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Abstract

We study the (parameterized) complexity efiST BRIBERY for multiwinner voting rules.
We focus on the SNTV, Blods-Borda, and Chamberlin-Courant, as well as on approximate
variants of the Chamberlin-Courant rule, since the originke is NP-hard to compute. We
show that ®IFT BRIBERY tends to be significantly harder in the multiwinner settihgrt
in the single-winner one by showing settings wher@FS BRIBERY is easy in the single-
winner cases, but is hard (and hard to approximate) in theiwinher ones. Moreover, we
show that the non-monotonicity of those rules which are daseapproximation algorithms
for the Chamberlin-Courant rule sometimes affects the dexity of SHIFT BRIBERY.

1 Introduction

We study the complexity of campaign management—modeledea§+IFT BRIBERY problem—
for the case of multiwinner elections. In thei 8T BRIBERY problem we want to ensure that our
candidate is in a winning committee by convincing some ofubiers—at a given price—to rank
him or her more favorably. In particular, this models cargpaibased on direct meetings with vot-
ers, in which the campaigner presents positive featurdseofdéndidate he or she works for. While
the complexity of campaign management is relatively weiti®d for single-winner elections, it
has not been studied for the multiwinner setting yet (thesgl@owever, studies of manipulation and
control for multiwinner elections?, 29)).

Based on the preferences of the voters, the goal of a muligvialection is to pick a committee
of k£ candidates. These candidates might, for example, form the country’s nextiparént, be a

*An extended abstract of this paper appears in the Proceedifriige 30th AAAI Conference on Artificial Intelligence
(AAAI 16).
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group of people short-listed for a job opening, or be a sdeofis a company offers to its customers
(see the papers of Lu and Boutilie?q], Skowron et al. 4], and Elkind et al. { 7] for a varied de-
scription of applications of multiwinner voting). Sincestblection results can affect the voters and
the candidates quite significantly, we expect that theymill campaigns to achieve the most desir-
able results: a person running for parliament would wantréonmte her or his political platform; a
job candidate would want to convince the HR department obhéis qualities.

We study the standard, ordinal model of voting, where eatdrvanks the candidates from the
one he or she likes best to the one he or she likes least. We éocuwles that are based either on the
Borda scores of the candidates or on thefpproval scores. Briefly put, if we have candidates,
then a voter gives Borda scone— 1 to his or her most preferred candidate, scare 2 to the next
one, and so on; a voter givesApproval scorel to each of his or her topcandidates and scofeo
the other ones.

The most basic multiwinner rules simply pi¢lkcandidates with the highest scores (for example,
SNTV usesl-Approval scores, Bloc usésApproval scores, ank-Borda uses Borda scores). While
such rules may be good for short-listing tasks, they do neins® perform well for cases where
the committee needs to be varied (or represent the votepogtimnally; see the work of Elkind
et al. [L7]). In this case, we may prefer other rules, such as the Chdimi&ourant family of
rules [L1], which try to ensure that every voter is represented weldime member of the committee
(see the Preliminaries section for an exact definition).

Unfortunately, while the winners of SNTV, Bloc, akdBorda rules are polynomial-time com-
putable, this is not the case for the Chamberlin-Courargsr@Procaccia et al3p] and Lu and
Boutilier [25] show NP-hardness). We deal with this problem in two ways. Firstrahare FPT
algorithms for computing Chamberlin-Courant winners @aample, for the case of few voters).
Second, there are good approximation algorithms (due toriduBoutilier [25] and Skowron et
al. [39]). Following Caragiannis et all1p] and Elkind et al. 17], we consider these approxima-
tion algorithms as voting rules in their own right (socistimay use them in place of the original,
hard-to-compute ones).

The idea of the 8IFT BRIBERY problem is as follows. We are given an election and a prederre
candidatep, and we want to ensure thatis a winner (in our case, is a member of a winning
committee) by shifting him or her forward in some of the votasan appropriate cost, without
exceeding a given budget. The costs of shiffingprrespond to investing resources into convincing
the voters that our candidate is of high quality. For examipla company is choosing which of
its products to continue selling, the manager responsidle given product may wish to prepare
a demonstration for the company’s higher management. &ilyia person running for parliament
would invest money into meetings with the voters, appraeriaaflets, and so on. Thus, we view
SHIFT BRIBERY as a model of (a type of) campaigh management.

SHIFT BRIBERY was introduced by Elkind et allp, 16], and since then a number of other
researchers studied bot®T BRIBERY (e.g. Schlotter et al.33] and Bredereck et al7] 9]), and
related campaign management problems (e.g. Dorn and Sshlog], Baumeister et al.g], and
Faliszewski et al.70]). Naturally, the problem also resembles other bribenbfmms, such as the
original bribery problem of Faliszewski et al.q] or those studied by Mattei et ak§] and Mattei,



Goldsmith, and KlapperZ7]. We point the reader to the overview of Faliszewski and R¢ild] for
more details and references.

For single-winner elections, HBFT BRIBERY is a relatively easy problem. Specifically, it is
polynomial-time solvable for the-Approval rules. For the Borda rule, for which it 3P-hard,
there are a good polynomial-time approximation algoritirsl and exactt"PT algorithms []. In
the multiwinner setting the situation is quite differenbhélmain findings of our research are as
follows (see alsdable 1in Section 3:

1. The computational complexity ofHs-T BRIBERY for multiwinner rules strongly depends on
the setting. In general, for the cases of few candidates wdfil' algorithms while for the
cases where the preferred candidate is shifted by few positinly we find hardness results
(even though these cases are often easy in the single-wsetierg).

2. The computational complexity for the case of few voterstnstrongly depends on the un-
derlying scoring rule. Generally, for the rules based-@kpproval scores the complexity of
SHIFT BRIBERY tends to be lower than for analogous rules based on Bordasscor

We did not study such multiwinner rules as the STV rule, thenMe rule B0], or other Approval-
based rules (see, e.g., the works of Brams and Kilgejuarid Aziz et al. [L, 2]), in order to compare
our results to those for the single-winner setting, whilegiag the considered set of rules small.

2 Preliminaries

Elections and Voting Rules. For each integen, we set[n] := {1,...,n}. An electionE =
(C,V) consists of a set of candidat€s= {ci, ..., ¢, } and a collection of voterg = (vy,...,v,).
Each votemw is associated with a preference order, i.e., with a rankinigeocandidates in decreasing
order of appreciation by the voter. For exampl&}'it= {c1, c2, c3}, then by writingv: ¢; > ¢3 > ¢3
we mean that likes c; best, therry, and therrs. We writepos,(¢) to denote the position of candi-
datec in voterv’s preference order (e.g., in the preceding example we woal@pos, (c;) = 1).
When we write a subset C C of candidates in a description of a preference order, we rigtang
all members of4 in some fixed, easily computable order. If we pditin a preference order, then
we mean listing members of in the reverse of this fixed order.

Let E = (C, V) be an election withn candidates and voters. The Borda score of candidate
in the vote ofv, v € V, is ,(c) = m — pos,(c). The Borda score of in the electionE is
BE(c) = > ,cv Bu(c). The single-winner Borda rule elects the candidate withhiighest Borda
score (if there are several such candidates, they tie asevgpriFor eaclt € [m], we define the
t-Approval score as follows: for a candidateand voterv, of(c) = 1 if v ranksc among the
top ¢ positions and otherwise it i§; we setal;(c) = > o of(c). We define the single-winner
t-Approval rule analogously to the Borda rule.

A multiwinner voting ruleR is a function that, given an electiai = (C, V') and an integer
kE € [|C|], outputs a seR(E, k) of k-element subsets af'. Each sizek subset ofC' is called a
committeeand each member & (E, k) is called awinning committee



The most natural task that arises when considering (multin) voting rules is the task of de-
ciding whether a given candidate is among the winners (isgmrt of some winning committee).
We will refer to this task as the WINER DETERMINATION problem. Sometimes, winner determi-
nation procedures considered in the literature considightst different goals (e.g. computing the
score of a winning committee). However, all polynomial¢iff’PT, andXP winner determination
procedures for the rules we study in this paper can be moddisolve WINNER DETERMINATION.

We consider the following rules (below;, = (C, V') is an election and is the committee size):

SNTV Bloc, and k-Borda compute the score of each candidate and output the comroittee
k candidates with the highest scores (or all such committetwere are several). SNTV and Bloc
use, respectivelyl-Approval andk-Approval scores, whilé-Borda uses Borda scores. For these
rules winners can be computed in polynomial tifne.

Under theChamberlin-Courant rulegthe CC rules), for a committe®, a candidate € S is a
representative of those voters that rariighest among the members®fThe score of a committee
is the sum of the scores that the voters give to their reptatess (highest-scoring committees win);
Borda-CCuses Borda scores;Approval-CCusest-Approval scores. WWNER DETERMINATION
for CC rules isNP-hard 5, 32, but is in FPT when parameterized by the number of voters or
candidates].

Greedy-Borda-CGs a(1 — é)-approximation algorithm for the Borda-CC rule, due to Lulan
Boutilier [25]. (The approximation is in the sense that the score of thenuittee output by the
algorithm is at least 4 — % fraction of the score of the winning committee under Borda )C
The algorithm starts with an empty g8t and execute$ iterations, in each one adding W' the
candidate: that maximizes the Borda-CC score(®F U{c}).? For example, it always picks a Borda
winner in the first iteration. Greedy-Borda-CC always otgpiunique winning committee.

Greedy-Approval-CQworks in the same way, but useésApproval scores instead of Borda
scores. Itis 41 — %)-approximation algorithm fot-Approval-CC. We refer to-Approval-Greedy-
CCfort = [m'+(k)} (wherew is Lambert’s W functionw(k) is O(log k)) asPTAS-CCit is the
main part of Skowron et al.'s3p] polynomial-time approximation scheme for Borda-CC.

Parameterized Complexity. In a parameterized problem, we declare some part of the iput
the parameter(e.g., the number of voters). A parameterized problem iglfp@ameter tractable
(is in FPT) if there is an algorithm that solves it ifi(p) - |1|°()) time, where|I| is the size of a
given instance encoding,is the value of the parameter, affids some computable function. There
is a hierarchy of classes of hard parameterized problé®¥, C W[1] C W[2] C --- C XP. It

is widely believed that if a problem is hard for one of #ig:] classes, then it is not iRPT. The
notions of hardness and completeness for parameterizeskeslare defined through parameterized
reductions. For this paper, it suffices to use standard patyal-time many-one reductions that
guarantee that the value of the parameter in the problem eeeeto exclusively depends on the
value of the parameter of the problem we reduce from. Thewdtlg problems will be used in our
reductions.

There may be exponentially many winning committees, bistéisy to compute their score and to check for a subset
of candidates if it can be extended to a winning committee.

2If there is a tie between several candidates, then we assanéhe algorithm breaks it according to a prespecified
order.



Definition 1. An instance ofCLIQUE consists of a grapli = (V(G), E(G)) and an integeth. We
ask whether there is a set bivertices such that there is an edge between each two veftimaghe
set.

Definition 2. An instance ofMULTICOLORED INDEPENDENT SET consists of a graphG =
(V(G), E(G)), where each vertex has one bfcolors. We ask whether there atevertices of
pairwise-distinct colors such that no two of them are cote@dy an edge.

Definition 3. An instance ofSET COVER consists of a sdf of elements, a famil§ of subsets aof/,
and and integef. We ask whether there is a subsethafets fromS whose union ig/.

CLIQUE and MULTICOLORED INDEPENDENT SET are bothW[1]-complete while 8T COVER
is W[2]-complete (in all cases, the solutions sizis the parameter).

If a parameterized problem can be solved in polynomial timden the assumption that the
parameter is constant, then we say that it iXiA. Recall that membership IRPT additionally
requires that the degree of the polynomial is a constanpiesigent from the parameter. If a problem
is NP-hard even for some constant value of the parameter, themywhat it is paraNP-hard.

For details on parameterized complexity, we point to thekbaaf Cygan et al.12], Downey
and Fellows 14], Flum and GroheZ1], and Niedermeierdl].

3 Shift Bribery

Let R be a multiwinner rule. In thé&k-SHIFT BRIBERY problem we are given an electidii =
(C, V) with m candidates ana voters, a preferred candidate a committee sizé;, voter price
functions (see below), and an integBt the budget. The goal is to ensure thabelongs to at
least one winning committee (according to the @l and to achieve this goal we are allowed to
shift p forward in the preference orders of the voters. Howeverh eater v has a price function
my: [m] — N, and if we shiftp by i positions forward in the vote af, then we have to pay,(i).
We assume that the price functions are nondecreasingit(cannot cost less to shift our candidate
farther than to shift her or him nearer) and that the cost éfshdting p is zero (i.e.,m,(0) = 0
for eachv). Bredereck et al.q] have considered several different families of price fioxd. In this
paper we focus on two of them: unit price functions, whereefach voten it holds thatr, (i) = i,
and all-or-nothing price functions, where for each vatet holds thatr, (i) = ¢, for eachi > 0
(wheregq, is some voter-dependent value) and0) = 0.

A shift action is a vectofsy, .. ., s,,) of natural numbers, that for each voter specifies by how
many positions to shifp. If 5= (s1,...,s,) is a shift action, then we writehift(E, 3) to denote
the election obtained fror’ by shiftingp an appropriate number of positions forward in each vote.
If Il = (m,...,m,) are the price functions of the voters, then we writéI(s) = >_"" | m;(s;) to
denote the total cost of applyirg For a shift actiors, we define#s = " , s; and we call it the
number of unit shifts ir¥.

Formally, we definéR-SHIFT BRIBERY as follows.

30ur approach is a natural extension of the non-unique wimuetel from the world of single-winner rules. Naturally,
one might alternatively require thatis a member of all winning committees or put an even more deingrgoal that
would involve other candidates. We refer to a brief disausén the Conclusion section.



voting ruleR R-WINNER R-SHIFT BRIBERY
9 DETERMINATION || #candidatesr() | #voters () | #shifts )
o = t-Approval PV
L g *
> o P N FPT(0/1-pr.),FPT-ASC, o
£ < Borda FPT andW{1]-h (Thm.4) FPT
2
SNTV P (Thm.3)
Bloc px
5 k-Borda FPT(0/1-pr.) (Propl), | W[1]-h (Thm.5)
£ Borda-CC NP-h*, FPT-AS (Thm.2), and
2 FPT(n)?, and W/[1]-h (Cor.1+Cor.2) Para-NP-h®
= Approval-CC FPT(m)"
FPT (Thm.1
E Greedy-Approval-CC ( ) FPT (Prop.2)
PTAS-CC p* W[2]-h (Thm.7)
Greedy-Borda-CC W][1]-h (Cor.2)

Table 1: Overview of our complexity results for thei®8T BRIBERY problem (for reference, we
also mention the complexity of the MWER DETERMINATION problem). The results in each cell
apply to all voting rules listed in the leftmost column whigpan the height of the cell. All results
are for the case of unit price functions, with the exceptioithose marked aBPT(0/1-pr.), which
are for all-or-nothing price functions (many other resek$end to other price functions, but we do
not list them here)FPT-AS stands fol'PT approximation scheme (s@&eorem 2. Note that all
variants which ar&V[-]-hard are also iXP. Results marked by follow from the work of Elkind et
al. [16], by < follow from the work of Bredereck et al7], by & follow from the works of Procaccia
et al. [32] and Lu and Boutilier 25], by © follow from the work of Betzler et al.4], and by are
folk results.

Definition 4. Let R be a multiwinner voting rule. An instandeof R-SHIFT BRIBERY consists
of an electionE = (C,V), a preferred candidate € C, a committee sizé, a collectionIl =
(m,...,my,) Of price functions for the voters, and an integeythe budget. We ask whether there is
a shift actions'= (sy, ..., s,) such that:

1. II(5) < B, and
2. there is a committed” € R(shift(E, §), k) such thatp € W.

We refer to such a shift action assaiccessful shift actigrwe write OPT(/) to denote the cost of
the least expensive successful shift action.

Following Bredereck et al.7], we consider the most natural parameterizations by thebeum
of voters, by the number of candidates, and by the minimum numbef unit shifts in a successful
shift action.

Now, we formally defined all central concepts and problemsliet! in this work, using this,
Table 1summarizes our and some previous results. The remindersgbalper is structured as fol-
lows. InSection 4 we present findings applying to the multiwinner context adale. InSection 5



we present specific results for the voting rules SNTV, Blox] &Borda. InSection 6 we present
our results for Chamberlin-Courant rules and their appnaté variants. We conclude with a final
discussion and an outlook Bection 7

4 General Results

We start our discussion by providing several results thiheeapply to whole classes of multiwinner
rules (including many of those that we focus on) or that acwem using general, easily adaptable
techniques. These results form a baseline for our reseagehnding specific rules.

First, we note that for each of the rules that we studyiF$ BRIBERY with unit price func-
tions is inFPT when parameterized by the number of candidates. This riedloltvs by applying
the standard technique of modeling the problem through tegém linear program and invoking
Lenstra’s theoremZ4]. We believe that, using the MILP technique of Bredereck €3}, it is also
possible to generalize this result to all-or-nothing pfigections.

Note that the following theorem does not mention SNTV anccBlimce, as we will see in the
next section, for them the problem is everfin

Theorem 1. Parameterized by the number of candidat8s)FT BRIBERY with unit prices is in
FPT for k-Borda, Approval-CC, Borda-CC, Greedy-Approval-CC, PI&S, and Greedy-Borda-
CC.

In order to provelheorem 1 we introduce an algorithmic scheme similar to that of Dand a
Schlotter [L3] for single-winner SvaAp BRIBERY. We will make use of the fact that integer linear
programs (ILPs) can be solved in FPT time with respect to timalrer of (integer) variables (fol-
lowing a famous result by Lenstra4] which was later improved by Kanna@3] and by Fredman
and Tarjan 22]). We first introduce the algorithmic scheme and the bask farmulation. Then,
we show how to extend the ILP such that the algorithmic scheworis for k-Borda (by proving
Lemma J, for Approval-CC and Borda-CC (by provingemma 3, and for Greedy-Approval-CC,
PTAS-CC, and Greedy-Borda-CC (by provingmma 3.

The idea of the algorithmic scheme is to guess the membehg afihning committedl” C C,
|W| =k, p € W, and to verify the guess by an ILP. More precisely, we try aigible winning
committees in the outer loop of our algorithm and call theegsponding ILP for each of the (less
than2™) potential winning committees that containFor the round-based rules (Greedy-Approval-
CC, PTAS-CC, and Greedy-Borda-CC) we furthermore guessetiin w : [k] — W mapping
each “position” in the committee to a specific candidate frdm This allows to specify when
each member joined the committee according to the rouneebages and can be realized with an
additional factor ofc! < m! to the running time. For the ease of presentatioiffétdenote the set
containing the firsj members according to the functian that is, W’ = {w(j') | 1 < j’ < j}.

Observe that there are! different preference orders, and, by ordering them aridifrave can
consider theth preference order (fare [m!)).

Foreach € [m!] andj € [m!] we create an integer variab#s ; which represents the number of
voters which vote as thah preference order in the original election and vote agjthgreference



order in the bribed election. Based on these variables wetladbllowing constraints for each
i € [m!], ensuring that each original vote is turned into exactly loriieed vote:

Z Si,j = #(2)7

JjEM]

where #i) denotes the number of voters which vote as dtepreference order in the original
election. Then, we add the following constraint, ensurhrag the cost of our bribery action does not
exceed the budget:
> Si;-costi,j) < B,
i€[ml],j€[m!]

where codfi, j) is the budget needed to transform title preference order to thgth preference
order (and, for formal correctness, equBls- 1 if it is not possible at all by shifting only).

For eachi € [m!] we create an integer variablé which represents the number of voters which
vote as theth preference order in the bribed election. Based onSthevariables, we make sure
that theN; variables are correct, by adding, for each [m!], the following constraint:

Ni= ) S

JEmM!]
This describes the basic ILP which will be extended in thefgof the following lemmas.
Lemma 1. Parameterized by the number of candidatesk-Borda SHIFT BRIBERY is in FPT.

Proof. To makep a member of the winning committee férBorda we have to ensure that only
the other members of the winner committee may have a largeteBstore thap. Hence, for each

c ¢ W, we add the following constraint to the basic ILP, ensurimaf.tin the bribed electiom, has

at least as much Borda score (based ontheariables) as all candidates that are not in the winning

committee:
> Ni-Bilp) = Y Ni-Bilc

i€[ml] i€[m!]

wherep;(c) is the Borda score of candidatén theith preference order.
This finishes the description of the extended ILP. O

Lemma 2. Parameterized by the number of candidates, both Approval-CE8HIFT BRIBERY and
Borda-CCSHIFT BRIBERY are inFPT.

Proof. To makep a member of the winning committé& for Approval-CC (respectively, Borda-
CC) we have to ensure that no other committee has a largerodglpscore (respectively, Borda
score) than our guessed commitiée Hence, for each other committ&€’, we add the following
constraint to the basic ILP, ensuring that, in the bribedtala, the score ofV (based on the
N; variables) is at least as high as the scor&/of

Zgsz N>Z¢ZW

i€[ml] i€[ml]



where¢(i, X) is the score given by a voter voting as title preference order to the committée
Note that this can be computed in polynomial-time by sebgcthe right representative and taking
the underlying scoring rule, that is, either Approval or @mrinto account.

This finishes the description of the extended ILP. O

Lemma 3. Parameterized by the number of candidatesSHIFT BRIBERY is in FPT for Greedy-
Approval-CC, PTAS-CC, and Greedy-Borda-CC.

Proof. Since PTAS-CC is a special case of Greedy-Approval-CC ficmsfto describe the extension
of the ILP for Greedy-Approval-CC and Greedy-Borda-CC.

To makep a member of the winning committeld” for Greedy-Approval-CC (respectively,
Greedy-Borda-CC) we have to ensure that the candid&j¢ (which joined to the committee in
the jth round) maximizes the Approval score (respectively, BRadore) among all possible exten-
sions. Hence, for each rourichnd each: € C\Wﬂ' we add the following constraint to the basic ILP,
ensuring that, in the bribed election, the scor&itfis at least as large as the scoré®f ~! U {c}:

Z o(i, W) - N; > Z (i, Wit u{e}) - Ny,

i€[ml] i€[m!]

whereg(i, X) is the score given by a voter voting as tiie preference order to the committ&e
This finishes the description of the extended ILP. O

As second general result, we note that for the parametietizlly the number of voters we
can provide a strong, genett@P T approximation scheme for candidate-monotone r@esididate
monotonicity a notion introduced by Elkind et all{], requires that if a member of a winning com-
mittee is shifted forward in some vote, then this candidgliebglongs to some (possibly different)
winning committee.

Theorem 2. Consider parameterization by the number of voters.Rédie a candidate-monotone
multiwinner rule with anFPT algorithm for WINNER DETERMINATION. Then, for every positive
constant numbes there is anFPT algorithm that, given an instanceof R-SHIFT BRIBERY (for
arbitrary price functions), outputs a successful shifi@ets with cost at most1 + ¢)OPT(I).

Proof. Bredereck et al.q] show anFPT algorithm (parameterized by the number of voters) that,
given an instancd of SHIFT BRIBERY and a positive value, for each possible shift actiosi =

(s1,...,sp) tries a shift actiors” = (s/,...,s],) such that for each € [n] we haves; > s;, and
the cost ofs’ is at most(1 + ) greater than that of. This algorithm also works for multiwinner
rules. O

Among the rules considered in this work, only Greedy-Bo@a- Greedy-Approval-CC, and
PTAS-CC are not candidate-monotone (see the work of Elkiatl £17] for the argument regarding
Greedy-Borda-CC). Thus, the above result applies to altedh®aining rules.

For the case of all-or-nothing prices, we can strengtheraltioee result to an exaétPT algo-
rithm.



Proposition 1. Consider parameterization by the number of voters. LBt be a
candidate-monotone multiwinner rule with &PT algorithm for WINNER DETERMINATION.
Then, there is alrPT algorithm for R-SHIFT BRIBERY with all-or-nothing price functions.

Proof. SinceR is candidate-monotone and we have all-or-nothing pricesg\fery vote where we
shift the candidate forward, we can shifp to the top. In effect, it suffices to try all subsets of
voters: For each subset check whether shiffifgrward in each vote from the subset ensures the
victory of p without exceeding the budget. O

Using a very similar approach, we can solveiSr BRIBERY for those of our rules which are
based on approval scores, even for arbitrary price funst{emen the round-based ones). The trick
is that, with approval scores, for each voter we either shiftcandidate right to the first approved
position or we do not shift him or her at all. Thus, again,rigyall subsets of voters suffices.

Proposition 2. There is anFPT algorithm for SHIFT BRIBERY under Approval-CC, Greedy-
Approval-CC, and PTAS-CC, for the parameterization by thmlper of voters and for arbitrary
price functions.

Finally, using smart brute-force, we provideé® algorithms for $1IFT BRIBERY parameterized
either by the number of voters or the number of unit shifts (fibes that can be efficiently computed
in the given setting).

Proposition 3. Consider parameterization by the number of voters. Thanefery multiwinner
rule with anXP algorithm for WINNER DETERMINATION, there is anXP algorithm for SHIFT
BRIBERY and arbitrary price functions.

Proof. For each voter, we guess the amount which the preferred datedis shifted by. Since the
maximum amount isn, and we have: voters, we have)(m™) possibilities to check. For each
possibility we check if the preferred candidate is a memibanainning committee irKP time. [

Proposition 4. Consider parameterization by the number of unit shifts.nT far every multiwinner
rule with a polynomial-time algorithm fo'WINNER DETERMINATION, there is anXP algorithm
for SHIFT BRIBERY and arbitrary price functions.

Proof. The idea of the proof is similar to that behiftoposition 3 Let s be the number of unit
shifts that we can perform and letbe the number of voters. We can view a solution as a vector
of length at mosts, where an entry in théth position specifies the number of voters in whose
preference order we perform tith unit shifts. We try allO(n®) such vectors and for each we test if
the shift action it defines is within budget and ensures tiapteferred candidate is in the winning
committee. O

5 SNTV, Bloc, andk-Borda

We now move on to results specific to the voting rules SNTVcBEmdk-Borda. These rules pick
k candidates with the highestApproval, k-Approval, and Borda scores, respectively, and, so, one
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might suspect that the efficient algorithms for correspogdiingle-winner rules would translate to
the multiwinner setting. While this is the case for SNTV arlddfor k-Borda the situation is more
intricate. As a side effect of our research, we resolve tharpaterized complexity of BordaH&T
BRIBERY, left open by Bredereck et al/].

We first show that 8IFT BRIBERY is polynomial-time solvable for SNTV and Bloc. We use
the same algorithm for both SNTV and Bloc. Briefly put, theaideto guess the final score of the
preferred candidate and to compute the set of candidatebdta higher scores. Then, it is easy to
compute the cheapest way to ensure that alkbutl of them, wherek is the committee size, have
smaller score than the guessed scorg, ofhile ensuring thap indeed obtains this guessed score.

Theorem 3. SNTVSHIFT BRIBERY and BIocSHIFT BRIBERY are both inP (for arbitrary price
functions).

Proof. We use the same algorithm for both SNTV and Bloc. Considenputiinstanced with an
electionE = (C, V), wherep is the preferred candidate, and where the committee size@sr
algorithm proceeds as follows.

As first step, we guess the final score thatvould have after a successful bribery, denoted
by endscore(p). Since there are only polynomially many possibilities, ve& simply branch into
all possible values ofndscore(p) to realize the first step. Then, we consider theGetC C of
those candidates whose score is greater ¢hascore(p). It is clear that to ensure thatis in some
winning committee, we need to decrease the score of alt but candidates frond”’. If C’ contains
at mostk — 1 candidates, we do not need to decrease the scores of angagesdi

To this end, we sort the candidatesGh by the cost of decreasing their score (by appropriate
shifts ofp) to be equal tendscore(p), and pick all of the candidates @', besides thé — 1 most
expensive ones. Since for each bribed vote one can decteasedre of exactly one candidate, this
defines a shift action. If this shift action does not guarariteitp has scorendscore(p), then we
complement it by shifting to the first approved position in sufficiently many cheapedes, to
ensure thap has scorendscore(p).

If the thus computed shift action is within budget, we acc€iherwise, we try another guess
of endscore(p). If we try all possibilities without accepting, then we reje O

The situation fork-Borda is different. 8IFT BRIBERY is NP-hard for Borda due to Elkind
et al. [L6], so the same holds fok-Borda. We show that BordaH®T BRIBERY is W[1]-hard
for parameterization by the number of voters, resolving evipusly open case’]. This result
immediately implies the same hardness for all our Bordathasles.

Theorem 4. Parameterized by the number of voters, BoB#arT BRIBERY is W[1]-hard (even for
unit price functions).

Proof. We give a parameterized reduction from theiMICOLORED INDEPENDENT SET problem.

Let (G, h) be our input instance. Without loss of generality, we asstiratthe number of vertices
of each color is the same and that there are no edges betwdimeyef the same color. We write
V(G) to denote the set d@f’s vertices, and?(G) to denote the set @f’s edges. Further, for every

colori € [h], we write V(¥ = {v@, . ,’U((]i)} to denote the set of vertices of colbrFor each
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vertexv, we write E(v) to denote the set of edges incidentitd=or each vertex, we write(v) to
denote its degree, i.ei(v) = |E(v)| and we letA = max,cy () 6(u) be the highest degree of a
vertexG.

We form an instance of BordaH&T-BRIBERY as follows. We let the candidate set be

C={p}UV(G)UE(G)UF(G)uD' uD",

where F'(G), D', and D" are sets of special dummy candidates. For each verteve let F'(v)
be a set ofA — §(v) dummy candidates, and we 1EY(G) = U,cy () F'(v) and F(V, —i) =
Usev@) i F(v). We will specify D" and D" later. For each vertex, we define the partial prefer-
ence ordelS(v) to bev >~ E(v) = F(v). For each colof, we defineR(i) to be a partial preference
order that ranks first all members 6F, then all vertex candidates of colors other thiathen all
edge candidates corresponding to edges that are not in¢tarvertex of coloti, then all dummy
vertices fromF'(V, —i), and finally all candidates frorf»”.

We use unit price functions and we set the budget tBbe h(¢+ (¢—1)A). We setD’ and D"
to consist o2B dummy candidates each.

We create the following voters:

1. Foreach coloi € [h], we introduce four voters: voters andz, with the following preference
orders:

zi: S) = S@S) = - = S(WP) = p = R(i),
—  —

2} S) = S ) = - = Sl = p = R(0),

and votersy; andy; whose preference orders are reverses of those afidx’, respectively,
except that candidates from’ are ranked last in their votes as well.

2. We create a voter with the preference order
2 F(G)=V(G) = E(G)=D' =p= D",

and a voter;’ with the preference order that is obtained from that diy first reversing it,
and then shifting each member Bi{G) U E(G) by one position forward, and shifting by
B positions back.

Let L be the score op prior to executing any shift actions. The scores of the adatds in our
election are as follows: each candidatd/ifG) U E(G) has scordl + B + 1, and each candidate
in F(G) U D’ U D" has score at mogt + B.

We show that it is possible to ensure the victorypoih our election by a bribery of cost at
most B if and only if there is a multicolored independent set@of sizeh.

For the “if” case, we show that @& has a multicolored independent set, then there is a suotessf
shift action of costB in our election. Let us fix a multicolored independent setdaand, for each
colori € [h], let vs? be the vertex of colot from this set. For each pair of voters, =, we shiftp

so that inz; he or she ends up right in front ‘Dﬁ-)ﬂ (or p does not move if; = ¢), and inz} he
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or she ends up right in front ojﬁz) This way,p passes every vertex candidate frdfff) and every
edge candidate froréUte[q] E(vt(l))) \ E(v{”). This shift action cost# /A for every pair of voters

x;, o, S0, in total, costs exactli. Further, clearly, it ensures thatpasses every vertex candidate
so each of them has scofe+ B. Finally, since we chose vertices from an independent getye
edge candidate also has score at most B: If p does not pass some edg&etween vertices of
colorsi andj for a pair of voterse;, 7, thenp certainly passesin the pair of votes:;, a:; because

vi, andvl, are not adjacent.

For the “only if” case, we show that if there is a successfift stttion for our instance, then
there is a multicolored independent set €&r We note that a shift action of co&t givesp score
L + B. Thus, for the shift action to be successful, it has to callseaadidates in/(G) U E(G)
to lose a point. We claim that a successful shift bribery basse exactlyB/h = (¢ + (¢ — 1)A)
unit shifts for every pair of voters;, z;. Why is this so? Let us fix some colére [h]. Every
successful shift action has to decrease the score of evesxweandidate and;, =/ are the only
votes wherep can pass the vertex candidates froit without exceeding the budget. If we spend
less thanB/h units of budget on;, z, then there will be some vertex candidates corresponding to
a vertex fromV () thatp did not pass (and, in effect, which does not lose a point),sandwill not
be a winner. Thus, we know that a successful shift actiondgpBrih units of budget on every pair

of votersz;, z}. Further, we can assume that for each coltirere is a vertex!” € V@ such that
in z; candidatep is shifted to be right in front obgill and inz, candidatep is shifted to be right
in front of vg?. We call such a vertexg? selected|f for a given pair of voterse;, z; neither of the
vertices fromV (Y was selected, then there would be some vertex candidat&ithatp does not
pass. If for some pair of voters, verteXfug? is selected, then in this pair of votgsloes not pass

the edge candidates from(vgﬁ)). However, this means that in a successful shift action tleetssl

vertices form an independent set@®f If two verticeSUS) andvg) were selected, # j, and if there

were an edge connecting them, themwould not pass the candidatén either of the pairs of votes
T, T, Or xj, x; Since these are the only votes whgrean pase without exceeding the budget, in
this cases would havel. + B + 1 points,p would havel + B points and would lose. O

In effect, we have the following corollary (we discuss otBerda-based rules later).
Corollary 1. Parameterized by the number of votetsBorda-SHIFT BRIBERY is W([1]-hard.

Corollary 1shows that th&PT approximation scheme froifftheorem Zan presumably not be
replaced by airPT algorithm. ByProposition 1we also know thak-Borda-SHIFT BRIBERY is in
FPT for all-or-nothing prices and the parameterization by thmhber of voters.

The next result is, perhaps, even more surprising tha@morem 4 It turns out thatk-Borda-
SHIFT BRIBERY is W([1]-hard also for the parameterization by the number of unftshivhereas
Borda-SHIFT BRIBERY isinFPT. To this end, we describe a parameterized reduction fram k.

Theorem 5. Parameterized by the numbeof unit shifts,k-Borda SHIFT BRIBERY is W([1]-hard.

Proof. We provide a parameterized reduction from ¥#W¢l|-complete €IQUE problem in which
we are given a grap& with V(G) = {v1,...,v,} andE(G) = {ey, ..., e} and we ask whether
there is a set ok pairwise adjacent vertices @.
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Given an instance for the @QUE problem, create an instance feiBorda SHIFT BRIBERY as
follows. Set the budgeB := (’2‘) -(2+h3), use unit price functions, and set the size of the committee
k :=n—h+1. The candidate set8 = {p} UV (G) U D(G) U F, where the set®(G) andF’ are
defined as follows. Let! be a set ofB dummy candidates and for each edgieom the graph let

D(e) be a set of® dummy candidates. S&(G) := (UeeE(G) D(e)) U H. Define F' to contain

B + (h — 1) dummy candidates.
We form the set of voters as follows:

1. For each edge = {u, v} from G we introduce voterr, with preference orders > v >
D(e) = p>= D(G)\ D(e) = V(G) \ {u,v} = F, and votery. whose preference order is the
reverse of that ok, with candidates fron¥" shifted to the bottom positions.

2. We introduce two voters; andz’, wherez has preference ordéf(G) >~ F > p > D(G)
andz’ has preference ordét - p > V(G) = D(QG).

All vertex candidates have the same score in this electiothwee denote it byl.. Candidatey
has scord. — (h — 1) — B, and all remaining candidates have score lower thénote that we can
assume thafr has more thar(g) edges as otherwise it certainly does not contain a/’sizkque).
Intuitively, shifting p to the top positions in votes, corresponding to a size-clique is the only
way to ensure’s victory

It remains to show the correctness of the construction. Mogeisely, we show that contains
a clique of sizeh if and only if there is a successful shift action for our imsta of k-Borda-SHIFT
BRIBERY.

For the “only if” case, assume that there is a clique if siz@ G. Then, a successful bribery
can shiftp to the front of allz. voters corresponding to the edges inside this clique. TihEssg
additional B points and causes each vertex from the clique to losel points. In effect, there
aren — h vertex candidates with score higher than thap ahdh vertex candidates with the same
score a. Since all other candidates already had lower scqré®longs to at least one winning
committee.

For the “if” case, note thai can join some winning committee only if at ledstertex candidates
loseh — 1 points each. Without exceeding the budgeatan pass vertex candidates onlycinvotes.
Through simple arithmetic, we see that within a given budgetcan shiftp to pass some vertex
candidates in at mogt!) of these votes and, so, in each of them we can shiftthe top position.
That is, a successful shift action passes vertices comelapy to (}2’) edges. This can lead to
candidates losing at lealst- 1 points each (or, in fact, exactly— 1 points each) only if these edges
form a sizek clique. O

6 Chamberlin-Courant and Its Variants

We now move on to the Chamberlin-Courant (CC) rules and #mroximate variants. These rules
try to find a committee such that every voter is representdibyesome member of the commit-
tee. Recall that WUNER DETERMINATION for Borda-CC and Approval-CC is NP-hard but can be
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solved efficiently for the approximate variants. To someedi this difference in the computational
complexity is also reflected by our finding foH&T BRIBERY.

Note that many results for the CC-based rules (see®dte 1) follow from our results from
previous sections. For the parameterizations by the numibeandidatesTheorem 1gives FPT
results for all CC-based rules. For the parameterizatiothbyhnumber of voters, biProposition 2
we haveFPT results for Approval-CC, Greedy-Approval-CC, and PTAS:-G/& inherit W[1]-
hardness for Borda-CC and Greedy-Borda-CC fifimorem 4since both rules coincide with the
single-winner Borda rule in case of committee size: 1.

Corollary 2. SHIFT BRIBERY parameterized by the number of voterd¥g1]-hard for Borda-CC
and for Greedy-Borda-CC even for unit price functions.

By Theorem 2we have that there is diPT approximation scheme for Borda-CC. However,
sinceTheorem Xtrongly relies on candidate monotonicity of the rule, iesdmot apply to Greedy-
Borda-CC. Indeed, we believe that there is no constantifdcPT approximation algorithm for
Greedy-Borda-CC-$IFT BRIBERY (parameterized by the number of voters). So far we coulderov
this only for the case of weighted elections, i.e., for theecavhere each voter has an integer
weight w, and counts as, separate voters for computing the result of the election it for
the computation of the parameter). On the one hand, one saylthat using weighted votes goes
against the spirit of parameterization by the number ofrgoded, to some extent, we agree. On the
other hand, however, all ol#PT results for parameterization by the number of voters (idicig
the FPT approximation scheme) do hold for the weighted case. By anpaierized reduction from
the MULTICOLORED CLIQUE problem, we obtain the following.

Theorem 6. UnlessW[1] = FPT, Greedy-Borda-CCSHIFT BRIBERY with weighted votes is not
«-approximable for any constant, even inFPT time with respect to the number of voters and even
for unit price functions.

Proof. We first proveW][1]-hardness of the problem and then argue that this proof @mple
claimed inapproximability result.

We give a reduction from the MLTICOLORED CLIQUE problem for the case of regular graphs
which is W[1]-complete for the parameter solution siz€e.g. 6, Lemma 3.2]). To this end, let
G = (V(G), E(G)) be our input graph and létbe the size of the desired clique (and the number of

vertex colors). We use the following notation. For each cole [1], we letV® = {o{? v}

be the set of vertices fro@ with color :. For each vertex € V(G), we write E(v) to denote the
set of edges incident ta SinceG is regular, we letl be the common degree of all the vertices (i.e.,
for each vertew, |E(v)| = d). For each pair of distinct colofisj € [h], i < j, we write E(i, j) to
denote the set of edges between vertices of ciodmd vertices of coloy.

We make the following observation regarding Greedy-BdZda-In each iteration it picks a
candidate with the highest score, where this score is cardpas follows: LetiV be the set of
candidates already selected by Greedy-Borda-CC at thig.goonsider candidate and votery,
and letd be the candidate frori#” thatv ranks highest. Votes givesmax(0, pos,(c) — pos,(d))
points toc (i.e., the number of points by which addingto W would increase the score ofs
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representative). The score of a candidate in a given iteradithe sum of the scores it receives from
all the voters.

We form an instance of Greedy-Borda-C@&+8t BRIBERY as follows.

The candidates. We let the candidate set beé= {b,p, p'} UV (G)U E(G) U D, wherep is the
preferred candidate is p's direct competitor in the sense that eithpar p’ will be the committeel
is the “bar” candidate (see explanation below), &n a set of dummy candidates. Throughout the
construction we will introduce many dummy candidates anddwaot give them special names;
at the end of the construction it will be clear that we add gudyynomially many of them. We
will ensure thab, the bar candidate, is always chosen first into the commii@e-in essence—the
scores of all other candidates can be computed relativeSo when we describe a preference order,
we list only top parts of the voters’ preference orders,lwathdidateb. Candidatep is ranked last
in every vote in which we do not explicitly require otherwise

We also use the following notation in the descriptions ofgireference orders. For a number
by writing [L] in a preference order we mean introducibgnew dummy candidates that are put in
the following positions in this preference order, but thmaévery other preference order are ranked
belowbd (and, thus, afteb is selected receive no points from these voters).

The voters. We introduce the following voters, where, T,,, T.., and7}, are four large numbers
such thatV is much bigger thaff’,, T;, is much bigger thafl,, andT is much bigger thafi,; we
will provide their exact values later. Each voter has weigid unless specified otherwise.

1. For each colo§ € [h], we introduce twovertex-scorevoters with the following preference
orders:

VO — [N (T, — )] = b,
=
V@O [N - (T, —i)] = b,
and twovertex-selection votemsith the following preference orders:
VO~ p b,

TN
VO~ p b

2. For each pair of distinct coloisj € [h], ¢ < j, we introduce twadge-score voteraith the
following preference orders:
E(i,j) = [N - (Te — (i - h+ )] = b,
<—
E(’Lm]) - [N : (Te - (Z ' h+]))] - b>
and twoedge-selection votesgith the following preference orders:
E(i,j) = p = b,
S
E(i,j) = p>0b.

Each of the edge-selection voters has weight 4(g)n(d +1) (and these are the only voters
with non-unit weights).
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3. For each coloi € [h] we introduce twoverification voterswith the following preference
orders:

p - Ugi) - E(’UY)) == 0@ = B(ul) = b,
p=o) = Bw) ...~ vy) - E(vy)) > b.
4. We introduce the following two voters, thgp’-score voterswith the following preference
orders:

p =[N T, =0,
p>[N-T,+h(n+1)(d+1)] > b.

5. Let H be the total weight of voters introduced so far (cleadly,is polynomially upper-
bounded in the input size of the WMTICOLORED CLIQUE instance(G, h)). We introduce

H + 1 pairs of voters with preference ordérs- C \ {b} andb > C \ {b}. We refer to these
voters as thdar-score voters

We assume that the internal tie-breaking prefeit® p’—we could modify the construction
slightly if it were the other way round.
Committee size and budgetWe set the committee size to be= 1+ + (}) 4 1. We use unit

prices for the voters and we set the budget |V| — b+ |E| — (4).
We claim that for an appropriate choice®t T, 7., andT,, it is possible to ensure thatis in a
winning committee if and only if there is multicolored sizeclique for G. We now argue why this

is the case.

The idea. The general idea is to show that every shift action (evenéne-zector, that means
not bribing the voters) of costs at mdstleads to a committee that contains

1. the bar vertex,
2. for each coloi one candidate corresponding to a vertex of célor

3. for each color paifi, j},i # j one candidate corresponding to an edge incident to a vertex
of color¢ and to a vertex of colof

4. candidatep if the selected vertices and edges encode a multicolorgdesliotherwise the
committee containg’.

Furthermore, any such combination of vertices and edgebeaelected within the given budget,
that is, there is a successful shift action if a multicolockdue of sizeh exists.

Correctness. Observe that due to the bar-score voters, irrespective hewshift p within the
budget, Greedy-Borda-CC will first chooseThus, from this point on, we compute the score of all
candidates relative th(and, in later rounds, the other selected members of the dbeeybut there
is a limited number of such interactions).
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We now describe the nestt + (%) + 1 rounds, first describing the situation agifvere not
shifted, and then indicate how it could be changed with gmsie shifts.
After the first iteration, when is selected, for each colorc [h], every vertex i/ (1) has score:
2N-(T,—9)+(n+1)+ (2n+3) +((n+1)(d+1)).
N——

vertex score voters vertex-selection voters  verification voters

The points in the first bracket come from the vertex-scorengptin the second bracket from the
vertex-selection voters, and in the last bracket from theéfigation voters. Further, sincé&, is
much larger thafl, andT,, every non-vertex candidate has significantly lower score.

Thus, in the next rounds, for each color € [k, Greedy-Borda-CC adds into the committee
one vertex candidate of colér Note that as soon as it picks some vertex candidate of ¢othe
score of all the other vertex candidates of this color imrmatedy drops by at leagtV - (T, — i) and,
S0, their score is much too low to be selected.

By shifting candidatep in the vertex-selection votes, for each coloe [h] and each vertex
in V@ it is possible to ensure that exactly this vertex is sele¢itesuffices to ensure that every
other vertex candidate of this color loses one point dyepassing him or her). The costs of such
shifts are at mog/| — A in total.

In other words, we can assume that after thederations Greedy-Borda-CC picks one vertex
candidate of each color, and that by shift action of cost astrfié| — A it is possible to choose
precisely which ones.

In the next(g) iterations, Greedy-Borda-CC picks one edge candidateaichn @air of colors.
Not counting the verification voters, for each pair of colrg € [h], i < j, every edge candidate
connecting vertices of colorsandj has score:

(N(Te = (i - h+j)) + |E(i,j)| +1) + (W E(, )| +2)),

edge-score voters edge-selection voters

where the points from the first bracket come from the edgeesamters and the points in the second
bracket come from the edge-selection voters. Furtheryesiéch candidate receives less than
points from the verification voters.

SinceT, is much larger thaff},, and since by shifting forward in the votes of edge-selection
voters it is possible to removepoints from the scores of all but one edge candidate in &4¢ly).
Moreover, it is possible to precisely select for edcfi, j) which of its members is added to the
committee with a shift action of total cosE| — (%). Analogously to the case of vertices, note that
whenever some candidate frafi{i, j) is selected, the other ones lose so many points that they have
no chance of being selected in any of the following iteragion

In the final iteration, the algorithm either seleptor p. Candidate’ has scoréV - T,,, whereas
the score op depends on the vertex and edge candidates that were soréafuoéd into the com-
mittee. If we disregarded all committee members selected iafp would have score:

N-Ty+h(n+1)(d+1).

For each coloi € [h], however,p loses(n + 1)(d + 1) points from the verification voters. This
is true since some candidate frori?) is in the committee, we compujes score relative to this
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vertex candidate and not relativettdf these were the only points thatoses due to the committee
members already selected, then—Dby tie-breakingwould win against’. However, if for some
pair of colorsi,j € [h], i < j, the committee contains some edgéhat connects vertices that
are not both in the committee, thenloses at least one more point from the verification voters
(either for colori or for color j or for both) because at least one of these verification voserss

e ahead of all the vertex candidates from the committee. Thes selected. This means that
ends up in the committee if and only if due to an appropriaié abtion we select vertices and
edges corresponding to a multicolored clique. This protiescbrrectness of the reduction for an
appropriate choice oV, T),, T., andT,, which is discussed next.

The values oiN, T;,, T., andT},,. While one could pick tight precise values, for the correstne
of the proof it suffices to take, s&f, = ((5) - [V| - |E|)?, T. = T3, T, = T2, andN = T}.

Finally, we finally discuss the inapproximability resulaths implied by our reduction.
Inapproximability. Observe that, in fact, the above proof gives our inapprokilita result.
The reason is that for a given constant faciorwe could increaséV by the same factor and it

would be impossible fop to pass the bar candidate in any of the votes, even if we wespdnd
« times the necessary budget. In effect, do succeed we would still have to find a multicolored
clique. O

For the parameterization by the number of unit shift actitmash Borda-CC and Approval-CC
are paraNP-hard due to the hardness ofIMKER DETERMINATION.* For Greedy-Approval-CC,
PTAS-CC, and Greedy-Borda-CC we obt&f{2]-hardness results and inapproximability results.

Theorem 7. Parameterized by the total numbeof unit shifts,SHIFT BRIBERY is W|[2]-hard even
in case of unit prices for Greedy-Borda-CC, Greedy-Appk@@, and PTAS-CC. Further, unless
WI2] = FPT, in these cases the problem is meapproximable for any constat.

Proof. First, we show the result for Greedy-Approval-CC feApproval satisfaction function with
t > 3 (which includes PTAS-CC). Second, we show how the proofdd=a be adapted to obtain
the same result for Greedy-Borda-CC.

Greedy-Approcal-CC. We reduce from the Sr CoveR problem which isW|2]-hard parame-
terized by the set cover size Given an instancéS, U, h) of SET CoOvER with § = (S1,...,S5s)
denoting the given sets over the univetée= {uy,...,u,}, we construct a Greedy-Approval-CC
SHIFT BRIBERY instance as follows.

Important candidates. Our election will consist o|U| + 2|S| + 2 important candidates~or
each element € U we create twaelement candidates (u) andc™ (u). Analogously, we create
two set candidates ™ (S) and ¢ (S) for each setS € S. Furthermore, we create the preferred
candidatep and a candidatg’.

Dummy candidate. For each voter (to be specified later), we introduce uftte 1) further
dummy candidates. The dummy candidates will not have angcehto be part of the committee,

“The literature P5, 32] speaks of hardness of computing the score of a winning ct@enibut one can show that
deciding whether a given candidate is in some winning cotemisNP-hard as well.
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because each of them will only be approved once and therenatgglk important candidates that
have at least two approvals no matter how one bribes thaaietétowever, the dummy candidates
intuitively allow some voter to approve any numhérl < t’ < ¢, of important candidates by
approving the desired set of important candidates and sartteef dummy candidates which are
exclusively approved by this voter.

We have basically everything needed to explain the rough adi¢he construction.

The idea. Inthe unbribed election the candidateg«) andc™ (.S) for eachu € U andS € S
together with the candidatg are elected as committee. The decisive direct effect ofesstally
bribing the voters will be to decrease the score of at rhasindidates ™ (5). Doing this will replace
the corresponding™ (S) with ¢*(S) in the committee. Furthermore, each(u) with « € S for
some replaced candidateS) will then be replaced by ™ (). Finally our preferred candidagewill
replace candidatg’ in the committee if and only i€~ (u) is replaced by the corresponding (u)
for eachu € U.

Committee size and budgetAs already indicated in the description of the idea, we set th
budget equal to the siZeof the set cover and the committee size§0+ |U| + 1.
Next, we discuss the voters of the election that allow us fement the above idea.

Specifying the voters. Observe that for Greedy-Approval-CGi&T BRIBERY, specifying the
set of approved candidates, the last-ranked approveddatedihat is, the candidate at positign
and the price for shifting the preferred candidatio positiont completely describes the influence
of a voter to the unbribed and bribed election: Shiftjg¢p any position greater thanwill not
change the score of any candidate in any step of Greedy-&gp@C. Shiftingp to some position
< t will increase the score gf by one and decrease the score of the last-ranked approveidatn
by one—independently how far beyond positiowe shiftp. Hence, for each voter we simply say
which important candidates this voter approves, which ikt among the approved candidates is
ranked last, and the price of movipghe the first approved position.

The voters. The set of voters containg| many S-voters |S| - |U| many S-U-voters and
|U| manyU -voters:

e For each seb € S there is oneS-voter that approves™(S5) (and some dummy candidates)
such that it costs one to disapprave(.S) but approvep instead.

e For each set € S and element, € U there is oneS-u-voter that approves™ (u) only if
u € S and that approves approves(.S) (and some dummy candidates) in any case.

e For each element € U there is ones-voter that approveg’ andc™ (u).

There are further auxiliary voters that allow us to appraiety set the number of approvals for each
candidate:

e For eachS; € S there argS|® - |U|> — j voters that approve™(S) andc™(S) (and some
dummy candidates) and’| — 1 voters that only approve (S) (and some dummy candi-
dates).
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e For eachu; € U there argS|* - |U|* — i voters that approve™ (u) andc* (u) (and some
dummy candidates) andS € S | u; € S}| — 1 voters that only approve’ (u) (and some
dummy candidates).

e There argS|? - |U|? voters that approve andp’ (and some dummy candidates) ald-
1 voters that only approvg’ (and some dummy candidates).

Except for theS-voters, it is too expensive to bribe some voter with theatfthatp is approved
instead of some other candidate. This can be easily implatdry puttingp more than budget
many positions behind the last approved candidate.

This construction can clearly be computed in polynomialetiamd our parameter, the number
of unit shifts, which is upper bounded by the budget, is idahto the set cover sizk. Before we
prove the correctness of the reduction, let us briefly ds¢psoperties of) the unbribed election.

Scores, ties, and the unbribed electiorkirst, consider the scores of the candidates in the very
first round of the voting rule which are as follows.

e Both, candidate(S;) and candidate™*(S;) have|S|® - |U|> — j + |U| approvals.

e Both candidate=~ (u;) and candidate (u;) have|S|* - |[U|* —i + |{S € S | u; € S}|
approvals.

e Candidatey’ has|S|? - |U|? + |U| + h — 1 approvals.
e Candidatey has|S|? - |U|? approvals.

We assume that candidate(-) is always preferred to candidate (-) and candidate’ to candi-
datep by the tie-breaking of Greedy-Approval-CC.

It is easy to verify that in the unbribed election the cantiidawill join the committee in the fol-
lowing order:¢=(S1), ¢ (S2),...,¢ (Ss), ¢ (u1), ¢ (ug),...,¢ (u,) and finallyp’. To see this,
observe that each pair of candidates-) andc™(-) is approved by almost the same set of candi-
dates. As soon as one of (-) andc™(+) joins the committee, the other loses nearly all approvals
and has no chance to join into the committee.

The possible impact of shift actionsThe only shift actions with any effect that can be per-
formed within the given budgeB = h are to shiftp forward in the preference lists of up fo
set voters. Let™ (S;,),...,c (S5;,) be the candidates that were originally approved by the bribe
voters instead of approving We callS* := {S;,,S},,...,95;,} the selected setsApplying the
corresponding shift actions will decrease the score of eaddidatec=(S;,),1 < ¢ < h, by one
and increase the score pfoy h. It is easy to verify that, in effect, for eadh< ¢ < h, Greedy-
Approval-CC will selectc™ (S},) instead ofc™(S},) to join the committee. Now, observe that for
eachu € Sj,, there is one voter that approves(S;,) andc¢™ (u). This means that the score of
eachc™ (u) for u € (Jgg- S is decreased by at least one after the fif$tcandidates joined the
committee. Hence, it*(S;,) joins the committee instead of (S;,), then alsoct (u) joins in-
stead ofc~ (u). Finally, observe that, after+ r candidates joined the committee, the scorg’a$
decreased by the number of candidatééu) that joined the committee instead ©f (u).

The reduction can be adapted to work for any tie-breaking.
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Correctness. We show that there is a subset/otets fromS whose union idJ if and only if
there is a successful set of shift actions of dast

For the “only if” case, assume that there is a 86tC S of h sets whose union i&. Then,
bribing theS-voter for eachS € S’ to approvep instead of-~ (S) costsh and successfully makes
a winner: From the above discussion about the impact of abtfons, we can immediately infer
that the score of each candidate(u),w € U, is decreased by one and, hence, the scorg isf
decreased byl/|. Furthermore, the score pfwas increased bl. Thus,p has scoréS|? - |U|? + h
whereag’ has scoréS|? - |U|? + h — 1. This means that joins the committee in the last round of
Greedy-Approval-CC.

For the “if” case, assume that there is a set of shift actioitls @ostsh that makes join the
committee. Since can gain at mosk points,p’ has to lose at least/| points. However, the only
(important) candidates that are approved together wfithy some voters are the element candi-
datesct (u),u € U. To decrease the score @fby |U], all these candidates" (u),u € U, must
join the committee instead of (u),u € U. From the above discussion about the impact of shift
actions, we can infer that the union of the selected sEt is

Inapproximability. By a slight adaption of the above construction we can cormclfficked-
parameter) inapproximability: First, ensure that everhinita budget oty - B, one can only afford
to bribe the set voters. This can be reached by putting- 1) - B dummy candidates between
and the first approved candidate for all but the set votersoi®k introduce another pair of impor-
tant candidateg andd’ and let the set voters additionally appravelntroduce|S|? - |U|® voters
that approvel andd’ (and some dummy candidates) disd — & voters that only approve’ (and
some dummy candidates). Introdue® - |U | voters that approvg’ andd (and some dummy candi-
dates) and furthelS| - |U| voters that only apprové’ (and some dummy candidates). Increase the
committee size by one.

The first|S| + |U| rounds of the Greedy-Approval-CC procedure clearly wordlagously to
the original construction. As long as less tharset voters are bribed, candidatewill join the
committee in roundS| + |U| + 1. (We assume that Greedy-Approval-CC preféts d’ when there
is a tie.) Then, candidaté loses almost all points and has no chance to join the comersttel
candidatey’ loses all additional approvals (introduced by the extamsicthe construction). That is,
the last round works analogously to the original constamctHowever, if one bribes more than
set voters, then candidaféwill join the committee in roundS|+ |U| + 1, p’ keeps the additionally
introduced approvals, angdhas no chance to join the committee in the last round.

It follows that, even with a budget ef - B, one can only makg become member of a winning
committee if one selects a subset of at mosets fromS whose union ig/.

Greedy-Borda-CC. We give a reduction from theeES CovER problem. The basic idea of the
construction is very similar to that in the proof for Greetlgproval-CC. However, to implement
this idea, we also use some concepts from the prodtheforem 6 To this and, we use the same
notational conventions as in the proofTieorem §and we use the bar candidate in the same way.

Given an instancéS, U, h) of SET CovERwith § = (51, ..., Ss) denoting the given sets over
the universel' = {uq,...,u,}, we construct a Greedy-Borda-CGi®T BRIBERY instance as
follows.
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We form the following set of candidates:

1
2
3
4

. We introduce the preferred candidatehis or her opponent, and the bar candidate.
. For each sef; € S, we introduce two candidates (.5;) andc™ (S;).
. For each element; € U, we introduce candidates (u;) andc™ (u;).

. We introduce sufficiently many dummy candidates.

Let N, Ty, Ty, andT,, be some sufficiently large numbers such thats much larger thaf’,
T is much larger thai’,, andT;, is much larger thaif}, (we will specify their values later). We
introduce the following voters:

1

. For each se$; € S, we introduce tweset-score voterwith preference orders

c(S;) = ¢ (S;) = [N - (Ts —4)] = b,
H(S) = ¢ (S;) = [N - (Ts — )] = b.

Further, for each set we introduce twet-selection votenwith preference orders

¢ (S;) = p b,
ct(S;) = [1] = b.

. For each element; € U, we introduce twalement-score votemsith preference orders:

. For eachy; € U, we introduce aerification voterc* (u;) > p’ > b.

. For each element; € U, and each se$; ¢ S such that; € S;, we introduce aovering
voter with preference order:
ct(Si) = ¢ (uj) = b.
Further, for each candidatec U U {¢™(S1),c¢"(S1), ...,¢ (Ss), ¢ (Ss)}, we introduce
exactly so manyiller voterswith preference orders of the forms> b, so that, relative ta,
all these candidates receive the same score from the védficaovering, and filler voters
(taken together).

. We introduce twa/p’-score voterswith preference orders’ - [N - (T,,) + h] >~ b and
p > [N-(Tp)] = b.

. Let H be the number of voters introduced so far (cleaHyis polynomially upper-bounded
in the size of the input instance). We introdulle+ 1 pairs of voters with preference orders

%
b= C\ {b}andb > C\ {b}. We refer to these voters as thar-score voters
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We set the committee size to e+ s + r + 1, and we set the budgé? = h. We use unit
price functions. The internal tie-breaking is such tharecedeg/’, for eachS; € S, ¢ (S;) pre-
cedes:™(.5;), and for eachu; € U, ¢~ (u;) precedes™ (u;).

The correctness proof works analogous to that for Greedyéval-CC. To see this, let us
now analyze how Greedy-Borda-CC proceeds on the justizatst election. As in the proof of
Theorem §it is clear that in the first iteration it picks Due to the values oV and T}, in the
nexts iterations, for eacly; € S, Greedy-Borda-CC either adds (S;) to the committee or it adds
¢*(S;) to the committee. With a shift action of cdst—by shifting p forward in the votes of the set-
selection voters—we can select whitlof thec™ (S;) candidates are introduced into the committee
(indeed, we need to introduéefor them to increasg’s score—in the final iteration—by).

In the nextr iterations, for eacly Greedy-Borda-CC picks either (u;) or ¢t (u;). It is easy
to verify that it picks exactly those™ (u;) candidates for which in the preceding iterations it has
picked at least one candidat&(.S;) such that; € S;.

In the final iteration, Greedy-Borda-CC either pigker p'. It picks the former one exactly if it
managed to pick candidates fron$’ := {¢*(S;,),...,c"(S;,)} and all candidates’ (u;) (since
thenp gains additionak points andy’ loses all points from the verification votegswins due to
tie-breaking). This happens if and only if we applied a shifion that ensured selection of thdse
of thec™(S;) candidates that correspond to a set cover, thafis,s S = U.

To complete the proof for the Greedy-Borda-CC case, we nepitk the values ofv, T, T,
andT7,. Itis easy to see that the valu€s = (r - s - h)3, T, = T3, T, = T3, andN = T3 suffice.

This provesW|2]-hardness of SIFT-BRIBERY for Greedy-Borda-CC. To see the inapproxima-
bility result, one can use an extension to the constructiabhworks analogously to the extension in
the proof for Greedy-Approval-CC. O

7 Conclusion

We studied the complexity oft8FT BRIBERY for two families of multiwinner rules: SNTV, Bloc,
andk-Borda, which picki best candidates according to appropriate single-winr@irggrules, and
the Chamberlin-Courant family of rules and their approxenaariants, which focus on providing
good representatives. While we have shown low complexitySidTV and Bloc (just like for the
single-winner rules on which they are based), we have shbain3HIFT BRIBERY is significantly
harder to solve fok-Borda than for its single-winner variant, Borda. The dituais even more
dramatic for the Chamberlin-Courant family of rules, whieraddition toW[1]- andW|2]-hardness
results, we also obtain inapproximability results.

We focused on the case where we want to ensure a candidateibership insomewinning
committee; it would also be natural to require membershigllinvinning committees. In fact, all
our results hold in this model as well. Below we briefly explaihy this is so for the tractability
results (for the intractability ones, it requires minor ake).

For the tractability results with respect to thember of candidatethis can be seen as follows.

e For SNTV, Bloc, andk-Borda, we can ensure in our ILP formulations that the scomeis
strictly greater than the score of the candidates which ar@art of the committee.
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e For the round-based rules, the committee is always unigde tence, our results already
apply.

e For the CC rules, we can build upon the maximum matching afgorof Betzler et al. 4]
(trying matchings whergis already matched to one part of the voters, and other orresew
is not matched at all).

For the tractability results with respect to thember of voter®r number of shiftsour algo-
rithms basically try all bribed elections whepes in at least one winning committee (except for
the FPT-AS, where we overshoot; due to monotonicity, thissdoot hurt). Then, for each bribed
election we can adopt the MWER DETERMINATION algorithm of Betzler et al.4, Proposition 1]
that partitions the voters into groups of voters with the sagpresentative and checks whether
is part of all cheapest matchings of representatives toidates (basically checking all possible
partitions).

Putting an even more demanding bribery goal of involving entiran one candidate to be-
come part of the winning committee(s) is left to future sasdiAreas of future research also include
studying bribery problems for multiwinner settings wittrial preference orders and studying mul-
tiwinner rules based on the Condorcet criterion. Furtheemour fixed-parameter algorithms with
respect to the parameter number of candidates rely on integar programming formulations.
It seems challenging to replace these algorithms by dirttinatorial algorithms that give us a
better understanding of the problems and potentially betiening times. This refers to a general
challenge in context of parameterized algorithms for Capan Social Choice problent] Key
guestion 1].
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