
ar
X

iv
:1

60
1.

01
48

3v
1

 [
cs

.L
O

]
 7

 J
an

 2
01

6

Rules and derivations in an elementary

logic course

Gilles Dowek

Inria, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.

gilles.dowek@inria.fr

When teaching an elementary logic course to students who have a general scien-
tific background but have never been exposed to logic, we have to face the problem
that the notions of deduction rule and of derivation are completely new to them,
and are related to nothing they already know, unlike, for instance, the notion of
model, that can be seen as a generalization of the notion of algebraic structure.

In this note, we defend the idea that one strategy to introduce these notions is
to start with the notion of inductive definition [1]. Then, the notion of derivation
comes naturally. We also defend the idea that derivations are pervasive in logic
and that defining precisely this notion at an early stage is a good investment to
later define other notions in proof theory, computability theory, automata theory,
... Finally, we defend the idea that to define the notion of derivation precisely, we
need to distinguish two notions of derivation: labeled with elements and labeled with

rule names. This approach has been taken in [2].

1 From inductive definitions to derivations

1.1 A method to define sets: inductive definitions

Inductive definitions are a way to define subsets of a set A. The definition of a
subset P is given by functions f1, from An1 to A, f2, from An2 to A, ... These
functions are called rules. For example, the function f1 = 〈〉 7→ 0, from N

0 to N,
and f2 = 〈a〉 7→ a + 2, from N

1 to N are rules.
Instead of writing these rules f1 = 〈〉 7→ 0 and f2 = 〈a〉 7→ a + 2, we often write

them

f10

a
f2

a + 2

Vol. \jvolume No. \jnumber \jyear

IFCoLog Journal of Logic and its Applications

http://arxiv.org/abs/1601.01483v1

Gilles Dowek

but despite this new notation, rules are things the students know: functions.
To define the subset P , we first define a function F from P(A) to P(A) as follows

F (X) =
⋃

i

{fi(a1, ..., ani
) | a1, ..., ani

∈ X}

For example, the two rules above define the function

F (X) = {0} ∪ {a + 2 | a ∈ X}

and, for instance, F ({4, 5, 6}) = {0, 6, 7, 8}, F (∅) = {0}, F ({0}) = {0, 2}, ...
The function F monotonic and continuous, thus it has a smallest fixed point P

which is the inductively defined subset of A. This smallest fixed point can be defined
in two ways

P =
⋂

F (X)⊆X

X =
⋃

i

F i(∅)

The first definition characterizes the set P as the smallest set closed by f1, f2, ... the
second as the set containing all the elements that can be built with these functions
in a finite number of steps. The monotonicity and continuity of F and the two fixed
points theorems are easy lemmas [2] for mathematically oriented students. They
can be admitted without proof otherwise.

Continuing with our example, the set P of even numbers can be characterized as
the smallest set containing 0 and closed by the function a 7→ a + 2, or as the union
of the sets F (∅) = {0}, F 2(∅) = {0, 2}, F 3(∅) = {0, 2, 4}, ...

1.2 Derivations

Defining a derivation as a tree whose nodes are labeled with elements of A and such
that if a node is labeled with x and its children with y1, ..., yn, then there exists a
rule f such that x = f(y1, ..., yn), and a derivation of an element a as a derivation
whose root is labeled with a, we can prove, by induction on i, that all the elements
of F i(∅) have a derivation. The property is trivial for i = 0. If it holds for i and
a ∈ F i+1(∅), then by definition a = f(b1, ..., bn) for some rule f and b1 ∈ F i(∅),
..., bn ∈ F i(∅), thus, by induction hypothesis, b1, ..., bn have derivations. Hence, so
does a.

Thus, from the second property P = ∪iF
i(∅), we get that all elements of P have

derivations. Conversely, all elements that have a derivation are elements of P .
Continuing with our example the number 4 has the derivation

0
2
4

Rules and derivations in an elementary logic course

1.3 Rule names

There are several alternatives for defining the notion of derivation. For instance,
when x = f(y1, ..., yn), instead of labelling the node just with x, we can label it
with the ordered pair formed with the element x and the name of the rule f . For
instance, the derivation of 4 above would then be

〈0, f1〉
〈2, f2〉
〈4, f2〉

more often written

f10
f22
f24

Such a derivation is easier to check, as checking the node

2
4

requires to find the rule f such that f(2) = 4, while checking the node

2
f24

just requires to apply the rule f2 to 2 and check that the result is 4.
But these rules names are redundant, as soon as the relation ∪ifi is decidable.

So, in general, they can be omitted.

1.4 Derivations and derivations

Instead of omitting the rule names, it is possible to omit the elements of A. The
derivation of 4 is then

f1

f2

f2

that can also be written

f1
.

f2
.

f2
.

Gilles Dowek

Although it is not explicit in the derivation, the element 4 can be inferred from
this derivation with a top-down conclusion inference algorithm, because the rules fi

are functions. The conclusion of the rule f1 can only be f1(〈〉) = 0, that of the first
rule f2 can only be f2(〈0〉) = 2, and that of the second can only be f2(〈2〉) = 4.

We can introduce this way two kinds of derivations labeled with objects and labeled

with rules names.

1.5 Making the rules functional

Natural deduction proofs, for instance, are often labeled both with sequents and rule
names

axiom
P, Q, R ⊢ P

axiom
P, Q, R ⊢ Q

∧-intro
P, Q, R ⊢ P ∧ Q

but they can be labeled with sequents only

P, Q, R ⊢ P P, Q, R ⊢ Q

P, Q, R ⊢ P ∧ Q

and proof-checking is still decidable. They can also be labeled with rule names only,
but we have to make sure that all the deduction rules are functional, which is often
not the case in the usual presentations of Natural deduction. The rule

Γ ⊢ A Γ ⊢ B
∧-intro

Γ ⊢ A ∧ B

is functional: there is only one possible conclusion for each sequence of premises,
but the axiom rule

axiom
Γ, A ⊢ A

is not. To make it functional, we must introduce a different rule axiom〈Γ,A〉 for each
pair 〈Γ, A〉. Thus, the proof above must be written

axiom〈{Q,R},P 〉
.

axiom〈{P,R},Q〉
.

∧-intro
.

and its conclusion P, Q, R ⊢ P ∧ Q can be inferred top-down.

Rules and derivations in an elementary logic course

2 Derivations in elementary computability theory

2.1 A pedagogical problem

The set of computable functions is often defined inductively as the smallest set
containing the projections, the null functions, and the successor function, and closed
by composition, definition by induction, and minimization.

But to study the computability of properties of computable functions, we need
a notion of program, that is we need a way to express each computable function
by a expression, to which a Gödel number can be assigned. A usual solution is to
introduce Turing machines at this point.

This solution however is not pedagogically satisfying as, while the students are
still struggling to understand the inductive definition, we introduce another, that
is based on completely different ideas, letting them think that logic made of odds
and ends. Moreover, the equivalence of the two definitions requires a tedious proof.
Why do we not base our notion of program on the inductive definition itself?

2.2 Programs already exist

The function x 7→ x + 2 is computable because it is the composition of the successor
function with itself

x 7→ x + 1 x 7→ x + 1
x 7→ x + 2

But such a derivation labeled with objects cannot be used as a program, because to
label its nodes, we would need a a language to express all the functions, and there
is no such language.

But if we use a derivation labeled with rule names instead

Succ
.

Succ
.

◦1
1.

and write the trees in linear form: ◦1
1(Succ, Succ), we obtain a simple functional

programming language to express the programs.

For instance, introduce a Gödel numbering p.q for these programs, and assume
there is an always defined function h such that

• h(p, q) = 1 if p = pfq and f defined at q

• h(p, q) = 0 otherwise

Gilles Dowek

then, the function
k = ◦1

1(µ1(π2
1), ◦1

2(h, π1
1 , π1

1))

is defined at pkq if and only if it is not.
We get this way a proof of the undecidability of the halting problem that requires

nothing else than the inductive definition of the set of computable functions.

3 Derivations in elementary automata theory

When introducing the notion of automaton, we often introduce new notions, such
as those of transition rules and recognizability. Having introduced the notion of
derivation from the very beginning of the course permits to avoid introducing these
as new notions.

Consider for instance the automaton

odd
a

−−→ even

even
a

−−→ odd

where the state even is final. In this automaton, the word aaa is recognized in odd.
Indeed

odd
a

−−→ even
a

−−→ odd
a

−−→ even

If, instead of introducing a new notion of transition rule, we just define transition
rules as deduction rules

even a
odd

odd a
even

ε
even

then, the element odd has a derivation

ε
even

a
odd

a
even

a
odd

If we label this derivation with rule names we obtain

ε
.

a
.

a
.

a
.

Rules and derivations in an elementary logic course

which can be written in linear form a(a(a(ε))), or aaa.

Thus, a word w is recognized in a state s if and only if it is a derivation, labeled
with rule names, of s.

This example introduces some points to be discussed: the rules

even a
odd

odd a
even

are labeled with the same name. If the automaton is deterministic, we can replace
these two rules with one: a function such that a(even) = odd and a(odd) = even.
But for non deterministic automata, we either need to extend the notion of rule
name, allowing different rules to have the same name, or to consider two rule names

even a1
odd

odd a2
even

ε
even

and map the derivation a1(a2(a1(ε))) to the word a(a(a(ε))) with the function |.|
defined by: |ε| = ε, |a1(t)| = a(|t|), and |a2(t)| = a(|t|).

4 Introducing the Brouwer-Heyting-Kolmogorov corre-

spondence

4.1 A radical change in viewpoint?

The Brouwer-Heyting-Kolmogorov interpretation, and its counterpart, the Curry-de
Buijn-Howard correspondence, are often presented as a radical change in viewpoint:
proofs are not seen as trees anymore, but as algorithms.

But, of course, these algorithms must be expressed in some language—often
the lambda-calculus. Thus, proofs are not really algorithms, but terms expressing
algorithms, and such terms are nothing else than trees. So, it is fairer to say that,
in the Brouwer-Heyting-Kolmogorov interpretation, proofs are not derivation trees,
but trees of a different kind. For instance, the tree

P ∧ Q ⊢ P ∧ Q

P ∧ Q ⊢ Q

P ∧ Q ⊢ P ∧ Q

P ∧ Q ⊢ P

P ∧ Q ⊢ Q ∧ P

⊢ (P ∧ Q) ⇒ (Q ∧ P)

Gilles Dowek

is replaced by the tree

x

fst

x

snd

〈, 〉
λx : P ∧ Q

often written in linear form: λx : P ∧ Q 〈snd(x), fst(x)〉.

4.2 What about derivation trees labeled with rule names?

Instead of following this idea of expressing proofs as algorithms, let us just try to
label the derivation above with rule names. Five rules are used in this proof. Three
of them are functional

Γ ⊢ A Γ ⊢ B
∧-intro

Γ ⊢ A ∧ B

Γ ⊢ A ∧ B
∧-elim1

Γ ⊢ A

Γ ⊢ A ∧ B
∧-elim2

Γ ⊢ B

Let us just give them shorter names: 〈, 〉, fst, and snd. The rule

Γ, A ⊢ B
⇒-intro

Γ ⊢ A ⇒ B

is functional, as soon as we know which proposition A in the left-hand side of the
antecedent is used. So, we need to supply this proposition A in the rule name, let
us call this rule λA. Finally, the rule

axiom
Γ, A ⊢ A

is functional, as soon as we know Γ and A. We could supply Γ and A in the rule
name. However, we shall just supply the proposition A and infer the context Γ. Let
us call this rule [A]. So, the proof above can be written

[P ∧ Q]
P ∧ Q ⊢ P ∧ Q

snd
P ∧ Q ⊢ Q

[P ∧ Q]
P ∧ Q ⊢ P ∧ Q

fst
P ∧ Q ⊢ P

〈, 〉
P ∧ Q ⊢ Q ∧ P

λP ∧ Q
⊢ (P ∧ Q) ⇒ (Q ∧ P)

Rules and derivations in an elementary logic course

and if we keep rule names only

[P ∧ Q]
.

snd
.

[P ∧ Q]
.

fst
.

〈, 〉
.

λP ∧ Q
.

or in linear form λP ∧ Q 〈snd([P ∧ Q]), fst([P ∧ Q])〉. This is the scheme represen-
tation [3] of this proof.

Let us show that the conclusion can be inferred, although we have not supplied
the context Γ in the axiom rule. The conclusion inference goes in two steps. First
we infer the context bottom-up, using the fact that the conclusion has an empty
context, and that all rules preserve the context, except λA that extends it with the
proposition A

[P ∧ Q]
P ∧ Q ⊢ .

snd
P ∧ Q ⊢ .

[P ∧ Q]
P ∧ Q ⊢ .

fst
P ∧ Q ⊢ .

〈, 〉
P ∧ Q ⊢ .

λP ∧ Q
⊢ .

Then, the right-hand part of the sequent can be inferred with a usual top-down
inference algorithm, using the fact that the rules are functional

[P ∧ Q]
P ∧ Q ⊢ P ∧ Q

snd
P ∧ Q ⊢ Q

[P ∧ Q]
P ∧ Q ⊢ P ∧ Q

fst
P ∧ Q ⊢ P

〈, 〉
P ∧ Q ⊢ Q ∧ P

λP ∧ Q
⊢ (P ∧ Q) ⇒ (Q ∧ P)

4.3 Brouwer-Heyting-Kolmogorov interpretation: an optional mod-

ification

In the rule
Γ, A ⊢ B

⇒-intro
Γ ⊢ A ⇒ B

instead of supplying just the proposition A, we can supply the proposition A and a
name x for it. Then, in the axiom rule

axiom
Γ, A ⊢ A

Gilles Dowek

instead of supplying the proposition A, we can just supply the name that has been
introduced lower in the tree for it. We obtain this way the tree

x
.

snd
.

x
.

fst
.

〈, 〉
.

λx : P ∧ Q
.

in linear form λx : P ∧ Q 〈snd(x), fst(x)〉, which is exactly the representation of the
proof according to the Brouwer-Heyting-Kolmogorov interpretation.

So, the Brouwer-Heyting-Kolmogorov interpretation boils down to use of deriva-
tions labeled with rule names plus two minor modifications: context inference and
the use of variables. These two modifications can be explained by the fact that
Natural deduction does not really deal with sequents and contexts: rather with
propositions, but, following an idea initiated in [4], some rules such as the introduc-
tion rule of the implication dynamically add new rules, named with variables.

References

[1] P. Aczel, An introduction to inductive definitions, Handbook of Mathematical Logic,
Studies in Logic and the Foundations of Mathematics 90, 1977, pp. 739-201.

[2] G. Dowek, Proofs and Algorithms: An Introduction to Logic and Computability,
Springer-Verlag, 2011.

[3] G. Dowek and Y. Jiang, On the expressive power of schemes, Information and Com-

putation, 209, 2011, pp. 1231-1245.

[4] P. Schroeder-Heister, A natural extension of natural deduction, The Journal of Sym-

bolic Logic, 49, 4, 1984, pp. 1284-1300.

Received \jreceived

	1 From inductive definitions to derivations
	1.1 A method to define sets: inductive definitions
	1.2 Derivations
	1.3 Rule names
	1.4 Derivations and derivations
	1.5 Making the rules functional

	2 Derivations in elementary computability theory
	2.1 A pedagogical problem
	2.2 Programs already exist

	3 Derivations in elementary automata theory
	4 Introducing the Brouwer-Heyting-Kolmogorov correspondence
	4.1 A radical change in viewpoint?
	4.2 What about derivation trees labeled with rule names?
	4.3 Brouwer-Heyting-Kolmogorov interpretation: an optional modification

