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Duality in spin systems via the SU(4) algebra
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We provide several examples and an intuitive diagrammatic representation demonstrating the use
of two-qubit unitary transformations for mapping coupled spin Hamiltonians to simpler ones and vice

versa. The corresponding dualities may be exploited to identify phase transition points or to aid the
diagonalization of such Hamiltonians. For example, our method shows that a suitable one-parameter
family of coupled Hamiltonians whose ground states transform from an initially factorizing state
to a final cluster state on a lattice of arbitrary dimension is dual to a family of trivial decoupled
Hamiltonians containing local on-site terms only. As a consequence, the minimum enery gap (which
determines the adiabatic run-time) does not scale with system size, which facilitates an efficient and
simple adiabatic preparation of e.g. the two-dimensional cluster state used for measurement-based
quantum computation.

PACS numbers: 64.70.Tg, 05.30.Rt, 03.65.Ud

I. INTRODUCTION

In order to diagonalize a nontrivial Hamiltonian, it is
often mapped via a (unitary) similiarity transformation
to a decoupled one, which consists of a sum of operators
locally acting on distinct parts. The advantages of this
procedure are obvious: Decoupled Hamiltonians may be
diagonalized readily when the size of their local parts is
small (e.g., only one qubit or spin-1/2). The spectrum
is unaffected by the similiarity transformation and the
eigenvectors of the original Hamiltonian may be obtained
by applying the inverse similarity transformation to the
simple eigenvectors of the decoupled Hamiltonian.
Single-qubit rotations can be described by the symme-

try group SU(2), which is intimately related to the group
of three-dimensional rotations SO(3). Our intuitive un-
derstanding of the latter makes local duality transforma-
tions such as

U

[

∑

i

giσ
x
i + Jiσ

z
i σ

z
i+1

]

U † =
∑

i

giσ
z
i + Jiσ

x
i σ

x
i+1 (1)

quite simple to follow. In contrast, general two-qubit
transformations SU(4) ≃ SU(2) ⊗ SU(2) lead to less
obvious dualities. However, they are of significant inter-
est, since all unitary transformations on an n-qubit sys-
tem may be expressed by products of (in the worst case
O{2n}) two-qubit transformations. E.g., the active field
of quantum information has essentially been so attrac-
tive since some unitary transformations (as the quantum
Fourier transform) may be expressed by a small (polyno-
mial in n) number of two-qubit operations only [1].

∗Electronic address: gernot.schaller@tu-berlin.de
†Electronic address: schuetz@theo.physik.uni-due.de

Here, we will follow a different objective: Instead of
trying to find an optimal quantum circuit for computa-
tion, we would like to find an optimal unitary that de-
couples a given Hamiltonian. For simplicity, we will con-
strain ourselves to two-qubit rotations only. More gen-
eral unitaries can of course be constructed from products
of two-qubit rotations, it is however also conceivable to
construct them directly from the generators of SU(N).

II. SU(4) PROPERTIES AND NOTATION

The Hilbert space of two qubits is by construction four-
dimensional. Therefore, all linear operators acting on
this Hilbertspace can be formed by complex linear com-
binations of 16 basis matrices, which we can choose to
be hermitian and trace-orthogonal. These basis matrices
can be easily constructed from the direct product of the
identity matrix and the Pauli matrices acting on either
subspace, i.e., with choosing

Σαβ =
1

2
σα
1 ⊗ σβ

2 , (2)

where α, β ∈ {◦, x, y, z} and σ◦ ≡ 1 denotes a
two by two identity matrix, we automatically obtain
a hermitian basis which satisfies trace orthogonality
Tr

{

ΣαβΣγδ
}

= δαγδβδ. Similarly, the generators of all
SU(N) may be (recursively) related to the generators of
the factors of SU(N1) and SU(N2), where N = N1N2.
For SU(4), it is evident that Σ◦◦ will only give rise

to a global phase. Furthermore, it is evident that
Σ◦x,Σ◦y,Σ◦z act non-trivially only on the second (right)
qubit and similarly Σx◦,Σy◦,Σz◦ only on the first (left)
qubit. These transformations correspond to local rota-
tions of the first or second qubit only, respectively, and
cannot transform local and non-local terms into each
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other. This is different for rotations from Σxx to Σzz,
which are in the focus of our present paper.
The most general unitary operation on 2 qubits can be

parameterized by 16 real parameters, i.e.,

U = exp







i
∑

α,β∈{◦,x,y,z}

aαβΣ
αβ







, (3)

where aαβ ∈ R. If we are not interested in a global phase,
we can set a◦◦ = 0. Prominent cases are for example the
controlled NOT gate

SCX = exp
{

i
π

2
[Σ◦◦ − Σ◦x − Σz◦ +Σzx]

}

= Σ◦◦ +Σ◦x +Σz◦ − Σzx , (4)

the controlled Z gate

SCZ = exp
{

i
π

2
[Σ◦◦ − Σ◦z − Σz◦ +Σzz ]

}

= Σ◦◦ +Σ◦z +Σz◦ − Σzz , (5)

and the SWAP gate

SSWAP = exp
{

i
π

2
[−Σ◦◦ +Σxx +Σyy +Σzz]

}

= Σ◦◦ +Σxx +Σyy +Σzz . (6)

When considering rotations around a single axis Σαβ

by an angle η ∈ R only, i.e., Uαβ = exp
(

iηΣαβ
)

, one
observes that these rotate four pairs of axes into each
other while keeping the remaining ones invariant, see ta-
ble I. The observation that single-axis rotations around
the axes from Σxx to Σzz may resolve couplings when the
rotation angle η = π/2 yields a tool for the mapping of
complicated (coupled) Hamiltonians towards simple (de-
coupled) ones.
For fixed-angle rotations α = π/2 – and in the follow-

ing we will constrain ourselves to this case – these map-
pings may also be represented graphically: Identifying
the σx, σy, and σz operators with squares, hexagons and
circles, respectively, we may express local fields by dis-
connected symbols, whereas many-body operators may
be expressed by connected symbols. The symbols may
be grouped at different positions to indicate which qubit
they are acting on and two qubits on which unitary op-
erations act may be highlighted. Note that we have not
specified prefactors, which are simply transferred to the
result. Therefore, our results equally apply to models
with different prefactors (e.g., in the presence of disor-
der). For later reference we summarize the non-trivial
action of the CZ gate

SCZ
ij Σ◦x

ij S
CZ
ij = Σzx

ij , SCZ
ij Σ◦y

ij S
CZ
ij = Σzy

ij ,

SCZ
ij Σx◦

ij S
CZ
ij = Σxz

ij , SCZ
ij Σy◦

ij S
CZ
ij = Σyz

ij ,

SCZ
ij Σxx

ij S
CZ
ij = Σyy

ij , SCZ
ij Σxy

ij S
CZ
ij = −Σyx

ij , (7)

where we remind the reader that the gate is its own
inverse. Obviously, the gate also commutes with itself

axis pair 1 pair 2 pair 3 pair 4

Σ◦x Σ◦y (−)
↔ Σ◦z Σxy (−)

↔ Σxz Σyy (−)
↔ Σyz Σzy (−)

↔ Σzz

Σ◦y Σ◦x (+)
↔ Σ◦z Σxx (+)

↔ Σxz Σyx (+)
↔ Σyz Σzx (+)

↔ Σzz

Σ◦z Σ◦x (−)
↔ Σ◦y Σxx (−)

↔ Σxy Σyx (−)
↔ Σyy Σzx (−)

↔ Σzy

Σx◦ Σy◦ (−)
↔ Σz◦ Σyx (−)

↔ Σzx Σyy (−)
↔ Σzy Σyz (−)

↔ Σzz

Σy◦ Σx◦ (+)
↔ Σz◦ Σxx (+)

↔ Σzx Σxy (+)
↔ Σzy Σxz (+)

↔ Σzz

Σz◦ Σx◦ (−)
↔ Σy◦ Σxx (−)

↔ Σyx Σxy (−)
↔ Σyy Σxz (−)

↔ Σyz

Σxx Σ◦y (−)
↔ Σxz Σ◦z (+)

↔ Σxy Σy◦ (−)
↔ Σzx Σz◦ (+)

↔ Σyx

Σxy Σ◦x (+)
↔ Σxz Σ◦z (−)

↔ Σxx Σy◦ (−)
↔ Σzy Σz◦ (+)

↔ Σyy

Σxz Σ◦x (−)
↔ Σxy Σ◦y (+)

↔ Σxx Σy◦ (−)
↔ Σzz Σz◦ (+)

↔ Σyz

Σyx Σ◦y (−)
↔ Σyz Σ◦z (+)

↔ Σyy Σx◦ (+)
↔ Σzx Σz◦ (−)

↔ Σxx

Σyy Σ◦x (+)
↔ Σyz Σ◦z (−)

↔ Σyx Σx◦ (+)
↔ Σzy Σz◦ (−)

↔ Σxy

Σyz Σ◦x (−)
↔ Σyy Σ◦y (+)

↔ Σyx Σx◦ (+)
↔ Σzz Σz◦ (−)

↔ Σxz

Σzx Σ◦y (−)
↔ Σzz Σ◦z (+)

↔ Σzy Σx◦ (−)
↔ Σyx Σy◦ (+)

↔ Σxx

Σzy Σ◦x (+)
↔ Σzz Σ◦z (−)

↔ Σzx Σx◦ (−)
↔ Σyy Σy◦ (+)

↔ Σxy

Σzz Σ◦x (−)
↔ Σzy Σ◦y (+)

↔ Σzx Σx◦ (−)
↔ Σyz Σy◦ (+)

↔ Σxz

TABLE I: (Color Online) Effect of SU(4) rotations from
Eqn. (2) by an arbitrary angle η ∈ R around the single axis
specified by the first column. For each transformation, only
the displayed four pairs of axes are rotated into each other
while the remaining axes are kept invariant. The direction of
the rotation is indicated by the sign and the order in every

pair: For every pair in row Σαβ , an entry Σγδ (±)
↔ Σηλ denotes

the identity e+iηΣαβ

Σγδe−iηΣαβ

= cos(η)Σγδ
± sin(η)Σηλ.

The first six rotations do not mix between the uncoupled (Σ◦x

to Σz◦) and coupled (Σxx to Σzz) sector, whereas the remain-
ing 9 rotations mix four axes from the coupled with four from
the uncoupled block. In particular, for η = π/2 we obtain a
unitary transformation mapping coupled terms in a Hamilto-
nian to uncoupled ones and vice versa.

when applied to different qubits and is symmetric, i.e.,
SCZ
ij = SCZ

ji . Furthermore, we provide the action of the
CNOT gate

SCX
ij Σ◦y

ij S
CX
ij = Σzy

ij , SCX
ij Σ◦z

ij S
CX
ij = Σzz

ij ,

SCX
ij Σx◦

ij S
CX
ij = Σxx

ij , SCX
ij Σy◦

ij S
CX
ij = Σyx

ij ,

SCX
ij Σxy

ij S
CX
ij = Σyz

ij , SCX
ij Σxz

ij S
CX
ij = −Σyy

ij , (8)

which is also its own inverse. The other products of Pauli
matrices – not mentioned in Eqns. (7) and (8) – are left
invariant. One could now in principle start from a known
model and generate further models by arbitrarily apply-
ing two-qubit gates. To demonstrate the usefulness of
our dualities, we will however rather try to map models
with unknown properties to models with known ones.
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III. DISCRETE DUALITIES FOR

ONE-DIMENSIONAL SYSTEMS

A. Dualities of the Ising model in a transverse field

The quantum Ising model in a transverse field

H = −g

N
∑

i=1

σx
i − J

N−1
∑

i=1

σz
i σ

z
i+1 (9)

may be mapped for all g and J by a non-local Jordan-
Wigner transformation to a system of non-interacting
fermions [2]. In the thermodynamic limit, it undergoes
a quantum phase transition of second order at the criti-
cal point J = g and is the paradigmatic exactly solvable
model within its universality class. Its closed version (ob-
tained by simply adding a −Jσz

Nσz
1 term) even admits a

simple analytic diagonalization at finite sizes N [3].
First, by applying SU(4) unitaries to the Ising

model (9), we find that it is self-dual in the infinite
size limit N → ∞, via the unitary transformation
SCX
12 . . . SCX

N−1,N . This duality can be deduced alge-

braically from Eq. (4) or graphically from the diagram-
matic representation in Fig. 1.

FIG. 1: (Color Online) Unitary mapping of the open Ising
model with N = 6 spins by a sequence of CNOT gates
SCX
12 SCX

23 SCX
34 SCX

45 SCX
56 as in Eq. (8). Boxes in the background

denote qubits, green squares and red circles denote σx and σz

operators, respectively, and orange connections denote many-
body interactions. Filled boxes denote the intended action of
a CNOT gate (4) on the respective qubits, which has been per-
formed in each row below (compare legend on the right). For
example, the second row is obtained from the first by apply-
ing a SCX

56 gate. Finally, applying local rotations for all spins
demonstrates self-duality of the Ising model in a transverse
field (up to boundary terms negligible in the large N-limit).

Note that since the CNOT gates do not commute with
each other, their order is relevant. This duality fixes the
phase transition point (if existent) to J = g, see also [4]
for a similar argument. For finite chain lenghts however,
one will map to an Ising model with modifications in the
boundaries, see Fig. 1. When the prefactors are taken
into account, we see that local field terms are mapped to

ferromagnetic interactions and vice versa, such that we
obtain that Eq. (9) is dual to

H ′ = −J

N
∑

i=2

σz
i − g

N−1
∑

i=1

σx
i σ

x
i+1 − gσx

N . (10)

A similiar result can also be obtained from the Kramers-
Wannier self duality [5, 6].
Second, from properties of the CZ-gate (7) it directly

follows that the Ising model (9) is dual to the one-
dimensional transverse-field cluster model Hamiltonian

H ′ = −g

N−1
∑

i=2

σz
i−1σ

x
i σ

z
i+1 − J

N−1
∑

i=1

σz
i σ

z
i+1

−gσx
1σ

z
2 − gσz

N−1σ
x
N (11)

via the sequence SCZ
12 . . . SCZ

N−1,N , compare also [7]. Here,
as these gates commute, their order is not relevant and
we do not provide a figure for brevity.
Third, a special version of the Ising model (9), where

the local fields are only present at even sites (for simplic-
ity we assume that N is even)

H = −J

N−1
∑

i=1

σz
i σ

z
i+1 − g

N/2
∑

i=1

σx
2i (12)

can be easily mapped to decoupling two-qubit Ising mod-
els with local fields, see Fig. 2, by applying a sequence
of CNOT operations in the same order. Even more, one
finds that after the transformation

H ′ =

N/2−1
∑

i=1

[

−gσx
2iσ

x
2i+1 − J

(

σz
2i + σz

2i+1

)]

−Jσz
N − gσx

N (13)

there are no operators left acting on the first spin. This
automatically implies that even with disorder (different
prefactors g → gi and J → Ji for all operators [8]) all
eigenvalues are two-fold degenerate.

B. The XZ Model

As another example, the XY model without transverse
field can be easily rotated into an XZ model by local
transformations

H =

N−1
∑

i=1

[

αiσ
z
i ⊗ σz

i+1 + βiσ
x
i ⊗ σx

i+1

]

, (14)

where we assume again for simplicity that N is even.
This model can again be mapped to a quadratic fermionic
Hamiltonian by means of a Jordan-Wigner transforma-
tion. Afterwards, depending on the coefficients αi and βi

one could proceed with standard methods [8] to map to
free fermions.
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FIG. 2: (Color Online) A quantum Ising model with a stag-
gered transverse field (top row) is sequentially mapped to
decoupled finite-dimensional subsystems (bottom row). The
empty box in the bottom row demonstrates that even with
disorder, all eigenvalues of the corresponding Hamiltonian are
two-fold degenerate. Symbols and color coding have been cho-
sen as in Fig. 1.

Here, we demonstrate that by a sequence of CNOT
gates the XZ model (14) is unitarily equivalent to two
decoupled Ising models with transverse fields, separately
defined on even and odd sites, respectively, which for
brevity we only present graphically in Fig. 3.

FIG. 3: (Color Online) Unitary Mapping between the XZ
Model and two decoupled Ising models with (up to boundary
effects) transverse fields by successive application of CNOT
gates. On the bottom row, there are no connections between
even (light green) and odd (dark red) lattice sites. Symbols
and color coding have been chosen as in Fig. 1.

C. One-Dimensional Cluster State Dualities

From the properties of the CZ gate (7), it is obvious
that the Hamiltonian encoding at g = 0 [9, 10] the one-

dimensional cluster state in its ground state

H = −Jσx
1σ

z
2 − J

N−1
∑

i=2

σz
i−1σ

x
i σ

z
i+1 − Jσz

N−1σ
x
N

−g

N
∑

i=1

σz
i (15)

is dual to a Hamiltonian for non-interacting qubits

H ′ = −J
N
∑

i=1

σx
i − g

N
∑

i=1

σz
i (16)

via the unitary transformation SCZ
12 . . . SCZ

n−1,n (not
shown, but see also Fig. 4). As the fundamental en-

ergy gap 2
√

g2 + J2 above the ground state does not
scale with the system size N , this enables the adiabatic
preparation of one-dimensional cluster states from the
z-polarized phase by linearly interpolating from J = 0
to g = 0 in constant time, independent of the system
size. Compared to the conventional cluster state prepa-
ration [9], this has the additional advantage that the de-
sired evolution can be encoded in the unique and robust
ground state.
On the other hand, when the local field points towards

another direction, the Hamiltonian

H = −Jσx
1σ

z
2 − J

N−1
∑

i=2

σz
i−1σ

x
i σ

z
i+1 − Jσz

N−1σ
z
N

−g

N
∑

i=1

σx
i (17)

is self-dual via SCZ
12 . . . SCZ

n−1,n [4] (not shown). In fact,
the model can be mapped to two decoupled Ising models
in one dimension [4], and exhibits a second order quan-
tum phase transition, which is associated with an inverse
scaling of the minimum energy gap with the system size
N as gmin = O{1/N} [11].

IV. TWO-DIMENSIONAL SYSTEMS

A. Two-Dimensional Cluster State Dualities

Universal measurement-based quantum computa-
tion [12, 13] cannot be achieved with the one-dimensional
cluster state. In order to estimate the preparation com-
plexity when the two-dimensional cluster state is adiabat-
ically prepared by slowly deforming a control parameter,
we consider the model

H = −J
∑

µ

[

⊗

ν∼µ

σz
ν

]

σx
µ − g

∑

µ

σx
µ , (18)

where µ involves all sites of a lattice and ν ∼ µ denotes
all neighbors of µ. The CZ-gate – note its symmetry in
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Eqns. (7) – when applied to all links in the lattice im-
mediately demonstrates self-duality of the model in any
dimension. In particular for two dimensions, the model
can be mapped [4] to the Xu-Moore compass model [14]
exhibiting a second order quantum phase transition when
J = g. The shrinking of the energy gap associated with
the quantum phase transition does not only lead to a
scaling of the adiabatic preparation time with the system
size, but also to an increased vulnerability with respect
to thermal excitations [15, 16].
In contrast, the Hamiltonian

H = −J
∑

µ

[

⊗

ν∼µ

σz
ν

]

σx
µ − g

∑

µ

σz
µ , (19)

where only the local field is pointing into a different di-
rection, is dual to the completely decoupled one

H ′ = −J
∑

µ

σx
µ − g

∑

µ

σz
µ , (20)

for clarity we illustrate this for g = 0 only in Fig. 4.

FIG. 4: (Color Online) The CZ gate – applied to all links on
the lattice – can be used to decouple the 5-body interactions
in the Hamiltonian for the cluster state completely. Since it
commutes with the σz

i operators, it will not affect any ad-
ditional local fields in z-direction (not shown). Symbol and
Color Coding as in Fig. 1.

Consequently, the energy gap above the ground state
of the Hamiltonian (19) is independent of the system size

– in contrast to the Hamiltonian (18). As a result, this
facilitates the robust adiabatic preparation of the two-
dimensional cluster states by linear interpolation. This
straightforwardly generalizes to cluster states on lattices
in arbitrary dimensions. We note here that adiabatic
rotation [17] also enables for a preparation of the two-
dimensional cluster state in constant time, which however
requires very complex interpolation paths.

B. From 1D to 2D: Hexagonal Lattice

In order to consider a different lattice geometry, let
us consider a number of parallel but mutually uncoupled
Ising chains as depicted in the bottom left panel of Fig. 5.
Now, by applying a CZ gate to each spin of the Ising
chain with the spins of the neighbouring chains in an
alternating fashion, it is straightforward to see that this
will induce a coupling. The resulting two-dimensional
model shown in the top left panel will inherit its critical
behaviour from the 1d Ising chains. It is interesting to
note that there will be long-range entanglement in the
longitudinal direction but not in the transverse direction,
since all CZ gates commute.

FIG. 5: (Color Online) Parallel Ising chains (bottom left)
may be mapped to a hexagonal lattice (top left) by using CZ
mappings on every site either with the upper or the lower
chain in an alternating fashion.

C. From 1D to 2D: Plaquette Hamiltonians

It is of course also possible to use the CNOT gate,
for example, to generate two-dimensional models from
known one-dimensional ones. However, this gate will not
commute with itself, such that the order at which such
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FIG. 6: (Color Online) Vertical XZ chains together with local
fields (top left 4 × 3 lattice) may be mapped to a Hamil-
tonian with monochromatic X and Z plaquettes and non-
homogeneous local fields (bottom left 4× 3 lattice). This re-
quires a sequence of local rotations (checkerboard sites) and
CNOT gates.

gates are applied is relevant. Consider for example a
collection of one-dimensional parallel XZ models as de-
picted in the top left panel of Fig. 6. Between the XZ
chains, we have placed local fields, such that the total
lattice has a simple cubic structure. Using the sites with
local field as a control qubit, a column of applied CNOT
gates generates monochromatic plaquette operators in z-
direction. To use the CNOT gate again, we perform a
local rotation (checkerboard background). Then, repeat-
ing the application of CNOT gates – moved one lattice
spacing to the right – will generate monochromatic pla-
quette operators in x-direction. This sequence of local
rotations and CNOT gates can be continued until the
boundary is reached or – in case of closed boundary con-
ditions – the already existing plaquettes are met. The
final local rotation in Fig. 6 is only performed to gener-
ate monochromatic plaquettes. As the CNOT gate does
not commute with itself, the coupling may now create

long-range entanglement also in the transverse direction.

D. Braiding Plaquettes into netting wires

Finally, we note that plaquette operators in a two-
dimensional lattice can also be created with CZ gates. As
an example consider the netting wire constructed from
ferromagnetic interactions in x and z directions in the
top panel of Fig. 7. In the mid of the diamonds we
place local fields, which we can locally rotate into z di-
rection without loss of generality. Obviously, there will
be no long-distance entangelement in the eigenstates of
the Hamiltonian between two spins on a local field site.
It is straightforward to see that a sequence of CZ gates
in combination with local rotations in appropriate order
will generate plaquette operators throughout the lattice.

FIG. 7: (Color Online) A ferromagnetic netting wire with
local fields (top panel) may be unitarily transformed into pla-
quettes with local fields (bottom panel) by a sequence of CZ
gates and local rotations.
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V. SUMMARY AND OUTLOOK

Using the SU(4) algebra, we have demonstrated that
one can map many seemingly complicated models to
known ones and vice versa. The unitary mappings
enabled us to demonstrate dualities for spin systems,
which may be used to identify the position of criti-
cal points (self-dualities) or to draw conclusions on the
spectrum. In some cases, the transformations even al-
lowed to map to decoupled finite-dimensional subsystems
and thereby the complete diagonalization of the original
model. As an interesting application, our method shows
that the two-dimensional cluster state (useful for uni-
versal measurement-based quantum computation) can be
efficiently prepared adiabatically using only linear inter-
polation, i.e., the Hamiltonian (19).

Our list of examples is of course by far not complete
and it is certainly interesting to find more dualities. Note
also that we have constrained ourselves to discrete gates,
where the rotation angle is fixed, to facilitate a graphical
representation. This however is not a fundamental limi-
tation. We hope that the transformation table of SU(4)
may aid in tailoring appropriate unitary transformations
for other spin systems, too.
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