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ABSTRACT. Goulden and Jackson (1996) introduced, using Jack symmetric
functions, some multivariate generating series ψ(x,y,z; t, 1 + β) that might
be interpreted as a continuous deformation of generating series of rooted hyper-
maps. They made the following conjecture: the coefficients of ψ(x,y,z; t, 1 +
β) in the power-sum basis are polynomials in β with nonnegative integer coeffi-
cients (by construction, these coefficients are rational functions in β).

We prove partially this conjecture, nowadays called b-conjecture, by show-
ing that coefficients of ψ(x,y,z; t, 1 + β) are polynomials in β with rational
coefficients. A key step of the proof is a strong factorization property of Jack
polynomials when α tends to 0, that may be of independent interest.

1. INTRODUCTION

1.1. Jack symmetric functions. Jack [Jac71] introduced a family of symmetric
polynomials — which are now known as Jack polynomials J (α)

π — indexed by a
partition and a deformation parameter α. From the contemporary point of view,
probably the main motivation for studying Jack polynomials comes from the fact
that they are a special case of the celebrated Macdonald polynomials which “have
found applications in special function theory, representation theory, algebraic ge-
ometry, group theory, statistics and quantum mechanics” [GR05]. Indeed, some
surprising features of Jack polynomials [Sta89] have led in the past to the discov-
ery of Macdonald polynomials [Mac95], and Jack polynomials have been regarded
as a relatively easy case, which later allowed the understanding of the more diffi-
cult case of Macdonald polynomials (the series of paper [LV95, LV97] illustrates
this very well). A brief overview of Macdonald polynomials and their relationship
to Jack polynomials is given in [GR05]. Jack polynomials are also interesting on
their own, for instance in the context of Selberg integrals [Kad97] and in theoretical
physics [FJMM02, BH08].

Finally, according to Goulden and Jackson [GJ96], Jack polynomials are also
related to hypermap enumeration, via specific multivariate generating functions.
This relation is still partially a conjecture, and the main goal of the paper is to
make a step forward to its resolution.
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2 M. DOŁĘGA AND V. FÉRAY

1.2. b-conjecture and our main result. Let J (α)
λ (x) be the Jack symmetric func-

tion indexed by a partition λ in the infinite alphabet x. Let us denote by hα(λ) and
h′α(λ) the α hook-polynomials (these are combinatorial factors that appears often
in Jack polynomial theory; see Section 2.1 for the definition). We also use P for
the set of all integer partitions and |λ| for the size of a partition λ. In their article
[GJ96], Goulden and Jackson defined a family of coefficients hτµ,ν(α − 1) by the
following formal series identity:

(1) log

(∑
λ∈P

J
(α)
λ (x) J

(α)
λ (y) J

(α)
λ (z) t|λ|

hα(τ)h′α(τ)

)

=
∑
n≥1

tn

αn

 ∑
µ,ν,τ`n

hτµ,ν(α− 1) pµ(x) pν(y) pτ (z)

 ,

where µ, ν, τ ` n means that µ, ν and τ are three partitions of n and pµ is the
power-sum symmetric function associated with µ.

This rather involved definition is motivated by the following combinatorial inter-
pretations for particular values of α; see [GJ96, Section 1.1] and references therein.

• In the case α = 1, the quantity hτµ,ν(0) enumerates connected hypergraphs
embedded into oriented surfaces with vertex-, edge- and face-degree dis-
tributions given by µ, ν and τ .
• In the case α = 2, the quantity hτµ,ν(1) enumerates connected hypergraphs

embedded into non-oriented surfaces with the same degree conditions.
Connected hypergraphs embedded into surfaces are usually called maps and are a
classical topic in enumerative combinatorics related to the computation of matrix
integrals or the study of moduli spaces of curves, as explained in detail in the
book [LZ04]. The logarithm in Eq. (1) is present because we only want to count
connected objects.

Note that hτµ,ν(α − 1) is a priori a quantity depending on the parameter α, and
describing it as a quantity depending on a different parameter β := α − 1 might
seem be artificial. However, it turned out that this shift seems to be a right one
for finding a combinatorial interpretation of hτµ,ν(β), as suggested by Goulden and
Jackson [GJ96] in the following conjecture.

Conjecture 1.1 (b-conjecture). For all partitions τ, µ, ν ` n ≥ 1, the quantity
hτµ,ν(β) is a polynomial in β with nonnegative, integer coefficients. Moreover,
there exists a statistics η on maps such that

(2) hτµ,ν(β) =
∑
M

βη(M),

where the summation index runs over all rooted, bipartite mapsM with face dis-
tribution τ , black vertex distribution µ and white vertex distribution ν, and η(M)
is a nonnegative integer equals to 0 if and only ifM is orientable.

This conjecture is still open. The thesis of La Croix [LaC09] gives a number of
evidences for it, and gives a good account of what is known so far. In particular,
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some constructions for a candidate statistics η have been given, establishing par-
ticular cases of the conjecture [BJ07, LaC09, KV14]. However, there is not much
known about the structure of hτµ,ν(β) for arbitrary partitions τ, µ, ν ` n. Strictly
from the construction they are rational functions in β with rational coefficients.
Our main result in this paper is a proof of the polynomiality of hτµ,ν(β) for all
partitions τ, µ, ν ` n ≥ 1.

Theorem 1.2. For all partitions τ, µ, ν ` n ≥ 1 quantity hτµ,ν(β) is a polynomial
in β of degree 2 + n− `(τ)− `(µ)− `(ν) with rational coefficients.

Unfortunately, the nonnegativity and the integrality of the coefficients seem out
of reach with our approach. However, the polynomiality could be useful in the
investigation of 1.1. In particular, the first author has recently found a combina-
torial description of the top-degree part of h(n)µ,ν(β), which will be presented in the
forthcoming paper [Doł16]. Theorem 1.2 is one of the ingredients of the proof.

1.3. Strong factorization of Jack polynomials. A key step in our proof is a
strong factorization property for Jack polynomials when α tends to zero. To state
it, let us introduce a few notations. If λ1 and λ2 are partitions, we denote λ1 ⊕ λ2
their entry-wise sum; see Section 2.1. If λ1, · · · , λr are partitions and I a subset of
[r] := {1, · · · , r}, then we denote

λI :=
⊕
i∈I

λi.

Theorem 1.3. Let λ1, · · · , λr be partitions. Then

(3)
∏
I⊂[r]

(
J
(α)

λI

)(−1)|I|
= 1 +O(αr−1),

where symbol O(αr) is defined in Definition 3.2.

The exponent (−1)|I| may be a bit disturbing so let us unpack the notation for
small values of r.

• For r = 2, Eq. (3) writes as

J
(α)
λ1⊕λ2

J
(α)
λ1 J

(α)
λ2

= 1 +O(α).

In other terms, this means that for α = 0, one has the factorization property
J
(0)
λ1⊕λ2 = J

(0)
λ1 J

(0)
λ2 . This is indeed true and follows from an explicit ex-

pression for J (0)
λ given by Stanley; see [Sta89, Proposition 7.6] or Eq. (12)

in this paper. Thus, in this case, our theorem does not give anything new.
• For r = 3, Eq. (3) writes as

J
(α)
λ1⊕λ2⊕λ3 J

(α)
λ1 J

(α)
λ2 J

(α)
λ3

J
(α)
λ1⊕λ2J

(α)
λ1⊕λ3J

(α)
λ2⊕λ3

= 1 +O(α2).
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Using the case r = 2, it is easily seen that the left-hand side is 1 + O(α).
But our theorem says more and asserts that it is 1 + O(α2), which is not
trivial at all.

This explains the terminology strong factorization property.

The theorem has an equivalent form that uses the notion of cumulants of Jack
polynomials — see Section 3 for comments on the terminology. For partitions
λ1, · · · , λr, we denote

κJ(λ1, · · · , λr) =
∑

π∈P([r])

µ(π, {H})
∏
B∈π

JλB .

Here, the sum is taken over set partitions π of [r] and µ stands for the Möbius
function of the set partition lattice; see Section 2.4 for details. For example

κJ(λ1, λ2) = J
(α)
λ1⊕λ2 − J

(α)
λ1 J

(α)
λ2 ,

κJ(λ1, λ2, λ3) = J
(α)
λ1⊕λ2⊕λ3 − J

(α)
λ1 J

(α)
λ2⊕λ3

− J (α)
λ2 J

(α)
λ1⊕λ3 − J

(α)
λ3 J

(α)
λ1⊕λ2 + 2J

(α)
λ1 J

(α)
λ2 J

(α)
λ3 .

We then have the following estimate for cumulants of Jack polynomials

Theorem 1.4. For any partitions λ1, . . . , λr, one has

(4) κJ(λ1, · · · , λr) = O(αr−1).

Theorem 1.4 is in fact equivalent to Eq. (3), as shown (in a more general setting)
by Proposition 3.3 (we need here the fact that Jλ has a non-zero limit when α tends
to 0 [Sta89, Proposition 7.6]; this ensures that Jλ = O(1) and J−1λ = O(1)). We
prove Theorem 1.4 in Section 4.

We noticed, using computer simulations, that a similar property seems to hold
for Macdonald polynomials J (q,t)

λ . Unfortunately, we were unable to prove it and
we state it here as a conjecture. Similarly to the Jack case, we define

κM (λ1, · · · , λr) =
∑

π∈P([r])

µ(π, {H})
∏
B∈π

J
(q,t)

λB
.

Conjecture 1.5. For any partitions λ1, . . . , λr, one has:

• the strong factorization property of Macdonald polynomials when q goes
to 1, i.e.

(5)
∏
I⊂[r]

(
J
(q,t)

λI

)(−1)|I|
= 1 +O((q − 1)r−1);

• the following estimates on cumulants of Macdonald polynomials

(6) κM (λ1, · · · , λr) = O
(
(q − 1)r−1

)
.
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As in the Jack case, the two items are equivalent from Proposition 3.3. Note that
the case r = 2 of both items says that

J
(1,t)
λ1⊕λ2 = J

(1,t)
λ1 J

(1,t)
λ2 ,

which follows from the explicit expression for J (1,t)
λ given in [Mac95, Chapter

VI, Remark (8.4), item (iii)]. Finally, we mention that Conjecture 1.5 implies
Theorem 1.4 as a special case by substitution q = tα and taking a limit t→ 1 since
one has (see [Mac95, Chapter VI, Eq. (10.23)]):

lim
t→1

(1− t)−|λ|J (tα,t)
λ (x) = J

(α)
λ (x).

1.4. Related problems. We finish this section, mentioning two similar problems.
First, a very similar conjecture to Conjecture 1.1 (without logarithm in Equa-
tion (1)) was also stated by Goulden and Jackson [GJ96]. The series so obtained
is conjecturally a multivariate generating function of matchings, where the expo-
nent of β is some combinatorial integer-valued statistics. The conjecture is still
open, while some special cases have been solved by Goulden and Jackson in their
original article [GJ96] and recently by Kanunnikov and Vassilieva [KV14]. The
polynomiality was proven by the authors of this paper [DF14] and is used here.
Indeed, together with a simple argument given in Section 2.3, it reduces the proof
of Theorem 1.2 to checking that there is no singularity in α = 0.

A second related problem is the investigation of Jack characters, that is suitably
normalized coefficients of the power-sum expansion of Jack polynomials. In a
series of paper [Las08, Las09], Lassalle made some polynomiality and positivity
conjectures suggesting that a combinatorial description of these objects might exist.
Although these conjectures are not fully resolved, it was proven by us together with
Śniady [DFŚ14] that in some special cases indeed, such combinatorial setup exists.
Moreover, similarly to Conjecture 1.1, these special cases involve hypermaps and
some statistics that “measures their non-orientability”.

We cannot resist to state that there must be a deep connection between all these
problems, and understanding it would be of great interest.

1.5. Organization of the paper. We describe all necessary definitions and back-
ground in Section 2, and in Section 3 we discuss cumulants and their relation with
strong factorization. Section 4 is devoted to the proof of the strong factorization
property of Jack polynomials, while Section 5 presents the proof of the main result,
that is the polynomiality in b-conjecture.

2. PRELIMINARIES

2.1. Partitions. We call λ := (λ1, λ2, . . . , λl) a partition of n if it is a weakly
decreasing sequence of positive integers such that λ1 +λ2 + · · ·+λl = n. Then n
is called the size of λ while l is its length. As usual we use the notation λ ` n, or
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a(i, j)

`(i, j)

Figure 1. Arm and leg length of boxes in Young diagrams.

|λ| = n, and `(λ) = l. We denote the set of partitions of n by Yn and we define a
partial order on Yn, called dominance order, in the following way:

λ ≤ µ ⇐⇒
∑
i≤j

λi ≤
∑
i≤j

µi for any positive integer j.

For any two partitions λ ∈ Yn and µ ∈ Ym we can construct two new partitions
λ ⊕ µ, λ ∪ µ ∈ Yn+m, where λ ⊕ µ := (λ1 + µ1, λ2 + µ2, . . . ), and λ ∪ µ is
obtained by merging parts of λ and µ and ordering them in a decreasing fashion.
Moreover, there exists a canonical involution on the set Yn, which associate with a
partition λ its conjugate partition λt. By definition, the j-th part λtj of the conjugate
partition is the number of positive integers i such that λi ≥ j. Notice that for any
two partitions λ, µ, we have (λ ∪ µ)t = λt ⊕ µt. A partition λ is identified with
some geometric object, called Young diagram, that can be defined as follows (using
French convention):

λ = {(i, j) : 1 ≤ i ≤ λj , 1 ≤ j ≤ `(λ)}.
For any box � := (i, j) ∈ λ from Young diagram we define its arm-length by
a(�) := λj − i and its leg-length by `(�) := λti − j (the same definitions as in
[Mac95, Chapter I]), see Fig. 1.

There are many combinatorial quantities associated with partitions that we will
use extensively through this paper, so let us define them. First, set

(7) zλ :=
∏
i≥1

imi(λ)mi(λ)!,

where mi(λ) denotes the number of parts of λ equal to i. We also define α-hook
polynomials hα(λ) and h′α(λ) by the following equations

hα(λ) :=
∏
�∈λ

(αa(�) + `(�) + 1) ,(8)

h′α(λ) :=
∏
�∈λ

(αa(�) + `(�) + α) .(9)

Finally, we consider a partition binomial given by

(10) b(λ) :=
∑
i

(
λi
2

)
.
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2.2. Jack polynomials and Laplace-Beltrami operator. Jack polynomials are
a classical one-parameter deformation of Schur symmetric functions that can be
defined in several different ways. To our purpose, we will use a characterization
via Laplace-Beltrami operators, suggested by Stanley in his seminal paper [Sta89,
note p. 85]. Since this is now a well-established theory, results of this section
are given without proofs but with explicit references to the literature (mostly to
Stanley’s paper [Sta89]).

First, consider the vector space SymN of symmetric polynomials inN variables
over Q(α). The following differential operators act on this space:

D1 =
∑
i≤N

∑
i 6=j

x2i
xi − xj

∂

∂xi
, D2 =

1

2

∑
i≤N

x2i
∂2

∂x2i
.

Then the Laplace-Beltrami operator Dα is defined as Dα = D1 + αD2.

Proposition 2.1. There exists a unique family J (α)
λ (indexed by partitions λ of

length at most N ) in SymN that satisfy:
(C1) J (α)

λ (x1, . . . , xN ) is an eigenvector of Dα with eigenvalue

ev(λ) =
(
αb(λ)− b(λt) + (N − 1)|λ|

)
;

(C2) the monomial expansion of J (α)
λ is given by

(11) Jλ = hα(λ)mλ +
∑
ν<λ

aλνmν , where aλν ∈ Q(α).

(Recall that we use the dominance order on partitions.)
These polynomials are called Jack polynomials.

This is not the definition of Jack polynomials used by Stanley, but the fact that
Jack polynomials indeed satisfy these properties can be found in [Sta89]; see The-
orem 3.1 and Theorem 5.6. The uniqueness is an easy linear algebra exercise when
one has observed that ev(λ) = ev(µ) and |λ| = |µ| imply that λ and µ are either
equal or incomparable for the dominance order [Sta89, Lemma 3.2]. A deep result
of Knop and Sahi [KS97] asserts that aλν lies in fact in N[α]. In particular, Jack
polynomials depend polynomially on α.

With the definition above, the Jack polynomial J (α)
λ depends on the number

N of variables. However, it is easy to see that it satisfies the compatibility relation
J
(α)
λ (x1, . . . , xN , 0) = J

(α)
λ (x1, . . . , xN ) and thus J (α)

λ can be seen as a symmetric
function. In the sequel, when working with differential operators, we sometimes
confuse a symmetric function f with its restriction f(x1, . . . , xN , 0, 0, . . . ) to N
variables.

Stanley also established the following specialization formula at α = 0:

(12) J
(0)
λ =

(∏
i

λti!

)
eλt ,
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where eλ is the elementary symmetric function associated with λ [Sta89, Proposi-
tion 7.6]. A key point in his proof, that will be also important in the present paper,
is the following proposition.

Proposition 2.2. For any partition λ ` n,
(1) the elementary symmetric function eλ is an eigenvector of the operatorD1:

D1eλ = ((N − 1)|λ| − b(λ)) eλ;

(2) for any partition µ ` n such that b(λ) = b(µ) either λ = µ or λ � µ.

Here is an easy corollary, that will be useful for us.

Corollary 2.3. Let f ∈ Sym be a homogeneous symmetric function with an ex-
pansion in the monomial basis of the following form:

f =
∑
µ<λ

dµmµ.

If, for any number N of variables, D1f =
(
(N − 1)|λ| − b(λt)

)
f then f = 0.

Proof. Since D1f =
(
(N − 1)|λ| − b(λt)

)
f , we know from Proposition 2.2 (1)

and (2) that the expansion of f in the elementary basis has the following form:

f = cλeλt +
∑
λt�ρt

cρeρt .

Recall that λt � ρt is equivalent to ρ � λ. Moreover, it is easy to see that the
expansion of the elementary symmetric function eλt in the monomial basis involves
only elements mµ indexed by partitions µ ≤ λ:

eλt = mλ +
∑
µ<λ

bλµmµ.

Combining these two facts we know that the expansion of f in the monomial basis
has the following form:

f = cλ(mλ +
∑
µ<λ

bλµmµ) +
∑
ρ�λ

cρ(mρ +
∑
µ<ρ

bρµmµ).

But we assumed that
f =

∑
µ<λ

dµmµ,

which implies that cλ = 0 and cρ = 0 for all ρ � λ, thus f = 0 as claimed. �

2.3. Goulden and Jackson’s conjectures. Following Goulden and Jackson, we
define

φ(x,y, z; t, α) :=
∑
n≥0

tn
∑
λ`n

J
(α)
λ (x)J

(α)
λ (y)J

(α)
λ (z)〈

J
(α)
λ , J

(α)
λ

〉
α

.(13)

ψ(x,y, z; t, α) := αt
∂

∂t
log φ(x,y, z; t, α),(14)
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We then consider their power-sum expansion, i.e. the two families of coefficients
hτµ,ν and cτµ,ν defined by

ψ(x,y, z; t, α) =
∑
n≥1

tn
∑

µ,ν,τ`n
hτµ,ν(α− 1)pτ (x)pµ(y)pν(z);(15)

φ(x,y, z; t, α) =
∑
n≥1

tn
∑

µ,ν,τ`n

cτµ,ν(α− 1)

α`(τ)zτ
pτ (x)pµ(y)pν(z),(16)

The definition of the coefficients hτµ,ν(α− 1) was already given in Section 1.2, we
recall it here to emphasize the similarity with cτµ,ν(α − 1). Goulden and Jackson
conjecture that all these coefficients are polynomials in β = α − 1 with non-
negative integer coefficients and some combinatorial interpretations. The polyno-
miality of cτµ,ν(β) with rational coefficients was recently proven by the authors of
this paper:

Theorem 2.4. [DF14, Proposition B.2] For any positive integer n and for any
partitions µ, ν, τ ` n, the quantity cτµ,ν(β) is a polynomial in β (or equivalently in
α).

Recall, from Eq. (14), that

ψ(x,y, z; t, α)/α = t
∂

∂t
log φ(x,y, z; t, α).

Therefore, the coefficients of the power-sum expansion of the left-hand side — that
are hτµ,ν(β)/α — can be expressed as polynomials in terms of the coefficients of
the power-sum expansion of φ — that are |λ|cτµ,ν(β)/(α`(τ)zλ). In particular, an
immediate corollary of the above theorem is the following:

Corollary 2.5. For any positive integer n and for any partitions µ, ν, τ ` n, the
coefficient hτµ,ν(β) is a rational function in α with only possible pole at α = 0.

Showing that there is in fact no pole at α = 0, as claimed in Theorem 1.2,
requires a great deal of work and is the main result of this paper.

2.4. Set partitions. The combinatorics of set partitions is central in the theory of
cumulants and will be important in this article. We recall here some well-known
facts about them.

A set partition of a set S is a (non-ordered) family of non-empty disjoint subsets
of S (called parts of the partition), whose union is S. In the following, we always
assume that S is finite.

Denote P(S) the set of set partitions of a given set S. Then P(S) may be
endowed with a natural partial order: the refinement order. We say that π is finer
than π′ (or π′ coarser than π) if every part of π is included in a part of π′. We
denote this by π ≤ π′.

Endowed with this order, P(S) is a complete lattice, which means that each
family F of set partitions admits a join (the finest set partition which is coarser
than all set partitions in F ; we denote the join operator by ∨) and a meet (the
coarsest set partition which is finer than all set partitions in F ; we denote the meet
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operator by ∧). In particular, the lattice P(S) has a maximum {S} (the partition in
only one part) and a minimum {{x}, x ∈ S} (the partition in singletons).

Moreover, this lattice is ranked: the rank rk(π) of a set partition π is |S|−#(π),
where #(π) denotes the number of parts of π. The rank is compatible with the
lattice structure in the following sense: for any two set partitions π and π′,

(17) rk(π ∨ π′) ≤ rk(π) + rk(π′).

Lastly, denote µ the Möbius function of the partition lattice P(S). In this paper,
we only use evaluations of µ at pairs (π, {S}) (that is the second argument is the
one-part partition of S, which is the maximum of P(S)). In this case, the value of
the Möbius function is given by:

(18) µ(π, {S}) = (−1)#(π)−1(#(π)− 1)!.

3. CUMULANTS

3.1. Partial cumulants.

Definition 3.1. Let (uI)I⊆J be a family of elements in a field, indexed by subsets
of a finite set J . Then its partial cumulant is defined as follows. For any non-empty
subset H of J , set

(19) κH(u) =
∑

π∈P(H)

µ(π, {H})
∏
B∈π

uB.

The terminology comes from probability theory. Let J = [r], and letX1, · · · , Xr

be random variables with finite moments defined on the same probability space.
Then define uI = E(

∏
i∈I Xi), where E denotes the expectation of this probabil-

ity space. The quantity κ[r](u) as defined above, is known as the joint (or mixed)
cumulant of the random variables X1, · · · , Xr. Also, κH(u) is the joint/mixed
cumulant of the smaller family {Xh, h ∈ H}.

Joint/mixed cumulants have been studied by Leonov and Shiryaev in [LS59] —
see also an older note of Schützenberger [Sch47], where they are introduced under
the French name déviation d’indépendence. They now appear in random graph
theory [JŁR00, Chapter 6] and have inspired a lot of work in noncommutative
probability theory [NŚ11].

Even if this probabilistic interpretation of cumulants is not relevant here, we will
use several lemmas that have been discovered by the second author in a probabilis-
tic context [Fér13].

A classical result – see, e.g., [JŁR00, Proposition 6.16 (vi)] – is that relation (19)
can be inverted as follows: for any non-empty subset H of J ,

(20) uH =
∑

π∈P(H)

∏
B∈π

κB(u).

3.2. A multiplicative criterion for small cumulants. Let R be a ring and α a
formal parameter. DenoteR(α) the field of rational functions in αwith coefficients
in R. In all applications in this paper, α is the Jack parameter.
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Definition 3.2. We use the following notation: for r ∈ R(α) and an integer k, we
write r = O(αk) if the rational function r · α−k has no pole in 0.

As above, we consider a family u = (uI)I⊆[r] of elements of R(α) indexed
by subsets of [r]. Throughout this section, we also assume that these elements are
non-zero and u∅ = 1.

In addition to partial cumulants, we also define the cumulative factorization er-
ror terms TH(u) of the family u. The quantities TH(u)H⊆[r],|H|≥2 are inductively
defined by: for any subset G of [r] of size at least 2,

(21) uG =
∏
g∈G

u{g} ·
∏
H⊆G
|H|≥2

(1 + TH(u)).

Using inclusion-exclusion principle, a direct equivalent definition is the following:
for any subset H of [r] of size at least 2, set

(22) TH(u) =
∏
G⊆H

u
(−1)|H|
G − 1.

We have the following result.

Proposition 3.3. Using the notation above, the following statements are equiva-
lent:

I. Strong factorization property: for any subset H ⊆ [r] of size at least 2,
one has

(23) TH(u) = O(α|H|−1).

II. Small cumulant property: for any subsetH ⊆ [r] of size at least 2, one has

(24) κH(u) =

(∏
h∈H

uh

)
O(α|H|−1).

This proposition is a reformulation of [Fér13, Lemma 2.2]. However, the con-
text and notation are quite different: in [Fér13], we are interested in sequences of
random variables, while here, we consider rational functions in α. Thus, we prefer
to copy the proof here, adapting it to our context.

Proof. We first assume that u{i} = 1 for all i in [r].
Let us first show that Item I implies Item II. Assume that TH(u) = O(α|H|−1),

for any H ⊆ [r] of size at least 2. The goal is to prove that κ[r] = O(αr−1). This
corresponds only to the case H = [r] of Item II, but the same proof will work for
any H ⊆ [r].

Fix a set partition π ∈ P(r). For a block B of π, one has, expanding the second
product in Eq. (21):

uB =
∑

H1,...,Hm

TH1 . . . THm ,
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where the sum runs over all finite lists of distinct (but not necessarily disjoint)
subsets of B of size at least 2 (in particular, the length m of the list is not fixed).
Therefore, ∏

B∈π
uB =

∑
H1,...,Hm

TH1 . . . THm ,

where the sum runs over all lists of distinct subsets of [r] of size at least 2 such
that each Hi is contained in a block of π. In other terms, for each i ∈ [m], π must
be coarser than the partition Π(Hi), which, by definition, has Hi and singletons as
blocks. Finally, from Eq. (19)

(25) κ[r](u) =
∑

H1,...,Hm⊆[r]
distinct

TH1 . . . THm

 ∑
π∈P([r])
∀i, π≥Π(Hi)

µ(π, {[r]})

 .

The condition on π can be rewritten as

π ≥ Π(H1) ∨ · · · ∨Π(Hm).

Hence, by definition of the Möbius function, the sum in the parenthesis is equal to
0, unless Π(H1) ∨ · · · ∨ Π(Hm) = {[r]} (in other terms, unless the hypergraph
with edges (Hi)1≤i≤m is connected). On the one hand, by Eq. (17), it may happen
only if:

m∑
i=1

rk
(
Π(Hi)

)
=

m∑
i=1

(|Hi| − 1) ≥ rk([r]) = r − 1.

On the other hand, one has

TH1 . . . THm = O
(
α
∑m
i=1(|Hi|−1)

)
.

Hence only summands of order of magnitude O(αk) for k > r−1 survive and one
has

κ[r](u) = O(αr−1),

as wanted.

Let us now consider the converse statement. We proceed by induction on r and
we assume that, for all r′ smaller than a given r ≥ 2, the proposition holds.

Consider some family (uI)I⊆[r] such that Item II holds. By induction hypothe-
sis, for all H ( [r], one has TH(u) = O(α|H|−1). Note that Eq. (21) then implies
uH = O(1) and u−1H = O(1) for H ( [r]. It remains to prove that

T[r](u) =
∏
H⊆[r]

(uH)(−1)
|H| − 1 = O(αr−1).

Thanks to the estimates above for uH , this can be rewritten as

(26) u[r] =
∏
H([r]

(uH)(−1)
r−1−|H|

+O(αr−1).



CUMULANTS OF JACK SYMMETRIC FUNCTIONS 13

Define now an auxiliary family v:

vG =

{
uG if G ( [r];∏
H([r](uH)(−1)

r−1−|H|
for G = [r].

Clearly, since TG(v) = TG(u) for G ( [r] and T[r](v) = 0, the family v has the
strong factorization property. Thus, using the first part of the proof, it also has the
small cumulant property. In particular:

κ[r](v) = O(αr−1).

But, by hypothesis,
κ[r](u) = O(αr−1).

As vH = uH for H ( [r], one has:

u[r] − v[r] = κ[r](u)− κ[r](v) = O(αr−1),

which proves Eq. (26).

The general case follows directly from the case u{i} = 1 by considering the
family u′I = uI/

∏
i∈I u{i}. Indeed, if |H| ≥ 2, then

TH(u′) = TH(u);

KH(u′) = KH(u)/
∏
h∈H

u{h}. �

A first consequence of this multiplicative criterion for small cumulants is the
following stability result.

Corollary 3.4. Consider two families (uI)I⊆[r] and (vI)I⊆[r] with the small cumu-
lant property. Then their entry-wise product (uIvI)I⊆[r] and quotient (uI/vI)I⊆[r]
also have the small cumulant property.

Proof. This is trivial for the strong factorization property and the small cumulant
property is equivalent to it. �

3.3. Hook cumulants. To illustrate the propositions above and as a preparation
for our next results, we show in this section that families constructed from the hook
polynomials defined by Eq. (8) and Eq. (9) have the small cumulant properties.

We first consider the case of hα and start by a technical lemma.

Lemma 3.5. Fix a positive integer r and a subset K of [r]. Let C and (ci)i∈K be
some elements of R(α). Assume that C, C−1 and the ci are O(1). For a subset I
of K, we define

vI = C + α ·
∑
i∈I

ci

Then we have, for any subset H of K,

TH(v) = O(α|H|).
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This is a reformulation of [Fér13, Lemma 2.4], but, again, as notation is quite
different there, we adapt the proof to our context.

Proof. It is enough to prove the statement forH = K. Indeed, the case of a general
set H follows by considering the same family restricted to subsets of H .

Define Rev (resp. Rodd) as ∏
δ

(
C + α

∑
i∈δ

ci

)
,

where the product runs over subsets of K of even (resp. odd) size. With this
notation, TK(v) = Rev/Rodd − 1 = (Rev − Rodd)/Rodd. Since R−1odd = O(1)
(each term in the product is O(1), as well as its inverse), it is enough to show that
Rev −Rodd = O(α|K|).

Expanding the product in the definition of Rev, one gets

Rev =
∑
m≥0

∑
δ1,...,δm

∑
i1∈δ1,...,im∈δm

αmci1 . . . cimC
2|K|−1−m.

The index set of the second summation symbol is the set of lists of m distinct
(but not necessarily disjoint) subsets of K of even size. Note that the summand
αmci1 . . . cimC

2|K|−1−m is O(αm). Of course, a similar formula with subsets of
odd size holds for Rodd.

Let us fix an integer m < |K| and a list i1, . . . , im. Denote i0 the smallest
integer in K different from i1, . . . , im (as m < |K|, such an integer necessarily
exists). Then one has a bijection: lists of subsets

δ1, . . . , δm of even size such
that, for all h ≤ m, ih ∈ δh

 →

 lists of subsets
δ1, . . . , δm of odd size such
that, for all h ≤ m, ih ∈ δh


(δ1, . . . , δm) 7→ (δ1∇{i0}, . . . , δm∇{i0}),

where∇ is the symmetric difference operator. This bijection implies that the sum-
mand αmci1 . . . cimC

2`−2−m appears as many times in Rev as in Rodd. Finally, in
the difference Rev − Rodd, terms corresponding to values of m smaller than |K|
cancel each other and one has

Rev −Rodd = O
(
α|K|

)
. �

We recall that for a subset I of [r] we set

λI :=
⊕
i∈I

λi.

Proposition 3.6. Fix some partitions λ1, . . . , λr and for a subset I of [r] set
uI = hα

(
λI
)
. The family (uI) has the strong factorization, and hence, the small

cumulant properties.

Proof. As above, it is enough to prove that T[r](u) = O(αr−1).
Fix some subset I = {i1, · · · , it} of [r] with i1 < · · · < it. Observe that the

Young diagram λI can be constructed by sorting the columns of the diagrams λi1 ,
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�

λ1

; b •

λ2

; ∗ ∗

λ3

→ b ∗ ∗ • �

λ1 + λ2 + λ3

Figure 2. The diagram of an entry-wise sum of partitions.

. . . , λit in decreasing order of their length. When several columns have the same
lengths, we put first the columns of λi1 , then those of λi2 and so on; see Fig. 2
(at the moment, please disregard symbols in boxes). This gives a way to identify
boxes of λI with boxes of the diagrams λis (1 ≤ s ≤ t) that we shall use below.

With this identification, if b = (r, c) is a box in λg for some g ∈ I , its leg-length
in λI is the same as in λg. We denote it by `(b).

At the opposite, the arm length of b in λI may be bigger than the one in λg. We
denote these two quantities by aI(b) and ag(b). Let us also define, ai(b) for i 6= g
in I , as

• for i < g, ai(b) is the number of boxes b′ in the r-th row of λi such that the
size of the column of b′ is smaller than the size of the column of b (e.g.,
on Fig. 2, for i = 1, these are boxes with a diamond);
• for i > g, ai(b) is the number of boxes b′ in the r-th row of λi such that

the size of the column of b′ is at most the size of the column of b (e.g., on
Fig. 2, for i = 3, these are boxes with an asterisk).

Looking at Fig. 2, it is easy to see that

(27) aI(b) =
∑
i∈I

ai(b).

Therefore, for G ⊆ [r], one has:

uG = hα

⊕
g∈G

λg

 =
∏
g∈G

[∏
b∈λg

`(b) + 1 + α (aG(b))

]
.

From the definition of T[r](u), given by Eq. (22), we get:

(28) 1 + T[r](u) =
∏
G⊆[r]

∏
g∈G

[∏
b∈λg

`(b) + 1 + α (aG(b))

](−1)r−|G|

=
∏
g∈[r]

∏
b∈λg

 ∏
G⊆[r]
G3g

(
`(b) + 1 + α (aG(b))

)(−1)r−|G| .
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The expression inside the bracket corresponds to 1 + T[r]\{g}(v
b), where vb is

defined as follows: if I is a subset of [r] \ {g}, then

vbI = `(b) + 1 + α (aI∪{g}(b)).

From Eq. (27), we observe that vbI is as in Lemma 3.5 with the following values of
the parameters: K = [r] \ {g}, C = `(b) + 1 + αag(b), and ci = ai(b) for i 6= g.
Therefore we conclude

T[r]\{g}(v
b) = O(αr−1).

Going back to Eq. (28), we have:

1 + T[r](u) =
∏
g∈[r]

∏
b∈λg

(1 + T[r]\{g}(v
b)) = 1 +O(αr−1),

which completes the proof. �

Let us now look at the second hook-polynomial h′α. If we try to follow the
same argument as above, we want to apply Lemma 3.5 with K = [r] \ {g}, C =
`(b) +α(1 + ag(b)), and ci = ai(b) for i 6= g. Note, however, that if the box b has
leg-length 0, then C = 0 for α = 0, and in this case the hypothesis C−1 = O(1)
of Lemma 3.5 is not fulfilled. To overcome this difficulty, we define

h′′α(λ) =
∏
�∈λ
`(�)6=0

(αa(�) + `(�) + α) .

By definition, the top-most box of each column of a diagram λ has leg-length 0.
Moreover λ has mi(λ

t) columns of height i, thus the arm-length of the top-most
boxes of these columns are 0, 1,. . . , mi(λ

t)− 1 respectively. Finally∏
�∈λ
`(�)=0

(αa(�) + `(�) + α) = αλ1
∏
i

mi(λ
t)!,

so that

(29) h′α(λ) = αλ1

(∏
i

mi(λ
t)!

)
h′′α(λ).

Besides, the exact same proof than for hα yields the following result:

Proposition 3.7. Fix some partitions λ1, . . . , λr and, for a subset I of [r], set
vI = h′′α

(
λI
)
. The family (vI) has the strong factorization, and hence, the small

cumulant properties.

4. STRONG FACTORIZATION PROPERTY OF JACK POLYNOMIALS

Let us fix partitions λ1, . . . , λr, and for any subset I ⊆ [r] we define uI := JλI .
The purpose of this section is to prove Theorem 1.4, namely that κJ(λ1, · · · , λr) =
κ[r](u) = O(αr−1), using above notation. We start with some preliminary results.
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4.1. Preliminary results.

Proposition 4.1. For any partitions λ1, . . . , λr the cumulant of Jack polynomials
has a monomial expansion of the following form

κJ(λ1, · · · , λr) =
∑
µ<λ[r]

cλ
1,...,λr

µ mµ +O(αr−1),

where the coefficients cλ
1,...,λr
µ are polynomials in α.

Proof. First, observe that for any partitions ν1 and ν2, one has

mν1mν2 = mν1⊕ν2 +
∑

µ<ν1⊕ν2

bν
1,ν2

µ mµ,

for some integers bν
1,ν2

µ .
Fix partitions λ1, . . . , λr and a set partition π = {π1, · · · , πs} ∈ P([r]). Note

that λπ1 ⊕ · · · ⊕ λπs = λ[r]. Thanks to Eq. (11) and the above observation on
products of monomials, there exist coefficients dλ

π1 ,··· ,λπs
µ ∈ Q[α] such that:

Jλπ1 · · · Jλπs = hα(λπ1) · · ·hα(λπs)mλ[r] +
∑
µ<λ[r]

dλ
π1 ,··· ,λπs
µ mµ.

As a consequence, there exist coefficients cλ
1,...,λr
µ ∈ Q[α] such that

κJ(λ1, · · · , λr) = κ[r](v)mλ[r] +
∑
µ<λ[r]

cλ
1,...,λr

µ mµ,

where vI = hα
(
λI
)
. Proposition 3.6 completes the proof. �

For any positive integer r and for any partitions λ1, . . . , λr we define

(30) InEx(λ1, . . . , λr) :=
∑
I⊆[r]

(−1)r−|I|b
(
λI
)
.

Proposition 4.2. Let r ≥ 3 be a positive integer. Then, for any partitions λ1, . . . , λr

one has:
InEx(λ1, · · · , λr) = 0.

Proof. Expanding the definition and completing partitions with zeros, we have:

InEx(λ1, . . . , λr) =
∑
j≥1

∑
I⊆[r]

(−1)r−|I|
(
λIj
2

)
.

In particular, it is enough to prove that the summand corresponding to any given
j ≥ 1 is equal to 0. In other terms, we can restrict ourselves to the case where
λi = (λi1) has only one part.

In this case, InEx(λ1, · · · , λr) is a symmetric polynomial in λ11, . . . λ
r
1 of degree

2 without constant term. Moreover, its coefficients are given by:

−
[
λ11
]

InEx(λ1, · · · , λr) =
[(
λ11
)2]

InEx(λ1, · · · , λr) =
∑

[1]⊆I⊆[r]

(−1)r−|I|

2
= 0,
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and [
λ11 · λ21

]
InEx(λ1, · · · , λr) =

∑
[2]⊆I⊆[r]

(−1)r−|I| = 0.

This completes the proof. �

Let us now define two functions that will be of great importance in the proof of
Theorem 1.4:

A1(λ
1, . . . , λr) :=

∑
π∈P([r])

[
µ(π, {[r]})

(∑
B∈π

b(λB)

) ∏
B∈π

JλB

]
,(31)

A2(λ
1, . . . , λr) :=

∑
π∈P([r]);#(π)≥2

µ(π, {[r]})D1,2 (JλB : B ∈ π) ,(32)

where D1,2 is an operator defined as follows:
(33)

D1,2(f1, . . . , fk) :=
∑

1≤m≤N

∑
1≤i<j≤k

f1 · · ·
(
xm

∂

∂xm
fi

)
· · ·
(
xm

∂

∂xm
fj

)
· · · fk.

Lemma 4.3. For any positive integer r ≥ 2 and any partitions λ1, . . . , λr, a fol-
lowing equality holds true:

A1(λ
1, . . . , λr) = b

(
λ[r]
)
κ[r](u) +

1

2

∑
∅(I([r]

InEx
(
λI , λI

c)
κI(u)κIc(u),

where Ic denotes the complement [r] \ I of I in [r].

Proof. Let us substitute Eq. (20) into definition of A1 — Eq. (31) — to obtain the
following identity

A1(λ
1, . . . , λr) =

∑
σ∈P([r])

 ∑
π∈P([r]);π≥σ

µ(π, {[r]})

[∑
B∈π

b(λB)

] ∏
B∈σ

κB(u).

Fix a set partition σ ∈ P([r]). We claim that

(34)
∑

π∈P([r]);π≥σ

µ(π, {[r]})

[∑
B∈π

b(λB)

]
= InEx

(
λB : B ∈ σ

)
.

Let us order blocks of σ in some way σ = {B1, . . . , B#(σ)}. Partitions π coarser
than σ are in bijection with partitions of the blocks of σ, that is partitions of [#(σ)].
Therefore the left-hand side of (34) can be rewritten as:

∑
π∈P([r]);π≥σ

µ(π, {[r]})

[∑
B∈π

b(λB)

]
=

∑
ρ∈P([#(σ)])

µ(ρ, {[#(σ)]})

∑
C∈ρ

b

⊕
j∈C

λBj

 .
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Fix some subset C of [#(σ)]. The coefficient of b
(⊕

j∈C λ
Bj
)

in the above sum
is

aC :=
∑

ρ∈P([#(σ)])
C∈ρ

µ(ρ, {[#(σ)]}).

Set-partitions ρ of [#(σ)] that have C as a block write uniquely as C ∪ ρ′, where
ρ′ is a set partition of [#(σ)] \ C). Thus

aC =
∑

ρ′∈P([#(σ)]\C)

µ(C ∪ ρ′, {[#(σ)]})

=
∑

0≤i≤#(σ)−|C|

S(#(σ)− |C|, i)i!(−1)i = (−1)#(σ)−|C|,

where S(n, k) is the Stirling number of the second kind and the last equality comes
from the relation ∑

0≤k≤n
S(n, k)(x)k = xn

evaluated at x = −1 — here, (x)k := x(x− 1) · · · (x− k + 1) denotes the falling
factorial. This finishes the proof of Eq. (34).

This also completes the proof of the lemma by noticing that the right hand side
of Eq. (34) vanishes for all set partitions σ such that #(σ) ≥ 3, which is ensured
by Proposition 4.2. �

Lemma 4.4. For any positive integer r ≥ 2 and any partitions λ1, . . . , λr, a fol-
lowing equality holds true
(35)

A2(λ
1, . . . , λr) = −1

2

∑
1≤m≤N

∑
∅(I([r]

(
xm

∂

∂xm
κI(u)

)(
xm

∂

∂xm
κIc(u)

)
.

Proof. Let us call RHS the right-hand side of Eq. (35). Using the definition of
cumulants and Leibniz rule for the operator xm ∂

∂xm
we get

−2 RHS =
∑
∅(I([r]

π1∈P(I),π2∈P(Ic)

µ(π1, {I})µ(π2, {Ic})

 ∑
B1∈π1

B2∈π2

VB1,B2;C1,...,Cs

 ,

where C1, · · · , Cs are the blocks of π1 and π2 distinct from B1 and B2 and

VB1,B2;C1,...,Cs =
∑

1≤m≤N

(
xm

∂

∂xm
uB1

)(
xm

∂

∂xm
uB2

)( s∏
i=1

uCi

)
.

Fix some partition {B1, B2, C1, · · · , Cs} with two marked blocks B1 and B2 (the
order of two marked blocks matters) and consider the coefficient of VB1,B2;C1,...,Cs

in −2 RHS. Pairs of set partitions (π1, π2) contributing to this coefficient are ob-
tained as follows: take a subset J of [s] and set

π1 = B1 ∪ {Cj , j ∈ J}, π2 = B2 ∪ {Cj , j ∈ [s] \ J}.
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Then µ(π1, {I}) = (−1)|J |(|J |)! and µ(π2, {Ic}) = (−1)s−|J |(s − |J |)!. Thus
the coefficient of VB1,B2,C1,...,Cs in −2 RHS is

∑
J⊂[s]

(−1)|J |(|J |)!(−1)s−|J |(s− |J |)! =

s∑
k=0

(
s

k

)
(−1)kk!(−1)s−k(s− k)!

=

s∑
k=0

(−1)ss! = (−1)s(s+ 1)!.

Finally, we get

RHS =
1

2

∑
{B1,B2;C1,··· ,Cs}

(−1)s+1(s+ 1)!VB1,B2;C1,...,Cs .

where the sum runs over set partitions {B1, B2;C1, · · · , Cs} with two ordered
marked blocks. Note that (−1)s+1(s + 1)! is simply the Möbius function of the
underlying set partition (forgetting the marked blocks) and that one can remove the
factor 1/2 by summing over set partitions with two unordered marked blocks.

On the other hand, from the definition of D1,2 — Eq. (33) —, for any set parti-
tion π, one has:

D1,2(uB;B ∈ π) =
∑
...

VB1,B2;C1,...,Cs ,

where the sum runs over all ways to mark (in an unordered way) two blocks of
π; the resulting marked partition is then denoted {B1, B2;C1, · · · , Cs} as usual.
Therefore, one has ∑

π∈P([r])

µ(π, {[r]})D1,2(uB;B ∈ π) = RHS,

as claimed in the lemma. �

4.2. Proof of Theorem 1.4.

Proof of Theorem 1.4. The proof will by given by induction on r. For r = 1, we
want to prove that Jack polynomials J (α)

λ has no singularity in α = 0. This follows,
e.g., from the specialization for α = 0 given in Eq. (12). Moreover, we observed
before stating Theorem 1.4 that the case r = 2 also follows from Eq. (12).

Let us assume that the statement holds true for all m < r. Notice first that, by
Leibniz rule, for any f1, . . . , fk ∈ Sym, one has the following expansions:

D1 (f1 · · · fk) =
∑

1≤i≤k
f1 · · · (D1fi) · · · fk;

D2 (f1 · · · fk) =
∑

1≤i≤k
f1 · · · (D2fi) · · · fk

+D1,2(f1, . . . , fk),

where D1,2 is given by Eq. (33).
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Fix some partitions λ1, . . . , λr and a set partition π of [r]. Then, one has

Dα (Jλπ1 · · · Jλπs ) =
∑

1≤i≤s
Jλπ1 · · · (DαJλπi ) · · · Jλπs + αD1,2 (Jλπ1 , . . . , Jλπs )

=

 ∑
1≤i≤s

(
(N − 1)|λπi | − b

(
(λπi)t

)) Jλπ1 · · · Jλπs

+ α

 ∑
1≤i≤s

b(λπi)

 Jλπ1 · · · Jλπs +D1,2 (Jλπ1 , . . . , Jλπs )


=
(

(N − 1)
∣∣λ[r]∣∣− b((λ[r])t

))
Jλπ1 · · · Jλπs

+ α

 ∑
1≤i≤s

b(λπi)

 Jλπ1 · · · Jλπs +D1,2 (Jλπ1 , . . . , Jλπs )

 ,

where the second equality comes from Proposition 2.2. Multiplying by the appro-
priate value of the Möbius function and summing over set partitions π, it gives us
the following identity:

(36) Dακ[r](u) =
(

(N − 1)
∣∣λ[r]∣∣− b((λ[r])t

))
κ[r](u)

+ α
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
,

where A1 and A2 are given by Eq. (31) and Eq. (32), respectively.
Consider the coefficient of αj in the above expression. We have

[αj ]Dακ[r](u) =
(

(N − 1)
∣∣∣λ[r]∣∣∣− b((λ[r])t

))
[αj ]κ[r](u)

+ [αj−1]
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
.

On the other hand, since Dα = D1 + αD2, one has

(37) [αj ]Dακ[r](u) = D1

(
[αj ]κ[r](u)

)
+D2

(
[αj−1]κ[r](u)

)
.

Comparing both expressions, we have the following identity, which will be a key
tool in the proof:

(38) D1

(
[αj ]κ[r](u)

)
+D2

(
[αj−1]κ[r](u)

)
=
(

(N − 1)
∣∣∣λ[r]∣∣∣− b((λ[r])t

))
[αj ]κ[r](u)

+ [αj−1]
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
.

We recall that our goal is to prove that

(39) [αj ]κ[r](u) = 0

for any 0 ≤ j ≤ r − 2. We proceed by induction on j.
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Consider the case j = 0. Since κ[r](u), A1 and A2 are polynomials in α,
Eq. (38) simplifies in this case to

D1f =
(

(N − 1)
∣∣∣λ[r]∣∣∣− b((λ[r])t

))
f,

where f = [a0]κ[r](u). Thanks to Proposition 4.1 we know that f satisfies the
assumptions of Corollary 2.3 and hence it is equal to zero.

Now, we fix j ≤ r − 2, and we assume that [αi]κ[r](u) = 0 holds true for all
0 ≤ i < j. We are going to show that it holds true for i = j as well.

Since [αj−1]κ[r](u) = 0 by the inductive hypothesis, Eq. (38) reads

D1

(
[αj ]κ[r](u)

)
=
(

(N − 1)
∣∣∣λ[r]∣∣∣− b((λ[r])t

))
[αj ]κ[r](u)

+ [αj−1]
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
.

First, we claim that [αj−1]A1(λ
1, . . . , λr) = 0. Indeed, from the induction hy-

pothesis, for each subset I with ∅ ( I ( [r], one has κI(u) = O(α|I|−1) and
κIc(u) = O(α|I

c|−1) = O(αr−|I|−1). We then use Lemma 4.3 and write:

[αj−1]A1(λ
1, . . . , λr) = b

(
λ[r]
)

[αj−1]κ[r](u)

+
1

2

∑
∅(I([r]

[αj−1] InEx
(
λI , λI

c)
κI(u)κIc(u) = 0,

since j − 1 < r − 2.
Similarly, one can prove that [αj−1]A2(λ

1, . . . , λr) = 0. Indeed, using a similar
argument as before, we have

1

2

∑
1≤m≤N

∑
∅(I([r]

(
xm

∂

∂xm
κI(u)

)(
xm

∂

∂xm
κIc(u)

)
= O(αr−2).

But, from Lemma 4.4, the left-hand side is A2(λ
1, . . . , λr). Since j − 1 < r − 2,

we know that [αj−1]A2(λ
1, . . . , λr) = 0, as wanted.

Above computations show that Eq. (38) simplifies to

D1f =
(

(N − 1)
∣∣∣λ[r]∣∣∣− b((λ[r])t

))
f,

where f = [aj ]κ[r](u). Again, thanks to Proposition 4.1 we know that f satisfies
assumptions from Corollary 2.3 and thus it is equal to zero, which finishes the
proof. �

5. POLYNOMIALITY IN b-CONJECTURE

5.1. Cumulants and Young diagrams. Consider a function F on Young dia-
grams and some diagrams λ1, · · · , λr. Then we consider the family defined by
(recall that we use ⊕ for entry-wise sum of partitions):

(40) uI = F

(⊕
i∈I

λi

)
.
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Definition 5.1. We say that a functionG on Young diagrams has the small cumulant
property if, for any r ≥ 1 and for any partitions λ1, · · · , λr, the above-defined
family has the small cumulant property.

With this notation, the results of the previous sections can be reformulate as:

Theorem 1.4: For a fixed alphabet x, the function λ 7→ Jαλ (x) has the small
cumulant property.

Proposition 3.6: The function hα has the small cumulant property.
Proposition 3.7: The function h′′α has the small cumulant property.
Corollary 3.4: IfG1 andG2 have the small cumulant properties and take non-zero

values, then so have G1 ·G2 and G1/G2.

As a consequence, the function

λ 7→ 1

hα(λ)h′′α(α)
Jαλ (x)Jαλ (y)Jαλ (z)

has the small cumulant property. We will use that later in this section.

Another consequence is that the function λ 7→ Jαλ (x)

hα(λ)
also has the small cu-

mulant property. We will not use this result here, but since this function is the
P -normalization of Jack polynomials, we have considered relevant to mention it
here.

5.2. Cumulants and logarithm. Let t = (t1, t2, · · · ) be an infinite alphabet of
formal variables. We use the notation tλ = tλ1 · · · tλr

Lemma 5.2. Let F be a function on Young diagrams. Denote κF (λ1, · · · , λr) the
cumulant κ[r](u), where u is defined by Eq. (40). Then we have the following
equality of formal power series in t:

log
∑
λ

F (λ)

αλ1
∏
imi(λt)!

tλ
t

=
∑
r≥1

1

r!αr

∑
(j1,··· ,jr)

κF (1j1 , · · · , 1jr)tj1 · · · tjr .

Proof. Both sides expand as linear combinations of products

Fλ1,...,λs := F (λ1) · · ·F (λs)t(λ
1)t · · · t(λs)t ,

where λ1, . . . , λs are partitions. Fix some partitions λ1, . . . , λs. The coefficient of
Fλ1,...,λs on the left-hand side is given by

(41)
(−1)s−1

s

s!

|Aut(λ1, · · · , λs)|

s∏
h=1

1

αλ
h
1
∏
imi ((λh)t)!

.

Here, |Aut(λ1, · · · , λs)| denotes the number of permutations σ of size s such that
λj = λσ(j) for all j ≤ s.
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The situation on the right-hand side is more intricate. First, rewrite it as

(42)
∑
r≥1

1

r!αr

∑
(j1,··· ,jr)

κF (1j1 , · · · , 1jr)tj1 · · · tjr

=
∑
r≥1

∑
(j1,··· ,jr)

∑
π∈P([r])

µ(π, {[r]})
r!αr

∏
B∈π

F

(⊕
h∈B

1jh

)
tj1 · · · tjr .

We are interested in which summation indices contribute to the coefficient ofFλ1,...,λs ,
that is indices such that one has the following equality of the multisets{⊕

h∈B
1jh , B ∈ π

}
= {λh, 1 ≤ h ≤ s}.

First, (j1, · · · , jr) should be a reordering of list of column lengths in λ1, . . . , λs.
If m′i denotes the number of i in this list of column lengths, there are r!/(

∏
im
′
i!)

such reordering and each gives the same contribution to the coefficient of Fλ1,...,λs .
We now suppose that we have fixed such a reordering (j1, · · · , jr).

Let m′i(λ
j) denotes the number of columns of length i in λj . Then the number

of ordered set partitions (B1, · · · , Bs) of [r] such that⊕
b∈Bh

1jb = λh for 1 ≤ h ≤ s

is (
∏
imi!)/

(∏
i,jm

′
i

(
(λj)

))
. Indeed, for each value i, one has to choosem′i

(
(λ1)

)
entries equal to i in the list (j1, · · · , jr) that go in B1, m′i

(
(λ2)

)
entries equal to i

that go inB2, and so on. This gives for each i a multinomialm′i!/
(∏

jm
′
i

(
(λj)

))
,

as claimed. But we want to count (unordered) set partitions and not ordered set par-
titions as above, so that we should divide by |Aut(λ1, · · · , λs)|.

All these set partitions have s blocks so that the corresponding value of the
Möbius function is µ(π, {[r]}) = (−1)s−1(s− 1)!.

Finally, the coefficient of Fλ1,...,λs in Eq. (42) is

(43)
r!∏
imi!

∏
imi!∏

i,jm
′
i(λ

j)

1

|Aut(λ1, · · · , λs)|
(−1)s−1(s− 1)!

r!αr
,

where r is the total number of columns in the λ1, . . . , λs, that is r =
∑

h λ
h
1 .

Comparing Eq. (41) and Eq. (43), we get our result. �

Remark. The statement and proof of this lemma are similar to the fact that cumu-
lants can be alternatively defined as a sum over set partitions or as coefficients in
the generating series of the logarithm of the moment generating series; see, e.g.
Eqs (3) and (II.c) in [LS59].
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5.3. Conclusion. We have now all the tools needed to prove the polynomiality in
b-conjecture.

Proof of Theorem 1.2. Thanks to Corollary 2.5, it is enough to prove that hτµ,ν(β)
has no pole in α = 0, i.e. that hτµ,ν(β) = O(1). From Eq. (1), this amounts to
establish that

log

(∑
τ∈P

J
(α)
τ (x) J

(α)
τ (y) J

(α)
τ (z) t|τ |

hα(λ)h′α(λ)

)
= O(α−1).

But, using Eq. (29), we see that this quantity is the left-hand side of Lemma 5.2
for

F (λ) =
1

hα(λ)h′′α(α)
Jαλ (x)Jαλ (y)Jαλ (z),

and t1 = t2 = · · · = t. It was observed at the end of Section 5.1 that this func-
tion F has the small cumulant property. Therefore, for any j1, · · · , jr, the cumu-
lant κF (1j1 , · · · , 1jr) is O(αr−1) and, thus, the right-hand side of Lemma 5.2 is
O(α−1). This finishes the proof of the polynomiality.

The bound on the degree follows from the polynomiality and work of La Croix,
see [LaC09, Lemma 5.7 and Theorem 5.18]. �
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[DFŚ14] M. Dołęga, V. Féray, and P. Śniady. Jack polynomials and orientability generating series of
maps. Sém. Lothar. Combin., 70:Art. B70j, 50 pp. (electronic), 2014.
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