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ON SOME PROPERTIES OF CALIBRATED TRIFOCAL

TENSORS

E.V. MARTYUSHEV

Abstract. In two-view geometry, the essential matrix describes the relative
position and orientation of two calibrated images. In three views, a similar
role is assigned to the calibrated trifocal tensor. It is a particular case of the
(uncalibrated) trifocal tensor and thus it inherits all its properties but, due
to the smaller degrees of freedom, satisfies a number of additional algebraic
constraints. Some of them are described in this paper. More specifically,
we define a new notion — the trifocal essential matrix. On the one hand,
it is a generalization of the ordinary (bifocal) essential matrix, and, on the
other hand, it is closely related to the calibrated trifocal tensor. We prove
the two necessary and sufficient conditions that characterize the set of trifocal
essential matrices. Based on this characterization, we propose three necessary
conditions on a calibrated trifocal tensor. They have a form of 15 quartic and
99 quintic polynomial equations.

1. Introduction

In multiview geometry, the fundamental matrix and the trifocal tensor describe
the relative orientation of two and three (uncalibrated) images respectively. If the
cameras are pre-calibrated, i.e. we are given the calibration matrices for each view,
the fundamental matrix is transformed to the so-called essential matrix. It was first
introduced by Longuet-Higgins in [8]. The essential matrix has fewer degrees of free-
dom and additional algebraic properties, compared to the fundamental matrix. A
detailed investigation of these properties is given by Demazure, Faugeras, Maybank
and other researchers in [1, 2, 6, 7, 9]. We shortly recall the most important of them
in the next section.

The trifocal tensor for calibrated cameras (we call this entity the calibrated
trifocal tensor) was first appeared in the papers by Spetsakis and Aloimonos [13]
and Weng, Huang and Ahuja [16]. Later, Hartley [4] generalized the trifocal tensor
for the case of uncalibrated cameras. The properties of the (uncalibrated) trifocal
tensors and their characterizations have been investigated by Hartley, Shashua,
Triggs and other researchers in [11, 12, 14, 15].

As well as the essential matrix, the calibrated trifocal tensor has fewer degrees
of freedom and additional algebraic properties, compared to the uncalibrated case.
The investigation of these properties is the main purpose of the present paper. In
particular, we show that the calibrated trifocal tensor must satisfy a number of low
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degree homogeneous polynomial equations. These equations arise from the charac-
terization constraints on a certain complex matrix associated with the calibrated
trifocal tensor.

The rest of the paper is organized as follows. In Section 2, we recall some
definitions and results from multiview geometry. In Section 3, we introduce a new
notion — the trifocal essential matrix. On the one hand, it is a generalization of the
ordinary (bifocal) essential matrix, and, on the other hand, it is closely related to
the calibrated trifocal tensor. We prove the two necessary and sufficient conditions
that characterize the set of trifocal essential matrices. In Section 4, based on this
characterization, we propose our three necessary conditions on a calibrated trifocal
tensor. They have a form of 15 quartic and 99 quintic polynomial equations in the
entries of a calibrated trifocal tensor. In Section 5, we discuss the results of the
paper.

2. Preliminaries

2.1. Notation. We preferably use α, β, . . . for scalars, a, b, . . . for column 3-vectors,
and A,B, . . . both for matrices and column 4-vectors. For a matrix A the entries
are (A)ij , the transpose is AT, the determinant is detA, and the trace is TrA. For
two 3-vectors a and b the cross product is a × b. For a vector a the notation [a]×
stands for the skew-symmetric matrix such that [a]×b = a× b for any vector b. We
use I for identical matrix.

The group of 3 × 3 matrices satisfying RRT = I and detR = 1 is denoted by
SO(3) in case R is real and SO(3,C) if R is allowed to have complex entries.

2.2. Pinhole cameras. We briefly recall some definitions and results from multi-
view geometry, see [2, 3, 5, 9] for details.

A pinhole camera is a triple (O,Π, P ), where Π is the image plane, P is a central
projection of points in 3-dimensional Euclidean space onto Π, and O 6∈ Π is the
camera centre (centre of projection P ).

Let there be given coordinate frames in 3-space and in the image plane Π. Let Q
be a point in 3-space represented in homogeneous coordinates as a 4-vector, and q
be its image in Π represented as a 3-vector. Projection P is then given by a 3× 4
homogeneous matrix, which is called the camera matrix and is also denoted by P .
We have

ωq = PQ,

where ω is a scale factor. For the sake of brevity, we identify further the camera
(O,Π, P ) with its camera matrix P .

The focal length is the distance between O and Π, the orthogonal projection
of O onto Π is called the principal point. All intrinsic parameters of a camera (such
as the focal length, the principal point offsets, etc.) are combined into a single
upper-triangular matrix, which is called the calibration matrix. A camera is called
calibrated if its calibration matrix is known.

The calibrated camera can be represented in form

P =
[

R t
]

,

where R ∈ SO(3) is called the rotation matrix and t ∈ R3 is called the translation
vector.
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2.3. Two-view case. Let there be given two cameras P1 =
[

I 0
]

and P2 =
[

A a
]

, where A is a 3× 3 matrix and a is a 3-vector. Let Q be a point in 3-space,
and qk be its kth image. Then,

ωkqk = PkQ, k = 1, 2.

The incidence relation for a pair (q1, q2) says

qT2 Fq1 = 0, (1)

where matrix F = [a]×A is called the fundamental matrix. It is important that
relation (1) is linear in the entries of F .

It follows from the definition of matrix F that detF = 0. One easily verifies that
this condition is also sufficient. Thus we have

Theorem 1 ([5]). A real non-zero 3× 3 matrix F is a fundamental matrix if and
only if

detF = 0. (2)

The essential matrix E is the fundamental matrix for calibrated cameras P̂1 =
[

I 0
]

and P̂2 =
[

R t
]

, where R ∈ SO(3), t is a 3-vector, that is

E = [t]×R. (3)

The matrices F and E are related by

F = K−T
2 EK−1

1 ,

where Kk is the calibration matrix of the kth camera. It follows that the incidence
relation (1) for the essential matrix becomes

q̂T2 Eq̂1 = 0,

where q̂k = K−1

k qk are the so-called normalized coordinates. We note that P1 = P̂1

and P2 = K2P̂2 diag(K
−1
1 , 1).

Equality (3) can be thought of as the definition of the essential matrix, i.e. it
is a 3× 3 non-zero skew-symmetric matrix post-multiplied by a special orthogonal
matrix. Moreover, we can even consider complex essential matrices assuming that
in (3) vector t ∈ C3 and matrix R ∈ SO(3,C).

The real fundamental matrix has 7 degrees of freedom, whereas the real essential
matrix has only 5 degrees of freedom. It is translated into the following property [2,
5, 7]: two of singular values of matrix E are equal and the third is zero. The
condition is also sufficient. An equivalent form of this result is given by

Theorem 2 ([1, 2]). A real 3× 3 matrix E is an essential matrix if and only if

detE = 0, (4)

Tr(EET)2 − 2Tr((EET)2) = 0. (5)

We emphasize that constraints (4) and (5) characterize only real essential ma-
trices. There exist non-essential complex 3× 3 matrices which nevertheless satisfy
both conditions (4) and (5). The most general form of such matrices will be given
in the next section.

The following theorem gives another characterization constraint on the entries
of essential matrix E. It is also valid in case E is complex.
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Theorem 3 ([1, 2, 9]). A real or complex 3×3 matrix E of rank two is an essential
matrix if and only if

(Tr(EET)I − 2EET)E = 03×3. (6)

It is interesting to note that Theorem 3 is a key for developing efficient algorithms
of the essential matrix estimation from five points in two views [10].

2.4. Three-view case. A (2, 1) tensor is a valency 3 tensor with two contravariant
and one covariant indices. For a (2, 1) tensor T we write T =

[

T1 T2 T3
]

,
where Tk are 3× 3 matrices corresponding to the covariant index.

Let there be given three cameras P1 =
[

I 0
]

, P2 =
[

A a
]

and P3 =
[

B b
]

,
where A and B are 3 × 3 matrices, a and b are 3-vectors. The trifocal tensor T =
[

T1 T2 T3
]

is a (2, 1) tensor defined by

Tk = Aekb
T − aeTkB

T, (7)

where e1, e2, e3 constitute the standard basis in R3. For a trifocal tensor T matri-
ces Tk are called the correlation slices.

It is clear that detTk = 0. Let lk and rk be the left and right null vectors of Tk
respectively. It follows from (7) that lk = [a]×Aek and rk = [b]×Bek. Therefore
the two (sextic in the entries of T1, T2, T3) epipolar constraints hold [5, 11]:

det
[

l1 l2 l3
]

= det([a]×A) = 0,

det
[

r1 r2 r3
]

= det([b]×B) = 0.
(8)

Moreover, for any scalars α, β, γ, the matrix αT1 + βT2 + γT3 is also degenerate
(its right null vector is [b]×B(αe1 + βe2 + γe3)) meaning that

det(αT1 + βT2 + γT3) = 0. (9)

This equality is referred to as the extended rank constraint [11]. It is equivalent
to ten (cubic in the entries of T1, T2, T3) equations each of which is a coefficient in
αiβjγk with i+ j + k = 3.

Theorem 4 ([11]). A (2, 1) tensor T =
[

T1 T2 T3
]

is a trifocal tensor if and
only if it satisfies the two epipolar (8) and ten extended rank (9) constraints.

Let qk be the kth image of a point Q in 3-space. The trifocal incidence relation
for a triple (q1, q2, q3) says [5]

[q2]×
(

3
∑

j=1

q1jTj
)

[q3]× = 03×3. (10)

It is important that relation (10) is linear in the entries of T .

The calibrated trifocal tensor T̂ is the trifocal tensor for calibrated cameras P1 =
[

I 0
]

, P2 =
[

R2 t2
]

and P3 =
[

R3 t3
]

, where R2, R3 ∈ SO(3), t2, t3 ∈ R3, i.e.

T̂k = R2ekt
T
3 − t2e

T
kR

T
3 . (11)

The calibrated trifocal tensor is an analog of the essential matrix in three views.
The tensors T and T̂ are related by

Ti = K2

3
∑

j=1

(K−T
1 )ij T̂jK

T
3 ,

where Kk is the calibration matrix of the kth camera.
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For any invertible 3× 3 matrix M and 3-vector t, the following identity holds:

[M−1t]× = det(M−1)MT[t]×M.

Therefore the trifocal incidence relation (10) for a calibrated trifocal tensor becomes

[q̂2]×
(

3
∑

j=1

q̂1j T̂j
)

[q̂3]× = 03×3,

where q̂k = K−1
k qk are the normalized coordinates.

The tensors T and T̂ have 18 and 11 degrees of freedom respectively. It follows
that matrices T̂k must satisfy a number of additional algebraic constraints. Some
of them are described below.

3. The Trifocal Essential Matrix and Its Characterization

A trifocal essential matrix is, by definition, a 3 × 3 matrix S which can be
represented in form

S = s1t
T
1 + t2s

T
2 , (12)

where t1, t2, s1, s2 ∈ C3, and vectors s1, s2 are such that sTk sk = 0, k = 1, 2. It is
clear that matrices S, ST and RSQ, where R,Q ∈ SO(3,C), simultaneously are (or
are not) the trifocal essential matrices.

Lemma 1. Let a, b, c, d ∈ Cn. Then the (possibly) non-zero eigenvalues of matrix
M = acT + bdT coincide with the eigenvalues of 2× 2 matrix

N =

[

cTa cTb

dTa dTb

]

.

Proof. The rank of matrix M is at most 2. Let λ1, λ2 be the (possibly) non-zero
eigenvalues of M . Then,

λ1 + λ2 = Tr(M) = cTa+ dTb = Tr(N),

2λ1λ2 = (λ1 + λ2)
2 − (λ21 + λ22) = Tr(M)2 − Tr(M2)

= 2(cTa)(dTb)− 2(cTb)(dTa) = 2 detN.

We see that λ1, λ2 are the eigenvalues of matrix N , as required. �

Theorem 5. Let a 3 × 3 matrix S be a trifocal essential matrix. Then SST has
one zero and two other equal eigenvalues.

Proof. Let S be a trifocal essential matrix, i.e. it can be represented in form (12).
Matrix SST has zero eigenvalue, as detS = 0. Taking into account that sT2 s2 = 0,
we get

SST = s1(µs
T
1 + νtT2 ) + νt2s

T
1 , (13)

where we have denoted µ = tT1 t1, ν = sT2 t1. By Lemma 1, the potentially non-zero
eigenvalues of (13) are equal to the ones of 2× 2 matrix

[

νtT2 s1 ν(µsT1 + νtT2 )t2
0 νsT1 t2

]

,

and the eigenvalues of the latter matrix are both equal to νsT1 t2 = (sT1 t2)(s
T
2 t1).

Theorem 5 is proved. �
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Lemma 2. Let M be a degenerate 3× 3 matrix. Then the two (possibly) non-zero
eigenvalues of M coincide if and only if the entries of M are subject to

Tr(M)2 − 2Tr(M2) = 0. (14)

Proof. Let 0, λ1, λ2 be the eigenvalues of M . Then,

Tr(M)2 − 2Tr(M2) = (λ1 + λ2)
2 − 2(λ21 + λ22) = −(λ1 − λ2)

2.

It follows that λ1 = λ2 if and only if (14) holds. Lemma 2 is proved. �

Lemma 3. [9, Section 2.2] Let s1, s2 ∈ C3 be a pair of non-zero vectors satisfying
sTk sk = 0. Then there exists a matrix R ∈ SO(3,C) such that Rs1 = s2.

Theorem 6. A 3× 3 matrix S is a trifocal essential matrix if and only if

detS = 0, (15)

Tr(SST)2 − 2Tr((SST)2) = 0. (16)

Proof. The“only if” part is due to Theorem 5 and Lemma 2. To prove the “if”
part, let S be a 3 × 3 matrix satisfying (15), (16). We denote ck the kth column
of matrix S. Because matrix S is degenerate, there exists a non-zero vector a such
that Sa = 0. There are two possibilities.

Case 1: aTa 6= 0. Scaling a and post-multiplying S by an appropriate matrix from

SO(3,C), we assume without loss of generality that a =
[

0 0 1
]T

. Therefore
c3 = 0.

Suppose first that either cT1 c1 6= 0 or cT2 c2 6= 0. Without loss of generality we
assume that cT2 c2 6= 0. Pre-multiplying S by an appropriate rotation, we obtain

S =





λ µ 0
ν 0 0
0 0 0



 .

The substitution of S into (16) gives

((µ+ ν)2 + λ2)((µ− ν)2 + λ2) = 0.

It follows that λ = i(ǫ1µ+ ǫ2ν), where ǫk = ±1. Thus,

S =





i(ǫ1µ+ ǫ2ν) µ 0
ν 0 0
0 0 0



 =





iǫ2
1
0





[

ν 0 0
]

+





µ

0
0





[

iǫ1 1 0
]

.

Consider the case cT1 c1 = cT2 c2 = 0. Due to Lemma 3, we can pre-multiply S by
an appropriate rotation to get

S =





α 1 0
β i 0
γ 0 0



 ,

where α2 + β2 + γ2 = 0. The substitution of S into (16) yields

4(iα− β)2 = 0.

It follows that β = iα and γ = 0. Therefore matrix S has rank one and

S =





α 1 0
iα i 0
0 0 0



 =





1
i

0





[

α 1 0
]

+ 0sT,
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where s is an arbitrary 3-vector satisfying sTs = 0. Thus in either case S is a
trifocal essential matrix, as required.

Case 2: aTa = 0. Due to Lemma 3, we can post-multiply S by an appropriate

matrix from SO(3,C) and suppose without loss of generality that a =
[

0 1 i
]T

.
Therefore c3 = ic2.

By direct computation, equality (16) becomes (cT1 c1)
2 = 0, i.e. cT1 c1 = 0. This

yields

S =





α λ iλ

β µ iµ

γ ν iν



 =





α

β

γ





[

1 0 0
]

+





λ

µ

ν





[

0 1 i
]

,

where α2+β2+γ2 = 0, i.e. S is a trifocal essential matrix. Theorem 6 is proved. �

We notice that constraints (15), (16) coincide with constraints (4), (5) from
Theorem 2. Hence, if a trifocal essential matrix is real, then it is an essential
matrix.

In general, a trifocal essential matrix does not satisfy cubic constraint (6). The

proof consists in exhibiting a counterexample. Let s1 = s2 =
[

1 i 0
]T

, t1 = t2 =

[

1 0 0
]T

. Then S =





2 i 0
i 0 0
0 0 0



 and the eigenvalues of SST are 0, 1, 1. However,

(Tr(SST)I − 2SST)S = −4





1 i 0
i −1 0
0 0 0



 6= 03×3.

Nevertheless, there exists an analog of identity (6) for the trifocal essential ma-
trix.

Theorem 7. A 3× 3 matrix S is a trifocal essential matrix if and only if

(Tr(SST)I − 2SST)2S = 03×3. (17)

Proof. Let us prove the “only if” part. We first notice that matrix S satisfies (17)
if and only if so does matrix RSQ for arbitrary R,Q ∈ SO(3,C). By Lemma 3,
for any 3-vector s satisfying sTs = 0 there exists a matrix R ∈ SO(3,C) such that

Rs =
[

1 i 0
]T

.
Pre- and post-multiplying a trifocal essential matrix S by appropriate rotations,

we assume without loss of generality that

S =





1
i

0





[

λ1 µ1 ν1
]

+





λ2
µ2

ν2





[

1 i 0
]

=





λ1 + λ2 µ1 + iλ2 ν1
iλ1 + µ2 i(µ1 + µ2) iν1

ν2 iν2 0



 .

Then, by direct computation, we find

(Tr(SST)I − 2SST)2

= 4(λ1 + iµ1)
2





ν22 iν22 −ν2(λ2 + iµ2)
iν22 −ν22 −iν2(λ2 + iµ2)

−ν2(λ2 + iµ2) −iν2(λ2 + iµ2) (λ2 + iµ2)
2



 .

It follows that (17) holds. The “only if” part is proved.
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Let us prove the “if” part. Let a 3× 3 matrix S satisfy (17). We first show that
detS = 0. Suppose, by hypothesis, that detS 6= 0. Then, post-multiplying (17)
by S−1, we get

(Tr(SST)I − 2SST)2 = 03×3.

It follows that all the eigenvalues of Tr(SST)I − 2SST are zeroes and

Tr(Tr(SST)I − 2SST) = Tr(SST) = 0.

The substitution of this into (17) yields (detS)5 = 0 in contradiction to the hy-
pothesis detS 6= 0.

Now we prove that (17) also implies (16). Let us denote

Φ(M) = (Tr(MMT)I − 2MMT)M

and

ϕ(M) = Tr(MMT)2 − 2Tr((MMT)2).

Then it can be proved (see [2, Section 4]) that

Tr(Φ(M)Φ(M)T) = −Tr(MMT)ϕ(M) + 12(detM)2 (18)

holds for any 3× 3 matrix M . We remark that

Φ(S)Φ(S)T = (Tr(SST)I − 2SST)2SST.

Therefore, if matrix S satisfies (17), then Φ(S)Φ(S)T = 03×3. Formula (18) for
M = S becomes

Tr(SST)ϕ(S) = 0.

If ϕ(S) = 0, then we are done. Suppose that Tr(SST) = 0. Substituting this
into (17) and post-multiplying by ST, we get (SST)3 = 03×3. It follows that all
the eigenvalues of SST are zeroes and (16) evidently holds.

We see that in either case the degenerate matrix S satisfies (16). By Theorem 6,
matrix S is a trifocal essential matrix. Theorem 7 is proved. �

To sum up, the above theorems imply the following statements.

• The pair of scalar constraints (15), (16) is equivalent to the single matrix
constraint (17).

• The most general form of a 3 × 3 matrix satisfying equations (15), (16) is
the trifocal essential matrix given by (12).

• If a trifocal essential matrix is real, then it is an essential matrix.
• Every essential matrix (of rank two) is a trifocal essential matrix, but the
converse is not true in general.

4. Three Necessary Conditions on a Calibrated Trifocal Tensor

A new notion of trifocal essential matrix, introduced in the previous section,
turns out to be closely related to calibrated trifocal tensors. The connection is
established by the following lemma.

Lemma 4. Let T̂ =
[

T̂1 T̂2 T̂3
]

be a calibrated trifocal tensor. Then a 3 × 3

matrix Ŝ = αT̂1+βT̂2+γT̂3, where numbers α, β, γ are such that α2+β2+γ2 = 0,
is a trifocal essential matrix, i.e. it can be represented in form (12).
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Proof. We notice that

Ŝ = αT̂1 + βT̂2 + γT̂3 = R2st
T
3 − t2s

TRT
3 = s2t

T
3 + (−t2)s

T
3 ,

where s =
[

α β γ
]T

, and sk = Rks are 3-vectors satisfying

sTk sk = sTRT
kRks = sTs = 0.

It follows that Ŝ is a trifocal essential matrix. Lemma 4 is proved. �

We introduce six symmetric matrices (k = 1, 2, 3)

Uk = T̂kT̂
T
k ,

Vk = T̂kT̂
T
k+1 + T̂k+1T̂

T
k .

(19)

Here k + 1 should be read as k (mod 3) + 1, i.e. V3 = T̂3T̂
T
1 + T̂1T̂

T
3 .

Theorem 8 (First necessary condition). Let T̂ =
[

T̂1 T̂2 T̂3
]

be a calibrated

trifocal tensor, matrices Uk, Vk be defined in (19). Then the entries of T̂1, T̂2, T̂3
are constrained by the following equations:

ψ(U3 − U1, U3 − U1)− ψ(V3, V3) = 0, (20)

ψ(U3 − U1, V1) + ψ(V2, V3) = 0, (21)

ψ(U1 − U2, V1) = 0, (22)

where ψ(X,Y ) = Tr(X)Tr(Y )−2Tr(XY ). Six more equations are obtained from (20) –
(22) by a cyclic permutation of indices 1 → 2 → 3 → 1. The resulting nine equations
are linearly independent.

Proof. Let Ŝ = αT̂1+βT̂2+γT̂3, where numbers α, β, γ are such that α2+β2+γ2 =
0. By Lemma 4, Ŝ is a trifocal essential matrix. By Theorem 6, the following
equation holds:

Tr(ŜŜT)2 − 2Tr((ŜŜT)2) = 0. (23)

The definition of matrices Uk, Vk (see (19)) permits us to write

ŜŜT = α2U1 + β2U2 + γ2U3 + αβV1 + βγV2 + γαV3.

Substituting this into (23), we find the coefficients in α4, α3β and αβ3 taking into
account that γ2 = −α2−β2. Because α and β are arbitrary, these coefficients must
vanish:

α4 : ψ(U3 − U1, U3 − U1)− ψ(V3, V3) = 0, (24)

α3β : ψ(U1 − U3, V1)− ψ(V2, V3) = 0, (25)

αβ3 : ψ(U2 − U3, V1)− ψ(V2, V3) = 0. (26)

Thus we get (20) = (24), (21) = −(25), and (22) = (25)− (26). It is clear that we

can get six more constraints on T̂k from (20) – (22) by a cyclic permutation of the
indices.

Finally, the resulting nine polynomials can not be linearly dependent, since they
are generated by different sets of monomials. For example, polynomials (20), (21)

and (22) contain (T̂3)
2
11(T̂1)

2
11, (T̂3)

2
11(T̂1)11(T̂2)11 and (T̂1)

3
11(T̂2)11 respectively, and

that monomials are not contained in all the other polynomials. Theorem 8 is
proved. �
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Theorem 9. Let T =
[

T1 T2 T3
]

be a (2, 1) tensor satisfying the ten extended
rank constraints (9) and the nine constraints from Theorem 8. Then matrix S =
αT1 + βT2 + γT3 with α2 + β2 + γ2 = 0 is a trifocal essential matrix.

Proof. It follows from the extended rank constraints (9) that detS = 0.
Taking into account that γ2 = −α2 − β2, we conclude that the expression

ψ(SST, SST) = Tr(SST)2 − 2Tr((SST)2)

contains 9 monomials:

α4, α3β, α3γ, α2β2, α2βγ, αβ3, αβ2γ, β4, β3γ.

It is directly verified that the coefficients in all of them are linear combinations of
the nine polynomials from Theorem 8, i.e. ψ(SST, SST) = 0. By Theorem 6, S is
a trifocal essential matrix, as required. �

Theorem 10 (Second necessary condition). Let T̂ =
[

T̂1 T̂2 T̂3
]

be a calibrated

trifocal tensor. Then the entries of T̂1, T̂2, T̂3 are constrained by the 99 linearly
independent quintic (of degree 5) polynomial equations.

Proof. Let Ŝ = αT̂1+βT̂2+γT̂3, where numbers α, β, γ are such that α2+β2+γ2 =
0. By Lemma 4, Ŝ is a trifocal essential matrix. By Theorem 7, the following
equation holds:

(Tr(ŜŜT)I − 2ŜŜT)2Ŝ = 03×3. (27)

We notice that equality (27) is quintic in the entries of matrix Ŝ. Taking into
account that γ2 = −α2 − β2, every of 9 entries in the l.h.s. of (27) contains 11
monomials in variables α, β and γ. The coefficient in each of these monomials must
vanish. Hence there are in total 99 quintic polynomial constraints on the entries of
a calibrated trifocal tensor T̂ . These polynomials can not be linearly dependent,
since they are generated by different sets of monomials. �

Remark 1. An explicit form of the quintic polynomial equations from the previous
theorem is as follows:

(Ψ1(U13)− Ψ1(V3))T̂1 −Ψ2(U13, V3)T̂3 = 03×3, (28)

Ψ2(U13, V3)T̂1 + (Ψ1(U13)−Ψ1(V3))T̂3 = 03×3, (29)

(Ψ2(U13, V2) + Ψ2(V1, V3))T̂1 +Ψ2(U13, V3)T̂2

+(Ψ2(U13, V1)−Ψ2(V2, V3))T̂3 = 03×3, (30)

(Ψ2(U13, V1)−Ψ2(V2, V3))T̂1 + (Ψ1(U13)−Ψ1(V3))T̂2

−(Ψ2(U13, V2) + Ψ2(V1, V3))T̂3 = 03×3, (31)

where matrices Uk, Vk are defined in (19), Ujk = Uj − Uk, and

Ψ(X,Y ) = (Tr(X)I − 2X)(Tr(Y )I − 2Y ),

Ψ1(X) = Ψ(X,X),

Ψ2(X,Y ) = Ψ(X,Y ) + Ψ(Y,X).

Equations (28) – (31) give 4×9 = 36 constraints on T̂k. We can get 8×9 = 72 more
constraints from (28) – (31) by a cyclic permutation of indices 1 → 2 → 3 → 1.
Thus, in total, we have 108 quintic constraints, but only 99 of them are linearly
independent.
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Finally, we propose the third necessary condition on a calibrated trifocal tensor.
It seems not to be directly connected with the matrix Ŝ. However this condition
could be useful in applications, since it consists of another set of quartic polynomial
equations that are satisfied by a calibrated trifocal tensor.

Theorem 11 (Third necessary condition). Let T̂ =
[

T̂1 T̂2 T̂3
]

be a calibrated

trifocal tensor. Then the entries of T̂1, T̂2, T̂3 satisfy the following equations:

Tr(U2)
2 − Tr(V3)

2 − Tr(U2
2 − V 2

3 + (U3 − U1)
2) = 0, (32)

Tr(V2)Tr(U1 − 2U2 − U3)− Tr(V1)Tr(V3) + 2Tr(V2U2) = 0, (33)

where matrices Uk, Vk are defined in (19). Four more equations are obtained
from (32) – (33) by a cyclic permutation of indices 1 → 2 → 3 → 1. The re-
sulting six equations consist of the same monomials as (20) – (22) and are linearly
independent with them.

Proof. Equations (32) – (33) and the four their consequences are proved by direct
computation with a help of Maple.

The resulting six polynomials consist in total of 2160 monomials, which are the
same as for the nine polynomials from Theorem 8. Thus we construct the 15×2160
matrix of coefficients and verify by direct computation that it has full row rank. �

5. Discussion

We have defined a new notion — the trifocal essential matrix. Algebraically it
is a complex 3 × 3 matrix associated with a given calibrated trifocal tensor T̂ by
the contraction of T̂ and an arbitrary 3-vector whose squared components sum to
zero. In this paper, the trifocal essential matrix plays a technical role. However its
geometric interpretation should help to explain why its properties are so close to
the properties of ordinary (bifocal) essential matrix.

Based on the characterization of the set of trifocal essential matrices, we have
given three necessary conditions on a calibrated trifocal tensor (Theorems 8, 10
and 11). They have a form of 15 quartic and 99 quintic polynomial equations.
We leave the possible application of these constraints to structure-from-motion
problems for further work.
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