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Conductance oscillations of core-shell nanowires in transversal magnetic fields
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We analyze theoretically electronic transport through a core-shell nanowire in the presence of
a transversal magnetic field. We calculate the conductance for a variable coupling between the
nanowire and the attached leads and show how the snaking states, which are low-energy states
localized along the lines of vanishing radial component of the magnetic field, manifest their existence.
In the strong coupling regime they induce Aharonov-Bohm-like conductance oscillations, which, by
decreasing the coupling to the leads, evolve into well resolved peaks. These results show that the
formation of snaking states in the nanowire affects magnetoconductance measurements irrespective
of the strength of the contacts with the leads.

PACS numbers: 73.63.Nm, 71.70.Ej, 73.22.Dj

Design and technological realization of quantum nan-
odevices requires nanoscale systems of well defined and
controllable properties. Recently, tubular semiconductor
structures turned out to be promising building blocks
of such appliances. Nanotubes of very narrow, but fi-
nite thickness may be achieved in few different ways. In
the case of quantum wires built of narrow-gap materi-
als surface states may induce Fermi level pinning above
the conduction band edge which results in accumulation
of electrons in the vicinity of the surface [1]. Nowadays
it has become feasible to combine two (or even more)
different materials into one vertical structure, i.e., core-
shell nanowires (CSNs). This provides a possibility to
achieve thin tubular shells surrounding a core nanowire
or other shells [2]. One of the advantages of these sys-
tems is a possibility to establish band alignment through
the thicknesses of the components [3, 4] and thus grow
structures in which electrons are confined only in narrow
shell areas [5, 6]. Moreover, the core part may be etched
such that separated nanotubes are formed [7, 8].
Most commonly CSNs have hexagonal cross-sections

[6–8], but triangular [9, 10] and circular [11] systems
have also been achieved. Electrons confined in prismatic
CSNs may form conductive channels along the sharp
edges [2, 12–17]. Rich quantum transport phenomena
have been observed in CSNs, e.g., Aharonov-Bohm (AB)
magnetoconductance oscillations [6, 18], single electron
tunneling, or electron interference [6, 11]. Very interest-
ing effects have been predicted in the presence of a strong
magnetic field perpendicular to the wire axis. In particu-
lar, the field induces a complex topology of the electronic
states. Low-energy electrons may be found around two
channels along the CSN axis where the radial compo-
nent of the field vanishes by changing sign. Carriers on
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both sides of the lines are deflected towards opposite di-
rections and thus confined into so called snaking states
[19–22]. Higher energy electrons start to occupy Landau
states and form cyclotron orbits localized in the areas
where the radial component of the field takes maximal
values. With increasing energy electrons move towards
the sample ends and form edge states [22]. To the best
of our knowledge experimental investigation of magneto-
transport in CSNs with magnetic field transversal to the
nanowire, and of the effects of snaking states, have only
recently been attempted [23].

In this paper we focus on thin cylindrical conductive
shells since in such systems carrier localization or conduc-
tive channels are induced only by an external magnetic
field and thus such samples allow to observe purely mag-
netic effects. According to recent calculations the exis-
tence of snaking states leads to resolved resonances of the
conductance when the CSN is weakly coupled to external
leads [24]. In the present paper we extend these results
and analyze signatures of snaking states in the conduc-
tance for wide range of sample-lead coupling strength
which is controlled by variable potential barriers. We
show that in a strong coupling regime the snaking states
induce AB-like magnetoconductance oscillation and thus
may be detected in transport experiments irrespective of
contact strength.

The model of a CSN used here is a simple cylindrical
surface of radius ρ = 30 nm and length Lz = 300 nm,
through which a current can flow from one end to another
due to a potential bias. We treat the electrons like a
cylindrical two-dimensional electron gas. We consider a
magnetic field perpendicular to the axis of the cylinder.
When the field is sufficiently strong low-energy electrons
can travel along the snaking orbits created along the two
lines of zero radial component, at polar angles ϕ = π/2
and ϕ = 3π/2, as illustrated in Fig. 1. Two leads are
attached to the CSN, one at each end of it, which are
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FIG. 1. (Color online) Top: The CSN is a cylindrical surface
of radius ρ = 30 nm and length Lz = 300 nm (blue color). The
wavy lines with arrows indicate snaking orbits propagating
along the axes of zero radial magnetic field (thin red dotted
lines). The contacts with the source and the drain electrodes
are shown (gold color). Bottom: Gaussian potential barriers
placed near the contacts between the nanowire and the leads.
The contact points are zS,D = ±Lz/2. The barriers have fixed
width and locations, but variable height.

treated as particle reservoirs, without a specified shape.
Conventionally, we call them Source (S) and Drain (D).
At each junction between a lead and the nanowire a

potential barrier is used to achieve the appropriate con-
tact, i.e. to characterize the coupling strength. The
two barriers are defined as Gaussian functions V (z) =
V0 exp [−((z − b)/c)2] with a fixed parameter c = 2.5 nm,
centered at points situated slightly inside the nanowire,
at distance c from the edges, b = ±(Lz/2−c), Fig. 1. The
potential barriers are independent on the polar angle ϕ.
The contact strength is varied with the height V0, from
full coupling (V0 = 0) to tunneling regime (large V0).
In order to calculate the conductance of the open cylin-

der, i.e. the CSN in contact with the external leads,
we use the scattering formalism based on the R-matrix
method. This method has been used in similar trans-
port problems in quantum dots connected to the leads
via quantum point contacts [25], in planar nanotransis-
tors [26, 27], or in cylindrical bulk nanowires with radial
constrictions, at zero magnetic field [28–31]. The ap-
proach consists of two parts. In the first part the wave
function of an electron at a given energy E is built, both
in the leads and in the central scattering region (here the
CSN), and matched by continuity conditions at the junc-
tions. In the second part one obtains the S matrix, the
transmission function, and the conductance.
We assume that in the leads, close to the junctions

with the CSN, the wave function can be written as a
combination of plane waves and orbital states

ψl(r)=
∑

mσ

[

ψin
mσle

−ikm(z−zl) + ψout
mσle

ikm(z−zl)
]

um(ϕ)|σ〉,

(1)
where l = S,D is a label for the two leads, zl = ∓Lz/2 de-

note the coordinates of the junctions, σ is the spin label,
um(ϕ) = eimϕ/

√
2π are the eigenvectors of the angular

momentum, with m = 0,±1,±2, .... The wavevector km
corresponds to the longitudinal motion of a particular
circular mode m, being determined by the energy of the
incoming electron,

E =
~
2

2meff

(

k2m +
m2

ρ2

)

, km =

√

2Emeff

~2
− m2

ρ2
, (2)

where meff is the effective mass of the material. Note
that at a fixed energy, depending on m, km can be real
or imaginary. The real values describe open channels,
propagating from one lead to another lead, whereas the
imaginary values describe closed (or evanescent) channels
which are states bound around the scattering region [17].
Although we are formally treating the leads as semi-

infinite extensions of the CSN, with the same circular
symmetry, in fact the wave functions (1) are important
only at (or close to) the boundaries zl. Therefore, in
principle, the shape of the leads can be arbitrary. In
experimental setups the leads are usually perpendicular
”finger” electrodes attached to the nanowire sample [18].
Moreover the magnetic field has completely different ef-
fects in the leads and in the measured sample. This also
motivates us to neglect in our model the magnetic field
in the leads. In addition to simplicity, this assumption is
helpful to define the contact between the leads and the
CSN, in the absence of a potential barrier, not only as a
mathematical boundary, but also as a magnetic barrier.
The placement of the barriers slightly inside the CSN has
two reasons: to avoid perturbing the states in the leads,
and also to simulate new boundaries where the magnetic
field does not vanish. Still the numerical results depend
very little on the shape and placement of the barriers.
In order to calculate the wave function in the CSN

region one has to find the eigenstates of the Wigner-
Eisenbud (WE) Hamiltonian H̃ , satisfying Neumann
boundary conditions at the points zl (instead of the
Dirichlet conditions familiar for hard wall boundaries),

H̃χa = ǫaχa ,

where a = 1, 2, ... is a generic quantum number label-
ing the WE energies ǫa in increasing order. The WE
eigenstates χa ≡ |a〉 are expanded in a basis set |q〉 =
um(ϕ)un(z)|σ〉, with un(z) = An cos[nπ(z/Lz + 1/2)],

n = 0, 1, 2, ... and normalization factor A0 =
√

1/Lz and

An =
√

2/Lz for n > 0.

The Hamiltonian H̃ is formally built as a regular
Hamiltonian H , with the kinetic term containing the
modified momentum operator pz + eAz = pz + eBρ sinϕ,
the vector potential being defined in the Landau gauge
A = (0, 0, By), and the Zeeman term depending on the
effective g-factor of the material,

H = − ~
2

2meffρ2
∂2

∂ϕ2
+

(pz + eBρ sinϕ)2

2meff
− 1

2
geffµBBσx .
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With Neumann boundary conditions, implemented via
the cosine functions of the basis |q〉, the resulting lin-
ear term in pz is not Hermitean. Therefore the ma-
trix elements of the WE Hamiltonian are defined as
H̃qq′ =

(

Hqq′ +H∗
q′q

)

/2. This procedure is equivalent
to correcting the momentum pz with a surface Bloch op-
erator L = −i~[δ(z − zD)− δ(z − zS)]/2 as discussed by
other authors [32, 33].
The wave function in the CSN can be written as a

superposition of WE eigenstates,

ψ(r, E) =
∑

a

αa(E)χa(r), (3)

and the coefficients αa are determined by the continuity
conditions of the wave functions and their first derivatives
at the zl boundaries. Detailed calculations can be found
in Appendix A of Ref. [26]. By introducing one more
composite label |ν〉 = |mσl〉 the amplitudes of the wave
function in the leads, Eq. (1), can be seen as the vectors
ψin ≡ {ψin

ν } and ψout ≡ {ψout
ν }, which are related via

the continuity conditions, as

ψin + ψout = −iRK
(

ψin − ψout
)

. (4)

In Eq. (4) we have introduced two matrices, the matrix
of wavevectors with elements Kνν′ = kmδνν′ , and the
so-called R matrix defined as

Rνν′(E) = − ~
2

2meff

∑

a

〈ν|a〉〈ν′|a〉†
E − ǫa

. (5)

The notation 〈ν|a〉 stands for the scalar product of the
orbital and spin states incorporated in each factor, at the
two frontiers zl, i.e.

〈ν|a〉 = 〈σ|
∫ 2π

0

u∗m(ϕ)χa(ϕ, zl)dϕ .

The scattering problem is solved by calculating the S
matrix, which transforms the ”in” states in ”out” states,

ψout = Sψin ,

and using Eq. (4) it is obtained as

S = −(1− iRK)−1(1 + iRK) .

Having the S matrix one can calculate the transmission
matrix between the open channels ν and ν′

Tνν′(E) =
∣

∣

∣

(

K1/2SK−1/2
)

νν′

∣

∣

∣

2

,

and finally the conductance G, by summing all con-
tributions from separate leads, i.e. |ν〉 = |mσS〉 and
|ν′〉 = |m′σ′D〉,

G =
e2

h

∫

dE

(

−∂F
∂E

)

∑

mσ
mσ′

TmσS,m′σ′D(E) , (6)
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FIG. 2. (Color online) (a) Conductance vs. chemical potential
µ without magnetic field, for contact barriers of height V0 =
0, 5, ..., 30 meV, and then vs. magnetic field perpendicular to
the nanowire, with (b) µ = 3 meV and (c) µ = 5 meV.

where F denotes the Fermi function.

In the numerical calculations we used material param-
eters of InAs, meff = 0.023 and geff = −14.9. The results
were convergent in a basis |q〉 truncated to orbital mo-
menta with |m| ≤ 10 and longitudinal modes n ≤ 80.
All channels, both open and closed, were used to calcu-
late the R and S matrices. The temperature was fixed
to T = 0.5 K.

First we show in Fig. 2(a) the conductance at zero
magnetic field as a function of the chemical potential
µ for several heights of the potential barriers. The re-
sults are as expected for ballistic transport in a quantum
wire. Without the barriers (V0 = 0) the conductance has
the familiar steps given by the number of open channels,
which is the number of m values yielding a real wavevec-
tor km for the energy E = µ in Eq. (2), multiplied by
the two spin states σ = ±1. By increasing the height of
the barriers the conductance drops, because the energy of
the electronic states within the CSN increases, and thus
a smaller number of open channels remains available up
to the fixed Fermi level. Also the conductance begins
to oscillate, as a results of the (Fabry-Perot) interference
between transmitted and reflected waves, and evolve to-
wards resonances with peaks indicating the density of
states in the scattering region. This is a consequence of
the fact that the coupling between the scattering region
and the leads decreases.

Next, in Fig. 2(b), we show how the conductance de-
pends on the strengths of the transverse magnetic field
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and on the coupling to the leads for chemical potential 3
meV. We distinguish two regimes, corresponding to low
and high contact barriers, respectively. For low barri-
ers, V0 < 5–10 meV, regular conductance oscillations are
obtained, with periods ∆B slightly increasing from 0.20
to 0.22 T in the interval B = 2–4 T. Each of these os-
cillations nearly corresponds to a gain of one flux unit
Φ0 = h/e through the area of the cylinder projected on
the yz plane, A = 2ρLz. According to this estimation the
period should be ∆B = Φ0/A = 0.23 T. Therefore these
oscillations can be considered a kind of Aharonov-Bohm
(AB) interference of snaking states propagating on the
lateral sides of the cylinder.
By increasing the height of the contact barriers the AB-

like oscillations smear out and the broader conductance
peaks emerge. These peaks are produced by the same
snaking states, but now as individual resonances occur-
ring in the nearly isolated CSN, only weakly connected to
the leads. This case was described by Rosdahl et al. by
modeling the contacts with a tunneling parameter [24].
In Fig. 2(c) we show the magnetoconductance with the

chemical potential increased to 5 meV. The contribution
of higher energy levels results in more complex fluctua-
tions, but the fine structure of AB type oscillations re-
mains visible. The resonances at high contact barriers
are now shifted to higher magnetic fields.
We can gain more understanding of the AB oscillations

by looking at the WE energy spectra vs magnetic field
shown in Fig. 3. In the case of strong coupling between
the CSN and the leads, e.g. V0 = 0, the low energy levels
form braid shape patterns for B > 1 T, Fig. 3(a). These
oscillations affect the conductance, Eq. (6), through the
denominators of the the R-matrix, Eq. (5), which are sen-
sitive to such small changes in the WE energies ǫa, and
induce the AB oscillations. In fact, the R-matrix has a
form similar to the Green functions used by other au-
thors for such scattering-transport calculations [34]. The
braids are an indication of snaking states interference in
the open CSN. We verified that such an energy spectrum
is also obtained for a CSN with a finite thickness of 10
nm, by including in the basis |q〉 radial wave functions
vanishing at the surfaces.
In the presence of high barriers the braids shrink and

converge towards nearly double degenerate eigenstates,
Fig. 3(b), as obtained for the isolated cylinder [24].
The WE spectra can also explain the transition from
flux-periodic magnetoconductance to resonant peaks, ob-
served while the height of the contact barriers is being
increased. These peaks occur at those magnetic fields for
which the snaking states are crossing the Fermi energy.
Further information on the snaking states can be ob-

tained from the wave functions. In the scattering region
they are obtained with Eq. (3), using the coefficients αa

expressed with the S matrix [28],

αa(E)=
~
2

2meff

i√
2π

1

E − ǫa

∑

ν

〈ν|a〉∗km
(

1−
∑

ν′

Sνν′

)

,

where by summing over all labels ν we consider elec-
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FIG. 3. (Color online) The Wigner-Eisenbud (WE) energies
ǫa (a) without contact barriers and (b) with barriers of V0 =
20 meV. The blue dotted horizontal lines show the chemical
potentials used in the magnetoconductance calculations, µ =
3 meV and µ = 5 meV.
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FIG. 4. Probability densities corresponding to the wave func-
tions within the CSN, at energy E = 3 meV and V0 = 0, for
(a) B = 2.91 T when the snaking states are in phase, and
(b) B = 3.02 T when they are in anti-phase. Here we show
the open cylindrical surface, the vertical axis being the polar
angle and the horizontal axis the longitudinal z coordinate.

trons incoming from both leads, with wave functions of
equal amplitudes. Nevertheless, since the wave functions
themselves are not directly involved in the conductance
calculations, we look at them only to correlate the be-
havior of the snaking states in the scattering region with
the WE spectrum and the conductance oscillations.

In Fig. 4 we show two distinct situations, for a fixed en-
ergy E = 3 meV, which is the chemical potential used in
Fig. 2(b), and no potential barrier, V0 = 0. For B = 2.91
T the pair of snaking states have in-phase longitudinal
oscillations, Fig. 4(a), corresponding to a crossing of the
braided WE energies, Fig. 3(a), and to a conductance
minimum, Fig. 2(b). For B = 3.02 T the two snaking
states have out-of-phase longitudinal oscillations, Fig.
4(b). In this case the braids are maximally open, and the
conductance has a maximum. The out-of-phase structure
of the snaking states does not exist in the isolated CSN,
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but only the in-phase one [24]. Here, for the open CSN,
by imposing the potential barriers the lateral shift of the
out-of-phase maxima gradually reduces, until they align
like in Fig. 4(a). Seen from this angle the braids of the
WE spectrum and the AB oscillations are related to the
relative phase of the snaking states.
In conclusion we predict that the existence of the

snaking states in a CSN in a transversal magnetic field
can be experimentally observed as AB-like oscillations
of the magnetoconductance, if the coupling between the
CSN and the leads is sufficiently strong. In this case
the snaking states behave like transmitted and reflected
waves which interfere at the contacts with the leads. In
the limit of weak coupling the snaking states can be

seen as individual resonances of the conductance. In our
model the contacts are primarily simulated by matching
two different types of wave functions, in the presence of a
magnetic barrier resulting from neglecting the magnetic
field in the leads. In order to further modify the transmis-
sion and reflection at the contacts we included potential
barriers, which reduced the coupling CSN-leads, and thus
the amplitude of the transmitted waves.
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