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Abstract

This paper develops efficient Compute-and-forward (CMF) schemes in multi-user multi-relay net-

works. To solve the rank failure problem in CMF setups and to achieve full diversity of the network, we

introduce two novel CMF methods, namely, extended CMF and successive CMF. The former, having low

complexity, is based on recovering multiple equations at relays. The latter utilizes successive interference

cancellation (SIC) to enhance the system performance compared to the state-of-the-art schemes. Both

methods can be utilized in a network with different number of users, relays, and relay antennas,

with negligible feedback channels or signaling overhead. We derive new concise formulations and

explicit framework for the successive CMF method as well as an approach to reduce its computational

complexity. Our theoretical analysis and computer simulations demonstrate the superior performance

of our proposed CMF methods over the conventional schemes. Furthermore, based on our simulation

results, the successive CMF method yields additional signal-to-noise ratio gains and shows considerable

robustness against channel estimation error, compared to the extended CMF method.
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TABLE I: Comparison of the CMF methods.

CMF method Performancea Complexityb

Name Computing Forwarding dId dWF γId γCEE #TS #ECV #Eq Notes
scheme strategy

Original

CMF [1]

Std-CM Std-FW ∼= 0 ∼= 0 – – M + 1 M M -Rank Failure Problem,

-Requires M ≥ L,

-Sensetive to CEE.

Extended

CMF

Ext-CM Sel-FW MN
2

M ·min
(
q, N

2

)
5.3 dB 10.6 dB L+ 1 ML L -Sensetive to CEE.

Successive

CMF

Suc-CM Sel-FW MN
2

M ·min
(
q, N

2

)
4.6 dB 4.8 dB L+ 1 ML L -Robust against CEE,

-Added Complexity.

aThe Parameters dId and dWF denote the diversity orders corresponding to the cases of ideal and with-feedback Nakagami(q)

R-D channels, respectively (see Theorems 4 and 6). Also, based on Fig. 10, γId and γCEE are the required SNRs for achieving

outage probability of 0.01 for the cases of CEE variances equal to 0 and 0.05, respectively.
b#TS: Number of time slots per transmission frame. #ECV: Number of calculated ECVs in all relays. #Eq: Number of

computed equations in all relays.

I. INTRODUCTION

The compute-and-forward (CMF) method, proposed by Nazer and Gastpar [1], is an innovative

approach for efficient communications over multi-user relay networks. Here, instead of recovering

single messages, the relays attempt to reliably decode (compute) and pass an integer linear

combination of the transmitted messages, referred to as an equation, to the destination. By

receiving sufficient equations and their corresponding equation coefficients vectors (ECVs), the

destination can solve the linear equation system to recover the desired messages. The CMF

method enables exploiting, rather than combating, the multiple access interference in a wireless

relay network, and thus results in improved network throughput [2].

A “CMF method” designed for a multi-user multi-relay network consists of two main parts,

namely, “computing scheme” and “forwarding strategy”. Computing scheme is the structure that

is used in each relay to find ECVs and to compute the desired equations from the received

signals by the relays. On the other hand, forwarding strategy determines the plan of exchanging

information over the network, e.g. how to transmit decoded equations by the relays to the

destination, and how to recover the desired messages at the destination.
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The first developed computing scheme is introduced in [1], called standard computing (Std-

CM) scheme, in which each single-antenna relay, independently of the other relays, decodes

only one equation with the highest possible rate. This leads to an integer optimization problem

in each relay to find the integer ECV of its equation. In Std-CM scheme, the local channel state

information (CSI) should be known by the relay. Following [1], different computing schemes

have been suggested in the literature that can be employed as a part of the CMF methods over

multi-user multi-relay networks, e.g., [3]–[10]. In [11]–[13], and [14], the Std-CM scheme is

used for different network structures. In [3], the Std-CM scheme is generalized to the case of

multiple-antenna users and relays. In [4], to reduce the optimization complexity, the authors

propose the simplified version of Std-CM scheme that limits the integer ECVs to be selected

from a predetermined set. In [5], a blind computing scheme is introduced that, as opposed to

other referred works, requires no CSI at the relays, at the cost of being sub-optimal. In [15],

a computing scheme is designed to address the timing asynchronism in CMF methods. The

multi-input multi-output (MIMO) detection scheme suggested in [6], called integer-forcing linear

receiver (IFLR), simultaneously recovers multiple ECVs and can be employed as a computing

scheme by a multi-antenna relay. In the scheme utilized by [7] and [14], each relay finds a

number of not-necessarily independent integer ECVs with the highest computation rates.

The performance of computing schemes can be improved by utilizing the previously decoded

equations in decoding the subsequent equations [16]. The idea follows the same intuition as in

successive interference cancellation (SIC) used in multi-user receivers [17, Ch. 7] and is partially

studied in several works [8], [9], [16], [18]. In [16], SIC is implemented in a single-antenna relay

for recovering two equations. In [18], a variant of IFLR scheme is proposed based on SIC. In [8],

[9], the authors modify the IFLR scheme to take advantage of the remaining correlations among

noises at the equalizer’s output via noise-prediction, and improve the detection performance. In

this approach, the receiver uses previous equations at each step, to reduce the effective noise

in subsequent recovering steps. This modified scheme, called successive integer-forcing, is a

generalized form of the schemes in [16] and [18].

The first forwarding strategy, for CMF method, is the one employed in original CMF method [1],

called standard forwarding (Std-FW) strategy. With the Std-FW, all M relays send in turn their

decoded equations to the destination. The Std-FW strategy is also employed in [3] and [4]. In [7]

and [14], a cooperative forwarding strategy is proposed to find linearly independent ECVs with
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highest possible rates. A centralized forwarding strategy is exploited in [11], where all relays

send their ECVs along with their corresponding rates to the destination and the destination selects

the relays with the highest computation rates that have linearly independent ECVs.

One of the main challenges for CMF methods is the rank failure problem, in which the

received equations by the destination may be linearly dependent, and hence the destination

cannot recover its desired messages. This problem deteriorates the performance of CMF methods

considerably and leads to a low order of diversity [4]. To decrease the probability of rank

failure problem, [1] imposes a constraint on the selected integer ECVs in each relay, and [4]

employs large number of relays. Also, [7], [11], [14], suggest cooperation among relays or

using a centralized coordinator. Although cooperative and centralized approaches decrease the

probability of rank failure significantly, they require additional signaling overhead, feedback

channels, or global CSI [19]–[21]. Assuming global CSI at the users, [22], [23], and [24] design

transmit precoders for the users, to reduce the probability of selecting dependent equations by

the relays. However, none of the mentioned methods remove the rank failure problem completely

within the practical constraints of the system.

In this paper, we propose a novel forwarding strategy, referred to as selection forwarding (Sel-

FW) strategy, to combat the rank failure problem. This strategy can be used for arbitrary number

of relays/users, and, in combination with a proper computing scheme, solves the rank failure

problem. The Sel-FW strategy needs the minimum number of orthogonal relay-to-destination

(R-D) channels (see Section III-B for details). Also, the proposed Sel-FW strategy requires

negligible signaling overhead or feedback channels. As a proper computing scheme for Sel-FW

strategy, we extend the Std-CM scheme to decode multiple linearly independent equations in

each relay. We refer to this technique as extended computing (Ext-CM). Moreover, to increase

the computation rates of the equations at relays, we exploit the SIC idea in Ext-CM scheme,

and develop the successive computing (Suc-CM) scheme. Employing the Suc-CM scheme leads

to enhanced performance compared to the Ext-CM scheme.

Considering the combinations of the Sel-FW strategy with the Ext-CM or Suc-CM schemes,

we propose two novel CMF methods. First, we introduce the extended CMF method, which is

the Sel-FW strategy in combination with the Ext-CM scheme. Second, we propose the successive

CMF method that utilizes the Sel-FW strategy along with the Suc-CM scheme. Moreover, we

consider the generalized version of the original CMF method [1] with multiple-antenna relays
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as the benchmark approach. The original CMF method consists of the Std-FW strategy and the

Std-CM scheme (see Table I).

In summary, the main contributions of our work, compared to the state-of-the-art schemes,

can be outlined as:

1) We propose two novel CMF methods for the multi-user multi-relay networks, namely,

extended CMF and successive CMF methods, with arbitrary number of users/relays and

relay antennas. As opposed to aforementioned CMF methods, our proposed methods solve

the rank failure problem, use the minimum required number of orthogonal R-D channels,

impose negligible signaling overhead or feedback channels to the network, and each relay

requires only local CSI. All these are gained at the cost of added complexity, compared to

the original CMF method, due to finding larger number of ECVs at the relays.

2) Our paper is different from [8], [9], [16], [18] because, first, we exploit the Suc-CM scheme

in a multi-user multi-relay network. Second, we derive concise formulations (Equations

(26)-(31)) and explicit framework (in Section IV-C) for the Suc-CM scheme for general

setups with different number of users/relay antennas. Furthermore, we introduce a novel

approach to significantly facilitate the solution of the integer optimization problem in the

Suc-CM scheme (see Theorem 3).

3) We provide theoretical diversity analysis for our proposed methods in the cases with different

R-D channels (Theorems 4, 5, and 6). None of the derived analyses have been presented

before.

4) As opposed to [1], which is sensitive to channel estimation error (CEE) [4], [25], we show,

through numerical simulations, that the Successive CMF is significantly robust against the

CEE. This makes the successive CMF a proper method for practical applications.

Our diversity analysis and numerical simulations indicate that extended CMF and successive

CMF methods achieve full diversity, i.e. the maximum possible diversity order, of the multi-

user multi-relay network, provided that the R-D channels have a certain minimum quality.

Furthermore, we show that the successive CMF method provides signal-to-noise ratio (SNR)

gains and high robustness against CEE, compared to the extended CMF method, while has more

complex structure. Both methods outperform the original CMF method considerably.

The rest of this paper is organized as follows. In Section II, the system model is introduced. The

forwarding strategies and computing schemes are presented in Section III and IV, respectively.
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Closed-form equations and modified optimization problem for the successive case are given

in Section IV, as well. Section V includes the performance analysis of the proposed methods.

Simulation and numerical results are presented in section VI. Finally, section VII concludes the

paper.

Notations: Lower and upper boldfaced letters are used for column vectors and matrices,

respectively. The symbol In stands for the n × n identity matrix. For a vector or matrix, ‖.‖

and (·)T indicate the Frobenius norm and transpose operator, respectively. The operator E{·}

denotes the expectation operator. The notation x ⊥⊥ {y, z} indicates the linear independency of

vector x and the set of vectors {y, z}. The function log+ (x) is equal to max{log (x), 0}.

II. SYSTEM MODEL

We consider a network, shown in Fig. 1, consisting of L users, as the message sources,

M multi-antenna relays, and one common destination as the information sink. The users and

the destination exploit a single antenna. Each relay is equipped with N receive antennas. The

network aims to reliably convey all messages from the sources to the destination with the highest

possible rate. We assume that there is no direct link between the sources and the destination.

The real channel coefficient from source l, l = 1, . . . , L, to antenna n, n = 1, . . . , N , of the

relay m,m = 1, . . . ,M , is denoted by hmln. The M channels from relays to the destination are

orthogonal point-to-point channels. We consider two cases of ideal and non-ideal R-D channels.

In the ideal case, the R-D channels are noiseless with sufficient capacity to transfer the required

information without errors. For the non-ideal case, each R-D channel has the real coefficient

fm,m = 1, . . . ,M , and independent zero-mean additive white Gaussian noise (AWGN) with

variance σ′2m,m = 1, . . . ,M . The relays are supposed to have the same power constraint PR.

We define the channel coefficient matrix Hm, corresponding to L×N MIMO channel from

users to relay m, as

Hm = [hm1 ,h
m
2 , . . . ,h

m
N ] ,m = 1, . . . ,M, (1)

where hmn is the channel coefficient vector corresponding to the links between different users

and the n-th antenna of the relay m, as

hmn = [hm1n, h
m
2n, . . . , h

m
Ln]T , n = 1, . . . , N. (2)

DRAFT January 8, 2016



7

D

S1w1

S2w2

SLwL

R1
x1

1

1
y

1

N
y

RM

1

My

M

N
y

x2

xL

f1

fM

H
1

H
M

Phase 1 Phase 2

Fig. 1: System model.

Our system structure is based on the standard CMF, proposed in [1]. The user l, l = 1, . . . , L,

exploits a lattice encoder to map its corresponding message wl to a real symbol xl of length t0,

which is a lattice point with 1
t0
E‖xl‖2 = 1 [26]. We assume that the power constraint of user l

is Pl. Thus, the user l transmits the symbol
√
Plxl over the channel.

Each transmission frame consists of two phases. In the first phase, all users transmit their

symbols simultaneously to the relays. Hence, the received signal at n-th antenna of relay m can

be expressed as

ymn =
L∑
l=1

hmln
√
Plxl + nmn ,m = 1, . . . ,M, n = 1, . . . , N, (3)

where nmn is the zero-mean additive white Gaussian noise vector with variance σ2
nm. In the

second phase, the relays send their information through the orthogonal point-to-point channels

(e.g. consecutive time slots) to the destination.

A. Fading Channel

As it is well-known, a channel coefficient in heavily built-up urban environments can be

modeled as a zero-mean circularly-symmetric complex Gaussian random variable that results
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in Rayleigh and uniform distributions for gain and phase components of the channel, respec-

tively [27, Ch. 4]. Since in most scenarios (e.g. simple point-to-point channels), the phase can

be compensated, the channel coefficients can be modeled as real Rayleigh variables. However,

since in CMF, all users transmit simultaneously and each relay receives a linear combination

of the transmitted signals, the channels phases cannot be compensated. Therefore, for the real

case, i.e. when the transmitted signals are real, each relay can exploit the in-phase or quadrature

component of its received signals. Hence, the effective channel is equal to the real or imaginary

part of the complex channel, which can be modeled as a real zero-mean Gaussian random

variable. The case in which each relay employs both the in-phase and quadrature components

of its received signals, to achieve an improved performance, is equivalent to a relay that uses

only one of the signals components and has twice the number of receive antennas.

For the complex case, each user sends two different messages over real and imaginary parts

of the channels and each relay exploits both the in-phase and quadrature components of its

received signals. For this case, in [1] it is shown that by real-valued decomposition of the

complex channel matrix, the complex L×N MIMO channel between each user and each relay

can equivalently be modeled as a real 2L× 2N MIMO channel. Note that the SNR is the same

for the real and complex models [1]. Therefore, to cover all discussed cases, we assume that each

relay considers only the in-phase components of its received signals. Hence, a real zero-mean

Gaussian distribution with unit variance is considered for the channel hmln for all values of l, m,

and n. Note that our assumptions are in harmony with [1] and [6], and the same procedure as

in the paper is applicable in the cases with complex distributions.

For the case of non-ideal R-D channels, since we consider orthogonal point-to-point channels,

the channel noises can be compensated, and hence the assumption of real channels is applicable.

To cover different R-D channel conditions, we consider the Nakagami distribution with the

parameter µ for the channels coefficients. The fading severity decreases with µ. Rayleigh and

AWGN channels are the special cases of the Nakagami channel corresponding to µ = 1 and

µ = ∞, respectively [28]. The case of ideal R-D channels is equal to noiseless Nakagami

channels with µ =∞. From [29], a Nt×Nr MIMO channel with Nakagami distributed channel

coefficients and parameter µ can be modeled by a SISO channel with Nakagami distribution

and parameter q = µNtNr. Hence, without loss of generality, we consider a single channel

coefficient fm,m = 1, . . . ,M for each R-D channel that follows the independent real Nakagami
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distribution with parameter q and unit variance. Furthermore, we assume block-fading conditions

where the channel coefficients are constant during each transmission frame and independent of

the ones in the other transmission frames.

III. FORWARDING STRATEGIES

Relay m,m = 1, . . . ,M , receives N signals ymn , n = 1, . . . , N , as expressed in (3), in the

first transmission phase. By exploiting its N received signals, the relay aims to compute an

equation. An equation u is a linear combination of the users’ symbols xl, l = 1, . . . , L, with

integer coefficients, as:

u =
L∑
l=1

alxl, (4)

where a = [a1, a2, . . . , aL]T ∈ ZL is referred to as the equation coefficient vector (ECV)

corresponding to equation u. The rate of decoding an equation is called computation rate.

Note that a set of equations are called linearly independent if and only if their corresponding

ECVs (equation coefficients vectors) are linearly independent. Moreover, the rate of recovering

a message (or an equation) from a set of equations is equal to the minimum computation rate

of the equations that are used in its recovery.

The forwarding strategy is an important part of the CMF methods that determines how the

information, including selected ECVs, decoded equations, and cooperation and feedback signals,

flows over the network. In the following, we discuss the forwarding strategies.

A. Standard Forwarding (Std-FW) Strategy

Std-FW is the forwarding strategy of the original CMF method [1]. However, as original CMF

is used as a benchmark for comparisons of our proposed methods, it is described here. In the

original CMF method, each relay decodes the best equation, i.e. the equation with the highest

computation rate, based on its received signals (see Section IV-A). In the second transmission

phase, each relay sends its decoded equation to the destination in its dedicated channel. Hence, the

destination receives M equations from the relays. The destination, selects L linearly independent

equations, with the highest computation rates, out of the M received equations, and then can

recover all messages.
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In the original CMF method [1], since each relay finds its best equation statistically indepen-

dently of the other relays, the equations received by the destination may be linearly dependent. If

the received equations are linearly dependent, the coefficient matrix of the equations is singular

and the rank failure occurs. Thus, the destination cannot recover all messages. Rank failure

problem results in significant performance degradation in original CMF method and decreases

the diversity order drastically [4].

In the Std-FW strategy, all M relays send in turn their decoded equations to the destination.

Hence, it requires M time-slots or orthogonal channels. In the Std-FW strategy, the number of

relays should be equal or greater than the number of users.

B. Selection Forwarding (Sel-FW) Strategy

Our proposed forwarding strategy, i.e. Sel-FW, is used in both of our extended CMF and

successive CMF methods. In these methods, each relay finds the L best ECVs, i.e. the L

linearly independent ECVs with the highest computation rates, based on its received signals

(see Section IV). Let ρm denote the minimum of the computation rates for the best ECVs of

relay m. Note that from the best equations of relay m all L messages can be recovered with

rate ρm. In Sel-FW strategy, the relay with highest ρm is selected. The relay selection can be

performed in either of the following ways:

• Each relay sends its rate ρm to the destination. Destination selects the highest rate and in-

forms the selected relay through a low-rate feedback channel. The feedback rate is dlog2Me

bits per relay selection interval.

• Similar to [30], each relay sets a timer with the value Tm proportional to the inverse of its

rate ρm. The timers start to count down at the beginning of the second transmission phase.

The relay whose timer reaches zero first (which has the highest rate) broadcasts a flag to

inform other relays and is selected as the best relay. We assume that the flag is a short-time

high-energy signal that can be sensed by the other relays with a probability close to one.

This approach needs no feedback channel.

Note that the relay selection is necessary once the channels coefficients have changed, i.e. the

best relay is fixed for the coherence interval of the channels. Thus, for slow fading channels,

relay selection imposes negligible additional complexity and overhead to the network.
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The selected relay decodes and forwards its L best equations, corresponding to its best ECVs,

to the destination through L orthogonal channels. Utilizing the L received independent equations,

the destination can solve and recover all messages, without encountering the rank failure problem.

Note that, since L messages are transmitted over the network, the destinations needs at least L

equations from the relays to recover all messages. Hence, the minimum number of required R-D

orthogonal channels is equal to L, that is achieved by Sel-FW strategy.

Note that, although selecting one relay is not globally optimal for recovering L independent

equations with highest rates, it eliminates the need for information exchange among the relays,

as it is required in cooperative strategies.

Remark 1: Based on the Sel-FW strategy, each of the M relays finds L ECVs, but only the

selected relay (with highest ρm) decodes the L equations corresponding to its ECVs. On the

other hand, in the original CMF method, each of the M relays selects an ECV and decodes the

corresponding equation. Hence, to compare the overall computational complexity, in the former,

ML ECVs are selected and L equations are decoded, while in the latter M ECVs are selected

and M equations are decoded.

IV. COMPUTING SCHEMES

The Std-FW and Sel-FW strategies require computing schemes that can be employed in a

relay to find the best ECV or the best L linearly independent ECVs, respectively. Moreover, the

technique of computing equations, corresponding to the selected ECVs, should be specified by

the computing schemes.

We assume that each relay knows only local CSI, as in, e.g., [1]. All equations of the current

section are written for each relay m,m = 1, . . . ,M . Hence, for simplicity of presentation, we

remove the index m from the equations.

A. Standard Computing (Std-CM) Scheme

A relay receives N signals, yn, n = 1, . . . , N , at its antennas in the first transmission phase,

as expressed in (3). The normalized received signal at the n-th antenna can be written as

ỹn ,
yn
σn

=
L∑
l=1

glnxl + zn, (5)
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where gln = hln
√
Pl

σn
is the instantaneous received SNR at n-th antenna of the relay from user l,

and zn = nn

σn
is the received noise with unit variance. Let us define the vector gn and matrix G

as

gn , [gn1, . . . , gnL]T , (6)

and

G = [g1, . . . ,gN ]L×N . (7)

To recover an equation u with ECV a = [a1, a2, . . . , aL]T ∈ ZL, as expressed in (4), the relay

combines the normalized received signals with coefficient vector b = [b1, . . . , bN ]T ∈ RN , as

ȳ =
N∑
n=1

bnỹn. (8)

Thus, the equivalent channel from the users to the relay is modeled as

ȳ =
L∑
l=1

ḡlxl + z̄, (9)

where the equivalent noise z̄ is a zero-mean AWGN with variance ‖b‖2, and the equivalent

channel vector ḡ = [ḡ1, . . . , ḡL]T is calculated as

ḡ = Gb. (10)

From [3], the computation rate of the equation with ECV a = [a1, a2, . . . , aL]T ∈ ZL is equal to

R(G,b, a) =
1

2
log+

(
1

‖b‖2 + ‖Gb− a‖2

)
, (11)

and the optimum value of b maximizing (11) is given by

b =
(
IN + GTG

)−1
GTa. (12)

Substituting (12) into (11) yields the maximum achievable computation rate of the relay for

decoding an equation with ECV a, as

R(G, a) =
1

2
log+

(
1

aTQa

)
, (13)

where

Q =
(
IL + GGT

)−1
, (14)
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is a positive definite matrix. Therefore, the relay can find the best ECV from the following

optimization problem
a1 = arg max

a∈ZL,a6=0
R (G, a)

= arg max
a∈ZL,a6=0

1

2
log+

(
1

aTQa

)
= arg min

a∈ZL,a6=0
aTQa,

(15)

where the last equality holds since log+(·) is a monotonically increasing function.

The above integer optimization problem is equivalent to the shortest vector problem (SVP),

and has no closed-form solution [4], [31]. Different approaches can be applied to calculate the

optimum ECV numerically [7], [32]–[37]. Since Q is a positive definite matrix, we can follow

the same method as in [32] to find the optimal vectors.

To decode (compute) the equation corresponding to optimum ECV a1, the relay calculates

the combining coefficient vector b1 from (12) and generates ȳ1 from (8). Then, the signal ȳ1 is

used as the input of the relay lattice decoder to recover the desired equation û1.

The Std-CM scheme presented above, is the generalized (with multiple antenna) version of

the computing scheme of the original CMF method [1] and is the basis of the other presented

computing schemes in this paper.

B. Extended Computing (Ext-CM) Scheme

Ext-CM is used as the computing scheme of our extended CMF method. In our proposed

forwarding strategy, i.e. Sel-FW, the relay needs to find L independent ECVs with the highest

computation rates. We extend the Std-CM scheme to find the desired ECVs as follows.

The relay finds the first ECV from (15). The other ECVs are calculated sequentially through

ak = arg min
a∈ZL,a6=0

a⊥⊥{a1,...,ak−1}

aTQa, k = 2, . . . , L, (16)

where the constraint a ⊥⊥ {a1, . . . , ak−1} guarantees that the ECV ak is linearly independent of

the previous ECVs a1, . . . , ak−1.

The above optimization can be solved by employing the same method as in [32], except that

the search space is over vectors independent of the previous ECVs. Moreover, the approaches

suggested in [7], [31], [35], [37], [38] can be exploited to find the solution of (16) with reduced

complexity.
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By finding the ECVs, the relay can decode the corresponding equations. Specifically, for

decoding the k-th equation, it calculates the combining coefficient vector bk from (12) and

generates the combined signal ȳk from (8). Then, the signal ȳk is used as the input of the relay

lattice decoder to recover the k-th equation ûk. From (13) and using the Ext-CM scheme, the

computation rate of equation ûk with ECV ak is given by

R
(Ext)
k (G) =

1

2
log+

(
1

akTQak

)
. (17)

Note that R(Ext)
1 (G) ≥ · · · ≥ R

(Ext)
L (G). Hence, the sum rate of recovering all messages from

these L equations is equal to

R(Ext)
sum = L×R(Ext)

L (G) . (18)

In Ext-CM scheme, L linearly independent equations are selected sequentially, as expressed

in (16). A different approach, named IFLR, is presented in [6] to recover multiple equations

at the receiver of a point-to-point MIMO channel. However, since in IFLR the data streams of

transmit antennas are independently coded, the scheme can be exploited in a multi-user scenario

as well. The IFLR scheme results in the following optimization

R(IFLR)
sum = L× max

Ω⊆ZL\0, |Ω|=L
rank(Ω)=L

min
a∈Ω

1

2
log+

(
1

aTQa

)
, (19)

where ZL \ 0 denotes ZL excluding the zero vector, |Ω| shows the cardinality of the set Ω, and

rank(Ω) equals the rank of the matrix whose columns are the elements of Ω. Comparing (19)

with (16) reveals that in IFLR scheme, all equations are selected simultaneously (jointly) to

maximize the sum rate, as opposed to our Ext-CM approach with sequential ECVs selection.

The IFLR scheme is shown to be optimal in terms of rates of the recovered equations [6]. In

the following theorem, we prove that our sequential selection of ECVs, achieves the same rate

as the IFLR scheme, and hence, is optimal.

Theorem 1: For any given channel matrix G, defined in (7), the Ext-CM scheme achieves the

same sum rate as the optimal IFLR scheme.

Proof: See Appendix A.

It is clear that Ext-CM has a lower complexity than the IFLR due to sequential, rather than

joint, selection of ECVs, while providing the same performance as IFLR. As apposed to [6]

that uses the IFLR scheme in a point-to-point MIMO channel, we exploit the Ext-CM scheme
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in combination with Sel-FW strategy to form extended CMF method for multi-user multi-relay

networks.

C. Successive Computing (Suc-CM) Scheme

Suc-CM is employed as the computing scheme of our successive CMF method. To find the

best L linearly independent ECVS and decoding their corresponding equations, as required by

Sel-FW strategy, we propose the Suc-CM scheme. In Ext-CM scheme, since all L equations are

recovered from a single relay, the minimum rate of them, i.e. R′L, tends to zero as L increases.

To solve this issue, we can use the previous decoded equations to improve the computation rates

of the subsequent equations.

In the first step of Suc-CM scheme, the first ECV a1 and its corresponding equation û1 are

determined the same as in the Std-CM and Ext-CM schemes. In the k-th step, k = 2, . . . , L,

the relay desires to find the k-th ECV ak and decode its corresponding equation ûk. From the

previous steps, the linearly independent ECVs a1, . . . , ak−1 and the equations û1, . . . , ûk−1 are

known. Thus, by combining its antenna signals as well as the previously decoded equations, the

relay generates the following signal

ȳk =
N∑
n=1

bknỹn +
k−1∑
j=1

βkjûj. (20)

Here, ỹn is the normalized signal defined in (5) and ûj is the decoded equation with ECV aj

in the j-th step that is expressed as

ûj =
L∑
l=1

ajlxl. (21)

The vectors bk = [bk1, . . . , bkN ]T ∈ RN and βββk =
[
β

(k)
1 , . . . , β

(k)
k−1

]T
∈ Rk−1 include the combi-

nation coefficients for the normalized antenna signals and the previous equations, respectively.

Thus, the equivalent channel from the users to the relay is modeled as

ȳk =
L∑
l=1

ḡklxl + z̄k, (22)

where the equivalent noise z̄k is a zero-mean AWGN with variance ‖bk‖2, and the equivalent

channel vector ḡk = [ḡk1, . . . , ḡkL]T is calculated as

ḡk = Gbk + Ak−1βββk, (23)
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where G is defined in (7) and Ak−1 is a L× (k − 1) matrix defined as

Ak−1 = [a1, . . . , ak−1]. (24)

Similar to (11), the computation rate of an equation with ECV a = [a1, a2, . . . , aL]T is

R(G,bk,βββk, a) =
1

2
log+

(
1

‖bk‖2+ ‖Gbk+Ak−1βββk−a‖2

)
. (25)

It is worth noting that there are two terms in the denominator of the above equation reducing

the rate. The first, i.e. ‖bk‖2, is related to the noise, and the second is due to mismatch between

the equivalent channel coefficients ḡk in (23) and the desired ECV a ∈ ZL. The coefficient vectors

bk and βββk can be adjusted to decrease the mismatch term. Comparing the mismatch terms in (11)

and (25) indicates that exploiting the previously decoded equations in successive CMF provides

more degrees of freedom to reduce the mismatch, which leads to rate enhancement. Furthermore,

utilizing larger number of antennas, i.e. N , increases the dimension of bk, resulting in similar

effect, i.e. the received signals from antennas can be combined to reduce the mismatch term.

To maximize the computation rate in (25), optimum values of bk and βββk as well as the

corresponding maximum computation rate can be determined from the following theorem and

corollary. These results are of interest because they are expressed in concise and closed forms.

Theorem 2: For a given ECV a, the optimum bk and βββk that maximize the computation rate

in (25) are

bk =
(
IN + G̃T

k G̃k

)−1

G̃T
k a, (26)

βββk =
(
AT
k−1Ak−1

)−1
AT
k−1

(
IL−G

(
IN+G̃T

k G̃k

)−1

G̃T
k

)
a, (27)

where

G̃k , Fk−1G, (28)

Fk−1 ,
(
IL −Ak−1

(
AT
k−1Ak−1

)−1
AT
k−1

)
, (29)

and F0 , IL, βββ1 , [ ] .

Proof: See Appendix B.

Remark 2: The Fk−1 is the matrix of projection onto the orthogonal complement of the

subspace spanned by vectors {a1, . . . , ak−1} [39, Ch. 5]. Hence, it is an idempotent matrix,

i.e. F2
k−1 = Fk−1. Moreover, we have FT

k−1 = Fk−1.
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Corollary 1: For a given ECV a, the optimum computation rate of (25) is equal to

Rk (G, a) =
1

2
log+

(
1

aTQka

)
, (30)

where

Qk = FT
k−1

(
IL + G̃kG̃

T
k

)−1

Fk−1, (31)

and matrices G̃k and Fk−1 are defined in (28) and (29), respectively.

Proof: By substitution of (26) and (27) in (25), and using the properties of Fk−1 in Remark 2,

we get the desired results (30) and (31).

Lemma 1: The matrix Qk in (31) is a positive semi-definite (and not a positive definite)

matrix.

Proof: For any x 6= 0 in RL, we have

xT
(
IL + G̃kG̃

T
k

)
x = ‖x‖2 +

∥∥∥G̃T
k x
∥∥∥2

> 0. (32)

Thus, the matrix
(
IL + G̃kG̃

T
k

)
is a positive definite matrix. As a result, its inverse is also a

positive definite matrix and has a Cholesky decomposition of the form LLT , where L is a lower

triangular matrix with positive diagonal entries [39, Ch. 7]. For any x 6= 0 in RL, we can write

xTQkx = xTFT
k−1

(
IL + G̃kG̃

T
k

)−1

Fk−1x

= xTFT
k−1LLTFk−1x

=
∥∥LTFk−1x

∥∥2
> 0.

(33)

Hence, Qk is a positive semi-definite matrix. Now, consider the case x = a1 6= 0. Since a1 is

in the span of columns of Ak−1, based on Definition 3 in Appendix C, we have that the vector

a1 has no components in orthogonal complement of the span of columns of Ak−1. Therefore,

from definition of Fk−1 in Remark 2, we get Fk−1a1 = 0 and a1
TQka1 = 0. Thus, Qk is not a

positive definite matrix.

From (30) in Corollary 1, the relay, in step k, can find the best ECV ak from the following

optimization

ak = arg max
a∈ZL,a6=0

a⊥⊥{a1,...,ak−1}

Rk (G, a)

= arg min
a∈ZL,a6=0

a⊥⊥{a1,...,ak−1}

aTQka,
(34)
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where the matrix Qk is defined in (31). The constraint a ⊥⊥ {a1, . . . , ak−1} guarantees that the

ECV ak is linearly independent of the previous ECVs a1, . . . , ak−1.

In Lemma 1, it is proved that the matrix Qk is not a positive definite matrix. In this case,

efficient methods such as the one in [32] cannot be employed, and finding the solution of the

optimization problem (34) will be time-consuming. In Section IV-D, we propose an approach to

overcome this issue.

By finding ECV ak from (34), the relay decodes the corresponding equations ûk in step k as

follows. The relay calculates the combining coefficient vectors bk and βββk from (26) and (27),

respectively, to generate the combined signal ȳk as in (20). Then, the signal ȳk is used by the

lattice decoder to recover the k-th equation ûk.

Since in the Suc-CM scheme, the previous equations are used for decoding the current equation

ûk, the computation rate of the ûk with ECV ak is obtained as

R
(Suc)
k (G) = min

16j6k
Rj(G, aj)

= min
16j6k

1

2
log+

(
1

ajTQjaj

)
,

(35)

where Qj is defined in (31).

Note that R(Suc)
1 (G) ≥ · · · ≥ R

(Suc)
L (G). Hence, the sum rate of recovering all messages from

these L equations is equal to

R(Suc)
sum = L×R(Suc)

L (G) . (36)

Lemma 2 shows that Suc-CM scheme outperforms the Ext-CM, in terms of sum rate, for any

users to relays channel distributions.

Lemma 2: For any given channel matrix G, defined in (7), Suc-CM scheme leads to a higher

or equal sum rate, compared to Ext-CM scheme.

Proof: From (25), the computation rate of the optimum ECV at step K, i.e. ak, for the

Suc-CM scheme, can be written as

R
(Suc)
k (G) = max

a∈ZL,a6=0
a⊥⊥{a1,...,ak−1}
bk∈RN ,βββk∈Rk−1

R(G,bk, βββk, a). (37)

By setting βββk = 0, we can write

R
(Suc)
k (G) ≥ max

a∈ZL,a6=0
a⊥⊥{a1,...,ak−1}

bk∈RN ,

R(G,bk, 0, a) = R
(Ext)
k ,

(38)
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where the last equality follows from (11). This yields the result.

D. Solving the Optimization Problem of Suc-CM

Since the matrix Qk in (34) is not positive definite, the optimization problem of the Suc-CM

scheme cannot be solved via standard methods, e.g. the ones proposed in [32]. We propose a

method to convert this optimization problem to an uncomplicated one that includes a positive

definite matrix, similar to that of the Std-CM scheme in (15). Also, for the readers assistant, some

required basic concepts of the lattices and preliminary definitions are provided in Appendix C.

The optimization problem in (34) can be rewritten as

min
d=Fk−1a,a∈ZL,a6=0

a⊥⊥{a1,...,ak−1}

dTCkd, (39)

where

Ck ,
(
IL + G̃kG̃

T
k

)−1

. (40)

The search set of (39) is

S =
{
d
∣∣d = Fk−1a, a ∈ ZL, a 6= 0, a ⊥⊥ {a1, . . . , ak−1}

}
=
{
d
∣∣d = Fk−1a, a ∈ ZL,d 6= 0

}
.

(41)

The second equality in (41) follows from the fact that vector a is linearly independent of the set

{a1, . . . , ak−1} if and only if its projection onto orthogonal complement of span (a1, . . . , ak−1),

i.e. Fk−1a, is nonzero.

Lemma 3: The set ΛP = S∪{0}, which is the projection of all ZL points onto the orthogonal

complement of span (a1, . . . , ak−1), is a lattice.

Proof: We have

ΛP = S ∪ {0} =
{
d
∣∣d = Fk−1a, a ∈ ZL

}
. (42)

Hence, for every d1,d2 ∈ ΛP , there exist vectors a1, a2 ∈ ZL such that d1 = Fk−1a1 and

d2 = Fk−1a2. Therefore, we can write d1 ± d2 = Fk−1 (a1 ± a2) ∈ ΛP . Thus, based on

Definition 1 in Appendix C, ΛP is a lattice.

Definition 1 and (42) yield that Fk−1 is a generator matrix for ΛP . From (29), the rank of

Fk−1 is L − k + 1. Hence, the rank of lattice ΛP is L − k + 1. We are interested in finding

a standard generator matrix for ΛP . By applying a series of unimodular column operations on
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matrix Fk−1, we simply find an L×L matrix B with k−1 zero columns and L−k+ 1 nonzero

linearly independent columns as

B = Fk−1U =
(
P̃k−1 |0

)
, (43)

where the transformation matrix U is a unimodular matrix corresponding to the series of

unimodular column operations applied on matrix Fk−1. From Remark 6, B is a generator matrix

for ΛP . As a result, from (73) and by removing zero columns of B, the matrix P̃k−1 is also

a generator matrix for ΛP . Since columns of P̃k−1 are independent, it is a standard generator

matrix for ΛP . From (43), we write

P̃k−1 = Fk−1Uk−1, (44)

where Uk−1 is the matrix consisting of the first L − k + 1 columns of U. Note that selecting

L − k + 1 independent columns of Fk−1 does not necessarily give the generator matrix of the

lattice ΛP (see [40, Ch. 6]).

Remark 3: The matrix B in (43) is not unique. A special form of B, called Hermite Normal

Form (HNF), can be calculated from the integer matrix F′k−1 = det
(
AT
k−1Ak−1

)
Fk−1. It can

be proved that HNF of an integer matrix always exists and is unique [41, Sec. 2.4.2]. A pseudo

code for finding HNF of a matrix and its corresponding transformation matrix can be found

in [41, Sec. 2.4.2].

Since P̃k−1 is a basis for lattice ΛP , we represent the lattice as

ΛP =
{

d
∣∣∣d = P̃k−1w, w ∈ ZL−k+1

}
. (45)

The search set S is expressed as

S =
{

d
∣∣∣d = P̃k−1w, w ∈ ZL−k+1, w 6= 0

}
. (46)

To convert the optimization problem of Suc-CM scheme to a simpler form, as in Std-CM

scheme, we propose the following theorem. It is worth noting that Theorem 3 decreases the

complexity of finding ECV ak significantly, since 1) the optimization includes a positive definite

matrix Q̃k rather than the positive semi-definite matrix Qk in (34), and hence numerical methods

such as [32] can be exploited. Moreover, 2) the search space of the optimization reduces from

ZL to ZL−k+1. This is achieved due to mapping of ZL points to a lattice of dimension L −
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k + 1. Finally, 3) there is no need to check the linear independency of ak from previous ECVs

{a1, . . . , ak−1}, in the iterations of exploited numerical methods.

Theorem 3: The optimum ECV ak of step k , i.e. the solution of Suc-CM optimization

problem (34), can be equivalently calculated from the following optimization problem:

wk = arg min
w∈ZL−k+1,

w 6=0

wT Q̃kw,

ak = Uk−1wk,

(47)

where

Q̃k = P̃T
k−1CkP̃k−1 (48)

is a positive definite matrix, Ck is defined in (40), and P̃k−1 and Uk−1 are found from (44).

Proof: See Appendix D.

From (30) and (47), the computation rate corresponding to a vector w ∈ ZL−k+1, in the search

set of (47), is given by

R (w) =
1

2
log+

(
1

wT Q̃kw

)
, (49)

where λmin(Q̃k) is the minimum eigenvalue of the matrix Q̃k. From Courant-Fischer theorem [39,

Ch. 7], it follows that λmin(Q̃k)‖w‖2 6 wT Q̃kw. Then, we can write

R (w) =
1

2
log+

(
1

wT Q̃kw

)

6
1

2
log+

 1

λmin

(
Q̃k

)
‖w‖2

 .

(50)

Hence, every vector w with λmin(Q̃k)‖w‖2 6 1 results in zero computation rate. As result, the

search set of the optimization in (47) can be limited to the vectors w that satisfy

‖w‖2 <
1

λmin

(
Q̃k

) . (51)

Note that (51) is also applicable to optimization problems in (15) and (16), by replacing Q̃k

with Q. The optimization in (47) has the same form as (15) and, similarly, can be solved by the

algorithms suggested in [7], [32]–[37]. However, (51) can be used to determine some required

parameters for these algorithms, like an initial radius r to start the search for the algorithm

proposed in [32].
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V. PERFORMANCE ANALYSIS OF THE PROPOSED METHODS

To evaluate the performance of our proposed CMF methods, we provide the outage perfor-

mance and diversity analysis of the extended CMF and successive methods over the multi-user

multi-relay networks. We consider the cases of ideal and non-ideal R-D channels, respectively,

in the following subsections.

Let us define Rrel(G
m) as the achievable sum rate of the m-th relay, where Gm is the

corresponding relay channel matrix, defined in (7). Note that this sum rate is equal to (18)

and (36), for the cases with Ext-CM and Suc-CM, respectively. Hence, the following analysis

covers both extended and successive CMF methods.

The outage probability of the relay m, for its sum rate, is defined as

P out
relay,m , Pr {Rrel(G

m) < Rt} , (52)

where Rt is the target sum rate. For a system with outage probability Pout, the diversity order

of the system is defined as

d , − lim
γ→∞

logPout

log γ
, (53)

where γ is the average SNR of the channels [42]. For simplicity of presentation, (53) can be

written in the alternative form

Pout
.
= γd, (54)

at high SNRs, where the symbol .
= indicates the asymptotic equality for γ →∞. Moreover, to

find the diversity order of the system, we consider the same SNR γ for all channels.

Remark 4: The diversity order of a system with L independently transmitted streams and

N ≥ L receive antennas, over real Gaussian channels, is at most equal to N
2

. Note that the

factor 1
2

is removed for complex channels. Moreover, cooperation among transmitters, e.g. joint

space-time coding, can increase the diversity limit significantly [6], [42].

Lemma 4: For an N -antenna relay (N ≥ L) and L users, over real user-to-relay (U-R)

Gaussian channels, the Ext-CM and Suc-CM schemes achieve the full diversity order N
2

.

Proof: The diversity order of the IFLR scheme, for the conditions stated in the lemma, is

proved to be N
2

[6]. Since the users transmit independently, this is the highest possible diversity

order of the system. Thus, from Theorem 1 and Lemma 2, it follows that the diversity orders

of Ext-CM and Suc-CM schemes are N
2

as well.
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Note that, from Section II-A, the diversity order N can be achieved if the complex case of

CMF is used, or both real and imaginary parts of the received signals are employed by relays.

A. Ideal R-D channels

Now, consider M relays in the network. The network employs one of the extended CMF or

the successive CMF methods. The U-R channels are real Gaussian, and the R-D channels are

considered to be ideal (see Section II). Since in Sel-FW the best relay sends its equations to the

destination, the outage probability of the system is found as

P out,M
sys,Ideal = Pr

{
max

1≤m≤M
Rrel(G

m) < Rt

}
= Pr

{
Rrel(G

1) < Rt, . . . , Rrel(G
M) < Rt

}
(a)
=

M∏
m=1

Pr {Rrel(G
m) < Rt}

=
∏M

m=1
P out

relay,m ,

(55)

where (a) holds since the relay channel matrices are statistically independent, and the relays

select their ECVs statistically independent of each other.

To find the diversity order of the network, we propose the following theorem.

Theorem 4: The extended CMF and successive CMF methods over the L-user M -relay net-

work with real Gaussian U-R channels and ideal R-D channels, achieves the diversity order

dsys,Ideal =
MN

2
, (56)

where N , N ≥ L, is the number of exploited antennas in each relay.

Proof: See Appendix E.

From Remark 4, since the total number of relay antennas in the network is MN , both extended

CMF and successive CMF methods achieve the full diversity of the real Gaussian network, i.e.
MN

2
.

B. Non-Ideal R-D channels

To evaluate the effect of non-ideal R-D channels, we consider i.i.d. Nakagami(q) distributions

with unit variance for channels coefficients fm,m = 1, . . . ,M . From Section II-A, fm,m =
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1, . . . ,M are fixed during each transmission frame, and are independent of the ones in other trans-

mission frames. The transmission rates over the R-D channels are rm = 1
2

log
(
1 + γ|fm|2

)
,m =

1, . . . ,M , where γ is the average SNR of the channels. The selected relay uses its R-D channel

L times to send its L selected equations to the destination. Thus the outage probability of each

R-D channel is calculated as

P out
R-D , Pr {Lrm < Rt}

= Pr

{
L

2
log
(
1 + γ|fm|2

)
< Rt

}
= Pr

{
|fm|2 <

2
2Rt
L − 1

γ

}

= Fχ2

(
2q,

2
2Rt
L − 1

γ

)
,

(57)

where Fχ2 (2q, x) is the cumulative distribution function (CDF) of chi-square distribution with

2q degrees of freedom. The last equality follows from the fact that |fm|2 is a Chi-Square random

variable with 2q degrees of freedom [28].

To find the diversity order, we consider two different cases, as follows.

1) No D-R Feedback: If the R-D channel of the selected relay is in outage, the equations

are not received by the destination, and hence, a system outage event occurs. Since, we have

assumed only local CSI for the relays, and if there is no destination-to-relays (D-R) feedback,

the relays are not aware of the R-D channels states. Thus, for the case of no D-R feedback, the

outage probability of the system is

P out
sys,NF = P out

R-D + (1− P out
R-D) .P out,M

sys,Ideal, (58)

where P out
R-D and P out,M

sys,Ideal are given in (57) and (55), respectively. The related diversity order is

determined by the following theorem.

Theorem 5: Without D-R feedback, the extended CMF and successive CMF methods, over

the L-user M -relay network with real Gaussian U-R channels and Nakagami(q) R-D channels,

achieve diversity order

dsys,NF = min

(
q,
MN

2

)
, (59)

where N , N ≥ L, is the number of exploited antennas in each relay.

Proof: See Appendix F.
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2) With D-R Feedback: To improve the performance of system in the case of non-ideal R-D

channels, we modify the Sel-FW strategy to use negligible D-R feedback. In modified Sel-

FW strategy, it is assumed that the destination have local CSI, i.e. fm,m = 1, . . . ,M , and

hence, knows which R-D channels are in outage. The destination informs the relays of their

corresponding R-D channel state (i.e. outage or good). Hence, only the relays with good channel

state, find their ECVs and participate in the best relay selection process (e.g. set their timers,

see Section III-B). Note that if a subset of m out of M relays have good R-D channel states,

the system outage performance is the same as a system with m relays and ideal R-D channels.

Hence, using the law of total probability, the outage probability of the non-ideal R-D channel

case with D-R feedback is expressed as

P out
sys,WF =

M∑
m=0

pm.P
out,m
sys,Ideal, (60)

where P out,m
sys,Ideal is the outage probability of a system with m relays and ideal R-D channels,

which is found from (55), and we have P out,0
sys,Ideal = 1. Also, pm is the probability of the event

that exactly m out of M relays have good R-D channel states. Since, the channel coefficients

fm,m = 1, . . . ,M are independent, the probability pm can be written as

pm =

(
M

m

)
(1− P out

R-D)
m

(P out
R-D)

M−m
, (61)

where
(
M
m

)
is the ”n choose k” operator. Substituting (61) in (60) yields

P out
sys,WF =

M∑
m=0

(
M

m

)
(1− P out

R-D)
m

(P out
R-D)

M−m
P out,m

sys,Ideal. (62)

The following theorem gives the diversity order achieved by exploiting modified Sel-FW strategy

in the case of non-ideal R-D channel.

Theorem 6: With D-R feedback, real Gaussian U-R channels, and Nakagami(q) R-D channels,

the extended CMF and successive CMF methods (employing modified Sel-FW strategy over the

L-user M -relay network) achieve the diversity order

dsys,WF = M ×min

(
q,
N

2

)
, (63)

where N , N ≥ L, is the number of exploited antennas in each relay.

Proof: See Appendix G.
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Remark 5: From (59) and (63), we always have dsys,WF ≥ dsys,NF. However, D-R feedback

helps, i.e. increases the diversity order, for q < MN
2

. This means that when the long-term R-D

channels conditions are better than a certain quality, specifically for q ≥ MN
2

, using D-R feedback

provides no diversity gains. This is due to the fact that for q ≥ MN
2

the system achieves full

diversity, i.e. MN
2

.

It is worth noting that in the case of q < MN
2

, the use of D-R feedback can be replaced with

employing larger number of antennas for R-D channels to get q = µNtNr ≥ MN
2

. Hence, the

system can achieve full diversity without using D-R feedback. Moreover, it is interesting that

when the diversity is limited by the quality of the R-D channels , i.e. we have q ≤ MN
2

for no

R-D feedback case and q ≤ N
2

for the cases with R-D feedback, employing larger number of

relays M or relay antennas N provides only SNR gains.

VI. NUMERICAL RESULTS

To evaluate the performance of the proposed methods, we provide computer simulations for

different scenarios. We compare our proposed extended and successive CMF methods with the

original CMF method [1]. In simulations, equal power P , for transmitting nodes, and unit

variance for channel noises are considered, i.e. we have Pl = PR = P, l = 1, . . . , L, and

σ2
nm = σ′2m = 1,m = 1, . . . ,M, n = 1, . . . , N . The zero-mean Gaussian distribution with unit

variance is considered for the coefficients of the users to relays channels (see Section II-A).

Since unit variance is assumed for the channel gains, the average SNR of the channels is equal

to P .

In simulations, the performance is measured in terms of average sum rate of the users and

overall outage probability of the system. The unit of average sum rate is bits per transmission

frame (consisting of L+ 1 time slots). Note that the original CMF method uses a total of M + 1

time slots, while the successive and extended CMF methods require L + 1 time slots, for each

transmission frame. Thus, for a fair comparison, the sum rate of the original CMF method is

multiplied by (L+1)
(M+1)

in simulations. To find the ECVs in the original, extended, and successive

CMF methods, we have solved the optimization problems (15), (16), and (47), respectively, using

the approach given in [32]. Note that since Ext-CM scheme has the same performance as IFLR

scheme (see Theorem 1), the curves corresponding to Ext-CM scheme in figures are also true

for IFLR scheme.
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Fig. 2: Probability of rank failure at the destination versus average SNR, (ideal R-D channels).

Fig. 2 shows the probability of rank failure at the destination for the original, extended, and

successive CMF methods, versus average SNR. The R-D channels are assumed to be ideal. The

extended and successive CMF methods yield zero probability of rank failure, since in these

methods, L linearly independent equations are recovered by the selected relay and sent to the

destination. On the other hand, in original CMF, each relay selects and sends one equation

statistically independently of the other relays. Hence, the received equations by destination may

be linearly independent, and rank failure may occur. This figure indicates that rank failure for

the original method occurs in most cases, with high probability. As it is observed, by increasing

the number of relays M , probability of rank failure decreases in the original CMF method.

The reason is that the destination receives more equations, and, with a higher probability can

find L linearly independent equations among them. In addition, the rank failure probability

increases with L, since the destination needs to find more linearly independent equations among
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its received equations. Moreover, Fig. 2 reveals that employing larger number of antennas at

the relays ,N , does not necessarily decrease the rank failure probability in the original CMF

method. The distribution and SNR of U-R channels affects the distribution of selected ECVs at

the relays. As a result, the rank failure probability is dependent on the channels distribution and

SNR, as observed in Fig. 2. Note that, although the rank failure probability of the original CMF

method decreases with SNR for the parameter settings of Fig. 2, this is not true for all cases

(see [4] for more details).

Figs. 3 and 4 compare the original, extended, and successive CMF methods, in terms of

average sum rate and outage probability, respectively. Two cases of L = 2 and L = 4 users are

considered. Ideal R-D channels, the target sum rate Rt = 2, M = 4, and N = 4 are assumed. As

it is observed in figures, the extended and successive CMF methods perform significantly better

than the original CMF method. The reason of poor performance of the original CMF method

and its rate loss, especially at low SNRs, is the rank failure problem. It is shown in [4] that

the overall outage probability of the system is lower bounded by the rank failure probability.

The rank failure problem decreases the diversity order (slope of the curves at high SNRs)

of the system considerably. Moreover, as it is observed from Fig. 3, due to the rank failure

problem, increasing the number of users does not necessarily increase the average sum rate in

the original CMF method. This is because, in general, the average sum rate of the original CMF

method depends on two factors, namely, the rank failure probability and the computation rates

of equations recovered by M relays, both of which depend on SNR. Specifically, the trade-off

between these two factors determines the performance at different SNR regions. Furthermore,

Successive CMF method shows a better performance than the extended CMF method, especially

for large values of L. This is due to the fact that as L increases, i.e. the number of recovered

equations in each relay increases, the successive CMF method gets more degrees of freedom to

adjust the equation coefficients.

In Fig. 5, the effect of employing larger numbers of relays on the network performance

is illustrated. The average sum rates of the original, extended, and successive CMF methods

versus the number of relays, M , are plotted at the average SNR P = 10 dB. Two cases of

relays with N = 2 and N = 4 antennas are considered. Ideal R-D channels and L = 4 users are

assumed. Average sum rate is a strictly increasing function of M for the extended and successive

CMF methods, since increasing the numbers of relays leads to higher diversity orders for the
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system. Moreover, utilizing larger number of antennas at each relay, improves the performance

of these two methods considerably. The reason is that by receiving more signals at each relay,

the relay can combine them more efficiently and recover an equation with higher rate. For the

original CMF, using higher M , on the one hand, decreases the rank failure probability, and

hence, provides rate gains. On the other hand, exploiting more relays increases the number of

required time slots for the transmission frame, and thus, reduces the rate. This trade off results

in a optimum, in terms of sum throughput, value for M , e.g. M = 7 and M = 8 for N = 4

and N = 6, respectively. Furthermore, as observed in Fig. 5, due to the rank failure problem,

exploiting larger number of antennas does not necessarily increase the average sum rate in the

original CMF method. Specifically, the trade-off between the rank failure probability and the

computation rates of relays’ equations determines the performance for different values of M .

Note that since original CMF method is not applicable where M < L, zero rates are considered

for these cases.

In Fig. 6, the effect of the number of relays, M , and the number of each relay antennas,

N , on the network outage probability is shown, for the extended and successive CMF methods.

The outage probabilities of the both methods, versus average SNR, are plotted for L = 4 users.

Rt = 1 and ideal R-D channels are assumed. As it is expected, increasing each of M and

N improves the performance and increases the diversity order for both methods. For instance,

consider the case (M = 2, N = 2). Adding two users, or two antenna to each relay provides

nearly 8 dB, or 12 dB, SNR gain, respectively, at outage probability of 0.001, for successive

CMF method. As observed from this figure, for a given M and N , both extended and successive

CMF methods achieve the same order of diversity, while the latter provides an additional SNR

gain. This gain increases as SNR decreases.

By comparing the cases (M = 4, N = 2) and (M = 2, N = 4) in Fig. 6, it can be found

that, with the considered system model of the paper, collecting the antennas in a small number

of relays is more beneficial than distributing them among large number of relays. Note that

the slopes of all curves for the cases (M = 4, N = 2) and (M = 2, N = 4), at high SNR

values, are nearly the same. This indicates that all these cases achieve the same diversity order,

which is, from the figure, equal to 4. This is in agreement with the theoretical value of diversity

in (56), i.e. MN
2

= 4. The case with higher N , i.e. (M = 2, N = 4), provides higher SNR gain,

since more antennas are centralized in each relay and their received signals can be combined to
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Fig. 3: Average sum rates of the original, extended, and successive CMF methods versus average SNR, for L = 2

and L = 4 users, (ideal R-D channels, M = 4, N = 4).

increase the equation computation rates.

In Fig. 7, the effect of number of users, L, on the performance of the Ext-CM and Suc-CM

schemes is demonstrated. The average sum rates achieved by a relay exploiting either of the

schemes, versus L, are plotted at the average SNR P = 10 dB. Two cases of N = 2 and N = 6

antennas at the relay are considered. As it is shown, the Suc-CM outperforms the Ext-CM

scheme in terms of average sum rate, and the performance gap increases with L. This is due

to the fact that Suc-CM uses previously decoded equations to improve the computation rates

of subsequent equations. Therefore, Suc-CM scheme is more proper than Ext-CM for networks

with high number of users. Note that, although the average rate of the last equation decoded

at a relay decreases with L for both schemes, the average sum rate increases for small values

of L, as it is observed in the figure. This is true in general, for L ≤ N . Hence, exploiting

sufficient number of antennas (at least equal to the number of users) at relays, the average sum
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Fig. 4: Outage probabilities of the original, extended, and successive CMF methods versus average SNR, for

L = 2 and L = 4 users, (ideal R-D channels, Rt = 2, M = 4, N = 4).

rate increases with L. This is in agreement with Figs. 3 and 4, in which L ≤ N .

Fig. 8 considers the case of non-ideal R-D channels with Nakagami(q) distribution, for different

values of the channel parameter q. The corresponding outage probabilities of the successive CMF

method with D-R feedback, versus average SNR, are shown. The ideal channel case is also plotted

for comparison. The parameters Rt = 2, L = 4, M = 2, N = 4 are assumed. As it is found from

the figure, for q ≤ 2, as the fading severity decreases, i.e. q increases, higher order of diversity

is achieved. However, for q > 2, a fixed diversity order, nearly 4, is observed. This is due to the

fact that the diversity order, from (63), is equal to min
(
Mq, MN

2

)
. Hence, for this figure, the

diversity order is also limited by MN
2

= 4.

In Fig. 9, the effect of using D-R feedback on the outage probability of the successive

CMF method is shown for the case of non-ideal R-D channels. Ideal and Nakagami(q) R-D
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Fig. 5: Average sum rates of the original, extended, and successive CMF methods versus the number of relays, at

average SNR P = 10 dB, (ideal R-D channels, L = 4).

channels with q = 1, 3, are considered. Parameters Rt = 2, L = 4, M = 2, N = 4 are

selected. As it is observed, using D-R feedback for non-ideal R-D channels, improves the outage

performance considerably, since it provides diversity gains. For instance, using D-R feedback

for the Nakagami(q = 1) R-D channels, changes diversity order from 1 to about 2. This is in

harmony with our theoretical diversity analysis in (59) and (63), that state diversity orders as

min
(
q, MN

2

)
and min

(
Mq, MN

2

)
for the cases of no feedback and with feedback, respectively.

Fig. 10 shows the effect of CEE on the outage performance of the extended and successive

CMF methods. Parameters Rt = 1, L = 4, M = 1, N = 4 are selected. Ideal R-D channels are

considered. Due to the time varying nature of wireless fading channels and non-ideal channel

estimation methods, the CSI known at the relays, required for CMF methods, contains error. To
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Fig. 6: Outage probabilities of the extended and successive CMF methods, versus average SNR, for different

number of relays M and relay antennas N , (ideal R-D channels, Rt = 1, L = 4).

study the effect of CEE, we model the estimated channel gains hmln,∀m,n, l, as

ĥmln =
√

1− σ2
eh

m
ln + σeε

m
ln, (64)

where εmln is a real zero-mean Gaussian distribution with unit variance independent of true channel

gain hmln, and σ2
e denotes the CEE variance. As it is observed from Fig. 10, CEE deteriorates

the performance of the both methods. However, successive CMF method is considerably more

robust than the extended CMF method against the CEE.

To summarize, we have compared the discussed CMF methods in Table I.

VII. CONCLUSION

In this paper, we proposed two novel CMF methods, namely, extended CMF and successive

CMF methods, for multi-user multi-relay networks. Both methods exploit the new Sel-FW
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Fig. 7: Average sum rates of the Ext-CM and Suc-CM schemes versus the number of users, at average SNR

P = 10 dB (M = 1).

strategy that is applicable in the networks with limitations on signaling overheads and for

arbitrary number of users/relays. Moreover, the proposed CMF methods require only local CSI

at the relays. The extended CMF and successive CMF methods exploit the Ext-CM and Suc-CM,

respectively, as their computing scheme. We formulated the Suc-CM scheme in a concise form

and presented the explicit frameworks for selecting ECVs and decoding equations at relays.

Furthermore, we suggested an approach to simplify the Suc-CM optimization problem to the

regular form appeared in the original CMF method.

Both extended and successive CMF methods solve the rank failure problems and outperform

the original CMF method of [1] with a significant gap in outage probability. By theoretical

analysis and computer simulations, we showed that both methods can achieve full diversity of

the network, i.e. MN
2

, provided that the R-D channels are stronger than a certain threshold, i.e.

DRAFT January 8, 2016



35

0 3 6 9 12 15 18
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P (dB)

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

 

 

Ideal R−D

q=3

q=2

q=1.5

q=1 (Rayleigh)

Fig. 8: Outage probability of the successive CMF method with D-R feedback, versus average SNR, for Nakagami(q)

R-D channels, (Rt = 2, L = 4, M = 2, N = 4).

q ≥ MN
2

for the case of no D-R feedback and q ≥ N
2

for the case of using D-R feedback. Our

simulation results indicate that the successive CMF method provides SNR gains and considerable

robustness against CEE, compared to the extended CMF method.

APPENDIX A

PROOF OF THEOREM 1

The proof is based on the contradiction. The channel matrix G is given. Let the vectors in

A∗ = {a1, . . . , aL} be the ECVs selected in turn by the Ext-CM optimization in (16). From (13),

their corresponding computation rates are R(ak) , R(G, ak), k = 1, . . . , L. From (16), these

ECVs are linearly independent and we have R(a1) > . . . > R(aL). Hence, the sum rate of

Ext-CM scheme is R(Ext)
sum = L×R(aL).
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Fig. 9: Effect of using D-R feedback on outage probability of the successive CMF method, versus average SNR,

for Nakagami(q) R-D channels, (Rt = 2, L = 4, M = 2, N = 4).

Suppose that the set Ω∗ = {d1, . . . ,dL} is the optimum solution of the IFLR optimization

in (19). From (19), the L ECVs in Ω∗ are linearly independent and span of Ω∗ has the rank

of L, i.e. rank(Ω∗) = L. Without loss of generality, assume that the ECVs in Ω∗ are sorted in

descending order of their computation rates, i.e. we have R(d1) > . . . > R(dL). Thus, the sum

rate of IFLR scheme is R(IFLR)
sum = L×R(dL).

Now, assume that R(IFLR)
sum > R

(Ext)
sum . Hence, we can write

R(d1) > . . . > R(dL) > R(aL). (65)
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Fig. 10: Effect of channel estimation error on outage probability of the extended and successive CMF methods,

versus average SNR, (ideal R-D channels, Rt = 1, L = 4, M = 1, N = 4).

From (13) and (16), aL is given by

aL = arg max
a∈ZL,a6=0

a⊥⊥{a1,...,aL−1}

R(G, a)

= arg max
a∈ZL,a6=0

a/∈span({a1,...,aL−1})

R(G, a).
(66)

Note that aL is not necessarily the unique solution of (66), in the sense that there may be

other ECVs that have a computation rate equal to R(aL). However, from (66), for every ECV

b such that b /∈ span ({a1, . . . , aL−1}) we have R(b) ≤ R(aL). In other words, for every

ECV c with the computation rate R(c) > R(aL), we have c ∈ span ({a1, . . . , aL−1}). Thus,

from (65), it is found that dl ∈ span ({a1, . . . , aL−1}), for l = 1, . . . , L. Hence, we can write

Ω∗ ⊆ span ({a1, . . . , aL−1}). As a result, we have rank(Ω∗) 6 L − 1. This contradicts the

assumption of rank(Ω∗) = L. Therefore, we have R(IFLR)
sum = R

(Ext)
sum .
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APPENDIX B

PROOF OF THEOREM 2

Define the denominator of the computation rate in (25) as the function

f(bk,βββk) , ‖bk‖2 + ‖Gbk + Ak−1βββk − a‖2, (67)

which can be expressed as

f(τττ) = ‖ΣΣΣτττ‖2 + ‖ΓΓΓτττ − a‖2, (68)

where

τττ ,

bk

βββk


(N+k−1)×1

,

ΓΓΓ ,
[
G | Ak−1

]
L×(N+k−1)

,

ΣΣΣ ,

IN 0

0 0


(N+k−1)×(N+k−1)

.

(69)

Since f(τττ) can be rewritten as a quadratic function in τττ , we can find its minimum by setting

its first derivative to zero, i.e.

∂f

∂τττ
= 2ΣΣΣTΣΣΣτττ + 2ΓΓΓT (ΓΓΓτττ − a) = 0, (70)

that results in

τττ = (ΣΣΣ + ΓΓΓTΓΓΓ)−1ΓΓΓTa. (71)

Finally, using the block matrix inversion relation [39, Sec. 3.7], to find the inverse of the matrix

ΣΣΣ + ΓΓΓTΓΓΓ =

IN + GTG GTAk−1

AT
k−1G AT

k−1Ak−1

 , (72)

and some manipulations, we get the desired result of the theorem.
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APPENDIX C

LATTICE BASICS AND PRELIMINARY DEFINITIONS REQUIRED FOR SECTION IV-D

Definition 1: A lattice Λ is a subgroup of RL that for all vectors x,y ∈ Λ we have x± y ∈

Λ [43, Ch. 1]. If all lattice points can be expressed as integer linear combinations of a set of

vectors {x1, . . . ,xn} in RL, i.e.

Λ =

{
n∑
i=1

aixi |a1, . . . , an ∈ Z

}
, (73)

the matrix X = [x1, . . . ,xn] and K = rank(X) ≤ L are called generator matrix and the rank of

lattice Λ, respectively. If K = n, i.e. the columns of X are linearly independent, the matrix X

is called an standard generator matrix of lattice Λ; in this case every lattice point v ∈ Λ has a

unique representation as v = Xw,w ∈ ZK [40, Ch. 1].

Definition 2: A unimodular column operation on a matrix is one of the following elementary

column operations [40, Ch.1]: multiply any column by −1, interchange any two columns, and

add an integer multiple of a column to any other column.

The transformation matrix of a series of unimodular column operations on a matrix is given by

a unimodular matrix U. An n × n matrix with integer entries and determinant ±1 is called a

unimodular matrix.

Remark 6: The generator matrix and the standard generator matrix of a lattice are not unique.

Specifically, if X1 is a generator matrix for lattice Λ, then the matrix X2 = X1U is also a

generator matrix for Λ, where U is a unimodular matrix [40, Ch. 1]. Note that X2 can be

generated by applying unimodular column operations on matrix X1.

Definition 3: For a set of vectors {x1, . . . ,xn} in RL, V = span (x1, . . . ,xn) is the subspace

spanned by linear combinations of these vectors. The orthogonal complement V ⊥ , which is a

subspace of RL, is defined as the set of all vectors in RL that are orthogonal to every vector

in V [39, Ch. 5].

APPENDIX D

PROOF OF THEOREM 3

By replacing the search set of optimization in (39) with (46), we have

min
d=P̃k−1w,w∈ZL−k+1,

w 6=0

dTCkd. (74)
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Hence, the optimum solution of (74) is given by

wk = arg min
w∈ZL−k+1,

w 6=0

wT P̃T
k−1CkP̃k−1w,

= arg min
w∈ZL−k+1,

w 6=0

wT Q̃kw.
(75)

Since P̃k−1wk is a vector in the search set S, from (41), we have

P̃k−1wk = Fk−1ak, (76)

and from (44), we can write

Fk−1Uk−1wk = Fk−1ak. (77)

From Remark 2, (77) indicates that two vectors Uk−1wk and ak have the same projection onto

the orthogonal complement of span (a1, . . . , ak−1). Thus, we have ak = Uk−1wk + a0 where

a0 ∈ ZL can be any of the integer vectors in span (a1, . . . , ak−1). Note that from (30), it can be

shown that any choices of ak give the same rate. Hence, we set a0 = 0 to get the desired result.

Now we prove that Q̃k is a positive definite matrix. As stated above, the columns of P̃k−1

are linearly independent. Hence for any x 6= 0 in RL−k+1 we have y , P̃k−1x 6= 0. Therefore,

we can write

xT Q̃kx = xT P̃T
k−1CkP̃k−1x

= yTCky > 0,
(78)

where the last inequality follows from the fact that Ck =
(
IL + G̃kG̃

T
k

)−1

is a positive definite

matrix (Lemma 1).

APPENDIX E

PROOF OF THEOREM 4

The relays in network exploit the Ext-CM or Suc-CM scheme. Hence, from Lemma 4 and

definition of diversity order in (54), the outage probability of the relay m, 1 ≤ m ≤ M , for

γ →∞, can be written as

P out
relay,m

.
=
α′m

γ
N
2

m = 1, . . . ,M, (79)
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where γ is the average SNR, and α′m,m = 1, . . . ,M, are constants (independent of γ). Thus,

from (55), the outage probability of the system is given by

P out,M
sys,Ideal

.
=
∏M

m=1

α′m

γ
N
2

.
=

α0

γ
MN
2

, (80)

where α0 is a constant. From (80) and definition of diversity order, we get dsys,Ideal = MN
2

.

APPENDIX F

PROOF OF THEOREM 5

From (57), we have

lim
γ→∞

P out
R-D

γ
= lim

γ→∞

1

γ
Fχ2

(
2q,

2
2Rt
L − 1

γ

)
= q. (81)

Hence, from the definition of diversity, in (54), we can write

P out
R-D

.
=
α3

γq
, (82)

at high SNRs, where α3 is a constant (independent of SNR γ). Thus, from (58) and (80), the

system outage probability is given by

P out
sys,NF

.
=
α3

γq
+

(
1− α3

γq

)
α0

γ
MN
2

.
=

α4

γmin(q,MN
2 )

,
(83)

where α4 is a constant. From the definition of diversity order, this yields the desired result.

APPENDIX G

PROOF OF THEOREM 6

From definition of diversity order in (54) and by substituting (80) and (82) in (62), we have

P out
sys,WF

.
=

M∑
m=0

(
M

m

)(
1− α3

γq

)m(
α3

γq

)M−m
α′′m

γ
mN
2

.
=

M∑
m=0

α′′′m

γq(M−m)+mN
2

.
=

α5

γdsys,WF
,

(84)
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where α5, α′′m,m = 1, . . . ,M , and α′′′m,m = 1, . . . ,M , are some constants, and dsys,WF is the

diversity order. From (84), dsys,WF is calculated as

dsys,WF = min
06m6M

q (M −m) +
mN

2

= min
06m6M

2qM + (2q −N)m

2

= min

(
qM,

MN

2

)
= M ×min

(
q,
N

2

)
.

(85)
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