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Abstract

Squeezed state of light is one of the important subjects in quantum optics which is

generated by optical nonlinear interactions. In this paper, we especially focus on qubit

like entangled squeezed states (ESS’s) generated by beam splitters, phase-shifter and

cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit

like ESS are investigated. We will show that the distances of peaks of Wigner functions

for two-mode ESS are entanglement sensitive and can be a witness for entanglement.

Unlike the qubit cases, it is shown that there are qutrit like ESS violating monogamy

inequality. These trends are compared with those obtained for qubit and qutrit like

entangled coherent state (ECS).
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1 Introduction

Squeezed states are a general class of minimum-uncertainty states, for which the noise in one

quadrature is reduced compared with a coherent state. The squeezed state of the electromag-

netic field can be generated in many optical processes [1, 2, 3]. The first two experiments

used third-order nonlinear optical media. Squeezed state finds a wide range of applications in

quantum information processing [4]. A superposition of odd photon number states for quan-

tum information networks has been generated by photon subtraction from a squeezed vacuum

state produced by a continuous wave optical parametric amplifier [5]. In Ref. [6], orthogonal

Bell states with entangled squeezed vacuum states were constructed and a scheme for telepor-

tation a superposition of squeezed states based on the Bell state measurement were presented.

An analysis of squeezed single photon states as a resource for teleportation of coherent state

qubits was investigated in Ref. [7]. In [8] it was shown that non-Gaussian entangled states are

good resources for quantum information processing protocols, such as, quantum teleportation.

The problem of generating ESS’s was discussed in [9, 10, 11, 12, 13, 14]. The new physical

interpretation of the generalized two-mode squeezing operator has been studied in [15] which

was useful to design of optical devices for generating various squeezed states of light.

Coherent states, originally introduced by Schrodinger in 1926 [16]. In recent years, there

has been the considerable interest in studying multi-mode quantum states of radiation fields

because they have widely role in quantum information theory [17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31]. Entanglement concentration for W-type entangled coherent states was

investigated in Ref.[32]. Generation of multipartite ECS’s and entanglement of multipartite

states constructed by linearly independent coherent states are investigated in [33, 34]. In

[35] it was considered the production and entanglement properties of the generalized balanced
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N-mode Glauber coherent states of the form

|Ψ(d)
N 〉c =

1√
M

(d)
N

d−1∑
i=0

fi|αi〉 · · · |αi〉︸ ︷︷ ︸
N modes

, (1.1)

which is a general form of the balanced two-mode ECS |Ψ(2)〉c = 1√
M

(2)
c

(|α〉|α〉+ f |β〉|β〉) and

|Ψ(3)〉c = 1√
M

(3)
c

(|α〉|α〉 + f1|β〉|β〉 + f2|γ〉|γ〉). By assumption that the coherent states are

linearly independent, these states recast in two qubit and qutrit form respectively. Then the

entanglement of this states was evaluated by concurrence measure. In Ref. [36], the effect of

noise on entanglement between modes 1 and 2 in qubit and qutrit like ECS’s was investigated.

In 1932, Wigner introduced a distribution function in mechanics that permitted a descrip-

tion of mechanical phenomena in a phase space [37, 38]. Wigner functions have been especially

used for describing the quadratures of the electrical field with coherent and squeezed states or

single photon states [39, 40, 41]. The Bell inequality based on a generalized quasi probability

Wigner function and its violation for single photon entangled states and two-mode squeezed

vacuum states were investigated in Ref. [42]. In [43] the negativity of the Wigner function

was discussed as a measure of the non-classicality which is a reason why the Wigner function

can not be regarded as a real probability distribution but it is a quasi-probability distribution

function. This character is a good indication of the possibility of the occurrence of nonclassi-

cal properties of quantum states [44]. The Wigner function of two-mode qubit and qutrit like

ECS’s was investigated in [45].

In this paper we consider two-mode qubit like ESS |Ψ(2)〉s = 1√
M

(2)
s

(|ξξ〉 + f |ηη〉). As two

squeezed states are in general nonorthogonal, they span a two dimensional qubit like Hilbert

space {|0〉, |1〉}. Therefore, two-mode squeezed state |Ψ(2)〉s can be recast in two qubit form.

Moreover as an example we introduce a method for producing qubit like ESS using kerr medium

and beam splitters [12]. The same argument can be formulated for other two-mode squeezed

states such as |Ψ(3)〉s = 1√
M

(3)
s

(|ξξ〉+f1|ηη〉+f2|ττ〉), in which the set {|ξ〉, |η〉, |τ〉} are linearly

independent and span the three dimensional qutrit like Hilbert space {|0〉, |1〉, |2〉}, implying
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that |Ψ(3)〉s can be recast in two qutrit form. The entanglement of the state |Ψ(2)〉s can be

calculated by concurrence measure introduced by Wootters [46, 47] and in the same manner,

its generalized version [48] can be used to obtain the entanglement of |Ψ(3)〉s. Moreover we

investigate the Wigner quasi-probability distribution function for qubit and qutrit like ESS.

For both qubit like ESS and ECS the distance of peaks in Wigner function can be an evidence

for amount of entanglement. While for qutrit like ESS this argument seems to be rather pale.

On the other hand, the monogamy inequality problem for multi-qutrit like ESS and ECS are

discussed and it is shown that there are qutrit like states violating monogamy inequality.

The outline of this paper is as follows: In section 2 we investigate the entanglement of

two-mode qubit like ESS and compare it with ECS. Moreover the Wigner quasi-probability

distribution function for qubit like ESS is studied in this section. The behavior of Wigner

function and monogamy inequality for multi-qutrit like ESS are discussed in section 3. Our

conclusions are summarized in section 4.

2 Two-mode Qubit like ESS’s

A rather more exotic set of states of the electromagnetic field are the squeezed states. The

squeezed state of light is two-photon coherent state that photons will be created or destroyed

in pairs. They may be generated through the action of a squeeze operator defined as

Ŝ(ξ) = exp[
1

2
(ξ∗â2 − ξâ†2)], (2.2)

where ξ = r1e
iθ1 , and r1 is known as the squeeze parameter and 0 ≤ r1 <∞ and 0 ≤ θ1 ≤ 2π.

Note the squeeze operator is unitary and Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ). The operator Ŝ(ξ) is a kind

of two-photon generalization of the displacement operator used to define the usual coherent

states of a single-mode field. Acting squeeze operator on vacuum states would create some

sort of two photon coherent states:

|ξ〉 = Ŝ(ξ)|0〉, (2.3)
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namely squeezed states. One can write the squeezed states in terms of Fock states |n〉 as

|ξ〉 =
1√

cosh r1

∞∑
n=0

(−eiθ1 tanh r1)n
√

(2n)!

2nn!
|2n〉. (2.4)

The overlap of two squeezed state reads

〈ξ|η〉 =
1√

cosh r1 cosh r2(1− e−i∆θ tanh r1 tanh r2)
, (2.5)

in which ξ = r1e
iθ1 , η = r2e

iθ2 and ∆θ = θ2 − θ1.

2.1 Entanglement of Two-Mode Qubit like ESS

Let us consider two-mode qubit like ESS as

|Ψ(2)〉s =
1√
M

(2)
s

(|ξξ〉+ f |ηη〉), (2.6)

where f , ξ and η are generally complex numbers and M
(2)
s is a normalization factor, i.e.

M (2)
s = 1 + |f |2 + 2Re(fp2), (2.7)

in which p = 〈ξ|η〉 is equal to Eq.(2.5). Note that we used the superscript (2) for qubit-like

states to distinguish it from that of qutrit like states in the next section and superscript s is

referred to squeezed states to distinguish it from coherent states. Two nonorthogonal squeezed

states |ξ〉 and |η〉 are assumed to be linearly independent and span a two-dimensional subspace

of the Hilbert space {|0〉, |1〉}. The state |Ψ(2)〉s is in general an entangled state. To show this

avowal we use a measure of entanglement called concurrence which is introduced by Wooters

[46, 47]. For any two qubit pure state in the form |ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉,

the concurrence is defined as C = 2|a00a11 − a01a10|. By defining the orthonormal basis as

|0〉 = |ξ〉, |1〉 =
1√

1− |p|2
(|η〉 − p|ξ〉), (2.8)

the state |Ψ(2)〉s is reduced to the state |ψ〉. Therefore the concurrence is obtained as

C(2) =
2|f |(1− 1

cosh r1 cosh r2

√
1+tanh2 r1 tanh2 r2−2 cos ∆θ tanh r1 tanh r2

)

1 + f 2 + 2f(1−cos ∆θ tanh r1 tanh r2)

cosh r1 cosh r2((1−cos ∆θ tanh r1 tanh r2)2+sin2 ∆θ tanh2 r1 tanh2 r2)

, (2.9)
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where for simplicity we assume that f to be a real number. The behavior of concurrence as

a function of f is shown in figure 1 in which for comparison we also plot the behavior of the

concurrence of two-mode qubit like ECS, |Ψ(2)〉c = 1√
M

(2)
c

(|αα〉 + f |ββ〉) (for further details

see [35]). A comparison between full and dashed line in figure 1 shows that for f > 0 the

Figure 1: (Color online) Concurrence of |Ψ(2)〉s (dashed line) and |Ψ(2)〉c (full line) as a function of

f for r1 = 1.5: (a) r2 = 2 and ∆θ = 0 and (b) r2 = 0.5 and ∆θ = 1.68π .

concurrence of squeezed state is less than the concurrence of coherent state. On the other

hand for f < 0, there are r1, r2 and ∆θ for which the cross over occurs. Moreover figure shows

that only for f = 0 the state |Ψ(2)〉s is separable which is confirmed by Eq.(2.9). If we assume

that all parameters are real and f = 1 the concurrence (2.9) is rewritten as

C(2)(∆s) =
1− sech[∆s]

1 + sech[∆s]
, (2.10)

where ∆s = ξ − η. This equation shows that the concurrence is a monotone function of ∆s

(see figure 2). If ∆s →∞, the concurrence tends to its maximum (C
(2)
max = 1), while for small

separation (i.e. ∆s → 0) the concurrence tends to zero and the state becomes separable. Such

ESS can be generated by beam splitters (BS), phase-shifter and cross Kerr nonlinearity [12].

The interaction Hamiltonian for a cross Kerr nonlinearity is Ĥ = ~kn̂an̂b where n̂a and n̂b

are photon number operators of mode a and mode b, respectively. k is proportional to the
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Figure 2: (Color online) Concurrence of |Ψ(2)〉s as a function of ∆s = ξ − η .

third-order nonlinear susceptibility χ(3). The time evolution operator is

Û(τ) = e−iτ n̂an̂b , (2.11)

in which τ = kt = k(l/v), here l is the length of Kerr medium (KM) and v is the velocity of

light in the Kerr medium. If we assume that mode a is initially in a squeezed vacuum state

|ξ〉a, and choose τ = π
2
, then we will obtain the superpositions of squeezed vacuum states

|ϕ〉 ∼ |ξ〉a ± |− ξ〉a. Assume that the input state to BS1 is |1〉b|0〉c, the output state becomes

1√
2
(|10〉bc + i|01〉bc) (see figure 3). On the other hand the state |ξ〉a after transmitting from

Kerr medium and the phase shifter P̂ = eiN̂θ is reduced to

|ψ1〉 =
1√
2

(|ξe−2iτ 〉a|10〉bc + ieiθ|ξ〉a|01〉bc). (2.12)

Now let mode b interacts with mode a′ (in a squeezed vacuum state |η〉a′), then the state |ψ1〉

after the Kerr medium KM2 and BS2 is transformed to

|ψ2〉 = 1
2
(|ξe−2iτ 〉a|ηe−2iτ ′〉a′ − eiθ|ξ〉a|η〉a′)|10〉bc

+ i
2
(|ξe−2iτ 〉a|ηe−2iτ ′〉a′ + eiθ|ξ〉a|η〉a′)|01〉bc.

(2.13)

Now if one of the detectors, Dc or Db, fires then we have the entangled states

(|ξe−2iτ 〉a|ηe−2iτ ′〉a′ − eiθ|ξ〉a|η〉a′), (2.14)
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or

i(|ξe−2iτ 〉a|ηe−2iτ ′〉a′ + eiθ|ξ〉a|η〉a′), (2.15)

in which by choosing different parameters τ, τ ′ and θ, different entangled states can be obtained

[12]. By taking τ = τ ′ = π
2

and θ = 0 we have |ψ(2)〉s ∼ | − ξ〉a| − η〉a′ − |ξ〉a|η〉a′ which is

Figure 3: (Color online) Experimental set up for generation ESS.

in general an entangled state. Similarly two nonorthogonal squeezed states {|ξ〉, | − ξ〉} and

{|η〉, | − η〉〉 are assumed to be linearly independent and span a two-dimensional subspace of

the Hilbert space {|0〉, |1〉} which are defined by

|0〉 = |ξ〉, |1〉 = |−ξ〉−p1|ξ〉
N1

for system 1,

|0〉 = |η〉, |1〉 = |−η〉−p2|η〉
N2

for system 2,
(2.16)

where

p1 = 〈ξ| − ξ〉, N1 =
√

1− p2
1,

p2 = 〈η| − η〉, N2 =
√

1− p2
2,

(2.17)

where again for simplicity we assumed ξ and η are real parameters. Then the concurrence of

the state

|ψ(2)〉s =
1√

2(1− p1p2)
{(p1p2 − 1)|00〉+N2p1|01〉+N1p2|10〉+N1N2|11〉}, (2.18)

becomes

C(2) =

√
(1− p2

1)(1− p2
2)

1− p1p2

. (2.19)
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The behavior of concurrence as a function of r1 and r2 is shown in figure 4. Figure 4 shows that

Figure 4: (Color online) Concurrence of |ψ(2)〉s as a function of r1 and r2.

for r1 = r2 6= 0 (i.e. p1 = p2) the state |ψ(2)〉s is maximally entangled state (i.e. C
(2)
max = 1).

2.2 Wigner Function for Qubit like ESS

One of the important quasi-probability distribution over phase space is the Wigner function

defined as [49]

W (γ) =
1

π2

∫
d2λCW (λ)eλ

∗γ−λγ∗ , (2.20)

in which CW (λ) = Tr(ρD(λ)). D(λ) = exp(αâ† − α∗â) is displacement operator and ρ is

reduced density matrix which is obtained by partially tracing out second mode. Here we

investigate the behavior of Wigner function for qubit like ESS, Eq.(2.6). Wigner characteristic

function reads

C
(2)
W (λ) =

1

M
(2)
s

{〈ξ|D(λ)|ξ〉+ f 2〈η|D(λ)|η〉+ fp(〈ξ|D(λ)|η〉+ 〈η|D(λ)|ξ〉)}. (2.21)

For calculating the Wigner characteristic function, we use the fact S(ξ)D(λ)|0〉 = |λ, ξ〉 is a

squeezed-coherent state. Moreover S(ξ) and D(λ) may commutate each other for appropriate

parameters i.e.,

S(ξ)D(λ) = D(λ′)S(ξ), (2.22)
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where λ′ = µλ+ νλ∗ and

µ = cosh r1, ν = eiθ1 sinh r1. (2.23)

By substituting C
(2)
W (λ) in Eq.(2.20) the Wigner function can be obtained as

W (2)(γ) = 1
M(2){ 2

π
(e(
−γ2(µ−ν)2

2
) + f 2e(

−γ2(µ′−ν′)2
2

))

+ fp

π
√

2R(µµ′−νν′)(A−B−D)
exp[ γ2

A−B−D (−1 + (B−D)2

2R(A−B−D)
)]

+ fp

π
√

2R′(µµ′−νν′)(A′−B′−D′)
exp[ γ2

A′−B′−D′ (−1 + (B′−D′)2
2R′(A′−B′−D′))]},

(2.24)

in which

A = 1
2
(µ′2 + ν ′2 + 2µ′ν′(ν′µ−µ′ν)

µµ′−νν′ ), A′ = 1
2
(µ2 + ν2 + 2µν(νµ′−µν′)

µµ′−νν′ ),

B = 1
2
(−µ′ν ′ − µ′2(ν′µ−µ′ν)

µµ′−νν′ ), B′ = 1
2
(−µν − µ2(νµ′−µν′)

µµ′−νν′ ),

D = 1
2
(−µ′ν ′ − ν′2(ν′µ−µ′ν)

µµ′−νν′ ), D′ = 1
2
(−µν − ν2(νµ′−µν′)

µµ′−νν′ ),

R = 1
2
(A+B +D + (B−D)2

A−B−D ), R′ = 1
2
(A′ +B′ +D′ + (B′−D′)2

A′−B′−D′ ),

(2.25)

and µ′ = cosh r2, ν
′ = eiθ2 sinh r2. Note that for simplicity we assume that all parameters

except λ are real i.e.

µ = cosh ξ, ν = sinh ξ,

µ′ = cosh η, ν ′ = sinh η.
(2.26)

Now we consider two special cases f = ±1:

For the case f = 1 we plot the diagram of Wigner distribution as a function of γ for given ξ

and η (see figure 5). Figure 5 shows the behavior of Wigner function for squeezed and coherent

states. By increasing the difference of ξ and η the width of squeezed Wigner function W
(2)
s (γ)

and its concurrence increase. On the other hand for ECS the distance of peaks of W
(2)
c (γ)

increases. For f = −1 the behavior of W
(2)
s (γ) and W

(2)
c (γ) are rather dissimilar. Unlike the

W
(2)
c (γ), the peaks of W

(2)
s (γ) approach to each other by increasing the difference of ∆s = ξ−η.

This affectation is different for W
(2)
c (γ), that is the peaks of W

(2)
c (γ) recede from each other

by increasing the ∆c = α − β (see figure 6). As an another example we study the Wigner

function for the qubit like ESS which is generated by beam splitters, phase-shifter and cross
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Figure 5: (Color online) Wigner distribution as a function of γ with f = 1 (a) W
(2)
s (γ) for given ξ,

η = 0.5, (b) W
(2)
c (γ) for given α, β = 0.5 .

Kerr nonlinearity (i.e. |ψ(2)〉s ∼ | − ξ〉a| − η〉a′ − |ξ〉a|η〉a′). The Wigner function is given by

W
(2)
s (ξ, η, γ) = e−

γ2

2 (cosh 2ξ+sinh 2η)√cosh ξ
π
√

cosh 2ξ(−1+
√

cosh ξ cosh η)
{−e−

γ2

4 cosh 2ξ
(−1+7 cosh 4ξ−9 sinh 4ξ)

− e− γ
2

2
cosh 2ξ(1+tanh 2ξ)(3+4 tanh 2ξ) + (1 + eγ

2 sinh 2ξ)
√

cosh η cosh 2ξ}.
(2.27)

The behavior of Wigner function is illustrated in figure 7. Figure 7 confirmed the above results

i.e. by increasing ∆s the two peaks in Wigner function approach each other. Furthermore,

figure 7 shows that the Wigner function begin to be negative for large values of γ. Negativity

of the Wigner function is the reason why the Wigner function can not be regarded as a real

probability distribution but a quasi-probability distribution function and it is a good indication

of the possibility of the occurrence of nonclassical properties [43].

3 Qutrit like ESS’s

In this section we consider two and three-mode qutrit like ESS’s. First consider two-mode

case:

|Ψ(3)〉s =
1√
M

(3)
s

(|ξξ〉+ f1|ηη〉+ f2|ττ〉), (3.28)
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Figure 6: (Color online) Wigner distribution as a function of γ with f = −1 (a) W
(2)
s (γ) for given

η, ξ = 1, (b) W
(2)
c (γ) for given β, α = 1.

where ξ = r1e
iθ1 , η = r2e

iθ2 and τ = r3e
iθ3 are generally complex numbers and the normal-

ization factor M
(3)
s = 1 + f 2

1 + f 2
2 + 2f1Re(p

2
1) + 2f2Re(p

2
3) + 2f1f2Re(p

2
2) with p1 = 〈ξ|η〉,

p2 = 〈τ |η〉 and p3 = 〈τ |ξ〉. For simplicity we assume that all parameters are real. From

linearly independent of three squeezed states |ξ〉, |η〉 and |τ〉, one can define three-dimensional

space spanned by the set {|0〉, |1〉, |2〉} as

|0〉 = |ξ〉,

|1〉 = 1√
1−p21

(|η〉 − p1|ξ〉),

|2〉 =
√

1−p21
1−p21−p22−p23+2p1p2p3

(
|τ〉+ (p1p3−p2

1−p21
)|η〉+ (p1p2−p3

1−p21
)|ξ〉
)
.

(3.29)

By substitution these basis into Eq.(3.28) the state |Ψ(3)〉s is reduced to a qutrit like ESS. We

use the general concurrence measure for bipartite state |ψ〉 =
∑d1

i=1

∑d2
j=1 aij|ei⊗ ej〉 [48]. The

norm of concurrence vector is obtained as C = 2(
d1∑
i<j

d2∑
k<l

|aikajl − ailajk|2)1/2, where d1 and d2

are dimensions of first and second part respectively. The behavior of concurrence |Ψ(3)〉s is

represented in figure 8. In order to compare this result we also plot the concurrence of |Ψ(3)〉c

in the same figure 8. By |Ψ(3)〉c we mean that in Eq.(3.28) the squeezed states |ξ〉, |η〉 and |τ〉

must be replaced by coherent states |α〉, |β〉 and |γ〉. Figure 9(a) displays the Wigner function

of |Ψ(3)〉s as a function of γ with f1 = f2 = 1 for a given ξ, η and τ and figure 9(b) shows the
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Figure 7: (Color online) W
(2)
s (γ) as a function of γ for given: ξ = η = 0.5 (red), ξ = 0.5, η = 1

(blue), ξ = 1, η = 2 (orange), ξ = 1, η = 3 (black).

behavior of concurrence C(3)(ξ) as a function of ξ for a given η = τ = 0.5. By comparison we

deduce that by increasing the differences of ξ, η and τ both the width of Wigner function and

the concurrence are raising. Once again we assume f1 = f2 = −1 and investigate the behavior

of Wigner distribution as a function of γ and ξ for given η and τ (see figure 10). On the other

hand figure 11 shows that for ξ = 1.5, the Wigner function takes negative values which is a

good indication of the possibility of the occurrence of nonclassical properties.

3.1 Monogamy Inequality for Multi-Qutrit like ESS

Another problem that arises in multipartite states is monogamy inequality. Here in this section

we examine the concurrence based monogamy inequality for qutrit like ESS. To this end

consider multi qutrit like ESS:

|Φ(3)〉s =
1√
M
′(3)
N

(|ξ〉...|ξ〉+ f1|η〉...|η〉+ f2|τ〉...|τ〉), (3.30)

in which

M
(3)
N = 1 + f 2

1 + f 2
2 + 2f1p

N
1 + 2f2p

N
3 + 2f1f2p

N
2 , (3.31)
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Figure 8: (Color online) Concurrence of |Ψ(3)〉s (dashed line) and |Ψ(3)〉c (full line) as a function of

f1 for ξ = 6, η = 2.5, τ = 5 and f2 = −1 .

is normalization factor and for simplicity we assume that the all parameters are real. Next

imagine the state |Φ(3)〉s as tripartite A, B and D including m1, m2 and m3 = N −m1 −m2

modes respectively. For the moment, suppose that τ → ∞, i.e. p2, p3 = 0 and p1 6= 0.

One can easily obtain the reduced density matrices ρAB = Tr
D

(|Φ(3)
N 〉ABD〈Φ

(3)
N |) and ρAD =

Tr
B

(|Φ(3)
N 〉ABD〈Φ

(3)
N |) by partially tracing out subsystems D and B respectively. For general

mixed states the concurrence is defined as |C|2 =
∑

αβ |Cαβ|2 where Cαβ = λαβ1 −
∑n

i=2 λ
αβ
i

with λ1 = max{λi, i = 1, ..., d2} and λαβi are the nonnegative eigenvalues of ττ ∗ defined as [50]

ταβταβ∗ =
√
ρ(Eα − E−α)⊗ (Eβ − E−β)ρ∗(Eα − E−α)⊗ (Eβ − E−β)

√
ρ. (3.32)

where α’s are positive roots of the lie group (here SU(3)) and E±α’s are corresponding

raising/lowering operators (like J± of the angular momentum operator). Let us consider

N = 20,m1 = 1,m2 = 2 and f2 = 0.4 and explore monogamy inequality [51, 52, 53]

C2
A(BD) ≥ C2

AB + C2
AD, (3.33)

where CAB and CAD are the concurrences of the reduced density matrices of ρAB and ρAD

respectively and CA(BD) is the concurrence of pure state |Φ(3)〉s with respect to the partitions
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Figure 9: (Color online) (a) W
(3)
s (γ) as a function of γ with f1 = f2 = 1 and ξ = 0.5 for given

η = τ = 0.5 (red), η = 0.5, τ = 2 (blue), η = 1, τ = 2 (green), η = 1.5, τ = 2 (black), η = τ = 2

(orange), (b) C(3)(ξ) as a function of ξ for given η = τ = 0.5.

A and BD. The concurrence vectors CAB and CAD read

CAB =

√
(1−p2)2(1+p2)(4f21 p

34+f41 (p2−p6))

1.16+f21 +2f1p20
,

CAD =

√
5f21 (p4−p6−p38+p40)

1.16+f21 +2f1p20
,

(3.34)

where p = 1√
cosh r1 cosh r2(1−tanh r1 tanh r2)

. On the other hand, one finds that

CA(BD) =
2
√

0.16f 2
1 (1− p)p38 + 1.16f 2

1 (1− p)(1− p19) + 0.16f 2
1 p

2(1− p19) + 0.16(1 + f1p20)2)

1.16 + 2f1p20 + f 2
1

.

(3.35)

The behavior of τABD = C2
A(BD) − C2

AB − C2
AD as a function of f1 for given ξ and η is shown

in figure 12. One can immediately deduce that τABD becomes negative for some values of f1

which is a violation of the monogamy inequality. In order to compare this results with ECS

we also display the results of τ
(c)
ABD calculated in Ref. [35].

4 Conclusion

In summary, we introduced two-mode qubit and qutrit like ESS’s. For qubit like state |Ψ(2)〉s,

a comparison between ESS and ECS showed that for f > 0 the concurrence of squeezed state
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Figure 10: (Color online) W
(3)
s (γ, ξ) as a function of γ and ξ with f1 = f2 = −1 for given η = 0.2

and τ = 0.4.

is less than the concurrence of coherent state. On the other hand for f < 0, there were r1,

r2 and ∆θ for which the cross over occurred. It was shown that considering all parameters to

be real and f = 1 the concurrence is a monotone function of ∆s with the properties that for

∆s →∞, the concurrence tends to its maximum value (C
(2)
max = 1), while for small separation

(i.e. ∆s → 0) the concurrence tends to zero and the state becomes separable. Moreover we

investigated the ESS generated by beam splitters, phase-shifter and cross Kerr nonlinearity

and showed that for r1 = r2 6= 0 (i.e. p1 = p2) the state |ψ(2)〉s is maximally entangled state

(i.e. C
(2)
max = 1). We also compared the Wigner functions W

(2)
s (γ) W

(2)
c (γ) of ESS and ECS

respectively. For f = −1, unlike the W
(2)
c (γ), the peaks of W

(2)
s (γ) approached to each other

by increasing the difference of ∆s = ξ − η. This affectation was different for W
(2)
c (γ), i.e. the

peaks of W
(2)
c (γ) receded from each other by increasing the ∆c = α− β. A similar result was

discussed for qutrit like ESS, |Ψ(3)〉s. Comparison the concurrences of ESS and ECS illustrated

that for f2 = −1 there are ξ, η and τ in which cross over occurs. Furthermore for f1 = f2 = 1

it was shown that that by increasing the differences of ξ, η and τ , the width of W (3)(γ)s and

the concurrence C(3)(ξ) are raising. On the other hand for f1 = f2 = −1 the Wigner function

W
(3)
s (γ) took negative values which was a good indication of the possibility of the occurrence

of nonclassical properties. Finally we showed that it is possible to find some f1, for which
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Figure 11: (Color online) W
(3)
s (γ) as a function of γ with f1 = f2 = −1 for given ξ = 1.5, η = 0.2

and τ = 0.4 .

τABD < 0 implying that the monogamy inequality may be violated for qutrit like ESS.
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