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Abstract

We determine the global behavior of every C2-solution to the two-dimensional degenerate Monge-Ampère
equation, uxxuyy − u2

xy = 0, over the finitely punctured plane. With this, we classify every solution in the once
or twice punctured plane. Moreover, when we have more than two singularities, if the solution u is not linear in
a half-strip, we obtain that the singularities are placed at the vertices of a convex polyhedron P and the graph of
u is made by pieces of cones outside of P which are suitably glued along the sides of the polyhedron. Finally,
if we look for analytic solutions, then there is at most one singularity and the graph of u is either a cylinder (no
singularity) or a cone (one singularity).

Mathematics Subject Classification: 35K10, 53C21, 53A05.

1 Introduction.
A celebrated result proved by A. V. Pogorelov [16], and independently by P. Hartman and L. Nirenberg [8], states
that all the global solutions to the degenerate Monge-Ampère equation

(1) uxxuyy − u2xy = 0,

1The authors were partially supported by INdAM-GNSAGA, PRIN-2010NNBZ78-009, MICINN-FEDER Grant No. MTM2013-43970-P,
and Junta de Andalucı́a Grant No. FQM325.
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where u : R2 −→ R is a function of class C2, are given by

u(x, y) = α(x) + c0 y,

up to a rotation in the (x, y)-plane, that is, the graph of u is a cylinder (see also [18, 19]).
This degenerate Monge-Ampère equation has been extensively studied from an analytic point of view and also

from a geometric point of view since the graph of every solution determines a flat surface in the Euclidean 3-space.
Local properties of the solutions of (1) have been analyzed in many papers (see, for instance, [20, 21] and

references therein). Our objective is to study the global behavior of the solutions of (1) for the largest non simply-
connected domains, that is, in the finitely punctured plane.

Observe that, when the Monge-Ampère equation is elliptic or hyperbolic, a large amount of work in the under-
standing of these solutions in the punctured plane has been achieved from a local and global point of view (see,
among others, [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17]).

The paper is organized as follows. After a first section of preliminaries, in Section 3 we establish the global
behavior of every C2 solution u : R2\{p1, . . . , pn} −→ R to the Monge-Ampère equation (1) with isolated singu-
larities at the points pi. We show that for every singular point pi there exists at least a sector Si ⊆ R2\{p1, . . . , pn}
such that the graph of u over Si is a piece of a cone. Moreover, there exists at most a maximal strip S such that the
graph of u over S is a cylinder. As a consequence of these results, we obtain that if u is an analytic solution then
there is at most one singularity, and the graph of u is either a cylinder if there is no singularity or a cone if there is
one singularity.

In Section 4 we classify all solutions to (1) with one or two singularities. In particular, if u is a solution with
one singularity at p0 then, either the graph of u is a cone or there exists a line r containing to p0 such that the graph
of u is a cylinder over one half-plane determined by r and a cone over the other half-plane. We also describe every
solution in the twice punctured plane.

Although the behavior of a solution u to (1) with more than two singularities can be complicated, due to the
existence of some regions in the (x, y)−plane where u is a linear function, we classify in Section 5 every solution
which does not admit a large region where u is linear, that is, every solution such that the domain where u is linear
does not contain a half-strip of R2. In such case, we show that the singular points are the vertices of a convex
compact polyhedron C ⊆ R2 with non empty interior, the solution u must be linear over C and the graph of u
is made by some cones over R2\C which are suitably glued along the segments of the boundary of the planar
polyhedron u(C).

2 Preliminaries.
Let Ω ⊆ R2 be a domain, and u : Ω −→ R be a function of class C2 satisfying the degenerate Monge-Ampère
equation uxxuyy − u2xy = 0, in Ω. As we mentioned in the introduction, it is well known that every solution
u(x, y) to the degenerate Monge-Ampère equation in the whole plane R2 is given by u(x, y) = α(x) + c0 y, up to
a rotation in the (x, y)-plane (see [8, 12, 16]), that is, its graph is a cylinder.

Thus, it is natural to study the solutions to the degenerate Monge-Ampère equation in the possible largest
domains. In other words, we consider solutions to (1) in the non simply-connected domains R2\{p1, . . . , pn}.

2



Here, we assume u has an isolated singularity at any pi, that is, u cannot be C2-extended to pi.
For the study of these solutions, we will need the following result which is a consequence of [8, Lemma 2].

Lemma 1. Let u(x, y) be a C2 solution to the degenerate Monge-Ampère equation (1) and (x0, y0) ∈ Ω a point
where the Hessian matrix of u does not vanish. Then, there exists a line r in the (x, y)−plane such that the
connected component r0 of r ∩ Ω containing (x0, y0) satisfies:

1. r0 is made of points with non vanishing Hessian matrix,

2. the gradient of u is constant on r0.

Moreover, there exists an open set U ⊆ Ω containing r0 such that if a point (x1, y1) ∈ U has the same gradient as
a point of r0 then (x1, y1) ∈ r0.

From now on, given a solution u to (1) in Ω, we will denote by N the open set given by the points in Ω whose
Hessian matrix does not vanish, and by U = Ω\N .

Note that the graph Σ of a solution u to (1) corresponds, from a geometric point of view, to a flat surface in R3,
and the points

ΣN := {(p, u(p)) : p ∈ N}, ΣU := {(p, u(p)) : p ∈ U},
correspond, respectively, to the non umbilical points and to the umbilical points of the graph Σ.

Given a point p ∈ N we will denote by r(p) the piece of line r0 determined by Lemma 1. Moreover, since the
gradient of u is constant on r(p), the image of r(p) given by

R(p) := {(q, u(q)) ∈ R3 : q ∈ r(p)}

is a piece of line in R3.
Thus, the previous lemma asserts that ΣN is made of pieces of pairwise disjoint lines of R3. In addition, every

connected component of ΣU with an interior point is contained in a plane, because its Hessian matrix vanishes
identically.

A first consequence of the previous lemma is that each solution of the degenerate Monge-Ampère equation can
be continuously extended to the singularity because the norm of its gradient is bounded around the singularity.

Lemma 2. Let Ω ⊆ R2 be a domain, p0 ∈ Ω and u be a C2 solution of (1) in Ω\{p0}. Then the modulus of the
gradient of u is bounded in a neighborhood of p0. In particular, u can be continuously extended to p0.

Proof. Consider ε > 0 such that the closed disk Dp0(ε) centered at p0 with radius ε is contained in Ω. Let

m = max{‖gradp(u)‖ : ‖p− p0‖ = ε},

where gradp(u) denotes the gradient of u at a point p.
Let us see that the modulus of the gradient of u is less than or equal to m for every point p ∈ Dp0(ε)\{p0}.
Let p ∈ N , then the piece of line r(p) has at least a point q in the boundary of the disk Dp0(ε). So, from

Lemma 1 one has that ‖gradp(u)‖ = ‖gradq(u)‖ ≤ m. Hence, the previous inequality happens in the closure of
N .
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On the other hand, if p is a point in the interior of U , we can consider the connected component U0 of U to
which p belongs. The Hessian matrix of u vanishes identically in U0, so, the gradient of u is constant in the closure
of U0. Moreover, since the closure of U0 intersects the closure of N , we obtain that ‖gradp(u)‖ ≤ m, as we
wanted to show.

3 Global behaviour of the graphs.
Now, consider a C2 solution u : R2\{p1, . . . , pn} −→ R to the degenerate Monge-Ampère equation (1) with
singularities at the points pi. Let p ∈ N , then from the previous considerations, we know that r(p) must be:

1. a line, or

2. a half-line with end point at a singular point pi, or

3. a segment with end points at two different singular points pi, pj .

As a consequence we obtain the following result.

Proposition 1. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi.
Assume there exists a point p ∈ N such that r(p) is a line and let S(p) ⊆ R2\{p1, . . . , pn} be the maximal open
strip containing r(p). Then u is given in S(p) by

(2) u(xe1 + ye2) = α(x) + v0 y, y ∈ R

for a C2 function α(x), a constant v0 ∈ R, and an orthonormal basis {e1, e2} of R2 where e2 is parallel to r(p).
Moreover,

1) if q ∈ N satisfies that r(q) is a line then r(q) ⊆ S(p),

2) if r is a line contained in U then r ⊆ S(p).

Proof. Let q be a point in the open strip S(p), with q ∈ N . Since S(p) has no singular point then r(q) intersects
r(p) or r(q) is parallel to r(p). From Lemma 1, in the former case r(q) = r(p) and in the latter case r(q) must be
a line contained in S(p).

Now, let r0 be a parallel line to r(p) contained in S(p). Then, from the previous discussion we have obtained
that r0 ⊆ N or r0 ⊆ U . As a consequence, if r0 has a point q in the interior of U , int(U), then r0 is contained in
int(U).

Hence, if r0 = r(q) ⊆ N then the image of r0 is the line R(q), and if r0 ⊆ int(U) then the image of r0 is a
line, because the image of each connected component of int(U) is a piece of a plane. Thus, the image of r0 must
also be a line if r0 ⊆ ∂N = ∂(int(U)).

Therefore, u is given in S(p) by

u(xe1 + ye2) = α(x) + v(x) y, y ∈ R

4



for certain functions α(x), v(x), and {e1, e2} orthonormal basis of R2, with e2 parallel to r(p). In addition, from
(1), v(x) must be a constant v0 ∈ R.

Let us prove now the case 1), that is, assume q ∈ N such that r(q) is a line and see that r(q) ⊆ S(p). If
r(q) 6⊆ S(p), then r(q) is parallel to r(p) because otherwise r(q) intersects r(p), and so r(p) = r(q).

Denote by S0 the unique connected component of R2\S(p) containing r(q). Observe that S0 is a closed half-
plane of R2, parallel to r(p), so that its boundary ∂S0 is a line containing at least a singular point pi0 , due to the
maximality of S(p).

Let ε > 0 such that the open disk Dpi0
(ε) centered at pi0 with radius ε does not contain another singular point,

and Dpi0
(ε) ∩ r(q) = ∅. Moreover, since the number of singular points is finite, we can choose ε small enough so

that if r is any line parallel to r(p) intersecting Dpi0
(ε) then r = ∂S0 or r has no singular point.

The set D+
pi0

(ε) = Dpi0
(ε) ∩ int(S0) must contain some point a ∈ N . Otherwise, the image of D+

pi0
would

be a piece of a plane, and from (2) one has that pi0 is a singular point if, and only if, every point in Dpi0
∩ ∂S0 is

singular. This is a contradiction which claims the existence of the previous point a.
Since N is an open set and the set of singularities is finite, we can assume that r(a) is not a segment joining

two singular points. So, r(a) is a half-line or a line which does not intersects r(p) or r(q), that is, r(a) must be
parallel to r(p). Then, from the choice of ε, one has that r(a) is also a line parallel to r(p).

Finally, if we choose the maximal strip S(a) ⊆ R2\{p1, . . . , pn} containing the line r(a), we obtain from the
choice of ε that ∂S(p) ∩ ∂S(a) is the line parallel to r(p) containing pi0 . But this is not possible, because in this
case one has from (2) that pi0 is a singular point if and only if every point in ∂S(p) ∩ ∂S(a) is singular.

Therefore, there is no q ∈ N such that r(q) is a line which is not contained in S(p).
In the case 2), the line r ⊆ U must be parallel to r(p) because otherwise r∩ r(p) 6= ∅, contradicting Lemma 1.

So, this case can be exactly proven as the previous case replacing r(q) by r.

The previous result asserts that the graph of u over S(p) is a cylinder in R3 foliated by lines, all of them parallel
to R(p). Observe that this cylinder has non umbilical points, and probably umbilical points as well. In particular,
if there is no singular point then S(p) = R2 and u is globally determined by (2).

Definition 1. We say that u is a cylindrical function in a strip S if u is given by (2) in S. Moreover, we say that u
is a conical function in an open sector

Sθ2θ1 (p) = {p+ ρ (cos θ, sin θ) : ρ > 0, θ1 < θ < θ2}, 0 < θ2 − θ1 < 2π,

or in R2\{p}, if u is given by

(3) u(p+ ρ (cos θ, sin θ)) = u0 + ρα(θ)

in one of the previous domains, for a certain C2 function α(θ).

Now, let us prove some technical lemmas which will be necessary in our study.

Lemma 3. Let Ω be a domain, p0 ∈ Ω, S ⊆ Ω be an open sector with vertex at p0, and u : Ω\{p0} −→ R be a
C2 solution of (1) with isolated singularity at p0. If for every p ∈ S ∩ N one has that r(p) is a half-line with end
point at p0 then u is a conical function in S.
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Proof. If p ∈ S ∩ N then the graph of r(p) is the half-line R(p), and if r0 ⊆ int(U) ∩ S is a half-line with end
point at p0 then the image of r0 is a half-line in R3, because each connected component of the graph of int(U) is
a piece of a plane. As a consequence, the image of a half-line r0 with end point at p0 is also a half-line of R3 if
r0 ⊆ ∂N = ∂(int(U)).

Consequently, u(p0 + ρ θ) = u0(θ) + ρα(θ), with ρ > 0. And, from Lemma 2, u0(θ) must be constant since
u is continuous at p0.

Lemma 4. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi. Let
S1, S2 ⊆ R2\{p1, . . . , pn} be two disjoint open sets such that

1) u is a cylindrical function in the strip S1 and u is a conical function in the sector S2; or

2) u is a conical function in the sector S1 and also in the sector S2, both with different vertices.

If ∂S1 ∩ ∂S2 contains a segment, then every non singular point in ∂S1 ∩ ∂S2 is contained in U .

Proof. If S is a strip and e is a normal unit vector to a connected component of ∂S then, from (2), one has that
Hess(u)(e, e) is constant for all point in this component.

On the other hand, if S is a sector with vertex at p0 and the half-line p0 + ρ θ0, with ρ > 0, is contained in ∂S
then, from (3), one has that Hess(u)(e, e) = α′′(θ0)+α(θ0)

ρ , where e is a normal unit vector to the half-line.
In the case 1) or 2), it is clear that α′′(θ0) + α(θ0) vanishes at every point in ∂S1 ∩ ∂S2. This is equivalent to

show that the Hessian matrix of u vanishes at every non singular point in ∂S1 ∩ ∂S2.

Proposition 2. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi,
and p ∈ N . Then r(p) cannot be a segment.

Moreover, for any singular point pi,

(4) Npi = {p ∈ N : r(p) is a half-line with end point pi}

is an open set.

Proof. Let p ∈ N such that r(p) is either a segment or a half-line. Up to a translation and a rotation, we can
assume p is the origin and a singular end point of r(p) is (x1, 0) with x1 < 0.

Since N is an open set, we consider ε > 0 such that the open disk D(ε) centered at the origin with radius ε is
contained in N . Moreover, using that the set of singular points is finite, ε can be chosen small enough in such a
way there is no singular point pk = (xk, yk) with 0 < |yk| < ε.

Let qn = (xn, yn) be a sequence in D(ε)+ = {(x, y) ∈ D(ε) : y > 0} going to p = (0, 0). Observe that
the number of segments of the form r(q) contained in N can only be finite because the number of singularities is
finite. Thus, replacing qn by a point close to it, we can assume r(qn) is a half-line or a line, for every point qn of
the sequence. Since r(qn) cannot intersect r(p), the angle between r(qn) and r(p) tends to zero.

If there exists a subsequence qm such that r(qm) are lines, then all of them must be parallel and, from Propo-
sition 1, r(q) is a horizontal line for all q = (x, y) ∈ D(ε)+.
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Otherwise, since the number of singularities is finite, there exists a subsequence qm such that r(qm) are half-
lines with the same singular end point pi1 . Thus, as the angle between r(qm) and r(p) tends to zero, pi1 is
necessarily placed on the line y = 0. In particular, taking ε small enough, we can assume that the sector made
of all half-lines containing a point q ∈ D(ε)+ and with end point at pi1 does not contain another singular point.
Hence, each half-line of this sector with end point pi1 is of the form r(q) for q ∈ D(ε)+.

Analogously, we can follow the same reasoning for D(ε)− = {(x, y) ∈ D(ε) : y < 0}. Thus, r(q) is a
horizontal line for all q ∈ D(ε)−, or r(q) is a half-line for all q ∈ D(ε)− with the same singular end point pi2 ,
placed at the line y = 0.

Now, let us denote by S+ the strip {(x, y) ∈ R2 : 0 < y < ε} if r(q) is a horizontal line for all q ∈ D(ε)+,
or the sector containing D(ε)+ with vertex at pi1 if r(q) is a half-line for all q ∈ D(ε)+. We also denote S− the
corresponding set for the points in D(ε)−.

From Proposition 1, S+ and S− cannot be two strips because the point (x1, 0) is singular. Moreover, from
Lemma 4, S+ and S− are two sectors with the same vertex pi1 = pi2 because otherwise p = (0, 0) would be
contained in U . Thus, from Lemma 3, if r is the half-line containing p = (0, 0) with end point pi1 = pi2 then a
point in r is a singular point if and only if every point in r is singular. Hence, pi1 = pi2 = (x1, 0) and r(p) cannot
be a segment.

This proves that if p ∈ N such that r(p) is a half-line then there exists ε > 0 such that Dp(ε) ⊆ N and for all
q ∈ Dp(ε) the set r(q) is a half-line with the same end point. That is, Npi is an open set.

As a consequence of Propositions 1 and 2, we get the following result.

Corollary 1. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi. If
V is a connected component of N then either V is made of parallel lines or V is made of half-lines with common
endpoint at some pi.

Corollary 2. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi.
Then the set Npi , given by (4), is a non empty union of open sectors with vertex at pi, for every singularity pi. In
particular, u is a conical function in each connected component of Npi .

Proof. From Proposition 2 and Lemma 3, we only need to show that Npi is non empty for each singular point pi.
So, fix a singular point pi and assume Npi is empty.

If there existed a punctured neighborhood U of pi contained in U then the image of U would lie in a plane and
pi would not be a singular point. Thus, there must exist a sequence qn ∈ N going to pi. Moreover, a subsequence
qm must satisfy that r(qm) is a line for all m (and so the lines are parallel) or r(qm) is a half-line for all m with
a common singular end point pj 6= pi. Up to a translation and a rotation, we can assume pi is the origin and the
limit line of the lines containing r(qm) is y = 0. In particular, in the latter case pj is placed in the line y = 0.

Observe that qm cannot be placed in the segment joining the singular points pi and pj , that is, in any case,
every point qm is in the open upper half-space R2

+ = {(x, y) ∈ R2 : y > 0} or in the open lower half-space
R2
− = {(x, y) ∈ R2 : y < 0}.

Passing to a subsequence, if necessary, we can assume qm is contained in R2
+ for all m, or qm is contained in

R2
− for all m. Suppose qm ∈ R2

+ for every m. If r(qm) is a line for each m then we denote by S+ the maximal
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strip determined by Proposition 1, which satisfies that the line y = 0 is in its closure. If r(qm) is a half-line for
all m then for m big enough the open sector determined by r(qm) and y = 0 does not contain any singular point,
and we call S+ to this sector. In the first case the function u would be cylindrical in S+ (Proposition 1), and in the
second case u would be conical in S+ (Lemma 3) with vertex at pj 6= pi.

On the other hand, there must exist a sequence of points in N ∩ R2
− going to pi. Otherwise there would exist

ε > 0 such that the open half-disk D(ε) ∩ R2
− is contained in U . Thus, the image of D(ε) ∩ R2

− lies in a plane.
But, since u is cylindrical or conical in S+ then the origin pi is a singular point if and only if every point of a
neighborhood of pi in the line y = 0 is singular, which gives us a contradiction. Thus, the previous sequence exists
and we can define S− in an analogous way.

So, u will be cylindrical or conical in S+ and in S−. But, in any case, this is again a contradiction because pi
would be a singular point if and only if every point of a neighborhood of pi in the line y = 0 is singular. Hence
Npi 6= ∅.

As a consequence we obtain a first global classification result.

Theorem 1. Let u : R2\{p1, . . . , pn} −→ R be an analytic solution of (1) with isolated singularities at the points
pi. Then, either there is no singular point and u is a cylindrical function in R2, or there is a unique singular point
and u is a conical function in R2\{p1}.

Proof. The result is well known if there is no singular point [8, 16]. Otherwise, up to a translation, we can assume
that the origin is a singular point. So, for polar coordinates (ρ, θ), the function u(ρ, θ) is analytic and, from the
previous Corollary, uρρ vanishes identically in the non empty open setN(0,0). Therefore, uρρ must vanish globally,
that is, u is a conical function in R2\{(0, 0)}.

4 Entire solutions with one or two singularities.
We devote this Section to the characterization of the entire solutions to the degenerate Monge-Ampère equation
uxxuyy − u2xy = 0, where u is a C2 function in R2 minus one or two points. These results will be a consequence
of the global results studied in the previous Section.

We first prove that there only exist two different kinds of solutions in the punctured plane.

Theorem 2. Let u : R2\{(0, 0)} −→ R be a C2 solution of (1) with an isolated singularity at the origin. Then, u
is given by one of the following cases (Figure 1):

1. u is a conical function in R2\{(0, 0)}, or

2. there exists a line r containing the origin such that u is a cylindrical function in one half-plane determined
by r, and u is a conical function in the other half-plane.

Proof. From Corollary 2, N cannot be empty. Thus, if there is no point p ∈ N such that r(p) is a line then, from
Lemma 3, u is a conical solution in R2\{(0, 0)}.
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On the other hand, if there is a point p ∈ N such that r(p) is a line then, from Proposition 1, there exists an
open half-plane S(p), containing r(p), such that u is a cylindrical function in S(p). Moreover, the boundary of
S(p) in R2 is a line r containing the singular point (0, 0). If S− is the other open half-plane determined by r, again
Proposition 1 gives that r(q) must be a half-line for every point q ∈ N ∩ S−. Hence, u is a conical function in
S−, by Lemma 3.

Figure 1: solutions with one singularity.

Now we present some families of examples of solutions to the equation (1) in the twice punctured plane.

Example 4.1. Consider an open strip S in R2 so that its boundary is given by two lines r1, r2. Choose two points
p1 ∈ r1, and p2 ∈ r2. Then, a solution u to the equation (1) can be obtained in R2\{p1, p2} such that u is a
cylindrical function in S, and u is a conical function in each half-plane of R2\S with vertex at pi (Figure 2).

Example 4.2. Let S be an open half-plane in R2 with boundary given by a line r, and p1, p2 ∈ r. Let h1, h2 be
two parallel half-lines contained in R2\S with respective end points p1, p2. A solution u to (1) can be defined in
R2\{p1, p2} such that u is a cylindrical function in S, u is a linear function in the half-strip determined by h1, h2
and r, and u is a conical function in the remaining two domains with vertices at p1, p2, respectively (Figure 3).

Example 4.3. Assume S is an open half-plane in R2 with boundary given by a line r, p1 ∈ r, and p2 ∈ R2\S.
Let h1, h2 be two half-lines in R2\S with end point at p1 such that at most one of them is contained in r, and
p2 belongs to the closed sector determined by h1 and h2. Let hi be the half-line parallel to hi with end point
at p2. Then, a solution u to (1) can be defined in R2\{p1, p2} such that u is a cylindrical function in S, u is a
linear function in the unbounded domain determined by h1, h2, h1 and h2, and u is a conical function in the rest of
domains (Figure 4).
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Figure 2: the configuration of r(p) lines for example 4.1.
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Figure 3: the configuration of r(p) lines for example 4.2.

Example 4.4. Consider p1, p2 ∈ R2, and S1, S2 two disjoint open sectors with vertex at p1, p2, respectively. A
solution u to (1) can be obtained in R2\{p1, p2} such that u is a conical function in S1 and S2, and u is linear in
the open set determined by R2\(S1 ∪ S2) (if not empty). See Figure 5.

Our objective is to show that every solution to (1) in the twice punctured plane is given by one of the previous
examples. For that, we will need some properties associated with the sets Npi defined in (4).

Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi. We define
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Figure 4: the configurations of r(p) lines for example 4.3.
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Figure 5: the configurations of r(p) lines for example 4.4.

for each singular point

Vpi = {v ∈ S1
: there exists p ∈ Npi such that r(p) = pi + λv, with λ > 0}.

Observe that Vpi is a non empty open set in the unit circle since Npi is a non empty open set (Corollary 2).

Lemma 5. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi.
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Consider two different singular points pj , pk, then there exist two disjoint connected open sets Uj , Uk ⊆ S1 such
that Vpj ⊆ Uj and Vpk ⊆ Uk.

Proof. Let u0 =
pk − pj
|pk − pj |

and v0, v ∈ Vpj . It is clear that v0 and v are different from u0 because the half-

line pj + λu0, λ > 0, contains the singular point pk (see Figure 6). If v0 6= v, the set S1\{v0, v} has two
connected components. Let Av be the connected component containing the unit vector u0, then we want to show
that Vpk ⊆ Av .

Observe that pj and the half-lines pj + λv0, pj + λv, with λ > 0, separate the plane into two connected
components. Let Ω be the connected component containing pk. Then, for w ∈ S1, it is easy to check that if the
half-line pk + λw, λ > 0, is contained in Ω then w ∈ Av ∪ {v0, v} (Figure 6). As a consequence, Vpk must be
contained in Av .

Thus, Vpk is contained in A = ∩v∈VpjAv . Since the intersection of convex sets of a punctured circle (which is

homeomorphic to R), S1\{v0}, must be convex, and since Vpk is an open set of S1, we have that Vpk is contained
in the open connected set given by the interior of A. Moreover, by construction, the open set Vpj is contained in
S1\A.

k

Ω

v

v

v

u0

0

p v0j

p
0

v

v

v0

p
j

p
k

Ω

u

Figure 6: proof of Lemma 5.

Theorem 3. Let u : R2\{p1, p2} −→ R be a C2 solution of (1) with two singular points p1, p2. Then, u is
contained in one of the families given by Examples 4.1, 4.2, 4.3 or 4.4.

Proof. We will divide the proof in different cases:
Case 1: Assume there exists a point p ∈ N such that r(p) is a line. Then, from Proposition 1, there exists a

maximal open strip S(p) which is contained in R2\{p1, p2} such that each connected component of its boundary
in R2 has at least a singular point. Moreover, u is a cylindrical function in S(p).

Case 1.1: If the boundary of S(p) is made by two lines, then each line must contain one of the two singular
points. In addition, if a point q ∈ N is not in the strip S(p) then r(q) is a half-line with end point at a singular one.
Hence, from Lemma 3, u is a conical function in each half-plane of R2\S(p) and is determined by Example 4.1.
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Case 1.2: If the boundary of S(p) in R2 is only one line, then two different situations can happen. Up to a
translation or rotation, we can assume S(p) is the open half-plane y < 0:

Case 1.2.1: If both singularities are in the boundary of S(p) then we can write p1 = (x1, 0), p2 = (x2, 0), with
x1 < x2. Then, from Lemma 5, there exists θ0 ∈ (0, π) such that Np2 is contained in the open sector with vertex
at p2 and angles between 0 and θ0:

Sθ00 (p2) = {p2 + ρ (cos θ, sin θ) : ρ > 0, 0 < θ < θ0},

andNp1 is contained in the open sector Sπθ0(p1). So, u is a conical function in Sθ00 (p2) and also in Sπθ0(p1). Hence,
u is given as in Example 4.2.

Case 1.2.2: If only one singularity is in the boundary of S(p), then we have p1 = (x1, 0), and p2 = (x2, y2),
with y2 > 0. Using again Lemma 5, there exist θ1, θ2 ∈ [0, π], θ1 < θ2, such that Np2 ⊆ Sθ2θ1 (p2) and Np1 ⊆
Sθ10 (p1) ∪ Sπθ2(p1). Here, Sθ10 (p1), Sπθ2(p1) could be the empty set if θ1 = 0 or θ2 = π, respectively, but both of
them cannot be empty since Np1 6= ∅. Thus, u belongs to the family determined by Example 4.3.

Case 2: If there is no p ∈ N so that r(p) is a line then, from Lemma 5, there exist angles θ1 < θ2 ≤ θ3 <
θ4 ≤ θ1 + 2π, satisfying Np1 ⊆ Sθ2θ1 (p1) and Np2 ⊆ Sθ4θ3 (p2). Therefore, u is a conical function in both sectors
Sθ2θ1 (p1), Sθ4θ3 (p2), and is given as in Example 4.4.

5 Entire solutions with more than two singular points.
The results in Section 3 establish that every solution u to the degenerate Monge-Ampère equation (1) in
R2\{p1, . . . , pn} must be a conical function in at least a sector with vertex at each singular point pi and, in
addition, there exists at most one maximal strip where u is a cylindrical function. However, when the number of
singular points is larger than two, the number of different solutions to (1) is very large. This is basically due to the
fact that one can find solutions u to (1) defining u as a linear function in some half-strips of the domain in such a
way that u is glued to the conical parts of the function, or its cylindrical part.

We will focus our attention on the classification of the solutions to (1) which do not contain a half-strip where
the graph is planar.

Definition 2. Let u : R2\{p1, . . . , pn} −→ R be a C2 solution of (1) with isolated singularities at the points pi.
We say that u is an admissible solution if there is no half-strip in R2\{p1, . . . , pn} where u(x, y) is linear.

Lemma 6. Let u : R2\{p1, . . . , pn} −→ R be an admissible C2 solution of (1) with isolated singularities at the
points pi. Assume there exists a closed sector S in R2 of angle less than π with vertex at a fixed singular point pj0 ,
such that ∂S ∩N = ∅. Moreover, suppose Npj ⊆ S for every singular point pj ∈ S\{pj0}.

Then, there is no singular point in S different from pj0 .

Proof. Up to a translation and rotation, we can assume

S = {ρ (cosθ, sin θ) : ρ ≥ 0, θ0 ≤ θ ≤ π − θ0}

13



for a certain θ0 ∈ (0, π/2), with singular point pj0 = (0, 0).
Observe that if p ∈ S ∩ N then r(p) can only be a half-line with end point at a singular point of S, since

∂S ∩ N = ∅. Moreover, r(p) must be given as pj + λ(cos θ, sin θ) for some singular point pj ∈ S, λ > 0, and
θ0 ≤ θ ≤ π − θ0. In fact, θ 6= θ0, π − θ0 because Npj is an open set.

Suppose there is a singular point in S different from pj0 = (0, 0). We choose L > 0 big enough in such a way
that every singular point is below the horizontal line y = L, and consider a highest singular point pk = (xk, yk) ∈
S. For this point, the set {x ∈ R : (x, L) ∈ Npk} is bounded from below and from above, since Npk ⊆ S. Thus,
we define the real numbers

m = inf{x ∈ R : (x, L) ∈ Npk}, M = sup{x ∈ R : (x, L) ∈ Npk}.

Note that if (m,L) ∈ ∂S then pk belongs to the segment joining (m,L) and the vertex pj0 = (0, 0), which is
contained in ∂S. Otherwise, by definition of m we would have Npk ∩ ∂S 6= ∅, which contradicts N ∩ ∂S = ∅.
Analogously, if (M,L) ∈ ∂S then pk belongs to the segment joining (M,L) and the vertex pj0 . In particular,
(m,L) and (M,L) are not in ∂S at the same time.

Claim 1: If (m,L) 6∈ ∂S then there exists a singular point pm ∈ S in the line (1−λ)pk+λ(m,L), with λ < 0,
such that (m,L) ∈ Npm (see Figure 7).

M

π−θ θ00

y=L

p
k

pp
M m

m

Figure 7: proof of Claim 1 of Lemma 6

In order to prove the claim, consider the set I = {x ∈ R : x < m, (x, L) ∈ N ∩ S}. I cannot be
empty, otherwise the domain in S determined by the half-line (1 − λ)pk + λ(m,L), with λ ≥ 1, the segment
{(x, L) ∈ S : x ≤ m} and ∂S, would give rise to an unbounded domain included in U , since its boundary lies in
U and every singular point is outside of this domain. As the domain contains a half-strip, the solution would not
be admissible.

Let m be the supremum of I, then we want to see that m = m. If m < m then the half-line rm given by
(1 − λ)pk + λ(m,L), with λ ≥ 1, its parallel half-line rm with end point (m,L), and the segment {(x, L) ∈ S :
m ≤ x ≤ m} will determine a half-strip H in U . For that, it is enough to show that rm is contained in U , since, as
above, ∂S would be included in U and every singular point would be outside H . Hence, H ⊆ U and the solution
would not be admissible.
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If there exists p ∈ rm ∩N then r(p) is given by pj + λv0, for a certain singular point pj ∈ S, λ > 0, v0 ∈ S1.
Observe that r(p) cannot intersect rm or the segment {(x, L) ∈ S : m ≤ x ≤ m}. However, pj is below the line
y = L, so if r(p) ∩ rm 6= ∅ then r(p) must intersect the parallel half-line rm, which is a contradiction. Therefore,
m = m.

From the definition of m = m, there exists a sequence of points qi = (xi, L) ∈ N tending to (m,L) with
xi < m. Passing to a subsequence, if necessary, we can assume all r(qi) have a common singular end point
pm ∈ S. This shows that (m,L) ∈ Npm .

Moreover, since r(qi) cannot intersect the half-line (1− λ)pk + λ(m,L), with λ ≥ 0, then pm belongs to the
line (1− λ)pk + λ(m,L), with λ ∈ R. But, pk is a highest point, so pm is below pk, which proves the claim.

In an analogous way to the previous claim, one can prove:
Claim 2: If (M,L) 6∈ ∂S then there exists a singular point pM ∈ S in the line (1 − λ)pk + λ(M,L), with

λ < 0, such that (M,L) ∈ NpM (see Figure 7).
Finally, in order to contradict the existence of the singular point pk and so conclude the proof, we distinguish

two cases.
Assume pk ∈ ∂S, then pk = ρ(cos θ, sin θ), with ρ > 0 and θ ∈ {θ0, π − θ0}. For instance, if θ = θ0 then,

as we proved previously, (m,L) 6∈ ∂S and, from Claim 1, there would exist a singular point pm ∈ S in the line
(1 − λ)pk + λ(m,L), with λ < 0, such that (m,L) ∈ Npm . But this is impossible because every point in the
half-line (1− λ)pk + λ(m,L) with λ < 0 is contained in R2\S, which contradicts the existence of pm.

Assume pk 6∈ ∂S, then there exist two different singular points pm, pM in the conditions of Claim 1 and Claim
2, respectively. But, this is a contradiction since Npm ∩NpM 6= ∅ (see Figure 7).

As a consequence we will prove that an admissible solution to (1), with a point p ∈ N such that r(p) is a line,
must be given by Case 2 in Theorem 2 or by Example 4.1.

Corollary 3. Let u : R2\{p1, . . . , pn} −→ R be an admissible C2 solution of (1) with isolated singularities at the
points pi. If there exists a point p ∈ N such that r(p) is a line, then there are exactly one or two singular points.

Proof. From Proposition 1, there exists an open strip S(p) containing r(p) such that its boundary in R2 is given
by one or two lines parallel to r(p). Moreover, if r0 is a line of ∂S(p) then r0 contains at least a singular point pi0 .

We need to show that if H0 is the closed half-plane determined by r0 which does not contain S(p) then the
unique singular point in H0 is pi0 .

Let V be a connected component of Npi0 . The set V is an open sector contained in H0 with vertex at pi0 .
If H0\V = r0 then there is no singular point different from pi0 . Otherwise, if there exists another singular

point pj ∈ H0 then pj ∈ r0 and the non empty set Npj would intersect Npi0 or S(p).
If H0\V 6= r0, then H0\(V ∪ {pi0}) has one or two connected components with non empty interior. The

adherence of each component with non empty interior is a closed sector with vertex at pi0 in the conditions of
Lemma 6. Therefore, there is no singular point in H0 except pi0 .

As a main result in this Section, we classify all the admissible solutions to the degenerate Monge-Ampère
equation with more than two singularities (see Figure 8).
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Figure 8: Admissible solution with four singular points.

Theorem 4. Let u : R2\{p1, . . . , pn} −→ R be an admissible C2 solution of (1) with isolated singularities at the
points pi and n ≥ 3. Then,

1. The singular points are the vertices of a convex compact polyhedron C with non empty interior, and u is
linear on C.

2. The singular points can be numbered following an orientation of ∂C in such a way that u is a conical
function on the open sector determined by the half-lines

(1− λ)pi + λpi+1, λ ≥ 0, and (1− λ)pi−1 + λpi, λ ≥ 1,

with vertex at pi. (Here, p0 := pn and pn+1 := p1.)

Proof. Observe that, from Proposition 2 and Corollary 3, if p ∈ N then r(p) must be a half-line, that is, N =
∪ni=1Npi .

Let S be a circle of R2 such that the singular points are contained in the interior of the bounded component
determined by S. Let

Spi = Npi ∩ S.

We want to show that S = ∪ni=1Spi .
Assume the open set S\ ∪ni=1 Spi is not empty, then we consider an open connected component U of this set.

Let q1, q2 ∈ S be the points in U\U . From the definition of Spi there exist two sequences x1m, x
2
m ∈ S ∩ N such

that xjm tends to qj .
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Passing to a subsequence if necessary, we can assume the half-lines r(x1m) have the same singular end point
pi1 . Analogously, the half-lines r(x2m) have a common singular end point pi2 . But U and the two half-lines

(1− λ)pij + λqj , λ ≥ 1, j = 1, 2,

determine a domain V ⊆ R2 whose boundary is included in U and every singular point is outside V . So, V ⊆ U
and, since V contains a half-strip, the solution u cannot be admissible. This is a contradiction, hence S = ∪ni=1Spi .

Now, let us see that Spi is a connected set for each i.
Assume there exists i0 such that Spi0 is not connected, then we can consider two different connected compo-

nents V1, V2 of Npi0 \{pi0}, where for instance V1 has non empty interior (see Figure 9).

V

S

V

p
i0

A0

<π
2

1

Figure 9: connection of Spi0

Then R2\(V1 ∪V2 ∪{pi0}) is made of two disjoint open sectors with vertex at pi0 , where one of them, say A0,
has angle less than π, since the interior of V1 is non empty. Using Lemma 6 for the adherence of A0 we obtain that
the unique isolated singularity in A0 is pi0 . Hence, A0 ∩ S ⊆ Spi0 , because S = ∪ni=1Spi . This contradicts that
V1 and V2 are disjoint connected components.

As Spi is a connected set, we obtain that Npi is a closed sector with vertex at pi. Moreover, let us check that
Npi must have angle less than or equal to π. In order to see that, suppose the angle of Npi is bigger than π, then
using Lemma 6 to the adherence of R2\Npi we would have that pi is the unique singular point, which contradicts
the existence of at least three singularities.

Now, following an orientation of S, we can adjust the indices in such a way that Spi is adjacent to Spi−1
and

Spi+1
, i = 1, . . . , n. Let αi, βi ∈ ∂Spi such that αi = βi−1, i = 1, . . . , n (see Figure 10).

Claim 1. Up to reversing the orientation of S, we can assume that, for any i = 1, . . . , n, the point pi+1 belongs
to the segment
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(1− λ)pi + λβi, 0 < λ < 1.

We first prove that the point p2 belongs to the half-line (1− λ)p1 + λβ1, λ < 1.
There exists a sequence of point x2m ∈ Sp2 ∩N such that x2m tends to β1 and r(x2m) is a half-line with endpoint

at p2. If p2 does not belong to the half-line through β1 and p1, with endpoint at β1, then for m sufficiently large,
r(x2m) would intersect the sector Np1 . This is a contradiction.

Now, if p2 does not belong to the segment between β1 and p1, then p1 belongs to the segment between p2 and
α2 = β1 and we get the desired result by changing the orientation of S.

By the same argument used for the point p2, we can prove that p3 belongs to the line trough β2 and p2.
Moreover, p3 must belong to the open segment between β2 and p2, because on the contrary one hasNp1∩Np3 6= ∅,
that is a contradiction.

Analogously, one can prove that for any i = 3, . . . , n− 1, the point pi+1 belongs to the open segment between
βi and pi, that proves Claim 1.

Claim 2. The points p1, . . . , pn are the vertices of a convex compact polyhedron C.

p
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2
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β

1

1

β
β

2

3

3

ω
2

γ
3

ω
3

2
γ

p

p

Figure 10: C is convex

Up to a translation and a rotation, we can assume that p1 is the origin and that α1 is the intersection between
the positive x-axis and S (see Figure 10). For i = 2, . . . , n, denote by ωi the angle that the line through p1 and pi
does with the x-axis and by γi the angle that the line through p1 and βi does with the x-axis (both angles with the
orientation induced by the orientation of S). It is straightforward to verify that

(5) 0 < ω2 < ω3 < γ2 < ω4 < γ3 < ω5 < γ4 < ω6 < · · · < ωn < γn = 2π
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where the last equality is because βn = α1. In particular ωn = π, since p1 is contained in the segment between pn
and βn = α1.

Notice that, inequality (5) implies that, for i = 2 . . . , n−1, one has ωi < π.Hence all the pi, i = 2, . . . , n−1 lie
in the same open half-plane with boundary the straight line through p1 and pn. Analogously, for each i = 2, . . . , n
the straight line through pi−1 and pi determines an open half-plane where the rest of singular points are included.
This shows, that the intersection of the corresponding closed half-planes determine a convex compact polyhedron
C with non empty interior.

Finally, we have proved that, for any singular point pi, the subsetNpi does not intersect the convex polyhedron
C. Since N = ∪ni=1Npi , one has that C ⊆ U and hence u is linear in C, as desired.

Let us conclude with some remarks. On the one hand, an analogous result for global solutions to the degenerate
Monge-Ampère equation with isolated singularities in higher dimensions would be desirable, although it seems
to be more difficult. On the other hand, we believe that our method can be extended to determine the solutions
to the degenerate Monge-Ampère equation in the plane R2 with some convex sets removed. In the elliptic case,
some results in this sense are in [10], where the authors study Monge-Ampère equations with isolated and lines
singularities. Finally, it should be mentioned that some interesting global results were obtained in [15] for flat
surfaces where the set of singularities can be large.
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