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Abstract

The Gillespie algorithm provides statistically exact methods to simulate stochastic dynamics

modelled as interacting sequences of discrete events including systems of biochemical reactions

or earthquakes, networks of queuing processes or spiking neurons, and epidemic and opinion

formation processes on social networks. Empirically, inter-event times of various human activ-

ities, in particular human communication, and some natural phenomena are often distributed

according to long-tailed distributions. The Gillespie algorithm and its extant variants either

assume the Poisson process, which produces exponentially distributed inter-event times, not

long-tailed distributions, assume particular functional forms for time courses of the event rate,

or works for non-Poissonian renewal processes including the case of long-tailed distributions

of inter-event times but at a high computational cost. In the present study, we propose an

innovative Gillespie algorithm for renewal processes on the basis of the Laplace transform. It
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uses the fact that a class of point processes is represented as a mixture of Poisson processes

with different event rates. The method allows renewal processes whose survival function of

inter-event times is completely monotone functions and works faster than a recently proposed

Gillespie algorithm for general renewal processes. We also propose a method to generate se-

quences of event times with a given distribution of inter-event times and a tunable amount of

positive correlation between inter-event times. We demonstrate our algorithm with exact simu-

lations of epidemic processes on networks. We find that positive correlation in inter-event times

modulates dynamics but in a quantitatively minor way with the amount of positive correlation

comparable with empirical data.

1 Introduction

Social, biological, chemical, neural, seismological, and financial dynamics, among others, are

often driven by time-stamped discrete events. For example, an individual human or animal

transmits an infectious disease to another only when a contact event between the two individuals

happens. The state transition in such a system, e.g., whether an individual is infected or not,

can be modelled as being event-driven. Another example is chemical substances in which a

chemical reaction event changes the number of reagents in a discrete manner in both time and

state. Stochastic point processes are central tools for emulating these phenomena [1–3] and

also find applications in operations research domains such as queuing systems and reliability

analysis [4]. The most central point process model is the Poisson process, which assumes that

events independently occur at a constant rate throughout time.

Consider an event-driven system in which events are generated by Poisson processes running

in parallel. In chemical reaction systems, each Poisson process possibly with a different rate

is attached to one reaction. In epidemic processes taking place on human or animal contact

networks, each Poisson process is assigned to an individual or a link, which potentially transmits
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the infection. The event rate of some of the Poisson processes may change upon the occurrence

of a reaction or infection in the entire system. The simplest simulation method is to discretize

time and judge whether an event occurs or not in each time window for individual processes.

This widely used method, called the rejection method, is sub-optimal because the size of the

time window must be sufficiently small for high accuracy, which is computationally costly [5].

The Gillespie algorithm is an efficient and statistically exact algorithm for such an interacting

population of Poisson processes [6–8]. The Gillespie algorithm, or particularly the direct method

of Gillespie [7,8], exploits the fact that superposition of independent Poisson processes is a single

Poisson process whose event rate is the summation of those of the constituent Poisson processes.

Using this mathematical property, only a single Poisson process needs to be emulated in the

Gillespie algorithm (section 2).

Empirical data obtained from various domains suggest that real-life event sequences are far

from those generated by the Poisson process. In particular, several empirical distributions of

inter-event times obey long-tailed distributions [9–13], whereas the Poisson process generates

the exponential distribution of inter-event times. This is a prominent example of non-Markovian

event sequences, that is, one needs the history of events to know the statistics of the time of

the next event. This is not the case for the Poisson process, which is memoryless. When inter-

event times are independently generated from a given distribution, the point process is called

the renewal process [14].

Efficient and accurate simulations of interacting renewal processes contribute to the under-

standing of effects of long-tailed behaviour of inter-event times on various dynamics in well-

mixed and networked populations [13]. One may draw the next event time for all processes from

the predetermined distributions, select the process that has generated the minimum waiting

time to the next event, execute the event, draw the next event times for the affected processes,

and repeat. This is so-called the Gillespie’s first reaction method [7], whose improved versions
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are the next reaction method [15] and the modified next reaction method [16]. In fact, for

non-Markovian renewal processes, it is generally difficult to numerically solve equations for

determining the next event time although these methods call for generation of fewer random

numbers than the Gillespie algorithm [5]. In the following, we restrict ourselves to the Gillespie

algorithm and its variants.

Motivated by situations of chemical reactions, many extensions of the Gillespie’s algorithm

to the case of non-Markovian processes assume that the dynamical change in the event rate

is exogenously driven in particular functional forms [17, 18]. They are not applicable to non-

Markovian renewal processes characterised by long-tailed distributions of inter-event times be-

cause such an exogeneous drive would be different across the renewal processes running in

parallel and would not have a desirable functional form. Boguñá and colleagues extended the

Gillespie algorithm to be applicable to general renewal processes [19] (section 3; also see [5] for

further developments). However, the algorithm has practical limitations. First, it is not accu-

rate when the number of ongoing renewal processes is small [19], thus affecting the beginning

or ending of the dynamics of epidemic and opinion formation models, in which only a small

number of processes is active even in large well-mixed or networked populations [5]. Second, it

is necessary to recalculate the instantaneous event rate of each process upon every event in the

entire population, a procedure that can be computationally costly.

In the present study, we propose an innovative Gillespie algorithm, the Laplace Gillespie

algorithm, applicable to general renewal processes. It exploits the mathematical properties of

the Laplace transform, is accurate for an arbitrary number of ongoing renewal processes, and

runs faster than the previous algorithm [19]. To demostrate the generalizability of the algorithm,

we introduce a method to generate event sequences with positive correlation in temporally close

inter-event times, as typically observed in human behaviour and natural phenomena [12], for a

given distribution of inter-event times. We also demostrate our methods by performing exact
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simulations of an epidemic process in which inter-event times follow a power-law distribution.

2 Gillespie algorithm

The original Gillespie algorithm [6–8] assumes N independent Poisson processes with rate λi

(1 ≤ i ≤ N) running in parallel. Because of the independence of different Poisson processes,

superposition of the N processes is also a Poisson process with rate N〈λ〉 ≡
∑N

i=1 λi. Therefore,

we first draw ∆t, an increment in time to the next event of the superposed Poisson process,

from the exponential distribution given by

φ(∆t) = N〈λ〉e−N〈λ〉∆t. (1)

Because the survival function (i.e., probability that a random variable is larger than a certain

value) of φ(∆t) is given by
∫∞

∆t
φ(t′)dt′ = e−N〈λ〉∆t, we obtain ∆t = − log u/N〈λ〉, where u

is a realisation of the random variable drawn from the uniform density on the interval [0, 1].

Second, we determine the process i that has produced the event with probability

Πi =
λi

N〈λ〉 . (2)

Third, we advance the time by ∆t and repeat this procedure. Upon an event, any λi is allowed

to change.

3 Non-Markovian Gillespie algorithm

Now consider N renewal processes running in parallel and denote by ψi(τ) the probability den-

sity function of inter-event time for the ith process (1 ≤ i ≤ N). If the process is Poisson, we

obtain ψi(τ) = λie
−λiτ . For such a population of general renewal processes, Boguñá and col-

leagues proposed an extension of the Gillespie algorithm, which they called the non-Markovian

Gillespie algorithm (nMPA) [19]. The nMGA works as follows.
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To determine the time of the next event, we track the time since the last event for each

process, denoted by ti. If the ith process were running in isolation, the waiting time τ until the

next event would be distributed according to

ψw
i (τ |ti) =

ψi(ti + τ)

Ψi(ti)
, (3)

where

Ψi(ti) =

∫ ∞

ti

ψi(τ
′)dτ ′ (4)

is the survival function, i.e., probability that the inter-event time is larger than ti.

The ith process coexists with the other N − 1 processes. We denote by φ(∆t, i|{tj}) the

probability density with which the ith process, but not the other N − 1 processes, generates

the next event in the set of N processes after time ∆t given the time since the last event for

each process, {tj}, i.e., t1, . . . , tN . We obtain

φ(∆t, i|{tj}) = ψw
i (∆t|ti)

N
∏

j=1;j 6=i

Ψj(∆t|tj), (5)

where

Ψj(∆t|tj) =
∫ ∞

∆t

ψw
j (τ

′|tj)dτ ′ =
Ψj(tj +∆t)

Ψj(tj)
(6)

is the probability that the time to the next event for the hypothetically isolated jth process is

larger than τ conditioned that the last event occurred at time tj before. Using Eqs. (3) and

(6), we rewrite Eq. (5) as

φ(∆t, i|{tj}) =
ψi(ti +∆t)

Ψi(ti +∆t)
Φ(∆t|{tj}), (7)

where

Φ(∆t|{tj}) =
N
∏

j=1

Ψj(tj +∆t)

Ψj(tj)
. (8)

Equation (8) represents the probability that no process generates an event for another time

∆t. By equating this quantity to u, a random variate on the unit interval, we can determine ∆t,
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i.e., the time to the next event in the entire population of the N renewal processes. Equation (7)

implies that, once ∆t is determined, λi(ti +∆t) ≡ ψi(ti +∆t)/Ψi(ti +∆t) is the instantaneous

rate of the ith process and proportional to the probability that the ith process generates this

event. Therefore, the exact Gillespie algorithm for general renewal processes is given as follows:

1. Initialise tj (1 ≤ j ≤ N) for all j (for example, tj = 0).

2. Draw the time to the next event, ∆t, by solving Φ(∆t|{tj}) = u, where u is a random

variate uniformly distributed on [0, 1].

3. Select the process i that has generated the event with probability

Πi ≡
λi(ti +∆t)

∑N
j=1 λj(tj +∆t)

. (9)

4. Update the time since the last event, tj , to tj +∆t (j 6= i) and ti = 0.

5. Repeat steps 2–4.

Although this algorithm is statistically exact, step 2 is time-consuming [5, 19]. To improve

performance, Boguñá and colleagues introduced the nMGA. The nMGA is an approximation

to the aforementioned algorithm and exact in the limit of N → ∞. When ∆t is small, which

would be the case when N is large, Eq. (8) is approximated as

Φ(∆t|{tj}) = exp

[

−
N
∑

j=1

ln
Ψj(tj)

Ψj(tj +∆t)

]

=exp

[

−
N
∑

j=1

ln
Ψj(tj)

Ψj(tj)− ψj(tj)∆t+O(∆t2)

]

≈ exp
[

−∆tNλ({tj})
]

, (10)

where

λ({tj}) =
∑N

j=1 λj(tj)

N
=

1

N

N
∑

j=1

ψj(tj)

Ψj(tj)
. (11)
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With this approximation, the time to the next event is determined from Φ(∆t|{tj}) ≈ exp
[

−∆tNλ({tj})
]

u, i.e., ∆t = − ln u/Nλ({tj}). The process that generates the event is determined by setting

∆t = 0 in Eq. (9). For the Poisson process, we set λi(ti) = λi to recover the original Gillespie

algorithm (Eqs. (1) and (2)).

4 Laplace Gillespie algorithm

4.1 Algorithm

In the nMGA, we update the instantaneous event rates for allthe processes and its summation

λ({tj}) in Eq. (11) upon the occurrence of each event. This is because tj (1 ≤ j ≤ N) is updated

upon an event. This procedure is time consuming when N is large; we have to update individual

instantaneous rates even if the probability density of the inter-event time for a process is not

perturbed by an event that has occurred elsewhere.

To construct an efficient Gillespie algorithm for non-Markovian point processes, we start by

considering the following renewal process, which we call the event-modulated Poisson process.

When an event occurs, we first draw the rate of the Poisson process, denoted by λ, according to

a fixed probability density function p(λ). Then, we draw the time of the next event according

to the Poisson process with rate λ. Upon the next event, we renew the rate λ by redrawing it

from p(λ). We repeat these procedures.

This model, the event-modulated Poisson process, is a mixture of Poisson processes with

different rates. It is a non-Poissonian renewal process in general. It is slightly different from

the mixed Poisson process, in which a single rate is drawn from a random ensemble in the

beginning and used throughout a realisation [20,21]. It is also different from doubly stochastic

Poisson process (also called Cox process), in which the rate of the Poisson process is a stochastic

process [20–22], or its subclass called the Markov-modulated Poisson process, in which the event
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rate switches in time according to a Markov process [23]. In these processes, the dynamics of

the event rate are independent of the occurrence of events. In contrast, the event rate changes

upon the occurrence of events in the event-modulated Poisson process.

The event-modulated Poisson process is a Poisson process when conditioned on the cur-

rent value of λ. Therefore, when we simulate N event-modulated Poisson processes, they are

independent of each other and of the past event sequences if we are given the instantaneous

rate of the ith process, denoted by λi, for all i (1 ≤ i ≤ N). This property enables us to con-

struct a Gillespie algorithm, similar to the original one. By engineering p(λ), we can emulate a

range of renewal processes with different distributions of inter-event times. The new Gillespie

algorithm, which we term the Laplace Gillespie algorithm (the reason for Laplace will be clear

in section 4.2; it has a theoretical basis in the Laplace transform), is defined as the Gillespie

algorithm for event-modulated Poisson processes. We denote the density of the event rate for

the ith process by pi(λi). The Laplace Gillespie algorithm proceeds as follows:

1. Initialise each of the N processes by drawing the rate λi (1 ≤ i ≤ N) according to the

respective density function pi(λi).

2. Draw the time to the next event ∆t = − ln u/
∑N

j=1 λj , where u is the random variate

uniformly distributed on [0, 1].

3. Select the process i that has generated the event with probability λi/
∑N

j=1 λj.

4. Draw a new rate λi according to pi(λi). If there are processes j (1 ≤ j ≤ N) for which the

statistics of inter-event times have changed upon the event generated in steps 2 and 3 (e.g.,

a decrease in the rate of being infected owing to the recovery of an infected neighbour),

modify pj(λj) accordingly and draw a new rate λj from the modified pj(λj). The rate of

the remaining processes is unchanged.
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5. Repeat steps 2–4.

4.2 Theory

The event-modulated Poisson process is a renewal process. The renewal process is fully charac-

terised by the probability density of inter-event times, ψ(τ). For the event-modulated Poisson

process with the probability density of the event rate p(λ), we obtain

ψ(τ) =

∫ ∞

0

p(λ)λe−λτdλ. (12)

Integration of both sides of Eq. (12) gives the survival function of the inter-event time as follows:

Ψ(τ) =

∫ ∞

τ

ψ(τ ′)dτ ′ =

∫ ∞

0

p(λ)e−λτdλ. (13)

Equation (13) indicates that Ψ(τ) is the Laplace transform of p(λ). Therefore, the necessary

and sufficient condition for a renewal process to be simulated by the Laplace Gillespie algorithm

is that Ψ(τ) is the Laplace transform of a probability density function of a random variable

taking non-negative values. Although this statement can be made more rigorous if we replace

p(λ)dλ by the probability distribution function, we use the probability density representation

for simplicity.

A necessary and sufficient condition for the existence of p(λ) is that Ψ(τ) is a completely

monotone and Ψ(0) = 1 [24]. The complete monotonicity is defined by

(−1)n
dΨ(τ)

dτ
≥ 0 (λ ≥ 0, n = 0, 1, . . .). (14)

Condition Ψ(0) = 1 is satisfied by any survival function. With n = 0, Eq. (14) reads Ψ(τ) ≥ 0,

which all survival functions satisfy. With n = 1, Eq. (14) reads ψ(τ) ≥ 0, which is also always

satisfied. Equation (14) with n ≥ 2 imposes nontrivial conditions.
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4.3 Examples

In this section we show examples of distribution of inter-event times ψ(τ) for which the Laplace

Gillespie algorithm can be used. These examples are summarised in Table 1.

• Exponential distribution

The Poisson process with rate λ0, i.e., ψ(τ) = λ0e
−λ0τ , is trivially produced by p(λ) =

δ(λ− λ0), where δ is the delta function.

• Power-law distribution

Consider the case in which p(λ) is the gamma distribution given by

p(λ) =
λα−1e−λ/κ

Γ(α)κα
, (15)

where Γ(α) is the gamma function, α is the shape parameter of the gamma distribution,

and κ is the scale parameter of the gamma distribution. With α = 1, p(λ) is reduced to

the exponential distribution. By combining Eqs. (13) and (15), we obtain

Ψ(τ) =
1

(1 + κτ)α
. (16)

The probability density of inter-event time is given by the following power-law distribu-

tion:

ψ(τ) =
κ

(1 + κτ)α+1
. (17)

The same mathematical procedure has been used in a reinforcement learning model for

generating discount rates that decay as a power law in time [25].

• Power-law distribution with an exponential tail

Consider a shifted gamma distribution [21] given by

p(λ) =

{

(λ−λ0)α−1e−(λ−λ0)/κ

Γ(α)
(λ ≥ λ0),

0 (0 < λ < λ0),
(18)
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where λ0 is a constant. By combining Eqs. (13) and (18), we obtain

Ψ(τ) =
e−λ0τ

(1 + κτ)α
. (19)

By differentiating Eq. (19), we obtain a power-law distribution with an exponential tail

given by

ψ(τ) =
e−λ0τ

(1 + κτ)α

(

λ0 +
κα

1 + κτ

)

. (20)

• Weibull distribution

The Weibull distribution is defined by

Ψ(τ) = e−(µτ)α , (21)

which yields

ψ(τ) = αµατα−1e−(µτ)α . (22)

The Weibull distribution with α = 1 is the exponential distribution. The Weibull distri-

bution has a longer and shorter tail than the exponential distribution when α < 1 and

α > 1, respectively. The Weibull distribution is expressed as the Laplace transform of a

p(λ) if and only if 0 < α ≤ 1 [26, 27]. The distribution when α = 1/2 is the so-called

stable distribution of order 1/2, for which we obtain [21, 24, 26]

p(λ) =
m

1
2 e−

m
4λ

2
√
πλ

3
2

. (23)

For other values of α (0 < α < 1/2, 1/2 < α < 1), the explicit form of p(λ) is compli-

cated [26] such that it is impractical to use the Laplace Gillespie algorithm. For these α

values, a mixture of a small number of exponential distributions may resemble the Weibull

distribution [28] such that we may be able to use p(λ) with point masses at some discrete

values of λ to approximate the Weibull distribution of inter-event times.
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• Gamma distribution

When the inter-event time obeys the gamma distribution, i.e.,

ψ(τ) =
τα−1e−τ/κ

Γ(α)κα
, (24)

Ψ(τ) is expressed as the Laplace transform of a probability density function p(λ) if and

only if 0 < α ≤ 1 [29, 30]. We obtain [30]

p(λ) =

{

0 (0 < λ < κ−1),
1

Γ(α)Γ(1−α)λ(κλ−1)α
(λ ≥ κ−1).

(25)

• Mittag-Leffler distribution

Consider the distribution of inter-event times defined in terms of the survival function

given by

Ψ(τ) = Eβ(−τβ), (26)

where

Eβ(z) =

∞
∑

n=0

zn

Γ(1 + βn)
(27)

is the so-called Mittag-Leffler function. When 0 < β < 1, Ψ(τ) is completely monotone,

and we obtain [31]

p(λ) =
1

π

λβ−1 sin(βπ)

λ2β + 2λβ cos(βπ) + 1
. (28)

When β = 1, Eqs. (26) and (27) imply Ψ(τ) = e−λτ , yielding the Poisson process. When

0 < β < 1, Ψ(τ) is long-tailed with the following asymptotics [31, 32]:

Ψ(τ) ≈ sin(βπ)Γ(β)

πτβ
, (29)

or equivalently,

ψ(τ) ≈ β sin(βπ)Γ(β)

πτβ+1
. (30)
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Therefore, this class of ψ(τ) produces long-tailed distributions of inter-event times with a

power-law exponent between one and two. A special case is given with β = 1/2, in which

case Ψ(τ) = e−τ
2β [

1− erf(τβ)
]

, where erf(z) ≡ (2/
√
π)

∫ z

0
e−z

′2
dz′ is the error function.

• Integral of a valid survival function

For a survival function Ψ(τ) corresponding to the probability density of inter-event times

ψ(τ), consider

Ψw(τ) ≡
∫∞

τ
Ψ(τ ′)dτ ′

∫∞

0
Ψ(τ ′)dτ ′

=

∫∞

τ
Ψ(τ ′)dτ ′

〈τ〉ψ
. (31)

Function Ψw(τ) is well-defined if and only if 〈τ〉ψ, i.e., the mean inter-event time with

respect to density ψ(τ), is finite. Assume that the renewal process generated by ψ(τ)

permits the use of the Laplace Gillespie algorithm. Because Ψw(τ) ≥ 0 (τ ≥ 0),

dnΨw(τ)/dτn = − [dn−1Ψ(τ)/dτn−1] /
∫∞

0
Ψ(τ ′)dτ ′ (n = 1, 2, . . .), and Ψ(τ) is completely

monotone, Ψw(τ) is completely monotone. In addition, Eq. (31) implies Ψw(0) = 1.

Therefore, the renewal process with survival function Ψw(τ) can be also simulated by the

Laplace Gillespie algorithm.

The corresponding probability density of the inter-event time is given by

ψw(τ) = −dΨw(τ)

dτ
=

Ψ(τ)

〈τ〉ψ
, (32)

In terms of p(λ), we obtain

ψw(τ) =

∫∞

0
p(λ)e−λτdλ

∫∞

0
p(λ′)
λ′

dλ′
(33)

and

Ψw(τ) =

∫∞

0
p(λ)
λ
e−λτdλ

∫∞

0
p(λ′)
λ′

dλ′
. (34)

Therefore, in each update in the Laplace Gillespie algorithm with the density of inter-

event times ψw(τ), the rate of the Poisson process λ should be sampled according to
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density pw(λ), where

pw(λ) =
p(λ)
λ

∫∞

0
p(λ′)
λ′

dλ′
. (35)

For example, if ψ(τ) is the exponential distribution, ψw(τ) is the exponential distribution

with the same rate. If ψ(τ) is the power-law distribution given by Eq. (17), ψw(τ) is the

same form of the power-law distribution with α replaced by α− 1.

• Product of valid survival functions

The product of two completely monotone functions Ψ1(τ) and Ψ2(τ) are completely mono-

tone [24]. In addition, Ψ1(0)Ψ2(0) = 1 if Ψ1(0) = Ψ2(0) = 1. Therefore, survival func-

tion Ψ(τ) ≡ Ψ1(τ)Ψ2(τ) admits the Laplace Gillespie algorithm if Ψ1(τ) and Ψ2(τ) do.

The probability density of the rate will be the convolution of p1(λ) and p2(λ), where

Ψi(τ) =
∫∞

0
pi(λ)e

−λτdλ (i = 1, 2).

4.4 Limitations

The Laplace Gillespie algorithm cannot be used if and only if the survival function of the inter-

event time is not completely monotone. In this section, we present some convenient conditions

and examples that fit in this class of survival functions.

• Non-monotone

By setting n = 2 in Eq. (14), we obtain dψ(τ)/dτ ≤ 0. Therefore, ψ(τ) must monotoni-

cally decrease with τ for the Laplace Gillespie algorithm to be applicable. This condition

excludes the gamma and Weibull distributions with shape parameter α > 1, any log-

normal distribution, and any Pareto distribution, i.e.,

ψ(τ) =

{

α
τ0

(

τ0
τ

)α+1
(τ ≥ τ0),

0 (τ < τ0),
(36)

where α > 0 and τ0 > 0.
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• Coefficient of variation smaller than unity

The complete monotonicity implies that the coefficient of variation (CV), i.e., standard

deviation divided by the mean, of τ is larger than or equal to unity [27]. This condition

excludes the gamma and Weibull distributions with α > 1. In practice, a CV value

smaller than unity indicates that events occur more regularly than in the case of the

Poisson process, which yields CV = 1. Therefore, renewal processes producing relatively

periodic event sequences are also excluded.

• Higher-order conditions

Even if dψ(τ)/dτ ≤ 0 and the CV is large, the survival function of a common distribution

may not be completely monotone. For example, the one-sided Cauchy distribution defined

by ψ(τ) = 1/ [π(τ 2 + 1)2] yields d2ψ(τ)/dτ 2 = 4(3τ 2 − 1)/(τ 2 + 1)3, whose sign depends

on the value of τ .

Empirical evidence of online correspondences of humans suggests bimodal ψ(τ) in the

sense that, excluding very small τ , it obeys a power-law distribution for small τ and an

exponential distribution for large τ [33]. Such a ψ(τ) monotonically decreases with τ ,

verifying dψ(τ)/dτ ≤ 0. However, the sign of d2ψ(τ)/dτ 2 depends on the τ value such

that the corresponding survival function is not completely monotone.

4.5 Empirical distributions of inter-event times

We are often interested in informing population dynamics described as interacting stochastic

point processes, such as epidemic processes, by empirical data of event sequences. The standard

numerical method emulates the dynamics on top of empirical event sequences, i.e., using a given

list of events with the event type and time stamp [13, 34, 35]. Another approach would be to

estimate ψ(τ) from empirical data and use a variant of the Gillespie algorithm to simulate
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stochastic processes.

The nMGA [19] and the modified next reaction method [16] allow arbitrary ψ(τ) including

the empirical distribution. In contrast, the Laplace Gillespie algorithm requires the survival

function, Ψ(τ), to be completely monotone. Under this condition, we may be able to compute

the inverse Laplace transform to obtain p(λ) at a reasonable cost [36,37]. Because an empirical

distribution is likely not completely monotone, we propose two alternative methods for empirical

data. The first method is to fit a completely monotone survival function of inter-event times,

such as Eq. (16), to given data. The second method is to estimate a mixture of exponential

distributions with different rates to approximate the empirical ψ(τ) or Ψ(τ). Likelihood or other

cost-function methods are available for the estimation [26,28,38–40]. The approximation error

is guaranteed to decay inversely proportionally to the number of constituent distributions [41].

4.6 Initial conditions

When we start running N processes in parallel, we may initially draw the inter-event time for

each process from ψ(τ). This initial condition defines the so-called ordinary renewal process [14].

An alternative model, called the equilibrium renewal process, assumes that the process has

started at time t = −∞ such that the first inter-event time for each process, drawn at t = 0,

uses the distribution of waiting times to the next event in the equilibrium, not ψ(τ) (i.e.,

distribution of inter-event times) [14]. The probability density of the waiting time to the next

event is given by Eq. (32). To simulate the equilibrium renewal process, we start by drawing

the rate of the Poisson process according to pw(λ) given by Eq. (35). Afterwards, we draw the

rate according to p(λ).
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5 Numerical performance

In this section, we compare the performance of the nMGA [19] and the Laplace Gillespie

algorithm. We use the power-law distribution of inter-event times given by Eq. (17). Because

κ only controls the scale of the inter-event time, we set κ = 1 without loss of generality. To

generate gamma-distributed random variates, we use a popular algorithm based on the rejection

method [42]. In fact, we adapt an open source code [43] to our purposes. We generate N/3

processes by Eq. (17) with α = 1, another N/3 processes with α = 1.5, and the remaining

processes with α = 2. We continue the simulation until any of the N processes generates 106

inter-event times for the first time. We assume the ordinary renewal process such that the

initial inter-event time for each process is drawn from ψ(τ).

The survival function for one process with α = 1, one with α = 1.5, and another with α = 2

is shown by the solid curves for the nMGA and the Laplace Gillespie algorithm in Figs. 1(a)

and 1(b), respectively, with N = 10. The theoretical survival function, Eq. (16), is plotted by

the dashed curves. The results obtained from the Laplace Gillespie algorithm (Fig. 1(b)) are

more accurate than those obtained from the nMGA. This is because the nMGA is exact in the

limit of N → ∞, whereas the Laplace Gillespie algorithm is exact for any N . When N = 103,

the nMGA is sufficiently accurate (Fig. 1(c)), as is the Laplace Gillespie algorithm (Fig. 1(d)).

The results shown in Figs. 1(a) and 1(c) are consistent with the numerical results obtained in

Ref. [19].

The nMGA may require a lot of time in calculating the instantaneous event rate (λj(0) in

Eq. (11)) for all processes every time an event occurs in one of the N processes. The Laplace

Gillespie algorithm avoid the rate recalculation whereas it may be costly to calculate the gamma

variate each time an event occurs. We numerically compare the computation time for the two

algorithms by varying N . The other parameters are the same as those used in Fig. 1. We do
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not optimise the method to select the i value with probability Πi at the occurrence of each

event; we use the simple linear search for both the nMGA and Laplace Gillespie algorithm. In

the Laplace Gillespie algorithm, we use a binary tree data structure to store and update λi

(1 ≤ i ≤ N) to accelerate the algorithm. This structure is useful when only a small number

of λi is changed upon each event. This is not the case for the nMGA. We use codes written

in C++, compiled with a standard g++ compiler without an optimisation option on a Mac

Book Air with 1.7 GHz Intel Core i7 and 8Gz 1600 MHz DDR3. The computation time in secs

plotted against N in Fig. 1(e) indicates that the Laplace Gillespie algorithm is substantially

faster than the nMGA as N increases.

The Laplace Gillespie algorithm outperforms the nMGA in that the Laplace Gillespie algo-

rithm is exact for any N and generally runs faster than the nMGA. The price paid is that the

form of ψ(τ) is limited, whereas the nMGA allows any ψ(τ).

6 Applications

6.1 Positively correlated sequences of inter-event times

We have considered the renewal processes, i.e., stationary point processes without correlation

between different inter-event times. However, inter-event times are positively correlated, albeit

weakly, in a majority of data recorded from human activity [12, 44]. This and other types

of correlation in sequences of event times is known to affect upshots of epidemic processes

[34, 45–47].

The Laplace Gillespie algorithm provides a succinct method for generating point processes

with positive correlation without changing ψ(τ). To generate such event sequences, we redraw

a new event rate for the Poisson process, λi, with probability 1 − q (0 ≤ q < 1), when the

ith process has generated an event. With probability q, we continue to use the same value of
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λi until the ith process generates the next event. The standard Laplace Gillespie algorithm

is recovered with q = 0. The correlation between inter-event times is expected to grow as q

increases. Although the same λi value may be used for generating consecutive inter-event times,

the corresponding inter-event times are different because they are generated from the Poisson

process. The computation time decreases as q increases because the number of times one has

to redraw λi is proportional to 1− q.

In the continuous-time Markov process with a state-dependent hopping rate, the inter-

event time defined as the time between two consecutive hops regardless of the state is generally

correlated across inter-event times [48]. The present algorithm can be interpreted as a special

case of this general framework such that the state is continuous, the process hops to the current

state with probability 1 − q, and it hops to any other state with the probability proportional

to q × p(λ). The correlated Laplace Gillespie algorithm can be alternatively built on top of

a finite-state [48] or infinite-state [39] Markov process with a general transition probability

between states. This variant of the model will be similar to a two-state cascading Poisson

process that assumes transitions between a normal and excited states, with the excited state

having a higher event rate than the normal state [49].

Two remarks are in order. First, ψ(τ) is independent of the p value. This is because

the stationary density of the corresponding continuous-time Markov process in the λ-space is

equal to p(λ) irrespectively of the q value. Second, this algorithm cannot be used to generate

correlated event sequences when ψ(τ) is the exponential distribution. In this case, the event

rate λ must be kept constant throughout the time and therefore cannot be modulated in a

temporally correlated manner.

We measure the so-called memory coefficient [12] to quantify the amount of correlation in

a sequence of inter-event times. The memory coefficient for a sequence of inter-event times,
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{τ1, τ2, . . . , τn}, where n is the number of inter-event times, is defined by

M =

∑n−1
i=1 (τi −m1)(τi+1 −m2)

√

∑n−1
i=1 (τi −m1)2

∑n
i=2(τi+1 −m2)2

, (37)

where m1 =
∑n−1

i=1 τi/(n− 1) and m2 =
∑n

i=2 τi/(n− 1).

For the power-law distribution of inter-event times given by Eq. (17) with κ = 1, we generate

a sequence of n = 105 inter-event times and calculate M . The mean and standard deviation

of M calculated on the basis of 103 sequences are plotted for α = 1 and α = 2 in Figs. 2(a)

and 2(b), respectively. For both α values, M monotonically increases with p, and a range of

M between 0 and ≈ 0.4 is produced. In empirical data, M is between 0 and 0.1 for human

activities and 0.1 and 0.25 for natural phenomena [12]. These ranges of M are produced with

approximately 0 ≤ q ≤ 0.2 and 0.2 ≤ q ≤ 0.5, respectively.

6.2 Epidemic processes

Previous numerical efforts suggested that dynamics of epidemic processes in well-mixed popu-

lations or networks were altered if contact events were generated by renewal processes different

from the Poisson process [50–53]. The nMGA and Laplace Gillespie algorithm can be used

for efficiently implementing such models of epidemic processes. To demonstrate the use of

the Laplace Gillespie algorithm, we model node-centric susceptible-infected-recovered (SIR)

epidemic spreading, which is similar to previous models [47, 50, 54].

Consider a population of N nodes. At any point of time, each node assumes one of the three

states, susceptible, infected, or recovered. An infected node is assumed to infect a susceptible

node upon a contact. An infected node transits to the recovered state according to the Poisson

process with rate µ. A recovered node neither infects nor is infected by other nodes. Regarding

infection events, each node i (1 ≤ i ≤ N) is driven by an independent and identical point

process whose probability density of inter-event times is given by ψ(τ). It should be noted that
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a similar approach could be link-centric, that is, the activation of each link follws independent

and idential point processes. When an event occurs, node i is instantaneously activated and

contacts a randomly selected node j. In the case of a well-mixed population, each j is selected

with probability 1/(N−1). In the case of a network, which is fixed over time, j is selected from

the neighbours of node i with the equal probability. If either i or j is infected and the other is

susceptible, the infection is transmitted such that the susceptible node becomes infected. Then,

node i waits for another time τ drawn from ψ(τ) before the next activation.

The mean time to the node activation, which enables infection, is given by 〈τ〉 =
∫∞

0
τψ(τ)dτ .

The mean time for an infected node to recover is equal to 1/µ. We define the effective infection

rate by λeff = (1/µ)/〈τ〉 [19]. We control λeff by changing µ for a given ψ(τ). This definition

is justified because multiplying 〈τ〉 and 1/µ by the same factor only changes the time scale of

the dynamics.

We assume the equilibrium point process, i.e., start the simulation from the equilibrium

state. This is equivalent to drawing the first event time for each node from the waiting-time

distribution, ψw(τ), not from ψ(τ), and subsequent event times from ψ(τ). The population

structure is assumed to be either well-mixed or the regular random graph in which all nodes

have degree five and all links are randomly formed. In both cases, we set N = 104. Each

simulation starts from the same initial condition in which a particular node, which is the same

in all simulations, is infected and all the other N − 1 nodes are susceptible. We measure the

number of recovered nodes at the end of the simulation, called the final size, normalised by

N and averaged over 104 simulations. We consider four point processes for node activation,

i.e., the exponential distribution, corresponding to the Poisson process, and three power-law

distributions given by Eq. (17) with α = 1.5, κ = 1, and q = 0, 0.2, and 0.9.

The final size for the well-mixed population and the regular random graph is shown in

Figs. 3(a) and 3(b), respectively. For both population structures and across the entire range of
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the effective infection rate, λeff , the final size is larger when ψ(τ) is the power-law than when

ψ(τ) is the exponential distribution. Consistent with this result, the epidemic threshold, i.e.,

the value of λeff at which the final size becomes positive, is smaller for the power-law ψ(τ) than

the exponential ψ(τ).

The final size is larger with positive correlation of inter-event times (q = 0.9) than with no

correlation (q = 0). The results for q = 0.2 are almost the same as those for q = 0. Because

realistic values of the memory coefficient, M , are produced by 0 ≤ q ≤ 0.2 (section 6.1), we

conclude that a realistic amount of positive correlation in inter-event times does not affect the

final size.

7 Discussion

We provided a generalisation of the Gillespie algorithm for non-Poissonian renewal processes,

called the Laplacian Gillespie algorithm. Our algorithm is exact for any number of processes

running in parallel and faster than the nMGA [19]. Although it is only applicable to the renewal

processes whose survival function is completely monotone, it covers several renewal processes of

interest. We also proposed a method to simulate non-renewal point processes with an arbitrary

distribution of inter-event times and positive correlation between inter-event times on the same

event sequence.

We applied the Laplace Gillespie algorithm to an epidemic model in well-mixed and net-

worked populations. The applicability of the Laplace Gillespie algorithm, as well as that of the

modified next reaction method [16] and the nMGA, is much wider. These algorithms can simu-

late systems of spiking neurons, earthquakes, financial time series, and so on. Inter-event times

of these systems are often distributed according to distributions whose CV (i.e., coefficient of

variation, i.e., standard deviation divided by the mean) is larger than unity [13], therefore not

excluding the use of the Laplace Gillespie algorithm. It is also straightforward to allow births
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and deaths of nodes [50,55] and links [56] of contact networks, or rewiring of links [57,58], if the

occurrence of these events obeys renewal processes or our non-renewal processes with positive

correlation. In more realistic scenarios, the recovery events do not have to obey the Poisson

process, as assumed in our numerical simulations. The Laplace Gillespie algorithm has some

limitations. Evidence suggests that empirical recovery times are less dispersed than the expo-

nential distribution, implying the CV value less than unity. Therefore, the gamma distribution

with scale parameter α > 1 or even the delta distribution are often employed in numerical and

theoretical analysis [59–61]. In contrast, the Laplace Gillespie algorithm is only applicable to

distributions of inter-event times whose CV is larger than unity.

Previous studies aimed at Poissonian explanation of long-tailed distributions of inter-event

times. Examples include a non-homogeneous Poisson process with switching between two event

rates plus an additional periodic modulation of the rate [49] and the self-exciting Hawkes

process with an exponential memory kernel [44]. We showed that the power-law distribution

of inter-event times, Eq. (17), was produced when the rate of the Poisson process is drawn

from the gamma distribution. This observation provides a theoretical underpinning of the fact

that modulated Poisson processes [44,49] may generate power-law distributed inter-event times.

Although we theoretically need an infinite number of Poisson processes to fully produce a power-

law distribution, a mixture of a small number of Poisson processes may be practically sufficient.

In fact, a mixture of a small number of exponential distributions is sometimes employed to fit

empirical distributions of inter-event times [26, 28, 38, 40].
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Figure 1: Comparison between the nMGA and the Laplace Gillespie algorithm. The distribu-
tion of inter-event times is power law (Eq. (17)) with κ = 1. Among the N processes, N/3
processes age simulated with α = 1, another N/3 processes with α = 1.5, and the other N/3
processes with α = 2. (a)–(d) Survival function of inter-event times for one process with α = 1,
another with α = 1.5, and another with α = 2, from the top to the bottom. (a) nMGA
with N = 10. (b) Laplace Gillespie algorithm with N = 10. (c) nMGA with N = 103. (d)
Laplace Gillespie algorithm with N = 103. (e) Computation time as a function of the number
of processes, N .
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Figure 2: Memory coefficient, M , as a function of q, for the Laplace Gillespie algorithm. We
used the power-law distribution of inter-event times given by Eq. (17) with κ = 1. (a) α = 1.
(b) α = 2. The error bar represents the mean ± standard deviation. (c) Survival function of a
single event sequence (i.e., N = 1) with 106 events with α = 1 and q = 0.1, 0.5, and 0.9. (d)
Same for α = 2.
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Figure 3: Final outbreak size for the SIR epidemic model. (a) Well-mixed population. (b)
Regular random graph with degree of each node equal to five. We set N = 104 nodes. For the
power-law density of inter-event times, we use Eq. (17) with κ = 1 and α = 1.5.
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Table 1: Distributions of Inter-event times, ψ(τ), for which the Laplace Gillespie algorithm can
be used. H is the Heaviside function defined by H(x) = 1 (x ≥ 0) and H(x) = 0 (x < 0).

distribution ψ(τ) Ψ(τ) condition p(λ)

exponential λ0e
−λ0τ e−λ0τ δ(λ− λ0)

power-law λα−1e−λ/κ

Γ(α)κα
κ

(1+κτ)α+1
1

(1+κτ)α

power-law with e−λ0τ

(1+κτ)α

(

λ0 +
κα

1+κτ

)

e−λ0τ

(1+κτ)α
(λ−λ0)α−1e−(λ−λ0)/κH(λ−λ0)

Γ(α)exponential tail

Weibull αµατα−1e−(µτ)α e−(µτ)α 0 < α ≤ 1 complicated

Gamma τα−1e−τ/κ

Γ(α)κα
complicated 0 < α ≤ 1 H(λ−κ−1)

Γ(α)Γ(1−α)λ(κλ−1)α

Mittag-Leffler ≈ β sin(βπ)Γ(β)
πτβ+1 Eβ(−τβ) 0 < β < 1 1

π
λβ−1 sin(βπ)

λ2β+2λβ cos(βπ)+1
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