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Abstract

We study the (parameterized) complexity of SHIFT BRIBERY for multiwinner voting rules.
We focus on the SNTV, Bloc,k-Borda, and Chamberlin-Courant, as well as on approximate
variants of the Chamberlin-Courant rule, since the original rule is NP-hard to compute. We
show that SHIFT BRIBERY tends to be significantly harder in the multiwinner setting than
in the single-winner one by showing settings where SHIFT BRIBERY is easy in the single-
winner cases, but is hard (and hard to approximate) in the multiwinner ones. Moreover, we
show that the non-monotonicity of those rules which are based on approximation algorithms
for the Chamberlin-Courant rule sometimes affects the complexity of SHIFT BRIBERY.

1 Introduction

We study the complexity of campaign management—modeled as the SHIFT BRIBERY problem—
for the case of multiwinner elections. In the SHIFT BRIBERY problem we want to ensure that our
candidate is in a winning committee by convincing some of thevoters—at a given price—to rank
him or her more favorably. In particular, this models campaigns based on direct meetings with vot-
ers, in which the campaigner presents positive features of the candidate he or she works for. While
the complexity of campaign management is relatively well-studied for single-winner elections, it
has not been studied for the multiwinner setting yet (there are, however, studies of manipulation and
control for multiwinner elections [2, 29]).

Based on the preferences of the voters, the goal of a multiwinner election is to pick a committee
of k candidates. Thesek candidates might, for example, form the country’s next parliament, be a

∗An extended abstract of this paper appears in the Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI 16).

†Currently at Weizmann Institute of Science.
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group of people short-listed for a job opening, or be a set of items a company offers to its customers
(see the papers of Lu and Boutilier [25], Skowron et al. [34], and Elkind et al. [17] for a varied de-
scription of applications of multiwinner voting). Since the election results can affect the voters and
the candidates quite significantly, we expect that they willrun campaigns to achieve the most desir-
able results: a person running for parliament would want to promote her or his political platform; a
job candidate would want to convince the HR department of heror his qualities.

We study the standard, ordinal model of voting, where each voter ranks the candidates from the
one he or she likes best to the one he or she likes least. We focus on rules that are based either on the
Borda scores of the candidates or on theirt-Approval scores. Briefly put, if we havem candidates,
then a voter gives Borda scorem− 1 to his or her most preferred candidate, scorem− 2 to the next
one, and so on; a voter givest-Approval score1 to each of his or her top-t candidates and score0 to
the other ones.

The most basic multiwinner rules simply pickk candidates with the highest scores (for example,
SNTV uses1-Approval scores, Bloc usesk-Approval scores, andk-Borda uses Borda scores). While
such rules may be good for short-listing tasks, they do not seem to perform well for cases where
the committee needs to be varied (or represent the voters proportionally; see the work of Elkind
et al. [17]). In this case, we may prefer other rules, such as the Chamberlin-Courant family of
rules [11], which try to ensure that every voter is represented well bysome member of the committee
(see the Preliminaries section for an exact definition).

Unfortunately, while the winners of SNTV, Bloc, andk-Borda rules are polynomial-time com-
putable, this is not the case for the Chamberlin-Courant rules (Procaccia et al. [32] and Lu and
Boutilier [25] show NP-hardness). We deal with this problem in two ways. First, there are FPT
algorithms for computing Chamberlin-Courant winners (forexample, for the case of few voters).
Second, there are good approximation algorithms (due to Lu and Boutilier [25] and Skowron et
al. [35]). Following Caragiannis et al. [10] and Elkind et al. [17], we consider these approxima-
tion algorithms as voting rules in their own right (societies may use them in place of the original,
hard-to-compute ones).

The idea of the SHIFT BRIBERY problem is as follows. We are given an election and a preferred
candidatep, and we want to ensure thatp is a winner (in our case, is a member of a winning
committee) by shifting him or her forward in some of the votes, at an appropriate cost, without
exceeding a given budget. The costs of shiftingp correspond to investing resources into convincing
the voters that our candidate is of high quality. For example, if a company is choosing which of
its products to continue selling, the manager responsible for a given product may wish to prepare
a demonstration for the company’s higher management. Similarly, a person running for parliament
would invest money into meetings with the voters, appropriate leaflets, and so on. Thus, we view
SHIFT BRIBERY as a model of (a type of) campaign management.

SHIFT BRIBERY was introduced by Elkind et al. [15, 16], and since then a number of other
researchers studied both SHIFT BRIBERY (e.g. Schlotter et al. [33] and Bredereck et al. [7, 9]), and
related campaign management problems (e.g. Dorn and Schlotter [13], Baumeister et al. [3], and
Faliszewski et al. [20]). Naturally, the problem also resembles other bribery problems, such as the
original bribery problem of Faliszewski et al. [19] or those studied by Mattei et al. [28] and Mattei,
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Goldsmith, and Klapper [27]. We point the reader to the overview of Faliszewski and Rothe [18] for
more details and references.

For single-winner elections, SHIFT BRIBERY is a relatively easy problem. Specifically, it is
polynomial-time solvable for thet-Approval rules. For the Borda rule, for which it isNP-hard,
there are a good polynomial-time approximation algorithm [15] and exactFPT algorithms [7]. In
the multiwinner setting the situation is quite different. The main findings of our research are as
follows (see alsoTable 1in Section 3):

1. The computational complexity of SHIFT BRIBERY for multiwinner rules strongly depends on
the setting. In general, for the cases of few candidates we find FPT algorithms while for the
cases where the preferred candidate is shifted by few positions only we find hardness results
(even though these cases are often easy in the single-winnersetting).

2. The computational complexity for the case of few voters most strongly depends on the un-
derlying scoring rule. Generally, for the rules based ont-Approval scores the complexity of
SHIFT BRIBERY tends to be lower than for analogous rules based on Borda scores.

We did not study such multiwinner rules as the STV rule, the Monroe rule [30], or other Approval-
based rules (see, e.g., the works of Brams and Kilgour [5] and Aziz et al. [1, 2]), in order to compare
our results to those for the single-winner setting, while keeping the considered set of rules small.

2 Preliminaries

Elections and Voting Rules. For each integern, we set[n] := {1, . . . , n}. An electionE =
(C, V ) consists of a set of candidatesC = {c1, . . . , cm} and a collection of votersV = (v1, . . . , vn).
Each voterv is associated with a preference order, i.e., with a ranking of the candidates in decreasing
order of appreciation by the voter. For example, ifC = {c1, c2, c3}, then by writingv : c1 ≻ c2 ≻ c3
we mean thatv likes c1 best, thenc2, and thenc3. We writeposv(c) to denote the position of candi-
datec in voterv’s preference order (e.g., in the preceding example we wouldhaveposv(c1) = 1).
When we write a subsetA ⊆ C of candidates in a description of a preference order, we meanlisting
all members ofA in some fixed, easily computable order. If we put

←−
A in a preference order, then

we mean listing members ofA in the reverse of this fixed order.
LetE = (C, V ) be an election withm candidates andn voters. The Borda score of candidatec

in the vote ofv, v ∈ V , is βv(c) = m − posv(c). The Borda score ofc in the electionE is
βE(c) =

∑

v∈V βv(c). The single-winner Borda rule elects the candidate with thehighest Borda
score (if there are several such candidates, they tie as winners). For eacht ∈ [m], we define the
t-Approval score as follows: for a candidatec and voterv, αt

v(c) = 1 if v ranksc among the
top t positions and otherwise it is0; we setαt

E(c) =
∑

v∈V αt
v(c). We define the single-winner

t-Approval rule analogously to the Borda rule.
A multiwinner voting ruleR is a function that, given an electionE = (C, V ) and an integer

k ∈ [|C|], outputs a setR(E, k) of k-element subsets ofC. Each size-k subset ofC is called a
committeeand each member ofR(E, k) is called awinning committee.
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The most natural task that arises when considering (multiwinner) voting rules is the task of de-
ciding whether a given candidate is among the winners (resp.is part of some winning committee).
We will refer to this task as the WINNER DETERMINATION problem. Sometimes, winner determi-
nation procedures considered in the literature consider slightly different goals (e.g. computing the
score of a winning committee). However, all polynomial-time,FPT, andXP winner determination
procedures for the rules we study in this paper can be modifiedto solve WINNER DETERMINATION.

We consider the following rules (below,E = (C, V ) is an election andk is the committee size):
SNTV, Bloc, andk-Borda compute the score of each candidate and output the committeeof

k candidates with the highest scores (or all such committees,if there are several). SNTV and Bloc
use, respectively,1-Approval andk-Approval scores, whilek-Borda uses Borda scores. For these
rules winners can be computed in polynomial time.1

Under theChamberlin-Courant rules(the CC rules), for a committeeS, a candidatec ∈ S is a
representative of those voters that rankc highest among the members ofS. The score of a committee
is the sum of the scores that the voters give to their representatives (highest-scoring committees win);
Borda-CCuses Borda scores,t-Approval-CCusest-Approval scores. WINNER DETERMINATION

for CC rules isNP-hard [25, 32], but is inFPT when parameterized by the number of voters or
candidates [4].

Greedy-Borda-CCis a(1 − 1
e
)-approximation algorithm for the Borda-CC rule, due to Lu and

Boutilier [25]. (The approximation is in the sense that the score of the committee output by the
algorithm is at least a1 − 1

e
fraction of the score of the winning committee under Borda-CC.)

The algorithm starts with an empty setW and executesk iterations, in each one adding toW the
candidatec that maximizes the Borda-CC score of(W ∪{c}).2 For example, it always picks a Borda
winner in the first iteration. Greedy-Borda-CC always outputs a unique winning committee.

Greedy-Approval-CCworks in the same way, but usest-Approval scores instead of Borda
scores. It is a(1− 1

e
)-approximation algorithm fort-Approval-CC. We refer tot-Approval-Greedy-

CC for t = ⌈m·w(k)
k
⌉ (wherew is Lambert’s W function;w(k) is O(log k)) asPTAS-CC; it is the

main part of Skowron et al.’s [35] polynomial-time approximation scheme for Borda-CC.

Parameterized Complexity. In a parameterized problem, we declare some part of the inputas
the parameter(e.g., the number of voters). A parameterized problem is fixed-parameter tractable
(is in FPT) if there is an algorithm that solves it inf(ρ) · |I|O(1) time, where|I| is the size of a
given instance encoding,ρ is the value of the parameter, andf is some computable function. There
is a hierarchy of classes of hard parameterized problems,FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. It
is widely believed that if a problem is hard for one of theW[·] classes, then it is not inFPT. The
notions of hardness and completeness for parameterized classes are defined through parameterized
reductions. For this paper, it suffices to use standard polynomial-time many-one reductions that
guarantee that the value of the parameter in the problem we reduce to exclusively depends on the
value of the parameter of the problem we reduce from. The following problems will be used in our
reductions.

1There may be exponentially many winning committees, but it is easy to compute their score and to check for a subset
of candidates if it can be extended to a winning committee.

2If there is a tie between several candidates, then we assume that the algorithm breaks it according to a prespecified
order.
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Definition 1. An instance ofCLIQUE consists of a graphG = (V (G), E(G)) and an integerh. We
ask whether there is a set ofh vertices such that there is an edge between each two verticesfrom the
set.

Definition 2. An instance ofMULTICOLORED INDEPENDENT SET consists of a graphG =
(V (G), E(G)), where each vertex has one ofh colors. We ask whether there areh vertices of
pairwise-distinct colors such that no two of them are connected by an edge.

Definition 3. An instance ofSET COVER consists of a setU of elements, a familyS of subsets ofU ,
and and integerh. We ask whether there is a subset ofh sets fromS whose union isU .

CLIQUE and MULTICOLORED INDEPENDENTSET are bothW[1]-complete while SET COVER

isW[2]-complete (in all cases, the solutions sizeh is the parameter).
If a parameterized problem can be solved in polynomial time under the assumption that the

parameter is constant, then we say that it is inXP. Recall that membership inFPT additionally
requires that the degree of the polynomial is a constant independent from the parameter. If a problem
isNP-hard even for some constant value of the parameter, then we say that it is para-NP-hard.

For details on parameterized complexity, we point to the books of Cygan et al. [12], Downey
and Fellows [14], Flum and Grohe [21], and Niedermeier [31].

3 Shift Bribery

Let R be a multiwinner rule. In theR-SHIFT BRIBERY problem we are given an electionE =
(C, V ) with m candidates andn voters, a preferred candidatep, a committee sizek, voter price
functions (see below), and an integerB, the budget. The goal is to ensure thatp belongs to at
least one winning committee (according to the ruleR),3 and to achieve this goal we are allowed to
shift p forward in the preference orders of the voters. However, each voterv has a price function
πv : [m] → N, and if we shiftp by i positions forward in the vote ofv, then we have to payπv(i).
We assume that the price functions are nondecreasing (i.e.,it cannot cost less to shift our candidate
farther than to shift her or him nearer) and that the cost of not shifting p is zero (i.e.,πv(0) = 0
for eachv). Bredereck et al. [7] have considered several different families of price functions. In this
paper we focus on two of them: unit price functions, where foreach voterv it holds thatπv(i) = i,
and all-or-nothing price functions, where for each voterv it holds thatπv(i) = qv for eachi > 0
(whereqv is some voter-dependent value) andπv(0) = 0.

A shift action is a vector(s1, . . . , sn) of natural numbers, that for each voter specifies by how
many positions to shiftp. If ~s = (s1, . . . , sn) is a shift action, then we writeshift(E,~s) to denote
the election obtained fromE by shiftingp an appropriate number of positions forward in each vote.
If Π = (π1, . . . , πn) are the price functions of then voters, then we writeΠ(~s) =

∑n
i=1 πi(si) to

denote the total cost of applying~s. For a shift action~s, we define#~s =
∑n

i=1 si and we call it the
number of unit shifts in~s.

Formally, we defineR-SHIFT BRIBERY as follows.

3Our approach is a natural extension of the non-unique winnermodel from the world of single-winner rules. Naturally,
one might alternatively require thatp is a member of all winning committees or put an even more demanding goal that
would involve other candidates. We refer to a brief discussion in the Conclusion section.
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voting ruleR
R-WINNER R-SHIFT BRIBERY

DETERMINATION #candidates (m) #voters (n) #shifts (s)

si
ng

le
w

in
ne

r t-Approval
P⋆

P▽

Borda FPT♦ FPT(0/1-pr.),FPT-AS♦,
FPT♦

andW[1]-h (Thm.4)

m
ul

ti
w

in
ne

r

SNTV

P⋆

P (Thm.3)
Bloc

k-Borda

FPT (Thm.1)

FPT(0/1-pr.) (Prop.1), W[1]-h (Thm.5)

Borda-CC
NP-h♠, FPT-AS (Thm.2), and

Para-NP-h♠FPT(n)♥, and W[1]-h (Cor.1+Cor.2)
Approval-CC FPT(m)♥

FPT (Prop.2)Greedy-Approval-CC
P⋆ W[2]-h (Thm.7)PTAS-CC

Greedy-Borda-CC W[1]-h (Cor.2)

Table 1: Overview of our complexity results for the SHIFT BRIBERY problem (for reference, we
also mention the complexity of the WINNER DETERMINATION problem). The results in each cell
apply to all voting rules listed in the leftmost column whichspan the height of the cell. All results
are for the case of unit price functions, with the exceptionsof those marked asFPT(0/1-pr.), which
are for all-or-nothing price functions (many other resultsextend to other price functions, but we do
not list them here).FPT-AS stands forFPT approximation scheme (seeTheorem 2). Note that all
variants which areW[·]-hard are also inXP. Results marked by▽ follow from the work of Elkind et
al. [16], by♦ follow from the work of Bredereck et al. [7], by♠ follow from the works of Procaccia
et al. [32] and Lu and Boutilier [25], by♥ follow from the work of Betzler et al. [4], and by⋆ are
folk results.

Definition 4. LetR be a multiwinner voting rule. An instanceI of R-SHIFT BRIBERY consists
of an electionE = (C, V ), a preferred candidatep ∈ C, a committee sizek, a collectionΠ =
(π1, . . . , πn) of price functions for the voters, and an integerB, the budget. We ask whether there is
a shift action~s = (s1, . . . , sn) such that:

1. Π(~s) ≤ B, and

2. there is a committeeW ∈ R(shift(E,~s), k) such thatp ∈W .

We refer to such a shift action as asuccessful shift action; we writeOPT(I) to denote the cost of
the least expensive successful shift action.

Following Bredereck et al. [7], we consider the most natural parameterizations by the numbern
of voters, by the numberm of candidates, and by the minimum numbers of unit shifts in a successful
shift action.

Now, we formally defined all central concepts and problems studied in this work, using this,
Table 1summarizes our and some previous results. The reminder of this paper is structured as fol-
lows. InSection 4, we present findings applying to the multiwinner context as awhole. InSection 5,
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we present specific results for the voting rules SNTV, Bloc, and k-Borda. InSection 6, we present
our results for Chamberlin-Courant rules and their approximate variants. We conclude with a final
discussion and an outlook inSection 7.

4 General Results

We start our discussion by providing several results that either apply to whole classes of multiwinner
rules (including many of those that we focus on) or that are proven using general, easily adaptable
techniques. These results form a baseline for our research regarding specific rules.

First, we note that for each of the rules that we study, SHIFT BRIBERY with unit price func-
tions is inFPT when parameterized by the number of candidates. This resultfollows by applying
the standard technique of modeling the problem through an integer linear program and invoking
Lenstra’s theorem [24]. We believe that, using the MILP technique of Bredereck et al. [8], it is also
possible to generalize this result to all-or-nothing pricefunctions.

Note that the following theorem does not mention SNTV and Bloc since, as we will see in the
next section, for them the problem is even inP.

Theorem 1. Parameterized by the number of candidates,SHIFT BRIBERY with unit prices is in
FPT for k-Borda, Approval-CC, Borda-CC, Greedy-Approval-CC, PTAS-CC, and Greedy-Borda-
CC.

In order to proveTheorem 1, we introduce an algorithmic scheme similar to that of Dorn and
Schlotter [13] for single-winner SWAP BRIBERY. We will make use of the fact that integer linear
programs (ILPs) can be solved in FPT time with respect to the number of (integer) variables (fol-
lowing a famous result by Lenstra [24] which was later improved by Kannan [23] and by Fredman
and Tarjan [22]). We first introduce the algorithmic scheme and the basic ILP formulation. Then,
we show how to extend the ILP such that the algorithmic schemeworks fork-Borda (by proving
Lemma 1), for Approval-CC and Borda-CC (by provingLemma 2), and for Greedy-Approval-CC,
PTAS-CC, and Greedy-Borda-CC (by provingLemma 3).

The idea of the algorithmic scheme is to guess the members of the winning committeeW ⊆ C,
|W | = k, p ∈ W , and to verify the guess by an ILP. More precisely, we try all possible winning
committees in the outer loop of our algorithm and call the corresponding ILP for each of the (less
than2m) potential winning committees that containp. For the round-based rules (Greedy-Approval-
CC, PTAS-CC, and Greedy-Borda-CC) we furthermore guess a functionw : [k] → W mapping
each “position” in the committee to a specific candidate fromW . This allows to specify when
each member joined the committee according to the round-based rules and can be realized with an
additional factor ofk! ≤ m! to the running time. For the ease of presentation letW j denote the set
containing the firstj members according to the functionw, that is,W j = {w(j′) | 1 ≤ j′ ≤ j}.

Observe that there arem! different preference orders, and, by ordering them arbitrarily, we can
consider theith preference order (fori ∈ [m!]).

For eachi ∈ [m!] andj ∈ [m!] we create an integer variableSi,j which represents the number of
voters which vote as theith preference order in the original election and vote as thejth preference
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order in the bribed election. Based on these variables we addthe following constraints for each
i ∈ [m!], ensuring that each original vote is turned into exactly onebribed vote:

∑

j∈[m!]

Si,j = #(i),

where #(i) denotes the number of voters which vote as theith preference order in the original
election. Then, we add the following constraint, ensuring that the cost of our bribery action does not
exceed the budget:

∑

i∈[m!],j∈[m!]

Si,j · cost(i, j) ≤ B,

where cost(i, j) is the budget needed to transform theith preference order to thejth preference
order (and, for formal correctness, equalsB + 1 if it is not possible at all by shifting onlyp).

For eachi ∈ [m!] we create an integer variableNi which represents the number of voters which
vote as theith preference order in the bribed election. Based on theSi,j variables, we make sure
that theNi variables are correct, by adding, for eachi ∈ [m!], the following constraint:

Ni =
∑

j∈[m!]

Sj,i.

This describes the basic ILP which will be extended in the proofs of the following lemmas.

Lemma 1. Parameterized by the numberm of candidates,k-BordaSHIFT BRIBERY is in FPT.

Proof. To makep a member of the winning committee fork-Borda we have to ensure that only
the other members of the winner committee may have a larger Borda score thanp. Hence, for each
c /∈W , we add the following constraint to the basic ILP, ensuring that, in the bribed election,p has
at least as much Borda score (based on theNi variables) as all candidates that are not in the winning
committee: ∑

i∈[m!]

Ni · βi(p) ≥
∑

i∈[m!]

Ni · βi(c),

whereβi(c) is the Borda score of candidatec in theith preference order.
This finishes the description of the extended ILP.

Lemma 2. Parameterized by the numberm of candidates, both Approval-CCSHIFT BRIBERY and
Borda-CCSHIFT BRIBERY are inFPT.

Proof. To makep a member of the winning committeeW for Approval-CC (respectively, Borda-
CC) we have to ensure that no other committee has a larger Approval score (respectively, Borda
score) than our guessed committeeW . Hence, for each other committeeW ′, we add the following
constraint to the basic ILP, ensuring that, in the bribed election, the score ofW (based on the
Ni variables) is at least as high as the score ofW ′:

∑

i∈[m!]

φ(i,W ) ·Ni ≥
∑

i∈[m!]

φ(i,W ′) ·Ni,
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whereφ(i,X) is the score given by a voter voting as theith preference order to the committeeX.
Note that this can be computed in polynomial-time by selecting the right representative and taking
the underlying scoring rule, that is, either Approval or Borda, into account.

This finishes the description of the extended ILP.

Lemma 3. Parameterized by the numberm of candidates,SHIFT BRIBERY is inFPT for Greedy-
Approval-CC, PTAS-CC, and Greedy-Borda-CC.

Proof. Since PTAS-CC is a special case of Greedy-Approval-CC it suffices to describe the extension
of the ILP for Greedy-Approval-CC and Greedy-Borda-CC.

To makep a member of the winning committeeW for Greedy-Approval-CC (respectively,
Greedy-Borda-CC) we have to ensure that the candidatew(j) (which joined to the committee in
thejth round) maximizes the Approval score (respectively, Borda score) among all possible exten-
sions. Hence, for each roundj and eachc ∈ C\W j we add the following constraint to the basic ILP,
ensuring that, in the bribed election, the score ofW j is at least as large as the score ofW j−1 ∪ {c}:

∑

i∈[m!]

φ(i,W j) ·Ni ≥
∑

i∈[m!]

φ(i,W j−1 ∪ {c}) ·Ni,

whereφ(i,X) is the score given by a voter voting as theith preference order to the committeeX.
This finishes the description of the extended ILP.

As second general result, we note that for the parameterization by the number of voters we
can provide a strong, generalFPT approximation scheme for candidate-monotone rules.Candidate
monotonicity, a notion introduced by Elkind et al. [17], requires that if a member of a winning com-
mittee is shifted forward in some vote, then this candidate still belongs to some (possibly different)
winning committee.

Theorem 2. Consider parameterization by the number of voters. LetR be a candidate-monotone
multiwinner rule with anFPT algorithm for WINNER DETERMINATION. Then, for every positive
constant numberε there is anFPT algorithm that, given an instanceI ofR-SHIFT BRIBERY (for
arbitrary price functions), outputs a successful shift action ~s with cost at most(1 + ε)OPT(I).

Proof. Bredereck et al. [7] show anFPT algorithm (parameterized by the number of voters) that,
given an instanceI of SHIFT BRIBERY and a positive valueε, for each possible shift action~s =
(s1, . . . , sn) tries a shift action~s′ = (s′1, . . . , s

′
n) such that for eachi ∈ [n] we haves′i ≥ si, and

the cost of~s′ is at most(1 + ε) greater than that of~s. This algorithm also works for multiwinner
rules.

Among the rules considered in this work, only Greedy-Borda-CC, Greedy-Approval-CC, and
PTAS-CC are not candidate-monotone (see the work of Elkind et al. [17] for the argument regarding
Greedy-Borda-CC). Thus, the above result applies to all theremaining rules.

For the case of all-or-nothing prices, we can strengthen theabove result to an exactFPT algo-
rithm.
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Proposition 1. Consider parameterization by the number of voters. LetR be a
candidate-monotone multiwinner rule with anFPT algorithm for WINNER DETERMINATION.
Then, there is anFPT algorithm forR-SHIFT BRIBERY with all-or-nothing price functions.

Proof. SinceR is candidate-monotone and we have all-or-nothing prices, for every vote where we
shift the candidatep forward, we can shiftp to the top. In effect, it suffices to try all subsets of
voters: For each subset check whether shiftingp forward in each vote from the subset ensures the
victory of p without exceeding the budget.

Using a very similar approach, we can solve SHIFT BRIBERY for those of our rules which are
based on approval scores, even for arbitrary price functions (even the round-based ones). The trick
is that, with approval scores, for each voter we either shiftour candidate right to the first approved
position or we do not shift him or her at all. Thus, again, trying all subsets of voters suffices.

Proposition 2. There is anFPT algorithm for SHIFT BRIBERY under Approval-CC, Greedy-
Approval-CC, and PTAS-CC, for the parameterization by the number of voters and for arbitrary
price functions.

Finally, using smart brute-force, we provideXP algorithms for SHIFT BRIBERY parameterized
either by the number of voters or the number of unit shifts (for rules that can be efficiently computed
in the given setting).

Proposition 3. Consider parameterization by the number of voters. Then, for every multiwinner
rule with anXP algorithm for WINNER DETERMINATION, there is anXP algorithm for SHIFT

BRIBERY and arbitrary price functions.

Proof. For each voter, we guess the amount which the preferred candidate is shifted by. Since the
maximum amount ism, and we haven voters, we haveO(mn) possibilities to check. For each
possibility we check if the preferred candidate is a member of a winning committee inXP time.

Proposition 4. Consider parameterization by the number of unit shifts. Then, for every multiwinner
rule with a polynomial-time algorithm forWINNER DETERMINATION, there is anXP algorithm
for SHIFT BRIBERY and arbitrary price functions.

Proof. The idea of the proof is similar to that behindProposition 3. Let s be the number of unit
shifts that we can perform and letn be the number of voters. We can view a solution as a vector
of length at mosts, where an entry in theith position specifies the number of voters in whose
preference order we perform theith unit shifts. We try allO(ns) such vectors and for each we test if
the shift action it defines is within budget and ensures that the preferred candidate is in the winning
committee.

5 SNTV, Bloc, andk-Borda

We now move on to results specific to the voting rules SNTV, Bloc, andk-Borda. These rules pick
k candidates with the highest1-Approval,k-Approval, and Borda scores, respectively, and, so, one
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might suspect that the efficient algorithms for corresponding single-winner rules would translate to
the multiwinner setting. While this is the case for SNTV and Bloc, fork-Borda the situation is more
intricate. As a side effect of our research, we resolve the parameterized complexity of Borda-SHIFT

BRIBERY, left open by Bredereck et al. [7].
We first show that SHIFT BRIBERY is polynomial-time solvable for SNTV and Bloc. We use

the same algorithm for both SNTV and Bloc. Briefly put, the idea is to guess the final score of the
preferred candidate and to compute the set of candidates that have higher scores. Then, it is easy to
compute the cheapest way to ensure that all butk − 1 of them, wherek is the committee size, have
smaller score than the guessed score ofp, while ensuring thatp indeed obtains this guessed score.

Theorem 3. SNTV-SHIFT BRIBERY and Bloc-SHIFT BRIBERY are both inP (for arbitrary price
functions).

Proof. We use the same algorithm for both SNTV and Bloc. Consider an input instanceI with an
electionE = (C, V ), wherep is the preferred candidate, and where the committee size isk. Our
algorithm proceeds as follows.

As first step, we guess the final score thatp would have after a successful bribery, denoted
by endscore(p). Since there are only polynomially many possibilities, we can simply branch into
all possible values ofendscore(p) to realize the first step. Then, we consider the setC ′ ⊆ C of
those candidates whose score is greater thanendscore(p). It is clear that to ensure thatp is in some
winning committee, we need to decrease the score of all butk−1 candidates fromC ′. If C ′ contains
at mostk − 1 candidates, we do not need to decrease the scores of any candidates.

To this end, we sort the candidates inC ′ by the cost of decreasing their score (by appropriate
shifts ofp) to be equal toendscore(p), and pick all of the candidates inC ′, besides thek − 1 most
expensive ones. Since for each bribed vote one can decrease the score of exactly one candidate, this
defines a shift action. If this shift action does not guarantee thatp has scoreendscore(p), then we
complement it by shiftingp to the first approved position in sufficiently many cheapest votes, to
ensure thatp has scoreendscore(p).

If the thus computed shift action is within budget, we accept. Otherwise, we try another guess
of endscore(p). If we try all possibilities without accepting, then we reject.

The situation fork-Borda is different. SHIFT BRIBERY is NP-hard for Borda due to Elkind
et al. [16], so the same holds fork-Borda. We show that Borda-SHIFT BRIBERY is W[1]-hard
for parameterization by the number of voters, resolving a previously open case [7]. This result
immediately implies the same hardness for all our Borda-based rules.

Theorem 4. Parameterized by the number of voters, BordaSHIFT BRIBERY isW[1]-hard (even for
unit price functions).

Proof. We give a parameterized reduction from the MULTICOLORED INDEPENDENTSET problem.
Let (G,h) be our input instance. Without loss of generality, we assumethat the number of vertices
of each color is the same and that there are no edges between vertices of the same color. We write
V (G) to denote the set ofG’s vertices, andE(G) to denote the set ofG’s edges. Further, for every

color i ∈ [h], we writeV (i) = {v
(i)
1 , . . . , v

(i)
q } to denote the set of vertices of colori. For each
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vertexv, we writeE(v) to denote the set of edges incident tov. For each vertexv, we writeδ(v) to
denote its degree, i.e.,δ(v) = |E(v)| and we let∆ = maxu∈V (G) δ(u) be the highest degree of a
vertexG.

We form an instance of Borda-SHIFT-BRIBERY as follows. We let the candidate set be

C = {p} ∪ V (G) ∪ E(G) ∪ F (G) ∪D′ ∪D′′,

whereF (G), D′, andD′′ are sets of special dummy candidates. For each vertexv, we letF (v)
be a set of∆ − δ(v) dummy candidates, and we letF (G) =

⋃

v∈V (G) F (v) andF (V,−i) =
⋃

v∈V (i′),i′ 6=i F (v). We will specifyD′ andD′′ later. For each vertexv, we define the partial prefer-
ence orderS(v) to bev ≻ E(v) ≻ F (v). For each colori, we defineR(i) to be a partial preference
order that ranks first all members ofD′, then all vertex candidates of colors other thani, then all
edge candidates corresponding to edges that are not incident to a vertex of colori, then all dummy
vertices fromF (V,−i), and finally all candidates fromD′′.

We use unit price functions and we set the budget to beB = h(q+(q−1)∆). We setD′ andD′′

to consist of2B dummy candidates each.
We create the following voters:

1. For each colori ∈ [h], we introduce four voters: votersxi andx′i with the following preference
orders:

xi : S(v
(i)
1 ) ≻ S(v

(i)
2 ) ≻ · · · ≻ S(v(i)q ) ≻ p ≻ R(i),

x′i :
←−−−−
S(v(i)q ) ≻

←−−−−−
S(v

(i)
q−1) ≻ · · · ≻

←−−−−
S(v

(i)
1 ) ≻ p ≻ R(i),

and votersyi andy′i whose preference orders are reverses of those ofxi andx′i, respectively,
except that candidates fromD′′ are ranked last in their votes as well.

2. We create a voterz with the preference order

z : F (G) ≻ V (G) ≻ E(G) ≻ D′ ≻ p ≻ D′′,

and a voterz′ with the preference order that is obtained from that ofz by first reversing it,
and then shifting each member ofV (G) ∪ E(G) by one position forward, and shiftingp by
B positions back.

Let L be the score ofp prior to executing any shift actions. The scores of the candidates in our
election are as follows: each candidate inV (G) ∪ E(G) has scoreL+ B + 1, and each candidate
in F (G) ∪D′ ∪D′′ has score at mostL+B.

We show that it is possible to ensure the victory ofp in our election by a bribery of cost at
mostB if and only if there is a multicolored independent set forG of sizeh.

For the “if” case, we show that ifG has a multicolored independent set, then there is a successful
shift action of costB in our election. Let us fix a multicolored independent set forG and, for each
color i ∈ [h], let v(i)si be the vertex of colori from this set. For each pair of votersxi, x′i, we shiftp

so that inxi he or she ends up right in front ofv(i)si+1 (or p does not move ifsi = q), and inx′i he
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or she ends up right in front ofv(i)si . This way,p passes every vertex candidate fromV (i) and every

edge candidate from
(
⋃

t∈[q]E(v
(i)
t )

)

\E(v
(i)
si ). This shift action costsB/h for every pair of voters

xi, x
′
i, so, in total, costs exactlyB. Further, clearly, it ensures thatp passes every vertex candidate

so each of them has scoreL + B. Finally, since we chose vertices from an independent set, every
edge candidate also has score at mostL + B: If p does not pass some edgee between vertices of
colorsi andj for a pair of votersxi, x′i, thenp certainly passese in the pair of votesxj , x′j because

visi andvjsj are not adjacent.
For the “only if” case, we show that if there is a successful shift action for our instance, then

there is a multicolored independent set forG. We note that a shift action of costB givesp score
L + B. Thus, for the shift action to be successful, it has to cause all candidates inV (G) ∪ E(G)
to lose a point. We claim that a successful shift bribery has to use exactlyB/h = (q + (q − 1)∆)
unit shifts for every pair of votersxi, x′i. Why is this so? Let us fix some colori ∈ [h]. Every
successful shift action has to decrease the score of every vertex candidate andxi, x′i are the only
votes wherep can pass the vertex candidates fromV (i) without exceeding the budget. If we spend
less thanB/h units of budget onxi, x′i, then there will be some vertex candidates corresponding to
a vertex fromV (i) thatp did not pass (and, in effect, which does not lose a point), andsop will not
be a winner. Thus, we know that a successful shift action spendsB/h units of budget on every pair

of votersxi, x′i. Further, we can assume that for each colori there is a vertexv(i)si ∈ V (i) such that

in xi candidatep is shifted to be right in front ofv(i)si+1 and inx′i candidatep is shifted to be right

in front of v(i)si . We call such a vertexv(i)si selected. If for a given pair of votersxi, x′i neither of the
vertices fromV (i) was selected, then there would be some vertex candidate inV (i) thatp does not
pass. If for some pair of votersxi, x′i vertexv(i)si is selected, then in this pair of votesp does not pass

the edge candidates fromE(v
(i)
si ). However, this means that in a successful shift action the selected

vertices form an independent set ofG. If two verticesv(i)si andv(j)sj were selected,i 6= j, and if there
were an edgee connecting them, thenp would not pass the candidatee in either of the pairs of votes
xi, x

′
i or xj , x′j . Since these are the only votes wherep can passe without exceeding the budget, in

this casee would haveL+B + 1 points,p would haveL+B points and would lose.

In effect, we have the following corollary (we discuss otherBorda-based rules later).

Corollary 1. Parameterized by the number of voters,k-Borda-SHIFT BRIBERY isW[1]-hard.

Corollary 1shows that theFPT approximation scheme fromTheorem 2can presumably not be
replaced by anFPT algorithm. ByProposition 1, we also know thatk-Borda-SHIFT BRIBERY is in
FPT for all-or-nothing prices and the parameterization by the number of voters.

The next result is, perhaps, even more surprising thanTheorem 4: It turns out thatk-Borda-
SHIFT BRIBERY is W[1]-hard also for the parameterization by the number of unit shifts, whereas
Borda-SHIFT BRIBERY is inFPT. To this end, we describe a parameterized reduction from CLIQUE.

Theorem 5. Parameterized by the numbers of unit shifts,k-BordaSHIFT BRIBERY isW[1]-hard.

Proof. We provide a parameterized reduction from theW[1]-complete CLIQUE problem in which
we are given a graphG with V (G) = {v1, . . . , vn} andE(G) = {e1, . . . , em} and we ask whether
there is a set ofh pairwise adjacent vertices inG.
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Given an instance for the CLIQUE problem, create an instance fork-Borda SHIFT BRIBERY as
follows. Set the budgetB :=

(
h
2

)
·(2+h3), use unit price functions, and set the size of the committee

k := n−h+1. The candidate set isC = {p}∪V (G)∪D(G)∪F , where the setsD(G) andF are
defined as follows. LetH be a set ofB dummy candidates and for each edgee from the graph let

D(e) be a set ofh3 dummy candidates. SetD(G) :=
(
⋃

e∈E(G)D(e)
)

∪H. DefineF to contain

B + (h− 1) dummy candidates.
We form the set of voters as follows:

1. For each edgee = {u, v} from G we introduce voterxe with preference order:u ≻ v ≻
D(e) ≻ p ≻ D(G) \D(e) ≻ V (G) \ {u, v} ≻ F, and voterye whose preference order is the
reverse of that ofxe with candidates fromF shifted to the bottom positions.

2. We introduce two voters,z andz′, wherez has preference orderV (G) ≻ F ≻ p ≻ D(G)

andz′ has preference orderF ≻ p ≻
←−−−
V (G) ≻ D(G).

All vertex candidates have the same score in this election, and we denote it byL. Candidatep
has scoreL− (h− 1)−B, and all remaining candidates have score lower thanL (note that we can
assume thatG has more than

(
h
2

)
edges as otherwise it certainly does not contain a size-h clique).

Intuitively, shifting p to the top positions in votesxe corresponding to a size-h clique is the only
way to ensurep’s victory

It remains to show the correctness of the construction. Moreprecisely, we show thatG contains
a clique of sizeh if and only if there is a successful shift action for our instance ofk-Borda-SHIFT

BRIBERY.
For the “only if” case, assume that there is a clique if sizeh in G. Then, a successful bribery

can shiftp to the front of allxe voters corresponding to the edges inside this clique. This givesp
additionalB points and causes each vertex from the clique to loseh − 1 points. In effect, there
aren − h vertex candidates with score higher than that ofp andh vertex candidates with the same
score asp. Since all other candidates already had lower scores,p belongs to at least one winning
committee.

For the “if” case, note thatp can join some winning committee only if at leasth vertex candidates
loseh− 1 points each. Without exceeding the budget,p can pass vertex candidates only inxe votes.
Through simple arithmetic, we see that within a given budgetwe can shiftp to pass some vertex
candidates in at most

(
h
2

)
of these votes and, so, in each of them we can shiftp to the top position.

That is, a successful shift action passes vertices corresponding to
(
h
2

)
edges. This can lead toh

candidates losing at leasth−1 points each (or, in fact, exactlyh−1 points each) only if these edges
form a size-h clique.

6 Chamberlin-Courant and Its Variants

We now move on to the Chamberlin-Courant (CC) rules and theirapproximate variants. These rules
try to find a committee such that every voter is represented well by some member of the commit-
tee. Recall that WINNER DETERMINATION for Borda-CC and Approval-CC is NP-hard but can be
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solved efficiently for the approximate variants. To some extend, this difference in the computational
complexity is also reflected by our finding for SHIFT BRIBERY.

Note that many results for the CC-based rules (see alsoTable 1) follow from our results from
previous sections. For the parameterizations by the numberof candidates,Theorem 1givesFPT
results for all CC-based rules. For the parameterization bythe number of voters, byProposition 2
we haveFPT results for Approval-CC, Greedy-Approval-CC, and PTAS-CC. We inheritW[1]-
hardness for Borda-CC and Greedy-Borda-CC fromTheorem 4, since both rules coincide with the
single-winner Borda rule in case of committee sizek = 1.

Corollary 2. SHIFT BRIBERY parameterized by the number of voters isW[1]-hard for Borda-CC
and for Greedy-Borda-CC even for unit price functions.

By Theorem 2, we have that there is anFPT approximation scheme for Borda-CC. However,
sinceTheorem 2strongly relies on candidate monotonicity of the rule, it does not apply to Greedy-
Borda-CC. Indeed, we believe that there is no constant-factor FPT approximation algorithm for
Greedy-Borda-CC-SHIFT BRIBERY (parameterized by the number of voters). So far we could prove
this only for the case of weighted elections, i.e., for the case where each voterv has an integer
weightwv and counts aswv separate voters for computing the result of the election (but not for
the computation of the parameter). On the one hand, one couldsay that using weighted votes goes
against the spirit of parameterization by the number of voters and, to some extent, we agree. On the
other hand, however, all ourFPT results for parameterization by the number of voters (including
theFPT approximation scheme) do hold for the weighted case. By a parameterized reduction from
the MULTICOLORED CLIQUE problem, we obtain the following.

Theorem 6. UnlessW[1] = FPT, Greedy-Borda-CC-SHIFT BRIBERY with weighted votes is not
α-approximable for any constantα, even inFPT time with respect to the number of voters and even
for unit price functions.

Proof. We first proveW[1]-hardness of the problem and then argue that this proof implies the
claimed inapproximability result.

We give a reduction from the MULTICOLORED CLIQUE problem for the case of regular graphs
which isW[1]-complete for the parameter solution sizeh (e.g. [26, Lemma 3.2]). To this end, let
G = (V (G), E(G)) be our input graph and leth be the size of the desired clique (and the number of

vertex colors). We use the following notation. For each color i ∈ [h], we letV (i) = {v
(i)
1 , . . . , v

(i)
n }

be the set of vertices fromG with color i. For each vertexv ∈ V (G), we writeE(v) to denote the
set of edges incident tov. SinceG is regular, we letd be the common degree of all the vertices (i.e.,
for each vertexv, |E(v)| = d). For each pair of distinct colorsi, j ∈ [h], i < j, we writeE(i, j) to
denote the set of edges between vertices of colori and vertices of colorj.

We make the following observation regarding Greedy-Borda-CC. In each iteration it picks a
candidate with the highest score, where this score is computed as follows: LetW be the set of
candidates already selected by Greedy-Borda-CC at this point. Consider candidatec and voterv,
and letd be the candidate fromW thatv ranks highest. Voterv givesmax(0,posv(c) − posv(d))
points toc (i.e., the number of points by which addingc to W would increase the score ofv’s
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representative). The score of a candidate in a given iteration is the sum of the scores it receives from
all the voters.

We form an instance of Greedy-Borda-CC-SHIFT BRIBERY as follows.

The candidates. We let the candidate set beC = {b, p, p′}∪V (G)∪E(G)∪D, wherep is the
preferred candidate,p′ is p’s direct competitor in the sense that eitherp or p′ will be the committee,b
is the “bar” candidate (see explanation below), andD is a set of dummy candidates. Throughout the
construction we will introduce many dummy candidates and wedo not give them special names;
at the end of the construction it will be clear that we add onlypolynomially many of them. We
will ensure thatb, the bar candidate, is always chosen first into the committee, so—in essence—the
scores of all other candidates can be computed relative tob. So when we describe a preference order,
we list only top parts of the voters’ preference orders, until candidateb. Candidatep is ranked last
in every vote in which we do not explicitly require otherwise.

We also use the following notation in the descriptions of thepreference orders. For a numberL,
by writing [L] in a preference order we mean introducingL new dummy candidates that are put in
the following positions in this preference order, but that in every other preference order are ranked
belowb (and, thus, afterb is selected receive no points from these voters).

The voters. We introduce the following voters, whereN , Tv,Te, andTp are four large numbers
such thatN is much bigger thanTv, Tv is much bigger thanTe, andTe is much bigger thanTp; we
will provide their exact values later. Each voter has weightone unless specified otherwise.

1. For each colori ∈ [h], we introduce twovertex-scorevoters with the following preference
orders:

V (i) ≻ [N · (Tv − i)] ≻ b,
←−−
V (i) ≻ [N · (Tv − i)] ≻ b,

and twovertex-selection voterswith the following preference orders:

V (i) ≻ p ≻ b,
←−−
V (i) ≻ p ≻ b.

2. For each pair of distinct colorsi, j ∈ [h], i < j, we introduce twoedge-score voterswith the
following preference orders:

E(i, j) ≻ [N · (Te − (i · h+ j))] ≻ b,
←−−−−
E(i, j) ≻ [N · (Te − (i · h+ j))] ≻ b,

and twoedge-selection voterswith the following preference orders:

E(i, j) ≻ p ≻ b,
←−−−−
E(i, j) ≻ p ≻ b.

Each of the edge-selection voters has weightω = 4
(
h
2

)
n(d+1) (and these are the only voters

with non-unit weights).
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3. For each colori ∈ [h] we introduce twoverification voterswith the following preference
orders:

p ≻ v
(i)
1 ≻ E(v

(i)
1 ) ≻ · · · ≻ v(i)n ≻ E(v(i)n ) ≻ b,

p ≻ v(i)n ≻
←−−−−
E(v(i)n ) ≻ · · · ≻ v

(i)
1 ≻

←−−−−
E(v

(i)
1 ) ≻ b.

4. We introduce the following two voters, thep/p′-score voters, with the following preference
orders:

p′ ≻ [N · Tp] ≻ b,

p ≻ [N · Tp + h(n + 1)(d+ 1)] ≻ b.

5. Let H be the total weight of voters introduced so far (clearly,H is polynomially upper-
bounded in the input size of the MULTICOLORED CLIQUE instance(G,h)). We introduce

H + 1 pairs of voters with preference ordersb ≻ C \ {b} andb ≻
←−−−−
C \ {b}. We refer to these

voters as thebar-score voters.

We assume that the internal tie-breaking prefersp to p′—we could modify the construction
slightly if it were the other way round.

Committee size and budget.We set the committee size to bek = 1+h+
(
h
2

)
+1. We use unit

prices for the voters and we set the budgetB = |V | − h+ |E| −
(
h
2

)
.

We claim that for an appropriate choice ofN , Tv, Te, andTp it is possible to ensure thatp is in a
winning committee if and only if there is multicolored size-h clique forG. We now argue why this
is the case.

The idea. The general idea is to show that every shift action (even the zero-vector, that means
not bribing the voters) of costs at mostB leads to a committee that contains

1. the bar vertexb,

2. for each colori one candidate corresponding to a vertex of colori,

3. for each color pair{i, j}, i 6= j one candidate corresponding to an edge incident to a vertex
of color i and to a vertex of colorj

4. candidatep if the selected vertices and edges encode a multicolored clique; otherwise the
committee containsp′.

Furthermore, any such combination of vertices and edges canbe selected within the given budget,
that is, there is a successful shift action if a multicoloredclique of sizeh exists.

Correctness. Observe that due to the bar-score voters, irrespective how we shiftp within the
budget, Greedy-Borda-CC will first chooseb. Thus, from this point on, we compute the score of all
candidates relative tob (and, in later rounds, the other selected members of the committee, but there
is a limited number of such interactions).
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We now describe the nexth +
(
h
2

)
+ 1 rounds, first describing the situation as ifp were not

shifted, and then indicate how it could be changed with appropriate shifts.
After the first iteration, whenb is selected, for each colori ∈ [h], every vertex inV (i) has score:

(2N · (Tv − i) + (n+ 1))
︸ ︷︷ ︸

vertex score voters

+ (2n + 3)
︸ ︷︷ ︸

vertex-selection voters

+((n+ 1)(d + 1))
︸ ︷︷ ︸

verification voters

.

The points in the first bracket come from the vertex-score voters, in the second bracket from the
vertex-selection voters, and in the last bracket from the verification voters. Further, sinceTv is
much larger thanTe andTp, every non-vertex candidate has significantly lower score.

Thus, in the nexth rounds, for each colori ∈ [h], Greedy-Borda-CC adds into the committee
one vertex candidate of colori. Note that as soon as it picks some vertex candidate of colori, the
score of all the other vertex candidates of this color immediately drops by at least2N · (Tv− i) and,
so, their score is much too low to be selected.

By shifting candidatep in the vertex-selection votes, for each colori ∈ [h] and each vertex
in V (i) it is possible to ensure that exactly this vertex is selected(it suffices to ensure that every
other vertex candidate of this color loses one point due top passing him or her). The costs of such
shifts are at most|V | − h in total.

In other words, we can assume that after theseh iterations Greedy-Borda-CC picks one vertex
candidate of each color, and that by shift action of cost at most |V | − h it is possible to choose
precisely which ones.

In the next
(
h
2

)
iterations, Greedy-Borda-CC picks one edge candidate for each pair of colors.

Not counting the verification voters, for each pair of colorsi, j ∈ [h], i < j, every edge candidate
connecting vertices of colorsi andj has score:

(N(Te − (i · h+ j)) + |E(i, j)| + 1)
︸ ︷︷ ︸

edge-score voters

+(ω(|E(i, j)| + 2))
︸ ︷︷ ︸

edge-selection voters

,

where the points from the first bracket come from the edge-score voters and the points in the second
bracket come from the edge-selection voters. Further, every such candidate receives less thanω

2
points from the verification voters.

SinceTe is much larger thanTp, and since by shiftingp forward in the votes of edge-selection
voters it is possible to removeω points from the scores of all but one edge candidate in eachE(i, j).
Moreover, it is possible to precisely select for eachE(i, j) which of its members is added to the
committee with a shift action of total cost|E| −

(
h
2

)
. Analogously to the case of vertices, note that

whenever some candidate fromE(i, j) is selected, the other ones lose so many points that they have
no chance of being selected in any of the following iterations.

In the final iteration, the algorithm either selectsp′ or p. Candidatep′ has scoreN · Tp, whereas
the score ofp depends on the vertex and edge candidates that were so far introduced into the com-
mittee. If we disregarded all committee members selected after b, p would have score:

N · Tp + h(n + 1)(d+ 1).

For each colori ∈ [h], however,p loses(n + 1)(d + 1) points from the verification voters. This
is true since some candidate fromV (i) is in the committee, we computep’s score relative to this
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vertex candidate and not relative tob. If these were the only points thatp loses due to the committee
members already selected, then—by tie-breaking—p would win againstp′. However, if for some
pair of colorsi, j ∈ [h], i < j, the committee contains some edgee that connects vertices that
are not both in the committee, thenp loses at least one more point from the verification voters
(either for colori or for color j or for both) because at least one of these verification votersranks
e ahead of all the vertex candidates from the committee. Thenp′ is selected. This means thatp
ends up in the committee if and only if due to an appropriate shift action we select vertices and
edges corresponding to a multicolored clique. This proves the correctness of the reduction for an
appropriate choice ofN , Tv, Te, andTp, which is discussed next.

The values ofN , Tv, Te, andTp. While one could pick tight precise values, for the correctness
of the proof it suffices to take, say,Tp = (

(
h
2

)
· |V | · |E|)3, Te = T 3

p , Tv = T 3
e , andN = T 3

v .
Finally, we finally discuss the inapproximability result that is implied by our reduction.

Inapproximability. Observe that, in fact, the above proof gives our inapproximability result.
The reason is that for a given constant factorα, we could increaseN by the same factor and it
would be impossible forp to pass the bar candidate in any of the votes, even if we were tospend
α times the necessary budget. In effect, forp to succeed we would still have to find a multicolored
clique.

For the parameterization by the number of unit shift actions, both Borda-CC and Approval-CC
are para-NP-hard due to the hardness of WINNER DETERMINATION.4 For Greedy-Approval-CC,
PTAS-CC, and Greedy-Borda-CC we obtainW[2]-hardness results and inapproximability results.

Theorem 7. Parameterized by the total numbers of unit shifts,SHIFT BRIBERY isW[2]-hard even
in case of unit prices for Greedy-Borda-CC, Greedy-Approval-CC, and PTAS-CC. Further, unless
W[2] = FPT, in these cases the problem is notα-approximable for any constantα.

Proof. First, we show the result for Greedy-Approval-CC fort-Approval satisfaction function with
t ≥ 3 (which includes PTAS-CC). Second, we show how the proof ideas can be adapted to obtain
the same result for Greedy-Borda-CC.

Greedy-Approcal-CC. We reduce from the SET COVER problem which isW[2]-hard parame-
terized by the set cover sizeh. Given an instance(S, U, h) of SET COVER with S = (S1, . . . , Ss)
denoting the given sets over the universeU = {u1, . . . , ur}, we construct a Greedy-Approval-CC
SHIFT BRIBERY instance as follows.

Important candidates. Our election will consist of2|U |+ 2|S|+ 2 important candidates: For
each elementu ∈ U we create twoelement candidatesc−(u) andc+(u). Analogously, we create
two set candidatesc−(S) and c+(S) for each setS ∈ S. Furthermore, we create the preferred
candidatep and a candidatep′.

Dummy candidate. For each voter (to be specified later), we introduce up to(t − 1) further
dummy candidates. The dummy candidates will not have any chance to be part of the committee,

4The literature [25, 32] speaks of hardness of computing the score of a winning committee, but one can show that
deciding whether a given candidate is in some winning committee isNP-hard as well.
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because each of them will only be approved once and there are enough important candidates that
have at least two approvals no matter how one bribes the election. However, the dummy candidates
intuitively allow some voter to approve any numbert′, 1 ≤ t′ ≤ t, of important candidates by
approving the desired set of important candidates and some further dummy candidates which are
exclusively approved by this voter.

We have basically everything needed to explain the rough idea of the construction.

The idea. In the unbribed election the candidatesc−(u) andc−(S) for eachu ∈ U andS ∈ S
together with the candidatep′ are elected as committee. The decisive direct effect of successfully
bribing the voters will be to decrease the score of at mosth candidatesc−(S). Doing this will replace
the correspondingc−(S) with c+(S) in the committee. Furthermore, eachc−(u) with u ∈ S for
some replaced candidatec(S) will then be replaced byc+(u). Finally our preferred candidatep will
replace candidatep′ in the committee if and only ifc−(u) is replaced by the correspondingc+(u)
for eachu ∈ U .

Committee size and budget.As already indicated in the description of the idea, we set the
budget equal to the sizeh of the set cover and the committee size to|S|+ |U |+ 1.

Next, we discuss the voters of the election that allow us to implement the above idea.

Specifying the voters.Observe that for Greedy-Approval-CC SHIFT BRIBERY, specifying the
set of approved candidates, the last-ranked approved candidate, that is, the candidate at positiont,
and the price for shifting the preferred candidatep to positiont completely describes the influence
of a voter to the unbribed and bribed election: Shiftingp to any position greater thant will not
change the score of any candidate in any step of Greedy-Approval-CC. Shiftingp to some position
≤ t will increase the score ofp by one and decrease the score of the last-ranked approved candidate
by one—independently how far beyond positiont we shiftp. Hence, for each voter we simply say
which important candidates this voter approves, which candidate among the approved candidates is
ranked last, and the price of movingp the the first approved position.

The voters. The set of voters contains|S| manyS-voters, |S| · |U | manyS-U -voters, and
|U | manyU -voters:

• For each setS ∈ S there is oneS-voter that approvesc−(S) (and some dummy candidates)
such that it costs one to disapprovec−(S) but approvep instead.

• For each setS ∈ S and elementu ∈ U there is oneS-u-voter that approvesc−(u) only if
u ∈ S and that approves approvesc+(S) (and some dummy candidates) in any case.

• For each elementu ∈ U there is oneu-voter that approvesp′ andc+(u).

There are further auxiliary voters that allow us to appropriately set the number of approvals for each
candidate:

• For eachSj ∈ S there are|S|5 · |U |5 − j voters that approvec−(S) andc+(S) (and some
dummy candidates) and|U | − 1 voters that only approvec−(S) (and some dummy candi-
dates).
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• For eachui ∈ U there are|S|4 · |U |4 − i voters that approvec−(u) andc+(u) (and some
dummy candidates) and|{S ∈ S | ui ∈ S}| − 1 voters that only approvec+(u) (and some
dummy candidates).

• There are|S|2 · |U |2 voters that approvep andp′ (and some dummy candidates) andh −
1 voters that only approvep′ (and some dummy candidates).

Except for theS-voters, it is too expensive to bribe some voter with the effect thatp is approved
instead of some other candidate. This can be easily implemented by puttingp more than budget
many positions behind the last approved candidate.

This construction can clearly be computed in polynomial time and our parameter, the number
of unit shifts, which is upper bounded by the budget, is identical to the set cover sizeh. Before we
prove the correctness of the reduction, let us briefly discuss (properties of) the unbribed election.

Scores, ties, and the unbribed election.First, consider the scores of the candidates in the very
first round of the voting rule which are as follows.

• Both, candidatec−(Sj) and candidatec+(Sj) have|S|5 · |U |5 − j + |U | approvals.

• Both candidatec−(ui) and candidatec+(ui) have|S|4 · |U |4 − i + |{S ∈ S | ui ∈ S}|
approvals.

• Candidatep′ has|S|2 · |U |2 + |U |+ h− 1 approvals.

• Candidatep has|S|2 · |U |2 approvals.

We assume that candidatec−(·) is always preferred to candidatec+(·) and candidatep′ to candi-
datep by the tie-breaking of Greedy-Approval-CC.5

It is easy to verify that in the unbribed election the candidates will join the committee in the fol-
lowing order:c−(S1), c

−(S2), . . . , c
−(Ss), c

−(u1), c
−(u2), . . . , c

−(ur) and finallyp′. To see this,
observe that each pair of candidatesc−(·) andc+(·) is approved by almost the same set of candi-
dates. As soon as one ofc−(·) andc+(·) joins the committee, the other loses nearly all approvals
and has no chance to join into the committee.

The possible impact of shift actions.The only shift actions with any effect that can be per-
formed within the given budgetB = h are to shiftp forward in the preference lists of up toh
set voters. Letc−(Sj1), . . . , c

−(Sjh) be the candidates that were originally approved by the bribed
voters instead of approvingp. We callS∗ := {Sj1 , Sj2 , . . . , Sjh} the selected sets. Applying the
corresponding shift actions will decrease the score of eachcandidatec−(Sjℓ), 1 ≤ ℓ ≤ h, by one
and increase the score ofp by h. It is easy to verify that, in effect, for each1 ≤ ℓ ≤ h, Greedy-
Approval-CC will selectc+(Sjℓ) instead ofc−(Sjℓ) to join the committee. Now, observe that for
eachu ∈ Sjℓ, there is one voter that approvesc+(Sjℓ) and c−(u). This means that the score of
eachc−(u) for u ∈

⋃

S∈S∗ S is decreased by at least one after the first|S| candidates joined the
committee. Hence, ifc+(Sjℓ) joins the committee instead ofc+(Sjℓ), then alsoc+(u) joins in-
stead ofc−(u). Finally, observe that, afters+ r candidates joined the committee, the score ofp′ is
decreased by the number of candidatesc+(u) that joined the committee instead ofc−(u).

5The reduction can be adapted to work for any tie-breaking.
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Correctness. We show that there is a subset ofh sets fromS whose union isU if and only if
there is a successful set of shift actions of costh.

For the “only if” case, assume that there is a setS ′ ⊆ S of h sets whose union isU . Then,
bribing theS-voter for eachS ∈ S ′ to approvep instead ofc−(S) costsh and successfully makesp
a winner: From the above discussion about the impact of shiftactions, we can immediately infer
that the score of each candidatec−(u), u ∈ U , is decreased by one and, hence, the score ofp′ is
decreased by|U |. Furthermore, the score ofp was increased byh. Thus,p has score|S|2 · |U |2 + h
whereasp′ has score|S|2 · |U |2 + h− 1. This means thatp joins the committee in the last round of
Greedy-Approval-CC.

For the “if” case, assume that there is a set of shift actions with costsh that makesp join the
committee. Sincep can gain at mosth points,p′ has to lose at least|U | points. However, the only
(important) candidates that are approved together withp′ by some voters are the element candi-
datesc+(u), u ∈ U . To decrease the score ofp′ by |U |, all these candidatesc+(u), u ∈ U , must
join the committee instead ofc−(u), u ∈ U . From the above discussion about the impact of shift
actions, we can infer that the union of the selected set isU .

Inapproximability. By a slight adaption of the above construction we can conclude (fixed-
parameter) inapproximability: First, ensure that even within a budget ofα · B, one can only afford
to bribe the set voters. This can be reached by putting(α + 1) · B dummy candidates betweenp
and the first approved candidate for all but the set voters. Second, introduce another pair of impor-
tant candidatesd andd′ and let the set voters additionally approved. Introduce|S|3 · |U |3 voters
that approved andd′ (and some dummy candidates) and|S| − h voters that only approved′ (and
some dummy candidates). Introduce|S| · |U | voters that approvep′ andd (and some dummy candi-
dates) and further|S| · |U | voters that only approved′ (and some dummy candidates). Increase the
committee size by one.

The first|S| + |U | rounds of the Greedy-Approval-CC procedure clearly work analogously to
the original construction. As long as less thanh set voters are bribed, candidated will join the
committee in round|S|+ |U |+1. (We assume that Greedy-Approval-CC prefersd to d′ when there
is a tie.) Then, candidated′ loses almost all points and has no chance to join the committee and
candidatep′ loses all additional approvals (introduced by the extension of the construction). That is,
the last round works analogously to the original construction. However, if one bribes more thanh
set voters, then candidated′ will join the committee in round|S|+ |U |+1, p′ keeps the additionally
introduced approvals, andp has no chance to join the committee in the last round.

It follows that, even with a budget ofα ·B, one can only makep become member of a winning
committee if one selects a subset of at mosth sets fromS whose union isU .

Greedy-Borda-CC. We give a reduction from the SET COVER problem. The basic idea of the
construction is very similar to that in the proof for Greedy-Approval-CC. However, to implement
this idea, we also use some concepts from the proof ofTheorem 6. To this and, we use the same
notational conventions as in the proof ofTheorem 6, and we use the bar candidate in the same way.

Given an instance(S, U, h) of SET COVER with S = (S1, . . . , Ss) denoting the given sets over
the universeU = {u1, . . . , ur}, we construct a Greedy-Borda-CC SHIFT BRIBERY instance as
follows.
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We form the following set of candidates:

1. We introduce the preferred candidatep, his or her opponentp′, and the bar candidate.

2. For each setSi ∈ S, we introduce two candidatesc−(Si) andc+(Si).

3. For each elementuj ∈ U , we introduce candidatesc−(uj) andc+(uj).

4. We introduce sufficiently many dummy candidates.

Let N , Ts, Tu, andTp be some sufficiently large numbers such thatN is much larger thanTs,
Ts is much larger thanTu, andTu is much larger thanTp (we will specify their values later). We
introduce the following voters:

1. For each setSi ∈ S, we introduce twoset-score voterswith preference orders

c−(Si) ≻ c+(Si) ≻ [N · (Ts − i)] ≻ b,

c+(Si) ≻ c−(Si) ≻ [N · (Ts − i)] ≻ b.

Further, for each set we introduce twoset-selection voterswith preference orders

c−(Si) ≻ p ≻ b,

c+(Si) ≻ [1] ≻ b.

2. For each elementuj ∈ U , we introduce twoelement-score voterswith preference orders:

c−(uj) ≻ c+(uj) ≻ [N · (Tu − j)] ≻ b,

c+(uj) ≻ c−(uj) ≻ [N · (Tu − j)] ≻ b.

3. For eachuj ∈ U , we introduce averification voterc+(uj) ≻ p′ ≻ b.

4. For each elementuj ∈ U , and each setSi ∈ S such thatuj ∈ Si, we introduce acovering
voterwith preference order:

c+(Si) ≻ c−(uj) ≻ b.

Further, for each candidatec ∈ U ∪ {c−(S1), c
+(S1), . . . , c−(Ss), c

+(Ss)}, we introduce
exactly so manyfiller voterswith preference orders of the formc ≻ b, so that, relative tob,
all these candidates receive the same score from the verification, covering, and filler voters
(taken together).

5. We introduce twop/p′-score voterswith preference ordersp′ ≻ [N · (Tp) + h] ≻ b and
p ≻ [N · (Tp)] ≻ b.

6. LetH be the number of voters introduced so far (clearly,H is polynomially upper-bounded
in the size of the input instance). We introduceH + 1 pairs of voters with preference orders

b ≻ C \ {b} andb ≻
←−−−−
C \ {b}. We refer to these voters as thebar-score voters.
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We set the committee size to be1 + s + r + 1, and we set the budgetB = h. We use unit
price functions. The internal tie-breaking is such thatp precedesp′, for eachSi ∈ S, c−(Si) pre-
cedesc+(Si), and for eachuj ∈ U , c−(uj) precedesc+(uj).

The correctness proof works analogous to that for Greedy-Approval-CC. To see this, let us
now analyze how Greedy-Borda-CC proceeds on the just-constructed election. As in the proof of
Theorem 6, it is clear that in the first iteration it picksb. Due to the values ofN andTs, in the
nexts iterations, for eachSi ∈ S, Greedy-Borda-CC either addsc−(Si) to the committee or it adds
c+(Si) to the committee. With a shift action of costh—by shiftingp forward in the votes of the set-
selection voters—we can select whichh of thec+(Si) candidates are introduced into the committee
(indeed, we need to introduceh for them to increasep’s score—in the final iteration—byh).

In the nextr iterations, for eachj Greedy-Borda-CC picks eitherc−(uj) or c+(uj). It is easy
to verify that it picks exactly thosec+(uj) candidates for which in the preceding iterations it has
picked at least one candidatec+(Si) such thatuj ∈ Si.

In the final iteration, Greedy-Borda-CC either picksp or p′. It picks the former one exactly if it
managed to pickh candidates fromS ′ := {c+(Sj1), . . . , c

+(Sjh)} and all candidatesc+(uj) (since
thenp gains additionalh points andp′ loses all points from the verification voters;p wins due to
tie-breaking). This happens if and only if we applied a shiftaction that ensured selection of thoseh
of thec+(Si) candidates that correspond to a set cover, that is,

⋃

S∈S′ S = U .
To complete the proof for the Greedy-Borda-CC case, we need to pick the values ofN , Ts, Tu,

andTp. It is easy to see that the valuesTp = (r · s · h)3, Tu = T 3
p , Ts = T 3

u , andN = T 3
s suffice.

This provesW[2]-hardness of SHIFT-BRIBERY for Greedy-Borda-CC. To see the inapproxima-
bility result, one can use an extension to the construction that works analogously to the extension in
the proof for Greedy-Approval-CC.

7 Conclusion

We studied the complexity of SHIFT BRIBERY for two families of multiwinner rules: SNTV, Bloc,
andk-Borda, which pickk best candidates according to appropriate single-winner scoring rules, and
the Chamberlin-Courant family of rules and their approximate variants, which focus on providing
good representatives. While we have shown low complexity for SNTV and Bloc (just like for the
single-winner rules on which they are based), we have shown that SHIFT BRIBERY is significantly
harder to solve fork-Borda than for its single-winner variant, Borda. The situation is even more
dramatic for the Chamberlin-Courant family of rules, wherein addition toW[1]- andW[2]-hardness
results, we also obtain inapproximability results.

We focused on the case where we want to ensure a candidate’s membership insomewinning
committee; it would also be natural to require membership inall winning committees. In fact, all
our results hold in this model as well. Below we briefly explain why this is so for the tractability
results (for the intractability ones, it requires minor tweaks).

For the tractability results with respect to thenumber of candidatesthis can be seen as follows.

• For SNTV, Bloc, andk-Borda, we can ensure in our ILP formulations that the score of p is
strictly greater than the score of the candidates which are not part of the committee.
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• For the round-based rules, the committee is always unique and, hence, our results already
apply.

• For the CC rules, we can build upon the maximum matching algorithm of Betzler et al. [4]
(trying matchings wherep is already matched to one part of the voters, and other ones, wherep
is not matched at all).

For the tractability results with respect to thenumber of votersor number of shifts, our algo-
rithms basically try all bribed elections wherep is in at least one winning committee (except for
the FPT-AS, where we overshoot; due to monotonicity, this does not hurt). Then, for each bribed
election we can adopt the WINNER DETERMINATION algorithm of Betzler et al. [4, Proposition 1]
that partitions the voters into groups of voters with the same representative and checks whetherp
is part of all cheapest matchings of representatives to candidates (basically checking all possible
partitions).

Putting an even more demanding bribery goal of involving more than one candidate to be-
come part of the winning committee(s) is left to future studies. Areas of future research also include
studying bribery problems for multiwinner settings with partial preference orders and studying mul-
tiwinner rules based on the Condorcet criterion. Furthermore, our fixed-parameter algorithms with
respect to the parameter number of candidates rely on integer linear programming formulations.
It seems challenging to replace these algorithms by direct combinatorial algorithms that give us a
better understanding of the problems and potentially better running times. This refers to a general
challenge in context of parameterized algorithms for Computation Social Choice problem [6, Key
question 1].
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