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Abstract. We study a family of representations of the canonical commuta-
tion relations (CCR)-algebra (an infinite number of degrees of freedom), which
we call admissible. The family of admissible representations includes the Fock-
vacuum representation. We show that, to every admissible representation,
there is an associated Gaussian stochastic calculus, and we point out that the
case of the Fock-vacuum CCR-representation in a natural way yields the op-
erators of Malliavin calculus. And we thus get the operators of Malliavin’s
calculus of variation from a more algebraic approach than is common. And we
obtain explicit and natural formulas, and rules, for the operators of stochastic
calculus. Our approach makes use of a notion of symmetric (closable) pairs of
operators. The Fock-vacuum representation yields a maximal symmetric pair.
This duality viewpoint has the further advantage that issues with unbounded
operators and dense domains can be resolved much easier than what is possible
with alternative tools. With the use of CCR representation theory, we also
obtain, as a byproduct, a number of new results in multi-variable operator
theory which we feel are of independent interest.
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1. Introduction

Both the study of quantum fields, and of quantum statistical mechanics, entails
families of representations of the canonical commutation relations (CCRs). In the
case of an infinite number of degrees of freedom, it is known that we have existence of
many inequivalent representations of the CCRs. Among the representations, some
describe such things as a nonrelativistic infinite free Bose gas of uniform density.
But the representations of the CCRs play an equally important role in the kind of
infinite-dimensional analysis currently used in a calculus of variation approach to
Gaussian fields, Itō integrals, including the Malliavin calculus. In the literature,
the infinite-dimensional stochastic operators of derivatives and stochastic integrals
are usually taken as the starting point, and the representations of the CCRs are
an afterthought. Here we turn the tables. As a consequence of this, we are able to
obtain a number of explicit results in an associated multi-variable spectral theory.
Some of the issues involved are subtle because the operators in the representations
under consideration are unbounded (by necessity), and, as a result, one must deal
with delicate issues of domains of families of operators and their extensions.

The representations we study result from the Gelfand-Naimark-Segal construc-
tion (GNS) applied to certain states on the CCR-algebra. Our conclusions and main
results regarding this family of CCR representations (details below, especially sects
4 and 5) hold in the general setting of Gaussian fields. But for the benefit of read-
ers, we have also included an illustration dealing with the simplest case, that of
the standard Brownian/Wiener process. Many arguments in the special case carry
over to general Gaussian fields mutatis mutandis. In the Brownian case, our initial
Hilbert space will be L = L2 (0,∞).

From the initial Hilbert space L , we build the ∗-algebra CCR (L ) as in Section
2.2. We will show that the Fock state on CCR (L ) corresponds to the Wiener
measure P. Moreover the corresponding representation π of CCR (L ) will be acting
on the Hilbert space L2 (Ω,P) in such a way that for every k in L , the operator
π(a(k)) is the Malliavin derivative in the direction of k. We caution that the
representations of the ∗-algebra CCR (L ) are by unbounded operators, but the
operators in the range of the representations will be defined on a single common
dense domain.

Example: There are two ways to think of systems of generators for the CCR-
algebra over a fixed infinite-dimensional Hilbert space (“CCR” is short for canonical
commutation relations.):

(i) an infinite-dimensional Lie algebra, or
(ii) an associative ∗-algebra.

With this in mind, (ii) will simply be the universal enveloping algebra of (i); see
[Dix77]. While there is also an infinite-dimensional “Lie” group corresponding to
(i), so far, we have not found it as useful as the Lie algebra itself.

All this, and related ideas, supply us with tools for an infinite-dimensional sto-
chastic calculus. It fits in with what is called Malliavin calculus, but our present
approach is different, and more natural from our point of view; and as corollaries,
we obtain new and explicit results in multi-variable spectral theory which we feel
are of independent interest.
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There is one particular representation of the CCR version of (i) and (ii) which
is especially useful for stochastic calculus. In the present paper, we call this rep-
resentation the Fock vacuum-state representation. One way of realizing the repre-
sentations is abstract: Begin with the Fock vacuum state (or any other state), and
then pass to the corresponding GNS representation. The other way is to realize the
representation with the use of a choice of a Wiener L2-space. We prove that these
two realizations are unitarily equivalent.

By stochastic calculus we mean stochastic derivatives (e.g., Malliavin deriva-
tives), and integrals (e.g., Itō-integrals). The paper begins with the task of realizing
a certain stochastic derivative operator as a closable operator acting between two
Hilbert spaces.

2. Unbounded operators and the CCR-algebra

2.1. Unbounded operators between different Hilbert spaces. While the the-
ory of unbounded operators has been focused on spectral theory where it is then
natural to consider the setting of linear endomorphisms with dense domain in a
fixed Hilbert space; many applications entail operators between distinct Hilbert
spaces, say H1 and H2. Typically the facts given about the two differ greatly from
one Hilbert space to the next.

Let Hi, i = 1, 2, be two complex Hilbert spaces. The respective inner products
will be written 〈·, ·〉i, with the subscript to identify the Hilbert space in question.

Definition 2.1. A linear operator T from H1 to H2 is a pair D ⊂ H1, T , where
D is a linear subspace in H1, and Tϕ ∈H2 is well-defined for all ϕ ∈ D .

We say that D = dom (T ) is the domain of T , and

G (T ) =

{(
ϕ
Tϕ

)
; ϕ ∈ D

}
⊂

(
H1
⊕

H2

)
(2.1)

is the graph.
If the closure G (T ) is the graph of a linear operator, we say that T is closable.

By closure, we shall refer to closure in the norm of H1 ⊕H2, i.e.,∥∥∥∥(h1

h2

)∥∥∥∥2

= ‖h1‖21 + ‖h2‖22 , hi ∈Hi. (2.2)

If dom (T ) is dense in H1, we say that T is densely defined.

Definition 2.2. Let H1
T−−→ H2 be a densely defined operator, and consider the

subspace dom (T ∗) ⊂H2 defined as follows:

dom (T ∗) =
{
h2 ∈H2 ; ∃C = Ch2 <∞ s.t.

|〈Tϕ, h2〉2| ≤ C ‖ϕ‖1 , ∀ϕ ∈ dom (T )
}

(2.3)

Then, by Riesz’ theorem, there is a unique h1 ∈H1 s.t.

〈Tϕ, h2〉2 = 〈ϕ, h1〉1 , and (2.4)

we set T ∗h2 = h1.

Lemma 2.3. Given a densely defined operator H1
T−−→ H2, then T is closable if

and only if dom (T ∗) is dense in H2.
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Proof. See [DS88]. �

Remark 2.4 (Notation and Facts).

(1) The abbreviated notation H1

T **
H2

T∗
jj will be used when the domains of

T and T ∗ are understood from the context.
(2) Let T be an operator H1

T−−→ H2 and Hi, i = 1, 2, two given Hilbert
spaces. Assume D := dom (T ) is dense in H1, and that T is closable. Then
there is a unique closed operator, denoted T such that

G
(
T
)

= G (T ) (2.5)

where “—” on the RHS in (2.5) refers to norm closure in H1⊕H2, see (2.2).
(3) It may happen that dom (T ∗) = 0. See Example 2.5 below.

Example 2.5. An operator T : H1 −→H2 with dense domain s.t. dom (T ∗) = 0,
i.e., “extremely” non-closable.

Set Hi = L2 (µi), i = 1, 2, where µ1 and µ2 are two mutually singular measures
on a fixed locally compact measurable space, say X. The space D := Cc (X) is
dense in both H1 and in H2 with respect to the two L2-norms. Then, the identity
mapping Tϕ = ϕ, ∀ϕ ∈ D , becomes a Hilbert space operator H1

T−−→H2.
Using Definition 2.2, we see that h2 ∈ L2 (µ2) is in dom (T ∗) iff ∃h1 ∈ L2 (µ1)

such that ˆ
ϕh1 dµ1 =

ˆ
ϕh2 dµ2, ∀ϕ ∈ D . (2.6)

Since D is dense in both L2-spaces, we getˆ
E

h1 dµ1 =

ˆ
E

h2 dµ2, (2.7)

where E = supp (µ2).
Now suppose h2 6= 0 in L2 (µ2), then there is a subset A ⊂ E s.t. h2 > 0 on A,

µ2 (A) > 0, and
´
A
h2 dµ2 > 0. But

´
A
h1 dµ1 =

´
A
h2 dµ2, and

´
A
h1 dµ1 = 0 since

µ1 (A) = 0. This contradiction proves that dom (T ∗) = 0; and in particular T is
unbounded and non-closable.

Theorem 2.6. Let H1
T−−→ H2 be a densely defined operator, and assume that

dom (T ∗) is dense in H2, i.e., T is closable, then both of the operators T ∗T and
TT ∗ are densely defined, and both are selfadjoint.

Moreover, there is a partial isometry U : H1 −→ H2 with initial space in H1

and final space in H2 such that

T = U
(
T ∗T

) 1
2 =

(
TT ∗

) 1
2 U. (2.8)

(Eq. (2.8) is called the polar decomposition of T .)

Proof. See, e.g., [DS88]. �

2.2. The CCR-algebra, and the Fock representations. There are two ∗-
algebras built functorially from a fixed (single) Hilbert space L ; often called the
one-particle Hilbert space (in physics). The dimension dim L is called the number
of degrees of freedom. The case of interest here is when dim L = ℵ0 (countably
infinite). The two ∗-algebras are called the CAR, and the CCR-algebras, and they
are extensively studied; see e.g., [BR81]. Of the two, only CAR(L ) is a C∗-algebra.
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The operators arising from representations of CCR(L ) will be unbounded, but still
having a common dense domain in the respective representation Hilbert spaces. In
both cases, we have a Fock representation. For CCR(L ), it is realized in the sym-
metric Fock space Γsym (L ). There are many other representations, inequivalent
to the respective Fock representations.

Let L be as above. The CCR(L ) is generated axiomatically by a system, a (h),
a∗ (h), h ∈ L , subject to

[a (h) , a (k)] = 0, ∀h, k ∈ L , and
[a (h) , a∗ (k)] = 〈h, k〉L 1.

(2.9)

Notation. In (2.9), [·, ·] denotes the commutator. More specifically, if A,B are
elements in a ∗-algebra, set [A,B] := AB −BA.

The Fock States ωFock on the CCR-algebra are specified as follows:

ωFock (a (h) a∗ (k)) = 〈h, k〉L (2.10)

with the vacuum property

ωFock (a∗ (h) a (h)) = 0, ∀h ∈ L ; (2.11)

For the corresponding Fock representations π we have:

[π (h) , π∗ (k)] = 〈h, k〉L IΓsym(L ), (2.12)

where IΓsym(L ) on the RHS of (2.12) refers to the identity operator.
Some relevant papers regarding the CCR-algebra and its representations are

[AW63, Arv76a, Arv76b, PS72a, PS72b, AW73, GJ87, JP91].

2.3. An infinite-dimensional Lie algebra. Let L be a separable Hilbert space,
i.e., dim L = ℵ0, and let CCR (L ) be the corresponding CCR-algebra. As above,
its generators are denoted a (k) and a∗ (l), for k, l ∈ L . We shall need the following:

Proposition 2.7.
(1) The “quadratic” elements in CCR (L ) of the form a (k) a∗ (l), k, l ∈ L ,

span a Lie algebra g (L ) under the commutator bracket.
(2) We have

[a (h) a∗ (k) , a (l) a∗ (m)]

= 〈h,m〉L a (l) a∗ (k)− 〈k, l〉L a (h) a∗ (m) ,

for all h, k, l,m ∈ L .
(3) If {εi}i∈N is an ONB in L , then the non-zero commutators are as follows:

Set γi,j := a (εi) a
∗ (εj), then, for i 6= j, we have

[γi,i, γj,i] = γj,i; (2.13)
[γi,i, γi,j ] = −γi,j ; and (2.14)
[γj,i, γi,j ] = γi,i − γj,j . (2.15)

All other commutators vanish; in particular, {γi,i | i ∈ N} spans an abelian
sub-Lie algebra in g (L ).

Note further that, when i 6= j, then the three elements

γi,i − γj,j , γi,j , and γj,i (2.16)

span (over R) an isomorphic copy of the Lie algebra sl2 (R).
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(4) The Lie algebra generated by the first-order elements a (h) and a∗ (k) for
h, k ∈ L , is called the Heisenberg Lie algebra h (L ). It is normalized by
g (L ); indeed we have:

[a (l) a∗ (m) , a (h)] = −〈m,h〉L a (l) , and
[a (l) a∗ (m) , a∗ (k)] = 〈l, k〉L a∗ (m) , ∀l,m, h, k ∈ L .

Proof. The verification of each of the four assertions (1)-(4) uses only the fixed
axioms for the CCR, i.e.,

[a (k) , a (l)] = 0,

[a∗ (k) , a∗ (l)] = 0, and
[a (k) , a∗ (l)] = 〈k, l〉L 1, k, l ∈ L ;

(2.17)

where 1 denotes the unit-element in CCR (L ). �

Corollary 2.8. Let CCR (L ) be the CCR-algebra, generators a (k), a∗ (l), k, l ∈
L , and let [·, ·] denote the commutator Lie bracket; then, for all k, h1, · · · , hn ∈ L ,
and all p ∈ R [x1, · · · , xn] (= the n-variable polynomials over R), we have

[a (k) , p (a∗ (h1) , · · · , a∗ (hn))]

=

n∑
i=1

∂p

∂xi
(a∗ (h1) , · · · , a∗ (hn)) 〈k, hi〉L . (2.18)

Proof. The verification of (2.18) uses only the axioms for the CCR, i.e., the com-
mutation relations (2.17) above, plus a little combinatorics. �

We shall now return to a stochastic variation of formula (2.18), the so called
Malliavin derivative in the direction k. In this, the system (a∗ (h1) , · · · , a∗ (hn)) in
(2.18) instead takes the form of a multivariate Gaussian random variable.

2.4. Gaussian Hilbert space. The literature on Gaussian Hilbert space, white
noise analysis, and its relevance to Malliavin calculus is vast; and we limit ourselves
here to citing [BØSW04, AJL11, AJ12, VFHN13, AJS14, AJ15, AØ15], and the
papers cited there.
Setting and Notation.

L : a fixed real Hilbert space
(Ω,F ,P): a fixed probability space
L2 (Ω,P): the Hilbert space L2 (Ω,F ,P), also denoted by L2 (P)
E: the mean or expectation functional, where E (· · · ) =

´
Ω

(· · · ) dP
Definition 2.9. Fix a real Hilbert space L and a given probability space (Ω,F ,P).
We say the pair (L , (Ω,F ,P)) is a Gaussian Hilbert space.

A Gaussian field is a linear mapping Φ : L −→ L2 (Ω,P), such that

{Φ (h) | h ∈ L }
is a Gaussian process indexed by L satisfying:

(1) E (Φ (h)) = 0, ∀h ∈ L ;
(2) ∀n ∈ N, ∀l1, · · · , ln ⊂ L , the random variable (Φ (l1) , · · · ,Φ (ln)) is jointly

Gaussian, with
E (Φ (li) Φ (lj)) = 〈li, lj〉 , (2.19)

i.e., (〈li, lj〉)ni=1 = the covariance matrix. (For the existence of Gaussian
fields, see the discussion below.)
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Figure 2.1. The multivariate Gaussian (Φ (h1) , · · ·Φ (hn)) and
its distribution. The Gaussian with Gramian matrix (Gram ma-
trix) Gn, n = 2.

Remark 2.10. For all finite systems {li} ⊂ L , set Gn = (〈li, lj〉)ni,j=1, called the
Gramian. Assume Gn non-singular for convenience, so that detGn 6= 0. Then there
is an associated Gaussian density g(Gn) on Rn,

g(Gn) (x) = (2π)
−n/2

(detGn)
−1/2

exp

(
−1

2

〈
x,G−1

n x
〉
Rn

)
(2.20)

The condition in (2.19) assumes that for all continuous functions f : Rn −→ R
(e.g., polynomials), we have

E(f (Φ (l1) , · · · ,Φ (ln))︸ ︷︷ ︸)
real valued

=

ˆ
Rn
f (x) g(Gn) (x) dx; (2.21)

where x = (x1, · · · , xn) ∈ Rn, and dx = dx1 · · · dxn = Lebesgue measure on Rn.
See Figure 2.1 for an illustration.

In particular, for n = 2, 〈l1, l2〉 = 〈k, l〉, and f (x1, x2) = x1x2, we then get
E (Φ (k) Φ (l)) = 〈k, l〉, i.e., the inner product in L .

For our applications, we need the following facts about Gaussian fields.
Fix a Hilbert space L over R with inner product 〈·, ·〉L . Then (see [Hid80, AØ15,

Gro70]) there is a probability space (Ω,F ,P), depending on L , and a real linear
mapping Φ : L −→ L2 (Ω,F ,P), i.e., a Gaussian field as specified in Definition 2.9,
satisfying

E
(
eiΦ(k)

)
= e−

1
2‖k‖

2

, ∀k ∈ L . (2.22)

It follows from the literature (see also [JT14]) that Φ (k) may be thought of as a
generalized Itō-integral. One approach to this is to select a nuclear Fréchet space
S with dual S ′ such that

S ↪→ L ↪→ S ′ (2.23)

forms a Gelfand triple. In this case we may take Ω = S ′, and Φ (k), k ∈ L , to be
the extension of the mapping

S ′ 3 ω −→ ω (ϕ) = 〈ϕ, ω〉 (2.24)

defined initially only for ϕ ∈ S, but, with the use of (2.24), now extended, via
(2.22), from S to L . See also Example 2.12 below.
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Example 2.11. Fix a measure space (X,B, µ). Let Φ : L2 (µ) −→ L2 (Ω,P) be a
Gaussian field such that

E (ΦAΦB) = µ (A ∩B) , ∀A,B ∈ B
where ΦE := Φ (χE), ∀E ∈ B; and χE denotes the characteristic function. In this
case, L = L2 (X,µ).

Then we have Φ (k) =
´
X
k (x) dΦ, i.e., the Itō-integral, and the following holds:

E (Φ (k) Φ (l)) = 〈k, l〉 =

ˆ
X

k (x) l (x) dµ (x) (2.25)

for all k, l ∈ L = L2 (X,µ). Eq. (2.25) is known as the Itō-isometry.

Example 2.12 (The special case of Brownian motion). There are many ways of
realizing a Gaussian probability space (Ω,F ,P). Two candidates for the sample
space:
Case 1. Standard Brownian motion process: Ω = C (R), F = σ-algebra gener-

ated by cylinder sets, P = Wiener measure. Set Bt (ω) = ω (t), ∀ω ∈ Ω;
and Φ (k) =

´
R k (t) dBt, ∀k ∈ L2 (Ω,P).

Case 2. The Gelfand triples: S ↪→ L2 (R) ↪→ S ′, where
S = the Schwartz space of test functions;
S ′ = the space of tempered distributions.

Set Ω = S ′, F = σ-algebra generated by cylinder sets of S ′, and define

Φ (k) := k̂ (ω) = 〈k, ω〉 , k ∈ L2 (R) , ω ∈ S ′.
Note Φ is defined by extending the duality S ←→ S ′ to L2 (R). The
probability measure P is defined from

E
(
ei〈k,·〉

)
=

ˆ
S′
eik̂(ω)dP (ω) = e

− 1
2‖k‖

2
L2(R) ,

by Minlos’ theorem [Hid80, AØ15].

Definition 2.13. Let D ⊂ L2 (Ω,F ,P) be the dense subspace spanned by functions
F , where F ∈ D iff ∃n ∈ N, ∃h1, · · · , hn ∈ L , and p ∈ R [x1, · · · , xn] = the
polynomial ring, such that

F = p (Φ (h1) , · · · ,Φ (hn)) : Ω −→ R.
(See the diagram below.) The case of n = 0 corresponds to the constant function
1 on Ω. Note that Φ (hi) ∈ L2 (Ω,P).

Rn
p

''
Ω

(Φ(h1),··· ,Φ(hn))

77

F
// R

Lemma 2.14. The polynomial fields D in Def. 2.13 form a dense subspace in
L2 (Ω,P).

Proof. The easiest argument below takes advantage of the isometric isomorphism
of L2 (Ω,P) with the symmetric Fock space

Γsym (L ) = H0︸︷︷︸
1 dim

⊕
∞∑
n=1

(L ⊗ · · · ⊗L )︸ ︷︷ ︸
n-fold symmetric

.
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For ki ∈ L , i = 1, 2, there is a unique vector eki ∈ Γsym (L ) such that〈
ek1 , ek2

〉
Γsym(L )

=

∞∑
n=0

〈k1, k2〉n

n!
= e〈k1,k2〉L .

Moreover,
Γsym (L ) 3 ek W0−−−→ eΦ(k)− 1

2‖k‖
2
L ∈ L2 (Ω,P)

extends by linearity and closure to a unitary isomorphism Γsym (L )
W−−→ L2 (Ω,P),

mapping onto L2 (Ω,P). Hence D is dense in L2 (Ω,P), as span
{
ek | k ∈ L

}
is

dense in Γsym (L ). �

Lemma 2.15. Let L be a real Hilbert space, and let (Ω,F ,P,Φ) be an associated
Gaussian field. For n ∈ N, let {h1, · · · , hn} be a system of linearly independent vec-
tors in L . Then, for polynomials p ∈ R [x1, · · · , xn], the following two conditions
are equivalent:

p (Φ (h1) , · · · ,Φ (hn)) = 0 a.e. on Ω w.r.t P; and (2.26)
p (x1, · · · , xn) ≡ 0, ∀ (x1, · · · , xn) ∈ Rn. (2.27)

Proof. Let Gn = (〈hi, hj〉)ni,j=1 be the Gramian matrix. We have detGn 6= 0. Let
g(Gn) (x1, · · · , xn) be the corresponding Gaussian density; see (2.20), and Figure
2.1. Then the following are equivalent:

(1) Eq. (2.26) holds;
(2) p (Φ (h1) , · · · ,Φ (hn)) = 0 in L2 (Ω,F ,P);
(3) E

(
|p (Φ (h1) , · · · ,Φ (hn))|2

)
=
´
Rn |p (x)|2 g(Gn) (x) dx = 0;

(4) p (x) = 0 a.e. x w.r.t. the Lebesgue measure in Rn ;
(5) p (x) = 0, ∀x ∈ Rn; i.e., (2.27) holds.

�

3. The Malliavin derivatives

Below we give an application of the closability criterion for linear operators
T between different Hilbert spaces H1 and H2, but having dense domain in the
first Hilbert space. In this application, we shall take for T to be the so called
Malliavin derivative. The setting for it is that of the Wiener process. For the
Hilbert space H1 we shall take the L2-space, L2 (Ω,P) where P is generalized Wiener
measure. Below we shall outline the basics of the Malliavin derivative, and we shall
specify the two Hilbert spaces corresponding to the setting of Theorem 2.6. We
also stress that the literature on Malliavin calculus and its applications is vast, see
e.g., [BØSW04, AØ15].

Settings. It will be convenient for us to work with the real Hilbert spaces.
Let (Ω,F ,P,Φ) be as specified in Definition 2.9, i.e., we consider the Gaussian

field Φ. Fix a real Hilbert space L with dim L = ℵ0. Set H1 = L2 (Ω,P), and
H2 = L2 (Ω→ L ,P) = L2 (Ω,P)⊗L , i.e., vector valued random variables.

For H1, the inner product 〈·, ·〉H1
is

〈F,G〉H1
=

ˆ
Ω

FG dP = E (FG) ; (3.1)

where E (· · · ) =
´

Ω
(· · · ) dP is the mean or expectation functional.
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On H2, we have the tensor product inner product: If Fi ∈H1, ki ∈ L , i = 1, 2,
then

〈F1 ⊗ k1, F2 ⊗ k2〉H2
= 〈F1, F2〉H1

〈k1, k2〉L
= E (F1F2) 〈k1, k2〉L . (3.2)

Equivalently, if ψi : Ω −→ L , i = 1, 2, are measurable functions on Ω, we set

〈ψ1, ψ2〉H2
=

ˆ
Ω

〈ψ1 (ω) , ψ2 (ω)〉L dP (ω) ; (3.3)

where it is assumed thatˆ
Ω

‖ψi (ω)‖2L dP (ω) <∞, i = 1, 2. (3.4)

Remark 3.1. In the special case of standard Brownian motion, we have L =
L2 (0,∞), and set Φ (h) =

´∞
0
h (t) dΦt (= the Itō-integral), for all h ∈ L . Recall

we then have

E
(
|Φ (h)|2

)
=

ˆ ∞
0

|h (t)|2 dt, (3.5)

or equivalently (the Itō-isometry),

‖Φ (h)‖L2(Ω,P) = ‖h‖L , ∀h ∈ L . (3.6)

The consideration above also works in the context of general Gaussian fields; see
Section 2.4.

Definition 3.2. Let D be the dense subspace in H1 = L2 (Ω,P) as in Definition
2.13. The operator T : H1 −→ H2 (= Malliavin derivative) with dom (T ) = D is
specified as follows:

For F ∈ D , i.e., ∃n ∈ N, p (x1, · · · , xn) a polynomial in n real variables, and
h1, h2, · · · , hn ∈ L , where

F = p (Φ (h1) , · · · ,Φ (hn)) ∈ L2 (Ω,P) . (3.7)

Set

T (F ) =

n∑
j=1

(
∂

∂xj
p

)
(Φ (h1) , · · · ,Φ (hn))⊗ hj ∈H2. (3.8)

In the following two remarks we outline the argument for why the expression for
T (F ) in (3.8) is independent of the chosen representation (3.7) for the particular
F . Recall that F is in the domain D of T . Without some careful justification, it
is not even clear that T , as given, defines a linear operator on its dense domain D .
The key steps in the argument to follow will be the result (3.12) in Theorem 3.8
below, and the discussion to follow.

There is an alternative argument, based instead on Corollary 2.8; see also Section
5 below.

Remark 3.3. It is non-trivial that the formula in (3.8) defines a linear operator.
Reason: On the LHS in (3.8), the representation of F from (3.7) is not unique. So
we must show that p (Φ (h1) , · · · ,Φ (hn)) = 0 =⇒ RHS(3.8) = 0 as well. (The dual
pair analysis below (see Def. 3.6) is good for this purpose.)
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Suppose F ∈ D has two representations corresponding to systems of vectors
h1, · · · , hn ∈ L , and k1, · · · , km ∈ L , with polynomials p ∈ R [x1, · · · , xn], and
q ∈ R [x1, · · · , xm], where

F = p (Φ (h1) , · · · ,Φ (hn)) = q (Φ (k1) , · · · ,Φ (km)) . (3.9)

We must then verify the identity:
n∑
i=1

∂p

∂xi
(Φ (h1) , · · · ,Φ (hn))⊗ hi =

m∑
i=1

∂q

∂xi
(Φ (k1) , · · · ,Φ (km))⊗ ki. (3.10)

The significance of the next result is the implication (3.9) =⇒ (3.10), valid for
all choices of representations of the same F ∈ D . The conclusion from (3.12) in
Theorem 3.8 is that the following holds for all l ∈ L :

E
(〈
LHS(3.10), l

〉)
= E

(〈
RHS(3.10), l

〉)
= E (FΦ (l)) .

Moreover, with a refinement of the argument, we arrive at the identity〈
LHS(3.10) − RHS(3.10), G⊗ l

〉
H2

= 0,

valid for all G ∈ D , and all l ∈ L .
But span {G⊗ l | G ∈ D , l ∈ L } is dense in H2

(
= L2 (P)⊗L

)
w.r.t. the tensor-

Hilbert norm in H2 (see (3.2)); and we get the desired identity (3.10) for any two
representations of F .

Remark 3.4. An easy case where (3.9) =⇒ (3.10) can be verified “by hand”:
Let F = Φ (h)

2 with h ∈ L \ {0} fixed. We can then pick the two systems {h}
and {h, h} with p (x) = x2, and q (x1, x2) = x1x2. A direct calculus argument
shows that LHS(3.10) = RHS(3.10) = 2Φ (h)⊗ h ∈H2.

We now resume the argument for the general case.

Definition 3.5 (symmetric pair). For i = 1, 2, let Hi be two Hilbert spaces, and
suppose Di ⊂Hi are given dense subspaces.

We say that a pair of operators (S, T ) forms a symmetric pair if dom (T ) = D1,
and dom (S) = D2; and moreover,

〈Tu, v〉H2
= 〈u, Sv〉H1

(3.11)

holds for ∀u ∈ D1, ∀v ∈ D2.
It is immediate that (3.11) may be rewritten in the form of containment of

graphs:
T ⊂ S∗, S ⊂ T ∗.

In that case, both S and T are closable. We say that a symmetric pair is maximal
if T = S∗ and S = T ∗.

H1

T

&&
H2

S

ff

We will establish the following two assertions:
(1) Indeed T from Definition 3.2 is a well-defined linear operator from H1 to

H2 .
(2) Moreover, (S, T ) is a maximal symmetric pair (see Definitions 3.5, 3.6).
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Definition 3.6. Let H1
T−−→ H2 be the Malliavin derivative with D1 = dom (T ),

see Definition 3.2. Set D2 = D1⊗L = algebraic tensor product, and on dom (S) =
D2, set

S (F ⊗ k) = −〈T (F ) , k〉+MΦ(k)F, ∀F ⊗ k ∈ D2,

where MΦ(k) = the operator of multiplication by Φ (k).

Note that both operators S and T are linear and well defined on their respective
dense domains, Di ⊂Hi, i = 1, 2. For density, see Lemma 2.14.

It is a “modern version” of ideas in the literature on analysis of Gaussian pro-
cesses; but we are adding to it, giving it a twist in the direction of multi-variable
operator theory, representation theory, and especially to representations of infinite-
dimensional algebras on generators and relations. Moreover our results apply to
more general Gaussian processes than covered so far.

Lemma 3.7. Let (S, T ) be the pair of operators specified above in Definition 3.6.
Then it is a symmetric pair, i.e.,

〈Tu, v〉H2
= 〈u, Sv〉H1

, ∀u ∈ D1, ∀v ∈ D2.

Equivalently,

〈T (F ) , G⊗ k〉H2
= 〈F, S (G⊗ k)〉H1

, ∀F,G ∈ D , ∀k ∈ L .

In particular, we have S ⊂ T ∗, and T ⊂ S∗(containment of graphs.) Moreover,
the two operators S∗S and T ∗T are selfadjoint. (For the last conclusion in the
lemma, see Theorem 2.6.)

Theorem 3.8. Let T : H1 −→ H2 be the Malliavin derivative, i.e., T is an
unbounded closable operator with dense domain D consisting of the span of all the
functions F from (3.7). Then, for all F ∈ dom (T ), and k ∈ L , we have

E (〈T (F ) , k〉L ) = E (FΦ (k)) . (3.12)

Proof. We shall prove (3.12) in several steps. Once (3.12) is established, then there
is a recursive argument which yields a dense subspace in H2, contained in dom (T ∗);
and so T is closable.

Moreover, formula (3.12) yields directly the evaluation of T ∗ : H2 −→ H1 as
follows: If k ∈ L , set 1⊗ k ∈ H2 where 1 denotes the constant function “one” on
Ω. We get

T ∗ (1⊗ k) = Φ (k) =

ˆ ∞
0

k (t) dΦt (= the Itō-integral.) (3.13)

The same argument works for any Gaussian field; see Definition 2.9. We refer to
the literature [BØSW04, AØ15] for details.

The proof of (3.12) works for any Gaussian process L 3 k −→ Φ (k) indexed
by an arbitrary Hilbert space L with the inner product 〈k, l〉L as the covariance
kernel.

Formula (3.12) will be established as follows: Let F and T (F ) be as in (3.7)-
(3.8).

Step 1. For every n ∈ N, the polynomial ring R [x1, x2, · · · , xn] is invariant
under matrix substitution y = Mx, where M is an n× n matrix over R.
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Step 2. Hence, in considering (3.12) for {hi}ni=1 ⊂ L , h1 = k, we may diag-
onalize the n × n Gram matrix (〈hi, hj〉)ni,j=1; thus without loss of generality, we
may assume that the system {hi}ni=1 is orthogonal and normalized, i.e., that

〈hi, hj〉 = δij , ∀i, j ∈ {1, · · · , n} , (3.14)

and we may take k = h1 in L .
Step 3. With this simplification, we now compute the LHS in (3.12). We note

that the joint distribution of {Φ (hi)}ni=1 is thus the standard Gaussian kernel in
Rn, i.e.,

gn (x) = (2π)
−n/2

e−
1
2

∑n
i=1 x

2
i , (3.15)

with x = (x1, · · · , xn) ∈ Rn. We have

x1gn (x) = − ∂

∂x1
gn (x) (3.16)

by calculus.
Step 4. A direct computation yields

LHS(3.12) = E (〈T (F ) , h1〉L )

=
by (3.14)

E
(
∂p

∂x1
(Φ (h1) , · · ·Φ (hn))

)
=

by (3.15)

ˆ
Rn

∂p

∂x1
(x1, · · · , xn) gn (x1, · · · , xn) dx1 · · · dxn

=
int. by parts

−
ˆ
Rn
p (x1, · · · , xn)

∂gn
∂x1

(x1, · · · , xn) dx1 · · · dxn

=
by (3.16)

−
ˆ
Rn
x1p (x1, · · · , xn) gn (x1, · · · , xn) dx1 · · · dxn

=
by (3.14)

E (Φ (h1) p (Φ (h1) , · · ·Φ (hn)))

= E (Φ (h1)F ) = RHS(3.12),

which is the desired conclusion (3.12). �

Corollary 3.9. Let H1, H2, and H1
T−−→H2 be as in Theorem 3.8, i.e., T is the

Malliavin derivative. Then, for all h, k ∈ L = L2 (0,∞), we have for the closure
T of T the following:

T (eΦ(h)) = eΦ(h) ⊗ h, and (3.17)

E
(
〈T (eΦ(h)), k〉L

)
= e

1
2‖h‖

2
L 〈h, k〉L . (3.18)

Here T denotes the graph-closure of T .
Moreover,

T ∗T (eΦ(k)) =
(

Φ (k)− ‖k‖2L
)
eΦ(k). (3.19)

Proof. Eqs. (3.17)-(3.18) follow immediately from (3.12) and a polynomial approx-
imation to

ex = lim
n→∞

n∑
0

xj

j!
, x ∈ R;

see (3.7). In particular, eΦ(h) ∈ dom
(
T
)
, and T

(
eΦ(h)

)
is well defined.



14

For (3.19), we use the facts for the Gaussians:

E(eΦ(k)) = e
1
2‖k‖

2

, and

E(Φ (k) eΦ(k)) = ‖k‖2 e 1
2‖k‖

2

.

�

Example 3.10. Let F = Φ (k)
k, ‖k‖ = 1. We have

TΦ (k)
n

= nΦ (k)
n−1 ⊗ k

T ∗TΦ (k)
n

= −n (n− 1) Φ (k)
n−2

+ nΦ (k)
n

and similarly,

TeΦ(k) = eΦ(k) ⊗ k

T ∗TeΦ(k) = eΦ(k) (Φ (k)− 1) .

Let (S, T ) be the symmetric pair, we then have the inclusion T ⊂ S∗, i.e.,
containment of the operator graphs, G

(
T
)
⊂ G (S∗). In fact, we have

Corollary 3.11. T = S∗.

Proof. We will show that G (S∗) 	 G
(
T
)

= 0, where 	 stands for the orthogonal
complement in the inner product of H1 ⊗H2. Recall that H1 = L2 (Ω,P), and
H2 = H1 ⊗L .

Using (3.17), we will prove that if F ∈ dom (S∗), and〈(
eΦ(k)

eΦ(k) ⊗ k

)
,

(
F
S∗F

)〉
= 0, ∀k ∈ L =⇒ F = 0,

which is equivalent to

E
(
eΦ(k) (F + 〈S∗F, k〉)

)
= 0, ∀k ∈ L . (3.20)

But it is know that for the Gaussian filed, span
{
eΦ(k) | k ∈ L

}
is dense in H1,

and so (3.20) implies that F = 0, which is the desired conclusion. �

3.1. A derivation on the algebra D. The study of unbounded derivations has
many applications in mathematical physics; in particular in making precise the time
dependence of quantum observables, i.e., the dynamics in the Schrödinger picture;
— in more detail, in the problem of constructing dynamics in statistical mechanics.
An early application of unbounded derivations (in the commutative case) can be
found in the work of Silov [Šil47]; and the later study of unbounded derivations
in non-commutative C∗-algebras is outlined in [BR81]. There is a rich in variety
unbounded derivations, because of the role they play in applications to dynamical
systems in quantum physics.

But previously the theory of unbounded derivations has not yet been applied
systematically to stochastic analysis in the sense of Malliavin. In the present section,
we turn to this. We begin with the following:

Lemma 3.12 (Leibniz-Malliavin). Let H1
T−−→H2 be the Malliavin derivative from

(3.7)-(3.8). Then,
(1) dom (T ) =: D , given by (3.7), is an algebra of functions on Ω under point-

wise product, i.e., FG ∈ D , ∀F,G ∈ D .
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(2) H2 is a module over D where H2 = L2 (Ω,P) ⊗L (= vector valued L2-
random variables.)

(3) Moreover,

T (FG) = T (F )G+ F T (G) , ∀F,G ∈ D , (3.21)

i.e., T is a module-derivation.

Notation. The eq. (3.21) is called the Leibniz-rule. By the Leibniz, we refer to
the traditional rule of Leibniz for the derivative of a product. And the Malliavin
derivative is thus an infinite-dimensional extension of Leibniz calculus.

Proof. To show that D ⊂H1 = L2 (Ω,P) is an algebra under pointwise multiplica-
tion, the following trick is useful. It follows from finite-dimensional Hilbert space
geometry.

Let F,G be as in Definition 2.13. Then ∃p, q ∈ R [x1, · · · , xn], {li}ni=1 ⊂ L , such
that

F = p (Φ (l1) , · · · ,Φ (ln)) , and G = q (Φ (l1) , · · · ,Φ (ln)) .

That is, the same system l1, · · · , ln may be chosen for the two functions F and G.
For the pointwise product, we have

FG = (pq) (Φ (l1) , · · · ,Φ (ln)) ,

i.e., the product in R [x1, · · · , xn] with substitution of the random variable

(Φ (l1) , · · · ,Φ (ln)) : Ω −→ Rn.

Eq. (3.21) ⇐⇒ ∂(pq)
∂xi

= ∂p
∂xi

q + p ∂q∂xi , which is the usual Leibniz rule applied to
polynomials. Note that

T (FG) =

n∑
i=1

∂

∂xi
(pq) (Φ (l1) , · · · ,Φ (ln))⊗ li.

�

Remark 3.13. There is an extensive literature on the theory of densely defined
unbounded derivations in C∗-algebras. This includes both the cases of abelian
and non-abelian ∗-algebras. And moreover, this study includes both derivations in
these algebras, as well as the parallel study of module derivations. So the case of
the Malliavin derivative is in fact a special case of this study. Readers interested
in details are referred to [Sak98], [BJKR84], [BR79], and [BR81].

Definition 3.14. Let (L ,Ω,F ,P,Φ) be a Gaussian field, and T be the Malliavin
derivative with dom (T ) = D . For all k ∈ L , set

Tk (F ) := 〈T (F ) , k〉 , F ∈ D . (3.22)

In particular, let F = p (Φ (l1) , · · · ,Φ (l1)) be as in (3.7), then

Tk (F ) =

n∑
i=1

∂p

∂xi
(Φ (l1) , · · · ,Φ (l1)) 〈li, k〉 .

Corollary 3.15. Tk is a derivative on D , i.e.,

Tk (FG) = (TkF )G+ F (TkG) , ∀F,G ∈ D , ∀k ∈ L . (3.23)

Proof. Follows from (3.21). �
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Corollary 3.16. Let (L ,Ω,F ,P,Φ) be a Gaussian field. Fix k ∈ L , and let Tk
be the Malliavin derivative in the k direction. Then on D we have

Tk + T ∗k = MΦ(k), and (3.24)

[Tk, T
∗
l ] = 〈k, l〉L IL2(Ω,P). (3.25)

Proof. For all F,G ∈ D , we have

E (Tk (F )G) + E (F Tk (G)) =
by (3.23)

E (Tk (FG))

=
by (3.12)

E (Φ (k)FG)

which yields the assertion in (3.24). Eq. (3.25) now follows from (3.24) and the
fact that [Tk, Tl] = 0. �

Definition 3.17. Let (L ,Ω,F ,P,Φ) be a Gaussian field. For all k ∈ L , let Tk
be Malliavin derivative in the k-direction (eq. (3.22)). Assume L is separable, i.e.,
dim L = ℵ0. For every ONB {ei}∞i=1 in L , let

N :=
∑
i

T ∗eiTei . (3.26)

(N is the CCR number operator. See Section 4 below.)

Example 3.18. N1 = 0, since Tei1 = 0, ∀i. Similarly,

NΦ (k) = Φ (k) (3.27)

NΦ (k)
2

= −2 ‖k‖2 1 + 2Φ (k)
2
, ∀k ∈ L . (3.28)

To see this, note that∑
i

T ∗eiTeiΦ (k) =
∑
i

T ∗ei 〈ei, k〉1

=
∑
i

Φ (ei) 〈ei, k〉

= Φ

(∑
i

〈ei, k〉 ei

)
= Φ (k) ,

which is (3.27). The verification of (3.28) is similar.

Theorem 3.19. Let {ei} be an ONB in L , then

T ∗T =
∑
i

T ∗eiTei = N. (3.29)

Proof. Note the span of
{
eΦ(k) | k ∈ L

}
is dense in L2 (Ω,P), and both sides of

(3.29) agree on eΦ(k), k ∈ L . Indeed, by (3.26),

T ∗TeΦ(k) = NeΦ(k) =
(

Φ (k)− ‖k‖2
)
eΦ(k).

�

Corollary 3.20. Let D := T ∗T . Specialize to the case of n = 1, and consider
F = f (Φ (k)), k ∈ L , f ∈ C∞ (R); then

D (F ) = −‖k‖2L f ′′ (Φ (k)) + Φ (k) f ′ (Φ (k)) . (3.30)

Proof. A direct application of the formulas of T and T ∗. �
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Remark 3.21. If ‖k‖L = 1 in (3.30), then the RHS in (3.30) is obtained by a
substitution of the real valued random variable Φ (k) into the deterministic function

δ (f) := −
(
d

dx

)2

f + x

(
d

dx

)
f. (3.31)

Then eq. (3.30) may be rewritten as

D (f (Φ (k))) = δ (f) ◦ Φ (k) , f ∈ C∞ (R) . (3.32)

Corollary 3.22. If {Hn}n∈N0
, N0 = {0, 1, 2, · · · }, denotes the Hermite polynomials

on R, then we get for ∀k ∈ L , ‖k‖L = 1, the following eigenvalues

D (Hn (Φ (k))) = nHn (Φ (k)) . (3.33)

Proof. It is well-known that the Hermite polynomials Hn satisfies

δ (Hn) = nHn, ∀n ∈ N0, (3.34)

and so (3.33) follows from a substitution of (3.34) into (3.32). �

Theorem 3.23. The spectrum of T ∗T , as an operator in L2 (Ω,F ,P), is as follows:

specL2(P)

(
T ∗T

)
= N0 = {0, 1, 2, · · · } .

Proof. We saw that the L2 (P)-representation is unitarily equivalent to the Fock
vacuum representation, and π (Fock-number operator) = T ∗T . �

3.2. Infinite-dimensional ∆ and ∇Φ.

Corollary 3.24. Let (L ,Ω,F ,P,Φ) be a Gaussian field, and let T be the Malliavin
derivative, L2 (Ω,P)

T−−→ L2 (Ω,P)⊗L . Then, for all F = p (Φ (h1) , · · · ,Φ (hn)) ∈
D (see Definition 3.2), we have

T ∗T (F ) = −
n∑
i=1

∂2p

∂xi
(Φ (h1) , · · · ,Φ (hn))︸ ︷︷ ︸

∆F

+

n∑
i=1

Φ (hi)
∂p

∂xi
(Φ (h1) , · · · ,Φ (hn))︸ ︷︷ ︸
∇ΦF

,

which is abbreviated
T ∗T = −∆ +∇Φ. (3.35)

(For the general theory of infinite-dimensional Laplacians, see e.g., [Hid03].)

Proof. (Sketch) We may assume the system {hi}ni=1 ⊂ L is orthonormal, i.e.,
〈hi, hj〉 = δij . Hence, for F F = p (Φ (h1) , · · · ,Φ (hn)) ∈ D , we have

TF =

n∑
i=1

∂p

∂xi
(Φ (h1) , · · · ,Φ (hn))⊗ hi, and

T ∗T (F ) = −
n∑
i=1

∂2p

∂x2
i

(Φ (h1) , · · · ,Φ (hn))

+

n∑
i=1

Φ (hi)
∂p

∂xi
(Φ (h1) , · · · ,Φ (hn))

which is the assertion. For details, see the proof of Theorem 3.8. �
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Definition 3.25. Let (L ,Ω,F ,P,Φ) be a Gaussian field. On the dense domain
D ⊂ L2 (Ω,P), we define the Φ-gradient by

∇ΦF =

n∑
i=1

Φ (hi)
∂p

∂xi
(Φ (h1) , · · · ,Φ (hn)) , (3.36)

for all F = p (Φ (h1) , · · · ,Φ (hn)) ∈ D . (Note that ∇Φ is an unbounded operator
in L2 (Ω,P), and dom (∇Φ) = D .)

Lemma 3.26. Let ∇Φ be the Φ-gradient from Definition 3.25. The adjoint operator
∇∗Φ, i.e., the Φ-divergence, is given as follows:

∇∗Φ (G) =

(
n∑
i=1

Φ (hi)
2 − n

)
G−∇Φ (G) , ∀G ∈ D . (3.37)

Proof. Fix F,G ∈ D as in Definition 3.2. Then ∃n ∈ N, p, q ∈ R [x1, · · · , xn], and
{hi}ni=1 ⊂ L , such that

F = p (Φ (h1) , · · · ,Φ (hn))

G = q (Φ (h1) , · · · ,Φ (hn)) .

Further assume that 〈hi, hj〉 = δij .
In the calculation below, we use the following notation: x = (x1, · · · , xn) ∈

Rn, dx = dx1 · · · dxn = Lebesgue measure, and gn = gGn = standard Gaussian
distribution in Rn, see (3.15).

Then, we have

E ((∇ΦF )G)

=

n∑
i=1

E
(

Φ (hi)
∂p

∂xi
(Φ (h1) , · · · ,Φ (hn)) q (Φ (h1) , · · · ,Φ (hn))

)

=

n∑
i=1

ˆ
Rn
xi
∂p

∂xi
(x) q (x) gn (x) dx

= −
n∑
i=1

ˆ
Rn
p (x)

∂

∂xi
(xiq (x) gn (x)) dx

= −
n∑
i=1

ˆ
Rn
p (x)

(
q (x) + xi

∂q

∂xi
(x)− q (x)x2

i

)
gn (x) dx

(
∂gn
∂xi

= −xign
)

=

n∑
i=1

E
(
FGΦ (hi)

2
)
− nE (FG)− E (F∇ΦG)

= E
(
FG

(∑n

i=1
Φ (hi)

2 − n
))
− E (F∇ΦG) ,

which is the desired conclusion in (3.37). �

Remark 3.27. Note T ∗k is not a derivation. In fact, we have

T ∗k (FG) = T ∗k (F )G+ F T ∗k (G)− Φ (k)FG,

for all F,G ∈ D , and all k ∈ L .
However, the divergence operator ∇Φ does satisfy the Leibniz rule, i.e.,

∇Φ (FG) = (∇ΦF )G+ F (∇ΦG) , ∀F,G ∈ D .
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3.3. Realization of the operators.

Theorem 3.28. Let ωFock be the Fock state on CCR (L ), see (2.10)-(2.11), and
let πF denote the corresponding (Fock space) representation, acting on Γsym (L ),
see Lemma 2.14. Let W : Γsym (L ) −→ L2 (Ω,P) be the isomorphism given by

W
(
ek
)

:= eΦ(k)− 1
2‖k‖

2
L , k ∈ L . (3.38)

Here L2 (Ω,P) denotes the Gaussian Hilbert space corresponding to L ; see Defini-
tion 2.9. For vectors k ∈ L , let Tk denote the Malliavin derivative in the direction
k; see Definition 3.2.

We then have the following realizations:

Tk = WπF (a (k))W ∗, and (3.39)

MΦ(k) − Tk = WπF (a∗ (k))W ∗; (3.40)
valid for all k ∈ L , where the two identities (3.39)-(3.40) hold on the dense domain
D from Lemma 2.14.

Remark 3.29. The two formulas (3.39)-(3.40) take the following form, see Figs
3.1-3.2.

In the proof of the theorem, we make use of the following:

Lemma 3.30. Let L , CCR (L ), and ωF (= the Fock vacuum state) be as above.
Then, for all n,m ∈ N, and all h1, · · · , hn, k1, · · · , km ∈ L , we have the following
identity:

ωF (a (h1) · · · , a (hn) a∗ (km) · · · a (k1))

= δn,m
∑
s∈Sn

〈
h1, ks(1)

〉
L

〈
h2, ks(2)

〉
L
· · ·
〈
hn, ks(n)

〉
L

(3.41)

where the summation on the RHS in (3.41) is over the symmetric group Sn of all
permutations of {1, 2, · · · , n}. (In the case of the CARs, the analogous expression
on the RHS will instead be a determinant.)

Proof. We leave the proof of the lemma to the reader; it is also contained in [BR81].
�

Remark 3.31. In physics-lingo, we say that the vacuum-state ωF is determined by
its two-point functions

ωF (a (h) a∗ (k)) = 〈h, k〉L , and
ωF (a∗ (k) a (h)) = 0, ∀h, k ∈ L .

Proof of Theorem 3.28. We shall only give the details for formula (3.39). The mod-
ifications needed for (3.40) will be left to the reader.

Since W in (3.38) is an isomorphic isomorphism, i.e., a unitary operator from
Γsym (L ) onto L2 (Ω,P), we may show instead that

TkW = WπF (a (k)) (3.42)

holds on the dense subspace of all finite symmetric tensor polynomials in Γsym (L );
or equivalently on the dense subspace in Γsym (L ) spanned by

Γ (l) := el :=

∞∑
n=0

l⊗n√
n!
∈ Γsym (L ) , l ∈ L ; (3.43)
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see also Lemma 2.14. We now compute (3.42) on the vectors el in (3.43):

TkW
(
el
)

= Tk

(
eΦ(k)− 1

2‖k‖
2
L

)
(by Lemma 2.14)

= e−
1
2‖k‖

2
L Tk

(
eΦ(k)

)
= e−

1
2‖k‖

2
L 〈k, l〉L eΦ(l) (by Remark 3.3)

= WπF (a (k))
(
el
)
,

valid for all k, l ∈ L . �

Γsym (L )
W //

πF (a(k))

��

L2 (Ω,P)

Tk

��
Γsym (L )

W
// L2 (Ω,P)

Figure 3.1. The first operator.

Γsym (L )
W //

πF (a∗(k))

��

L2 (Ω,P)

MΦ(k)−Tk
��

Γsym (L )
W

// L2 (Ω,P)

Figure 3.2. The second operator.

3.4. The unitary group. For a given Gaussian field (L ,Ω,F ,P,Φ), we studied
the CCR (L )-algebra, and the operators associated with its Fock-vacuum repre-
sentation.

From the determination of Φ by

E
(
eiΦ(k)

)
= e−

1
2‖k‖

2
L , k ∈ L ; (3.44)

we deduce that (Ω,F ,P,Φ) satisfies the following covariance with respect to the
group Uni (L ) := G (L ) of all unitary operators U : L −→ L .

We shall need the following:

Definition 3.32. We say that α ∈ Aut (Ω,F ,P) iff the following three conditions
hold:

(1) α : Ω −→ Ω is defined P a.e. on Ω, and P (α (Ω)) = 1.
(2) F = α (F); more precisely, F =

{
α−1 (B) | B ∈ F

}
where

α−1 (B) = {ω ∈ Ω | α (ω) ∈ B} . (3.45)

(3) P = P ◦ α−1, i.e., α is a measure preserving automorphism.
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Note that when (1)-(3) hold for α, then we have the unitary operators Uα in
L2 (Ω,F ,P),

UαF = F ◦ α, (3.46)

or more precisely,
(UαF ) (ω) = F (α (ω)) , a.e. ω ∈ Ω,

valid for all F ∈ L2 (Ω,F ,P).

Theorem 3.33.
(1) For every U ∈ G (L ) (= the unitary group of L ), there is a unique α ∈

Aut (Ω,F ,P) s.t.
Φ (Uk) = Φ (k) ◦ α, (3.47)

or equivalently (see (3.46))

Φ (Uk) = Uα (Φ (k)) , ∀k ∈ L . (3.48)

(2) If T : L2 (Ω,P) −→ L2 (Ω,P)⊗L is the Malliavin derivative from Definition
3.2, then we have:

TUα = (Uα ⊗ U)T. (3.49)

Proof. The first conclusion in the theorem is immediate from the above discussion,
and we now turn to the covariance formula (3.49).

Note that (3.49) involves unbounded operators, and it holds on the dense sub-
space D in L2 (Ω,P) from Lemma 2.14. Hence it is enough to verify (3.49) on
vectors in L2 (Ω,P) of the form eΦ(k)− 1

2‖k‖
2
L , k ∈ L . Using Lemma 2.14, we then

get:

LHS(3.49)

(
eΦ(k)− 1

2‖k‖
2
L
)

= e−
1
2‖k‖

2
L T
(
eΦ(Uk)

)
(by (3.47))

= e−
1
2‖Uk‖

2
L eΦ(Uk) ⊗ (Uk) (by Remark 3.3)

= (Uα ⊗ U)
(
eΦ(k)− 1

2‖k‖
2
L
)

= RHS(3.49)

�

4. The Fock-state, and representation of CCR, realized as Malliavin
calculus

We now resume our analysis of the representation of the canonical commutation
relations (CCR)-algebra induced by the canonical Fock state (see (2.9)). In our
analysis below, we shall make use of the following details: Brownian motion, Itō-
integrals, and the Malliavin derivative.

The general setting. Let L be a fixed Hilbert space, and let CCR (L ) be the
∗-algebra on the generators a (k), a∗ (l), k, l ∈ L , and subject to the relations for
the CCR-algebra, see Section 2.2:

[a (k) , a (l)] = 0, and (4.1)
[a (k) , a∗ (l)] = 〈k, l〉L 1 (4.2)

where [·, ·] is the commutator bracket.
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A representation π of CCR (L ) consists of a fixed Hilbert space H = Hπ

(the representation space), a dense subspace Dπ ⊂ Hπ, and a ∗-homomorphism
π : CCR (L ) −→ End (Dπ) such that

Dπ ⊂ dom (π (A)) , ∀A ∈ CCR. (4.3)

The representation axiom entails the commutator properties resulting from (4.1)-
(4.2); in particular π satisfies

[π (a (k)) , π (a (l))]F = 0, and (4.4)[
π (a (k)) , π (a (l))

∗]
F = 〈k, l〉L F, (4.5)

∀k, l ∈ L , ∀F ∈ Dπ; where π (a∗ (l)) = π (a (l))
∗ .

In the application below, we take L = L2 (0,∞), and Hπ = L2 (Ω,FΩ,P) where
(Ω,FΩ,P) is the standard Wiener probability space, and

Φt (ω) = ω (t) , ∀ω ∈ Ω, t ∈ [0,∞). (4.6)

For k ∈ L , we set

Φ (k) =

ˆ ∞
0

k (t) dΦt (=the Itō-integral.)

The dense subspace Dπ ⊂Hπ is generated by the polynomial fields:
For n ∈ N, h1, · · · , hn ∈ L = L2

R (0,∞), p ∈ Rn −→ R a polynomial in n real
variables, set

F = p (Φ (h1) , · · · ,Φ (hn)) , and (4.7)

π (a (k))F =

n∑
j=1

(
∂

∂xj
p

)
(Φ (h1) , · · · ,Φ (hn)) 〈hj , k〉 . (4.8)

It follows from Lemma 3.12 that Dπ is an algebra under pointwise product and
that

π (a (k)) (FG) = (π (a (k))F )G+ F (π (a (k))G) , (4.9)

∀k ∈ L , ∀F,G ∈ Dπ. Equivalently, Tk := π (a (k)) is a derivation in the algebra
Dπ (relative to pointwise product.)

Theorem 4.1. With the operators π (a (k)), k ∈ L , we get a ∗-representation π :
CCR (L ) −→ End (Dπ), i.e., π (a (k)) = the Malliavin derivative in the direction
k,

π (a (k))F = 〈T (F ) , k〉L , ∀F ∈ Dπ, ∀k ∈ L . (4.10)

Proof. We begin with the following �

Lemma 4.2. Let π, CCR (L ), and Hπ = L2 (Ω,FΩ,P) be as above. For k ∈ L ,
we shall identify Φ (k) with the unbounded multiplication operator in Hπ:

Dπ 3 F 7−→ Φ (k)F ∈Hπ. (4.11)

For F ∈ Dπ, we have π (a (k))
∗
F = −π (a (k))F + Φ (k)F ; or in abbreviated form:

π (a (k))
∗

= −π (a (k)) + Φ (k) (4.12)

valid on the dense domain Dπ ⊂Hπ.
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Proof. This follows from the following computation for F,G ∈ Dπ, k ∈ L .
Setting Tk := π (a (k)), we have

E (Tk (F )G) + E (F Tk (G)) = E (Tk (FG)) = E (Φ (k)FG) .

Hence Dπ ⊂ dom (T ∗k ), and T ∗k (F ) = −Tk (F ) + Φ (k)F , which is the desired
conclusion (4.12). �

Proof of Theorem 4.1 continued. It is clear that the operators Tk = π (a (k)) form
a commuting family. Hence on Dπ, we have for k, l ∈ L , F ∈ Dπ:

[Tk, T
∗
l ] (F ) = [Tk,Φ (l)] (F ) by (4.12)

= Tk (Φ (l)F )− Φ (l) (Tk (F ))

= Tk (Φ (l))F by (4.9)

= 〈k, l〉L F by (4.8)

which is the desired commutation relation (4.2).
The remaining check on the statements in the theorem are now immediate. �

Corollary 4.3. The state on CCR (L ) which is induced by π and the constant
function 1 in L2 (Ω,P) is the Fock-vacuum-state, ωFock.

Proof. The assertion will follow once we verify the following two conditions:ˆ
Ω

T ∗kTk (1) dP = 0 (4.13)

and ˆ
Ω

TkT
∗
l (1) dP = 〈k, l〉L (4.14)

for all k, l ∈ L .
This in turn is a consequence of our discussion of eqs (2.10)-(2.11) above: The

Fock state ωFock is determined by these two conditions. The assertions (4.13)-(4.14)
follow from Tk (1) = 0, and (TkT

∗
l ) (1) = 〈k, l〉L 1. See (3.13). �

Corollary 4.4. For k ∈ L2
R (0,∞) we get a family of selfadjoint multiplication

operators Tk + T ∗k = MΦ(k) on Dπ where Tk = π (a (k)). Moreover, the von Neu-
mann algebra generated by these operators is L∞ (Ω,P), i.e., the maximal abelian
L∞-algebra of all multiplication operators in Hπ = L2 (Ω,P).

Remark 4.5. In our considerations of representations π of CCR (L ) in a Hilbert
space Hπ, we require the following five axioms satisfied:

(1) a dense subspace Dπ ⊂Hπ;
(2) π : CCR (L ) −→ End (Dπ), i.e., Dπ ⊂ ∩A∈CCR(L )dom (π (A));
(3) [π (a (k)) , π (a (l))] = 0, ∀k, l ∈ L ;
(4)

[
π (a (k)) , π (a (l))

∗]
= 〈k, l〉L IHπ , ∀k, l ∈ L ; and

(5) π (a∗ (k)) ⊂ π (a (k))
∗, ∀k ∈ L .

Note that in our assignment for the operators π (a (k)), and π (a∗ (k)) in Lemma
4.2, we have all the conditions (1)-(5) satisfied. We say that π is a selfadjoint
representation.

If alternatively, we define

ρ : CCR (L ) −→ End (Dπ) (4.15)
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with the following modification:{
ρ (a (k)) = Tk, k ∈ L , and
ρ (a∗ (k)) = Φ (k)

(4.16)

then this ρ will satisfy (1)-(3), and

[ρ (a (k)) , ρ (a∗ (l))] = 〈k, l〉L IHπ
;

but then ρ (a (k)) & ρ (a (k))
∗; i.e., non-containment of the respective graphs.

One generally says that the representation π is (formally) selfadjoint, while the
second representation ρ is not.

5. Conclusions: the general case

Definition 5.1. A representation π of CCR (L ) is said to be admissible iff (Def.)
∃ (Ω,F ,P) as above such that Hπ = L2 (Ω,F ,P), and there exists a linear mapping
Φ : L −→ L2 (Ω,F ,P) subject to the condition:

For every n ∈ N, and every k, h1, · · · , hn ∈ L , the following holds on its natural
dense domain in Hπ: For every p ∈ R [x1, · · · , xn], we have

π ([a (k) , p (a∗ (h1) , · · · , a∗ (hn))]) =

n∑
i=1

〈k, hi〉L M ∂p
∂xi

(Φ(h1),··· ,Φ(hn)), (5.1)

with the M on the RHS denoting “multiplication.”

Corollary 5.2.
(1) Every admissible representation π of CCR (L ) yields an associated Malli-

avin derivative as in (5.1).
(2) The Fock-vacuum representation πF is admissible.

Proof. (1) follows from the definition combined with Corollary 2.8. (2) is a direct
consequence of Lemma 3.7 and Theorem 3.8; see also Corollary 4.3. �
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