
;

2. Repeat M times the update of the parameters according to:

(a) Draw the proposals k(s+1) ∼ qk(k|k(s)) and η
(s+1)

k(s+1) ∼ qη(ηk|k(s+1), k(s),ηk(s));

(b) Compute the acceptance probability:

p = min

(
p
(
k(s+1),η

(s+1)

k(s+1) , k
(s),η

(s)

k(s)

)
, 1

)
;

(c) Draw U ∼ unif (0, 1) and if U > p then set:(
k(s+1), η

(s+1)

k(s+1)

)
=
(
k(s), η

(s)

k(s)

)
;

(d) Set s = s+ 1;

Thus, after an appropriate burning period of say m iterations, the sequence

(k(s) η
(s)

k(s)
)M+1
s=m+1 provides a sample from the posterior distribution Πn(k,ηk|Y 1:n).

An important goal of an extreme value analysis is to predict the probability of

future simultaneous exceedances, as in expression (2.9). This task can be fully per-

formed, within the Bayesian paradigm, through a Monte Carlo estimate of the pos-

terior predictive distribution, i.e.

P(Y1 > y∗1, Y2 > y∗2|Y 1:n) =

∫
θθθ∈ΘΘΘ

P(Y1 > y∗1, Y2 > y∗2|θθθ)Πn(θθθ|Y 1:n)dθθθ, (3.18)

where y∗1, y
∗
2 > 0 are unobserved thresholds. For each element of the posterior sample,

applying expressions (2.9), (2.5), (3.2), we have that

P(Y1 > y∗1, Y2 > y∗2|θθθ) =
1

k + 1

k−1∑
j=0

(ηj+1 − ηj)

(
(j + 1)B(y∗1/(y

∗
1 + y∗2)|j + 2, k − j)
y1

+
(k − j)B(y∗2/(y

∗
1 + y∗2)|k − j + 1, j + 1)

y2

)
,

where B(x|a, b), for x ∈ S, denotes the cumulative distribution function of a Beta

random variable with shape parameters a, b > 0. Therefore, an estimate can be

obtained by averaging these quantities over the complete posterior sample.

The efficacy of our proposed model and inference methodology is numerically

illustrated in the next section.
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4 Numerical Examples

We illustrate the performance and flexibility of our methodology with a simulation

study where the extremal dependence of some well-known parametric models is esti-

mated. For each example, a data sample of size n = 100, with common unit Fréchet

marginal distributions is simulated and the angular measure and Pickands dependence

function are estimated. Estimation results are compared with the the corresponding

theoretical functions, see Figures 1 and 2. Furthermore, we consider M + 1 = 200

thousand iterations for the MCMC Algorithm 3.3 and a burning period of m = 80

thousand iterations. Throughout the estimation procedure we fixed p0 = p1 = 0.

Firstly, the symmetric logistic model is considered (e.g., Coles 2001, p. 146), with

strong, mild and weak dependence structures obtained setting the parameter values

α = 0.45, 0.60 and 0.85, respectively. Using the criteria described in the previous

section leads to values of the prior parameter for the polynomial orders equal to

κ = 10.10, 10.74 and 16.85, respectively, for decreasing dependence strength. The

corresponding prior distributions are represented by the green line in the fourth-row

panels of Figure 1, together with the corresponding posteriors in red. Notice that the

stronger the dependence is within maxima, the more concentrated the posterior is

around its median value. The top panels in Figure 1 illustrate the estimated angular

probability density functions (red line) with the theoretical ones (black line). Specif-

ically, a reasonable functional estimator of h(w) is obtained through the polynomial

representation (3.3), with polynomial orders k∗ = 12, 11, 18, which are the median

values of each posterior distribution. The corresponding coefficient vectors, η∗k∗ are

obtained as the component-wise mean of all η
(s)
k∗ , s = m+1, . . . ,M+1, corresponding

to MCMC samples with polynomial order k∗. This is not the usual Monte Carlo esti-

mate, but it is justified by the high concentration of the posterior density around k∗

and the need to guarantee that the curve preserves the required properties (see Section

2), which would not be the case for a point-wise estimate. The grey shades represent

credibility bands obtained through functional boxplots (Sun and Genton 2011) of the

realizations from the posterior distribution of h(w) induced by the (k(s),η
(s)
k ) pairs

with k ranging between the 2.5% and 97.5% percentile of its posterior distribution.

The angular density is well estimated, in particular for strong and weak dependence

structures. Generally, the estimate approximates well the true function in the central

region of the simplex, while it may not reach the true total mass accumulated at
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the vertices of the simplex, zero and one, for the case of weaker dependence. The

corresponding estimation of the Pickands dependence function, obtained by means of

equation (3.12), is illustrated in the second-row panels. Additionally, in order to give

a measure of the variability of the posterior, credibility bands are computed based

on the same approach as for the angular distribution, say by considering the 2.5%

and 97.5% quantiles of the posterior distribution of the model (grey shade). Overall,

good results are obtained even for different strengths of dependence. Going beyond

visual checks, we measure the discrepancy between the true curve A and a realization

A(s), obtained from the Bernstein polynomial representation at each iteration of the

MCMC, through the integrated squared error:

ISE(A(s), A) =

∫ 1

0

(
A(s)(w)− A(w)

)2

dw.

In the case of strong dependence the ISE drops at the starting iterations, whereas

for the weak dependence structure the value is close to zero from the beginning as

depicted from the panels in the third row. This illustrates the fast convergence of

algorithm 3.3, for an arbitrary starting value
(
k(0),η

(0)

k(0)

)
of the chain. The same

behaviour is observed on the fourth-row panels where the prior (green line) and pos-

terior (red line) distributions for the degree of the polynomial are shown. In the left

two panels the posterior distribution concentrates more on smaller values with respect

to the prior, while in the case of weak dependence, the two distributions almost coin-

cide. Once the estimation of the dependence is assessed, we focus on the prediction of

the probabilities of future simultaneous exceedances (3.18). The resulting estimated

probabilities are displayed in the bottom-panels of Figure 1 (red line) and compared

to the theoretical ones (black line) for a grid of thresholds (y∗1, y
∗
2) ranging between

10 and 100. The point predictions of the curves match the true values, especially for

the strong and mild dependence structures. In the case of weak dependence a slight

underestimation of the probabilities is observed, with the estimated curves decreasing

a little faster then the true ones, but the symmetry in the dependence is adequately

recovered.

Analogous considerations apply to Figure 2, concerning dependence estimation for

data generated from different parametric extremal models, with a comparable mild

dependence structure. The panels in the first column correspond to the asymmetric

logistic model (Tawn 1990) with dependence parameter α = 0.6 and asymmetry

moderated by (τ1, τ2) = (0.3, 0.8). Overall, most of the dependence and, in particular
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the asymmetry, is recovered by the model. An exception concerns the behaviour of

the estimated angular probability distribution close to the vertices of the simplex and

the estimated Pickands dependence function close to end-point one. Such a result was

expected, since the asymmetric logistic model places point masses 1 − τ1 and 1 − τ2

on the corners zero and one respectively, and this stresses the need to incorporate

the point masses p0, p1 > 0. This has a consequence on the estimated predictive

probabilities. Indeed, the red contour lines of the bottom panel correctly describe

the joint probabilities of exceedance for any threshold y∗2 between 10 and 100 and

a moderately low threshold y∗1 for the first component, but show higher exceedance

probabilities than the true for increasing thresholds y∗1, due to the excessive mass

that the estimated angular distribution concentrates close to one. The prior and

posterior distributions for the degree of the polynomial seem to coincide having the

rate of the poisson distribution equal to κ = 15.27, therefore an approximated median

κ+ 1/3− 0.02/κ ≈ 16, and median of the posterior k = 16.

The second-column panels of Figure 2 refer to the Hüsler-Reiss model (Hüsler

and Reiss 1989) with dependence parameter λ = 1.2. We can see that in terms of

the Pickands dependence function, the structure is well captured even by the median

posterior curve. The median posterior curve of h(w) does not recover the smoothness

of the true curve, but it still approximates the true behaviour well enough. In fact, the

pattern of the angular density is completely covered by the credibility bands. In this

case, there is a significant difference between the prior and posterior distributions of

the polynomial order, where the former coincides with a Poisson with rate κ = 4.60

and approximated median equal to 5 and the latter to a distribution with median

k = 9. It can be interpreted as a good performance of our algorithm in terms of

incorporating the information contained in the data regarding the set of polynomials

which properly represent the dependence structure.

Finally, the last-column panels of Figure 2 illustrate the estimation of the depen-

dence structure of the Extremal-t model (Nikoloulopoulos, Joe, and Li 2009) with

scale parameter ω = 0.8 and degrees of freedom ν = 2. This extremal model places a

point mass equal to Tν+1(−ω{(ν + 1)/(1 − ω2)}1/2) on both vertices of the simplex,

where Tν+1(·) denotes a t distribution with ν+1 degrees of freedom. We fixed the rate

for the prior on the polynomial degree to κ = 8.79, corresponding to an approximated

median of 9, and the corresponding posterior median is k = 11. In this case, although

there are positive point masses on the corners, the estimation results are surprisingly
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good, as the first and the second panels show. Finally, for all three models, the ISE

is very close to zero, although it does not seem to converge to zero, stressing a good

performance of our methodology.

In conclusion, estimates of the angular distribution or the Pickands dependence

function are achieved with low computational cost. Indeed, for instance to run M +

1 = 200 thousands iterations of the MCMC algorithm, takes only 82.50 seconds, with

an intel Core i7 processor at 2.2 GHz.
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Figure 1: Bayesian nonparametric estimation of the extremal dependence for the Symmetric

Logistic model with strong, mild and weak dependence (α = 0.45, 0.6, 0.85).
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Figure 2: Bayesian nonparametric estimation of the extremal dependence for the Asym-

metric Logistic (α = 0.6, τ1 = 0.3, τ2 = 0.8), Hüsler-Reiss (λ = 1.2) and Extremal-t models

(ν = 2, ω = 0.8).
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5 Analysis of Extreme Log-return Exchange Rates

Predicting exchange rates is one of the most challenging tasks in economics. A sem-

inal paper by Meese and Rogoff (1983) showed that predictions of exchange rates

based on macroeconomic models are unable to outperform those derived from a ran-

dom walk. However, recent literature (e.g. Engel and West 2005) has established

a link between exchange rates and fundamental economic principles. The modern

asset market approach relies on a supply-and-demand analysis of the exchange rate

viewed as the price of domestic assets in terms of foreign assets (Madura 2014). In

the short-term, the exchange rate is influenced by a positive interest rate differential,

which causes an appreciation of the home currency. In the long-term, a rise in the

home country’s price level causes the depreciation of its currency, while higher pro-

ductivity or an increased demand for exports cause the appreciation of the currency

(the opposite holds true for an increased demand for imports).

The United States and Japan share some common features, such as the presence

of titanic enterprises and a similar monetary policy, so a strong dependence between

the exchange rates of the Pound Sterling against the US dollar (GBP/USD) and the

Japanese yen (GBP/JPY) is to be expected. In fact, Figure 3 shows a remarkable

relation between the daily log-returns for this pair of exchange rates from March

1991 to October 2015. Our interest is in estimating extremely high (or low) joint

levels of the exchange rates, thus we focus on monthly-maxima of log-returns. An
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Figure 3: Daily log-returns of GBP/USD and GBP/JPY exchange rates.
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Figure 4: Monthly-maxima of log-returns of GBP/USD and GBP/JPY exchange

rates.

inspection of the data shows, for instance, that monthly-maxima often occur on the

same day of the month. An adequate quantification of the dependence of the bivariate

maxima is crucial for predicting future extremely high exchange rates of GBP/JPY

based on occurrences of extremely high exchange rates of GBP/USD, and vice versa.

Figure 4 shows that an important degree of extremal dependence persists, even after

removing the trend and seasonality from each of the monthly-maxima series. Firstly,

we estimate the marginal GEV parameters of each series of residuals, by the maximum

likelihood method. The parameter estimates for GBP/USD and GBP/JPY are µ1 =

0.0055, σ1 = 0.0025, ξ1 = 0.0249 and µ2 = 0.0068, σ2 = 0.0030, ξ2 = 0.1199,

respectively. Note that ξ2 is higher than ξ1. Since the shape parameter drives the

heaviness of the tail, the larger it is, the heavier the tail is, therefore the higher

the marginal probability of observing extreme values is for GBP/JPY as opposed to

GBP/USD. Then, we transform the data to obtain unit Fréchet margins, by means

of transformation (2.2) and using the estimated marginal parameters. The data thus

transformed can be modelled as a sample from a bivariate max-stable distribution of

the type characterized by expression (2.3) and the extremal dependence of monthly-

maxima of log-returns residuals can be estimated through the method we propose

and describe in Section 3.

We set the parameter for the polynomial order to κ = 13.60, according to the

criteria previously discussed and consider an MCMC posterior sample size of 120
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Figure 5: Bayesian nonparametric estimation of the extremal dependence for the

monthly-maxima of GBP/USD and GBP/JPY log-returns of exchange rates.

thousand iterations after a burn-in of 80 thousand. The results of the analysis are

summarized in Figure 5. The first row shows the estimated angular density (left)

and the Pickands dependence function (right). The red lines correspond to the poly-

nomials with coefficients equal to the mean of the posterior sample of corresponding

coefficients, given a polynomial degree equal to the median of the posterior sample.

With this method, it is ensured that the curves considered preserve all the necessary

conditions, which would be violated by point-wise estimation methods. The use of

the median value for the polynomial degree is justified by the shape of the posterior

distribution for k (red line of the bottom-left panel) which concentrates its mass on

a relatively small number of values. The credibility bands are computed similarly

to those in the simulation study of Section 4. The green line of the bottom-left

panel represents the prior distribution of the polynomial order, so we can see that

the information contained in the data is reflected by the more concentrated posterior
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distribution. The bottom-right panel reports an estimate of the probability of joint

exceedances given by expression (2.9) for combinations of the thresholds y∗1 and y∗2

ranging between 10 and 100. These have been calculated as the Monte Carlo average

based on the posterior sample of the exceedance probabilities given by expression

(3.18) which, as stated before, depend only on the polynomial degree and the values

of the coefficients. We compared this estimate with the exceedance probability ob-

tained by considering only the curve given by the posterior mean of the coefficients,

conditional to a polynomial degree equal to the posterior median of k, as explained

previously, noting no significant differences.

The estimated angular density and Pickands dependence function are asymmetric

with GBP/JPY tending to assume larger values than GBP/USD. The two variables

are not interchangeable and the probability that GBP/JPY exceeds a high thresh-

old, given that GBP/USD has already exceeded such a threshold, is greater than

the probability of the vice versa occurring. The predictive probabilities depicted

in the bottom-right panel of Figure 5 reveal this feature. Bringing this small case

study to a close, we compute both conditional probabilities when the conditioning

variable exceeds its 99% percentile, i.e. P(GBP/JPY > q1 |GBP/USD > q1) and

P(GBP/USD > q2 |GBP/JPY > q2). To do so we proceed as follows. We calculate

q1 and q2 as the 99% percentiles of the marginal GEV distributions of log-returns of

exchange rates GBP/USD and GBP/JPY, respectively, using the estimated marginal

parameters. These are equal to q1 = 0.0162 and q2 = 0.0221. We transform these

thresholds in order to represent them in unit-Fréchet scale by

y∗i,j =

{
1 + ξi

(
qj − µi
σi

)}(1/ξi)

+

, i, j = 1, 2.

Now, with q1 we obtain the thresholds y∗2,1 = 14.12 and y∗1,1 = 57.25 and the joint

predictive probability (3.18) is equal to 0.0078. Therefore, we obtain the final result

P(GBP/JPY > q1 |GBP/USD > q1, θθθ) ≈ P(Y2 > y∗2,1 |Y1 > y∗1,1, θθθ) = 0.4513, Simi-

larly, with q2 we obtain the thresholds y∗1,2 = 450.23 and y∗2,2 = 52.32 and the joint

predictive probability (3.18) is equal to 0.0014. Therefore, we obtain the final result

P(GBP/USD > q2 |GBP/JPY > q2, θθθ) ≈ P(Y1 > y∗1,2 |Y2 > y∗2,2, θθθ) = 0.0719.

These results are consistent with our conclusion that GBP/JPY tends to assume

larger values than GBP/USD, and the conditional probability of the log-returns of

GBP/USD given high values of log-returns of GBP/JPY is quite high.
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Appendix A: Proofs

Proof of Proposition 3.1. Expressions (3.3) and (3.8) provide two alternative repre-

sentations of the angular probability density, which must be equivalent. As a conse-

quence we must have that

k
k−1∑
j=0

(
ηj+1−ηj

)
bj(w; k−1) =

r(r − 1)

2

r−2∑
i=0

(
βi+2−2βi+1+βi

)
bi(w; r−2), w ∈ [0, 1].

Since the bj(·; ·) form a polynomial basis, the equality is obtained by setting r = k+1,

the right-hand side of the above equality can be rephrased as a sum for j = 0, . . . , k−1

and observing that each of the coefficients on the right-hand expression must be equal

to the corresponding coefficient on the left side, i.e.

ηj+1 − ηj =
k + 1

2

(
βj+2 − 2βj+1 + βj

)
, j = 0, . . . , k − 1. (5.1)

For the proof of claim i), we first, consider expression (3.2), assuming that (R1)-

(R3) are verified by the ηj coefficients. In particular, η0 = 0, so applying (5.1)

recursively and solving with respect to βj+2 we obtain,

β2 =
2

k + 1

(
η1 + (k + 1)β1 −

k + 1

2
β0

)
β3 =

2

k + 1

(
η1 + η2 +

3(k + 1)

2
β1 − (k + 1)β0

)
β4 =

2

k + 1

(
η1 + η2 + η3 + 2(k + 1)β1 −

3(k + 1)

2
β0

)
β5 =

2

k + 1

(
η1 + η2 + η3 + η4 +

5(k + 1)

2
β1 − 2(k + 1)β0

)
...

βj+2 =
2

k + 1

(
j+1∑
i=0

ηi +
(j + 2)(k + 1)

2
β1 −

(j + 1)(k + 1)

2
β0

)
, (5.2)

And β0 = βk+1 = 1. In addition, we have that

p0 =
1 + A′(0)

2
=

1 + (k + 1)(β1 − β0)

2
(5.3)

and

p1 =
1− A′(1)

2
=

1− (k + 1)(βk+1 − βk)
2

(5.4)
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from which we obtain

β1 =
2 p0 + k

k + 1
, βk =

2 p1 + k

k + 1
. (5.5)

Substituting β0 and β1 in (5.2) and re-indexing, i.e. substituting j + 2 with j, the

general expression (3.12) is obtained.

Conversely, if we consider expression (3.7), assuming that (R4)-(R6) are verified

for the βj coefficients, applying (5.1) and resolving with respect to ηj+1 leads to

η1 = η0 +
k + 1

2
(β2 − 2β1 + β0)

η2 = η0 +
k + 1

2
(β3 − β2 − β1 + β0)

η3 = η0 +
k + 1

2
(β4 − β3 − β1 + β0)

η4 = η0 +
k + 1

2
(β5 − β4 − β1 + β0)

...

ηj+1 = η0 +
k + 1

2
(βj+2 − βj+1 − β1 + β0), (5.6)

which has a unique solution for η0 = 0. In addition, substituting β0 and β1 in (5.6)

and re-indexing, i.e. substituting j+ 1 with j, the general formula (3.13) is obtained.

Now, to prove claim ii), first we consider expression (3.12). When j = 0, under

the convention that η−1 = 0 we obtain β0 = 1. When j = k + 1 we obtain βk+1 =

2(η1 + · · ·+ ηk + (k+ 1)p0)/(k+ 1) and then using (R2) this becomes βk+1 = 1. Thus

(R4) is verified. When j = 1 we obtain the following result

β1 =
2p0 + k

k + 1
≥ 1− 1

k + 1
,

and when j = k, after some algebraic manipulation we obtain

βk =
2p1 + k

k + 1
≥ 1− 1

k + 1
.

Thus (R5) is verified and the above inequalities ensure that the lower bound condition

in (C3) is satisfied. Finally, from (3.12), again with some algebraic manipulation it

can be checked that

βj+2 − 2βj+1 + βt =
2

k + 1
(ηj+1 − ηj), j = 0, . . . , k − 1.
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Since ηj+1 ≥ ηj for all j = 0, . . . , k − 1 by (R1), so (R6) holds.

Starting now from (3.12), by (R6), the right hand side of (5.1) is non-negative.

Furthermore, taking j = 0, using β0 = 1 and β1 in (R5) we obtain

η0 =
k + 1

2

(
β1 − β0 +

1− 2p0

k + 1

)
=

k + 1

2

(
2p0 + k

k + 1
− 1 +

1− 2p0

k + 1
−
)

= 0.

Similarly, for j = k, using βk+1 = 1 and βk in (R5) we obtain

ηk =
k + 1

2

(
βk+1 − βk +

1− 2p0

k + 1

)
=

k + 1

2

(
1− 2p1 + k

k + 1
+

1− 2p0

k + 1

)
= 1− p0 − p1.

Therefore, (R1) is verified. Finally, applying (3.13) repeatedly and with a few alge-

braic manipulations we obtain

k∑
t=0

ηt =
k + 1

2

(
βk+1 − β0 +

(k + 1)(1− 2p0)

k + 1

)
=

(k + 1)

2
(1− 2p0) ,

where we used the fact that βk+1 = β0 = 1. Hence also (R2) is verified. Condition

(R3) follows from condition (R5), and vice versa.
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