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Abstract

The dynamical phenomena of complex networks are very difficult to predict from local in-

formation due to the rich microstructures and corresponding complex dynamics. On the other

hands, it is a horrible job to compute some stochastic parameters of a large network having

thousand and thousand nodes. We design several recursive algorithms for finding spanning trees

having maximal leaves (MLS-trees) in investigation of topological structures of Sierpinski grow-

ing network models, and use MLS-trees to determine the kernels, dominating and balanced sets

of the models. We propose a new stochastic method for the models, called the edge-cumulative

distribution, and show that it obeys a power law distribution. Keywords: Spanning trees,

scale-free, Sierpinski, algorithm

PACS 89.75.Da, 05.45.Df, 02.10.Ox, 89.75.Fb

1 Introduction

In understanding complex networks, one must know the global properties of networks as well as the

local properties such as the degree distribution. Bollobás and Riordan Ref.[2] consider a random

graph process in which vertices are added to the graph one at a time and joined to a fixed number

m of earlier vertices, where each earlier vertex is chosen with probability proportional to its degree.

This process was introduced by Barabási and Albert in Ref. [1], as a simple model of the growth

of real-world graphs such as the world-wide web.

It is well known that the dynamical phenomena of networks such as traffic and information flow

are very difficult to predict from local information due to the rich microstructures and correspond-

ing complex dynamics (Ref. [5]). On the other hands, it is difficult to implement miscellaneous

measurements on complex networks, such as the betweenness centrality (BC) b(•) =
∑

i 6=j
b(i,•,j)
b(i,j) ,

where • is a node or an edge, and b(i, •, j) is the number of shortest (i, j)-paths through • and b(i, j)

is the number of shortest (i, j)-paths. Clearly, this is a horrible job to compute the betweenness

centrality of a network having thousand and thousand nodes. But Kim et al. (Ref. [5]), after

studying the properties of the spanning trees with maximum total edge betweenness centrality,

point out that the scale-free spanning trees represent the communication kernels on networks, and

the scale-free spanning trees show robust characteristics in the degree correlation and the between-

ness centrality distribution. They defined the communication kernel of a network as the spanning

tree with a set of edges maximizing the summation of their edge BC’s on the original networks,

and investigated the structural and dynamical properties of the spanning tree of complex networks

http://arxiv.org/abs/1601.01465v1
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and the role of shortcuts in the networks, and find that the spanning trees show scale-free behavior

in the degree distributions.

As known, the Maximum Leaf Spanning Tree (MLS-tree) problem, which asks to find, for a

given graph, a spanning tree with as many leaves as possible, is one of the classical NP-complete

problems in Ref. [8]. Fernau et al. (Ref. [7]) investigated MLS-trees based on an exponential time

viewpoint that is equivalent to the Connected Dominating Set problem (CDSP), and present a

branching algorithm whose running time of O(1.8966n) has been analyzed using the Measure-and-

Conquer technique as well as a lower bound of Ω(1.4422n) for the worst case running time of their

algorithm. By means of MLS-trees of growing networks in Ref. [11], a stochastic network model

can be defined as Mt = (p(u, k, t), G(t), UG) for t ∈ [a, b], where UG is the underlying graph of

Mt that contains all nodes and links appeared in Mt for t ∈ [a, b]; p(u, k, t) is the probability of a

node u being connected with other k nodes in Mt′ (t
′ ∈ [a, t)); G(t) is the connected topological

graph of Mt. A node of Mt is called an alltime-hub node if it is not a leaf of any MLS-tree of Mt

at t ∈ [a, b]. A kernel of Mt is an induced graph over the set of alltime-hub nodes.

We show our algorithms to find MLS-trees for investigating topological structures of growing

Sierpinski network models (GSN-models) introduced in Ref. [13]. All graphs mentioned here are

simple, undirected and finite. A leaf is a node of degree one. For a graph G, we let L(G) stand for

the set of its leaves, and D(G) be the diameter of G, that is, D(G) = mini 6=j{d(i, j)}, where d(i, j)

is the geodesic distance from node i to node j. Notation |X| is the number of elements of a set X.

2 GSN-models

The graph O in Figure 1 shows the result of a fractal-operation that will be used in the following.

For a given triangle ∆ABC with three nodes A,B,C in the plane, we embed another triangle ∆abc

with three nodes a, b, c in the inner face of ∆ABC, and then join A with b and c to produce two

edges Ab,Ac; join B with c and a to form two edges Bc,Ba; and join C with a and b to generate

two edges Ca,Cb. The resulting graph O is called the base, and it has six inner triangles that

bound six regions I, III ′ II, I ′, III, II ′ in the clockwise direction. For simpler statement, we call

A,B,C three major nodes of the base O, where A is called the left major node, B the top major

node, and C the right major node, and we call a, b, c to be three submajor nodes. We restate the

construction of the networks N(t) shown in Ref. [13] by adding a labelling function below.

2.1 Construction of GSN-models

Let N(0) be the initial network pictured in Figure 1, and let V (0) be the node set of N(0). We

define a labelling f such that f(α) = 0 for each node α ∈ V (0). Do a fractal-operation to the inner

face of N(0) by adding a new triangle produces the second GSN-model N(1), and label f(β) = 1

for every node β ∈ V (1) \ V (0). To form the third GSN-model N(2) from N(1), we do a fractal-

operation to each inner triangle ∆uvw of N(1) without f(u) = f(v) = f(w), and label each node
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Figure 1: The left is for illustrating a fractal-operation, and the right is the initial network.

x ∈ V (2) \ V (1) as f(x) = 2. Go on in this way, every GSN-model N(t) can be obtained from the

previous GSN-model N(t − 1) for t ≥ 2 by doing a fractal-operation to each inner triangle ∆xyz

of N(t− 1) without f(x) = f(y) = f(z), and label each node w ∈ V (t) \ V (t− 1) as f(w) = t.

Let nv(t) and ne(t) be the numbers of nodes and edges of the network N(t), respectively. Clearly,

each N(t) has an outer face ∆ABC and an inner face ∆abc for t ≥ 1 (see Figure 2). Another way

to generate N(t) from N(t− 1) is the generalized MLS-TREE algorithm introduced later.

Figure 2: Three GSN-models N(1), N(2) and N(3).

3 Deterministic statistics of GSN-models

Four first GSN-models N(0), N(1), N(2) and N(3) are shown in Figures 1 and 2, respectively.

Notation nd(t) stands for the number of nodes of degree d and let ∆(t) be the maximum degree in

N(t). For t ≥ 2, the degree spectrum of N(t) is that each number nd(t) of nodes of degree d = 1+3k

is equal to 3 · 6t−k for k = 1, 2, . . . , t− 1, respectively; and the number of nodes of maximum degree

∆(t) = 1 + 3t is n∆(t)(t) = 6 that are the major nodes A,B,C and the subnodes a, b, c. It is easy

to show nv(t) in the formula (1) by the degree spectrum of N(t). Since N(t) is a maximal planar



3 DETERMINISTIC STATISTICS OF GSN-MODELS 4

graph, so ne(t) = 3nv(t)− 6,

nv(t) = (3 · 6t + 12)/5, ne(t) = (9 · 6t + 6)/5 (1)

as well as there are ne(t)−nv(t)+1 inner triangles in N(t) by the famous Euler’s formula on planar

graphs. By the degree spectrum of N(t) and by the linear preferential attachment rule (Ref.[1],

[4]), we can get the probability of joining a new node u out of N(t) to a node vd(t) of degree d(t)

in N(t) as follows, d(t) = k,

P (u→ vd(t)) =
k(vd(t))

∑

w∈V (t) k(w)
=

3k + 1

2ne(t)
≈

5

18
·
3k

6t
, (2)

where k(x) is the degree of node x in N(t). Again we obtain 3t−k ·P (u→ vd(t)) = P (u→ v∆(t)) for

large integers t > 0, which means that the nodes of large degrees play the role like hubs connecting

the whole network together. This phenomenon is known as “the rich get richer” paradigm.

The average (mean) degree 〈k〉 of N(t) is defined as

〈k〉 =
2ne(t)

nv(t)
=

1

nv(t)

∑

v∈V (t)

k(v). (3)

The average-square (mean-square) degree 〈k2〉 of N(t) is determined by 〈k2〉 = 1
nv(t)

∑

v∈V (t) k
2(v).

Newman [10] pointed that a giant component exists in the network if and only if 〈k2〉 − 2〈k〉 > 0.

We verify that N(t) holds 〈k2〉 − 2〈k〉 > 0 when t ≥ 2.

3.1 The edge-cumulative distribution

Motivated from the cumulative degree distribution that is an important character of scale-free

networks (Refs. [9], [13]), we propose a deterministic statistic for 2 < ti < t, named as the edge-

cumulative distribution Pe-cum(k), as follows

Pe-cum(k) =
1

ne(t)

ti
∑

j=0

ne(j)

=
1

9 · 6t + 6

ti
∑

j=0

(9 · 6j + 6)

=
1

9 · 6t + 6

[

15 + 6ti +
54

5
(6ti − 1)

]

≈
6

5
6ti−t

(4)

Plugging ti = t− ln k
ln 3 into Eq. (4) leads to Pe-cum(k) ∝

6
5k

−1−ln 2/ ln 3, which means that Pe-cum(k)

follows a power law form with the exponent γk = 1 + ln 2
ln 3 .

3.2 (αk, βk)-GSN models

By the degree spectrum of a GSN-model N(t), for 4 ≤ d ≤ 3k + 1, adding numbers of nodes of

degree d ≤ k together is S(≤ k) =
∑

d≤k nd(t) =
∑k

i=1 3·6
t−i = 3

56
t−k(6k−1), and adding degrees of
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nodes of degree d ≤ k is equal to D(≤ k) =
∑

d≤k d ·nd(t) =
∑k

i=1 3 ·6
t−i(3i+1) = 3

56
t(6− 1

6k
− 5

2k
).

Thereby, the sum S(≥ k + 1) of numbers of nodes of degree d with 3k+1 + 1 ≤ d ≤ 3t + 1 is

S(≥ k + 1) = nv(t) − S(≤ k), and the sum D(≥ k + 1) of their degrees is equal to D(≥ k + 1) =

2ne(t)−D(≤ k). If the node-number proportion S(≥k+1)
nv(t)

= αk, so we have

αk =
3 · 6t−k + 12

3 · 6t + 12
∼ 6k =

1

αk
. (5)

we get k = − lnαk

ln 6 . From the node-number proportion S(≤k)
nv(t)

= 1 − αk, we solve k = − lnαk

ln 6

too. We call N(t) an (αk, βk)-GSN-model, where βk = D(≥k+1)
2ne(t)

= 1 − D(≤k)
2ne(t)

, and furthermore

S(≥ k + 1)D(≥ k + 1) = 2αkβknv(t)ne(t). As a test, we take αk = 1
2 ·

1
106 , so k ≈ 8.0974 and the

node-degree proportions are

D(≤ k)

2ne(t)
≈ 1−

1

6

(

1

6k
+

5

2k

)

≈ 0.997, (6)

and βk ≈ 0.003. The parameters αk, βk show a description of a GSN-model as: The nodes having

degrees≤ k show a powerful controlling almost edges of N(t) as k is smaller. Conversely, the

nodes with degrees≥ k + 1 are incident to fewer edges of N(t), however, they connect the the

network model together. For example, deleting the nodes of N(k) from N(t) with t > k ≥ 1

produces 6k−1 fragments. Moreover, the deletion of nodes of V (t−1) from N(t) make the remainder

consisting of 6t−1 components (triangles) in which the total number of nodes is equal to 3 · 6t−1 =

5nv(t−1)−12. Obviously, such a deletion destroys the network made by a GSN-model into pieces,

since 3 · 6t−1/nv(t) =
5
6 .

4 MLS-trees of GSN-models

In this section we will determine the kernels of GSN-models by MLS-trees in the models, and

furthermore we present several algorithms for finding MLS-trees. The notation TM (t) denotes an

MLS-tree of N(t), and L(TM (t)) stands for the set of leaves of TM (t). It is easy to verify that

|L(TM (0))| = 2, |L(TM (1))| = 4 and |L(TM (2))| = 19.

4.1 Construction of MLS-trees of GSN-models

Let Mst(t) be the set of MLS-trees of N(t) such that three major nodes A,B,C of every MLS-tree

of Mst(t) are not leaves, and every one of Mst(t) has two edges AB,BC and has no the edge AC.

Since an MLS-tree of N(t) can be constructed by different MLS-trees of N(t− 1), so we call them

non-uniformly MLS-trees.

Generalized MLS-TREE algorithm
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Input: A GSN-model N(t) for t ≥ 3, Mst(2) = {TM
i (2) : i = 1, 2, . . . ,m2}, where each i is

called a footscript, and m2 is the number of elements of Mst(2).

Output: Mst(t).

1. Mst(2) ← Mst(2), P2 ← {(k1, k2, . . . , k6)}, where (k1, k2, . . . , k6) are permutations over all

footscripts of MLS-trees of Mst(2); i← 2.

2. If i < t, Mst(i+ 1)← ∅, go to 3; otherwise Mst(t)←Mst(i), go to 5.

3. If Pi 6= ∅, go to 4; otherwise Pi+1 ← {(k1, k2, . . . , k6)}, where (k1, k2, . . . , k6) is a permutation

of footscripts of MLS-trees of Mst(i); i← i+ 1 go to 4.

4. Take a permutation Q ∈ Pi, do (Ref. the graph O of Figure 1 and six graphs shown in

Figure 3):

(a1) rename TM
k1

(i) ∈Mst(i) as I-T
M
k1

(i) and set its left major node c← A, its top major node

A← B, and its right major node B ← C;

(a2) delete two edges AB,BC of TM
k2

(i) ∈Mst(i), and name the remainder as III ′-TM
k2

(i), and

then set its left major node c← A, its top major node B ← B, and its right major node a← C;

(a3) rename TM
k3

(i) ∈ Mst(i) as II-TM
k3

(i), and set its left major node a ← A, its top major

node B ← B, and its right major node C ← C;

(a4) delete two edges AB,BC of TM
k4

(i) ∈Mst(i) and, name the remainder as I ′-TM
k4

(i), and set

its left major node a← A, its top major node C ← B, and its right major node b← C;

(a5) rename TM
k5

(i) ∈ Mst(i) as III-TM
k5

(i), and set its left major node b ← A, its top major

node C ← B, and its right major node A← C;

(a6) delete its two edges AB,BC of TM
k6

(i) ∈ Mst(i) and, name the remainder as II ′-TM
k6

(i),

and set its left major node b← A, its top major node A← B, and its right major node c← C.

Identify the major nodes of the above six graphs I-TM
k1

(i), III ′-TM
k2

(i), II-TM
k3

(i), I ′-TM
k4

(i),

III-TM
k5

(i) and II ′-TM
k6

(i) having the same letters into one node, respectively. The resulting is just

an MLS-tree TM(i+1) of N(i+1), and TM (i+1) has three submajor nodes a, b, c and three major

nodes A,B,C (Ref. Figure 4).

Let f(A) ← 0, f(B) ← 0, f(C) ← 0, f(a) ← 1, f(b) ← 1, f(c) ← 1; f(x) ← f(x) + 1 for

x ∈ V (TM (i+ 1)) \ {a, b, c, A,B,C}; Mst(i+ 1)←Mst(i+ 1) ∪ {TM (i+ 1)}, Pi ← Pi \ {Q}, go to

3.

5. return Mst(t).

Theorem 1. Every MLS-tree of a GSN-model N(t) for t ≥ 3 has 19 · 6t−2 leaves.

Proof. It is not hard to verify that each MLS-tree of N(t) has 19 · 6k−2 leaves for k = 2, 3. So, we

can use the induction on time steps t ≥ 3. In the generalized MLS-TREE algorithm, we can select

an MLS-tree TM (3) having 19 · 63−2 leaves and take ki = kj for all permutations (k1, k2, . . . , k6)

at each time step to obtain an MLS-tree TM (t) having 19 · 6t−2 leaves for t ≥ 4. Note that N(t)

is the resulting of overlapping six models Ni(t − 1) (∼= N(t − 1)) for i = 1, 2, . . . , 6, according to

the generalized MLS-TREE algorithm. If N(t) has a spanning tree G such that |L(G)| > 19 · 6t−2,
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Figure 3: Six graphs for illustrating the generalized MLS-TREE algorithm.

Figure 4: An MLS-tree HM (3) obtained by six graphs shown in Figure 3 and the generalized

MLS-TREE algorithm.

so G induces six spanning trees Gi of Ni(t − 1) for i = 1, 2, . . . , 6 by the generalized MLS-TREE

algorithm. We have one spanning tree Gi with |L(Gi)| > 19 · 6t−2, which contradicts with the

induction hypothesis.

The number |L(TM (t))| of leaves of a MLS-tree TM (t) of N(t) is 19 · 6t−2 = 95
18nv(t − 1) − 38

3 ,

and also greater than the number nv(t)−nv(t−1) of adding new nodes to N(t−1) since 19 ·6t−2 =

6t−2 + nv(t)− nv(t− 1).

4.2 Balanced sets in GSN-models

In Ref. [12], a non-empty node subset X of node set V (t) of a GSN-model N(t) is called a TM -

balanced set if

|X ∩ TM
i (t)| = |X ∩ TM

j (t)| (7)

holds for any pair of MLS-trees TM
i (t) and TM

j (t) of N(t). Obviously, V (t) holds Eq.(7) true,

but it is trivial. Our goal is to find TM -balanced sets X 6= V (t), and such sets are called proper



4 MLS-TREES OF GSN-MODELS 8

TM -balanced sets.

Theorem 2. For every GSN-model N(t) with t ≥ 3+ k and k ≥ 0, each node of N(k) is not a leaf

of any MLS-tree of N(t).

Proof. It is not hard to see that V (0) is not a proper TM -balanced set of N(1) and N(2) (Ref.

these two models N(1) and N(2) shown in Figure 2).

Case 1. k = 0 and t ≥ 3. For any MLS-tree TM(t) of N(t), we say V (0) ∩ L(TM (t)) = ∅

when t ≥ 3. If it is not so, without loss of generality, the left major node A ∈ V (0) ∩ L(TM(t)),

namely, the node A is a leaf of a MLS-tree TM (t) of the GSN-model N(t). In the region II ′, there

are triangles ∆x
(r)
i y

(r)
i z

(r)
i of N(r) holding distances d(A, x

(r)
i ) = 2 and d(A, y

(r)
i ) = d(A, z

(r)
i ) = 1

for i = 1, 2, . . . , 3r−1 with 2 ≤ r ≤ t. In N(t) and N(t − 1), there are two triangles ∆x
(t)
i y

(t)
i z

(t)
i

and ∆x
(t−1)
j y

(t−1)
j z

(t−1)
j such that three nodes of ∆x

(t)
i y

(t)
i z

(t)
i are only connected with nodes y

(t−1)
j ,

z
(t−1)
j and A. In other words, nodes y

(t−1)
j , z

(t−1)
j are not leaves of TM(t). We can make another

spanning tree H of N(t) by joining A with y
(t)
i , z

(t)
i , joining y

(t−1)
j with x

(t)
i , and make z

(t−1)
j to

be a leaf of the new spanning tree. Note that we can do the above work in the rest regions I and

III. Eventually, we obtain a spanning tree H∗ of N(t) such that |L(H∗)| ≥ 2 + L(TM (t)), which

violates the definition of TM (t) having maximal leaves in N(t).

Case 2. k ≥ 1. The constraint t ≥ 3 + k is necessary, because there exists an MLS-tree

TM (3) of the GSN-model N(3) such that (V (1) \ V (0)) ∩ L(TM (3)) 6= ∅. Furthermore, based on

TM
1 (3), we can use the generalized MLS-TREE algorithm to obtain an MLS-trees H(m) such that

(V (m− 2) \ V (m− 3)) ∩ L(H(m)) 6= ∅ with m ≥ 3.

By contradiction to show that each node of V (k) is not a leaf of any MLS-tree TM (t) with

t ≥ 3 + k. Assume that N(t) has an MLS-tree TM (t) such that V (k) ∩ L(TM (t)) 6= ∅ for some k

with 1 ≤ k ≤ t− 3. So, we have a leaf x
(k)
s ∈ V (k)∩L(TM (t)) and a triangle ∆x

(k)
s y

(k)
s z

(k)
s . By the

structure of N(t), there is a triangle ∆x
(k+1)
s y

(k+1)
s z

(k+1)
s inside of the triangle ∆x

(k)
s y

(k)
s z

(k)
s such

that these two triangles form a subgraph O∗ like the graph O shown in Figure 1. In this case, the

position of the node x
(k)
i is as the same as the node A in Case 1. In the region II ′ of O∗, there are

triangles ∆x
(r)
i y

(r)
i z

(r)
i of N(r) holding distances d(x

(k)
s , x

(r)
i ) = 2 and d(x

(k)
s , y

(r)
i ) = d(x

(k)
s , z

(r)
i ) = 1

for i = 1, 2, . . . , 3r−k−1 with k + 2 ≤ r ≤ t. Based on the same proof shown in Case 1, we can get

a contradiction with the definition of TM (t).

A subset S of node set V (t) of a GSN-model N(t) is called a dominating set if every node of

V (t) is adjacent to a node of S or belongs to S. By Theorem 2 we can confirm the following results

Theorem 3. Every GSN-model N(t) with t ≥ k + 3 and k ≥ 0 holds:

(i) every V (k) is a proper connected TM -balanced set and induces a connected kernel of N(t);

(ii) V (k) ⊂ V (TM
i (t)) ∩ V (TM

j (t)) for any two MLS-trees TM
i (t) and TM

j (t) of N(t); and

(iii) V (t) \ L(TM (t)) is a connected dominating set of N(t).
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Although the nodes with degrees≥ k + 1 do not control more edges by Eq. (6), but they are a

controlling center in N(t) with t ≥ 3 + k. By Theorem 3 we can find a maximal proper connected

TM -balanced set X1 of N(t), and then get a connected model I1 induced over X1. Next, I1 has a

maximal proper connected TM -balanced set X2 that induces a connected model I2. In this way,

we obtain a sequence of models I1, I2, . . . Im such that Ii+1 ⊂ Ii, and Xi+1 is a maximal kernel of

Ii for i = 1, 2, . . . ,m− 1. Clearly, Ii ⊂ N(t− 2i).

4.3 A dynamic algorithm for finding MLS-trees of GSN-models

There are some algorithms to find spanning trees of networks in Ref. [11]. We will apply the

Bread-first Search algorithm (BFSA) introduced in Ref. [3] to make our Dynamic First-first BFSA

algorithm (DFF-BFSA algorithm) by the motivation of the linear preferential attachment rule

(Ref.[4]). Predecessors’ children are searched before successors’ children, according to a rule of

“priority has priority”.

DFF-BFSA algorithm

Input: A GSN-model N(t) for t ≥ 0.

Output: A spanning tree T (t).

1. For the GSN-model N(0), BFSA outputs a spanning tree T (0) with V (0) =
⋃m(0)

j=0 V
(0)
j and

a level function l such that l(x) = j for x ∈ V
(0)
j , and the nodes of V

(0)
j are ordered well by BFSA

for j = 1, 2, . . . ,m(0).

2. Let nei(x, k) be the neighborhood of a node x of N(k) at time step k. At time step k + 1,

V (k) =
⋃k

l=0

⋃m(l)
j=m(l−1)+1 V

(l)
j (here, m(−1) = −1). Implementing BFSA do: For every ordered set

V
(l)
j = {x

(l)
j,1, x

(l)
j,2, . . . , x

(l)
j,m(l,j)} with l ≤ k, from i = 1 to i = m(l, j), scan y ∈ nei(x

(l)
j,i , k +1) \ {w ∈

V (t) : l(w) exists}, b ← l(x
(l)
j,i) + 1, l(y) ← m(k) + b, and add y to the ordered set V

(k+1)
m(k)+b as the

last node, add node y and edge yx
(l)
j,i to the spanning tree T (k) in order to form new spanning tree

T (k + 1); m(k + 1) ← max{m(k) + l(x) + 1 : x ∈ V (k)}, V (k + 1) \ V (k) ←
⋃m(k+1)

j=m(k)+1 V
(k+1)
j ;

V (k + 1)←
⋃k+1

l=0

⋃m(l)
j=m(l−1)+1 V

(l)
j , go to 3.

3. If k + 1 = t, T (t)← T (k + 1), go to 4; otherwise go to 2.

4. return T (t) with a level function l.

Theorem 4. The DFF-BFSA algorithm can find an MLS-tree T of a GSN-model N(t) such that

T has 19 · 6t−2 leaves, diameter D(T ) = 2t and maximum degree ∆(T ) = ∆(t) with t ≥ 2.

Proof. Suppose that there is a cycle C = x1x2 · · · xmx1 in the graph T obtained by the DFF-BFSA

algorithm. Without loss of generality, the level values l(x1) < l(xi) for xi 6= x1 in C. So there are

three nodes u, v, w such that l(u) < l(w) and l(v) < l(w), which mean that w ∈ nei(u) \ nei(s)

and w ∈ nei(v) \ N(k), but it is impossible since (nei(u) \ nei(s)) ∩ (N(v) \ N(k)) = ∅. Thereby,

T contains no cycle (Ref. y ∈ nei(x
(l)
j,i , k + 1) \ {w ∈ V (t) : l(w) exists}). Notice that N(t) is
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Figure 5: The DFF-BFSA algorithm produces four MLS-trees with level functions in N(k) for

k = 0, 1, 2, 3.

connected, and at each time step the DFF-BFSA algorithm scans all neighbors of a node. So, T is

connected and a spanning tree.

We select the first node u0 = B in N(2), so l(u0 = B) = 0 and degree k(u0) is equal to

maximum degree ∆(k) = 3k + 1 of N(k) for 2 ≤ k ≤ t by the DFF-BFSA algorithm. Notice that

l(A) = l(C) = 1, so |k(A)−k(C)| = 1 and max{k(A), k(C)} = k(u0)−1 = 3t. Three nodes A,B,C

of the spanning tree T control other 3k+1 + 1 nodes of N(k). For t = 0, 1, 2, it is not hard to see

diameters D(T ) = 2t. For t ≥ 3, by the DFF-BFSA algorithm, every path P (A,w) from node A

to a leaf w has at most length (t− 1) if it does not pass through node B, and each path P (C,w′)

from node C to a leaf w′ has at most length (t− 1) if it does not pass through node B. Thereby,

the path from w to w′ has length 2t, which means D(T ) = 2t.

Notice that the spanning trees have 19 · 6t−2 leaves for t = 0, 1, 2, 3 (Ref. Figure 5). We can

confirm that for t ≥ 4, every spanning tree of N(t) obtained by the DFF-BFSA algorithm has

19 · 6t−2 leaves according to Theorem 2. The theorem is covered.

5 Conclusion

For determining the kernels of GSN-models we focus on MLS-trees of GSN-models, and show the

structures of some MLS-trees by our algorithms. Clearly, all MLS-trees TM (i + 1) having the

shortest diameter 2(i + 1) can be constructed by our generalized MLS-TREE algorithm over all

MLS-trees having shortest diameter D(TM(i)) = 2i in Mst(i). Although our DFF-BFSA algorithm

can not find spanning trees having maximal leaves in any growing network model, however, we

verify it for some growing network models, and find out some interesting spanning trees.

Suppose that a triangle ∆xbc and another triangle ∆bcy have a common edge bc in a maximal

planar graph G whose faces are triangular. We remove the edge bc and then join x with y by an
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edge, the resulting is still a maximal planar graph, written as G′ and say ‘flipping the edge bc’. We

call the procedure of obtaining G′ from G a flip operation. Note that every GSN-model N(t) is a

maximal planar graph, and “Any pair of maximal planar graphs on n vertices can be transformed

into each other by at most 5.2n−24.4 flip operations (Ref. [6]).” We propose a problem: For what

value of a positive integer m, does rewiring m edges of a GSN-model N(t) by the flip operation

produce a scale-free network model? For larger integers t > 0, we guess that a maximal planar

graph H∗ obtained from a GSN-model N(t) by flipping some edges having ends in V (t) \ V (t− 3)

is scale-free. The above problem leads to a problem of graph theory: Determine finite maximal

planar graphs G1, G2, . . . such that Gt−1 is a proper subgraph of Gt and each Gt obeys a power law

distribution.
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