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Abstract

We propose a numerical solution for the solution of the Fokker-Planck-Kolmogorov (FPK)
equations associated with stochastic partial differential equations in Hilbert spaces. The method
is based on the spectral decomposition of the Ornstein-Uhlenbeck semigroup associated to the
Kolmogorov equation. This allows us to write the solution of the Kolmogorov equation as a
deterministic version of the Wiener-Chaos Expansion. By using this expansion we reformulate the
Kolmogorov equation as a infinite system of ordinary differential equations, and by truncation it we
set a linear finite system of differential equations. The solution of such system allow us to build an
approximation to the solution of the Kolmogorov equations. We test the numerical method with
the Kolmogorov equations associated with a stochastic diffusion equation, a Fisher-KPP stochastic
equation and a stochastic Burgers Eq. in dimension 1.

1 Introduction

Stochastic Partial Differential Equations (SPDE’s) are important tools in modeling complex phenomena,
they arise in many fields of knowledge like Physics, Biology, Economy, Finance, etc.. Develop efficient
numerical methods for simulating SPDE’s is very importan but also very difficult and challenging.

There exists in literature several approachs in order to solve numerically a SPDE. Among them there
exists Monte Carlo simulations, Karhunen-Loeve Expansion, Wiener Chaos expansion, stochastic Taylor
approximations for SPDE’s, etc. In order to solve numerically an SPDE one can apply one of this
methods. Here we will mention some of them but our list reference is far away to be exhaustive.

The Monte Carlo (MC) simulations for SPDE’s have been explored intensively in the last 20 years ([28],
[21] ). The basis idea of MC is to sample the randomness in the SPDE’s and solve the stochastic equa-
tions realization by realization, this is because for each given realization of the randomness, the SPDE’s
becomes deterministic and can be solved by usual deterministic numerical methods. the disadvatage is
that many of that “samples” are required for suffcient accuracy, causing suboptimal efficiency even if
optimal algebraic solvers are used; to overcome this issue Giles ([13], [14]) has introduce a modificacion
of MC for the numerical solution of Itô stochastic ordinary differential equations, following basic ideas
in earlier work by S. Heinrich [16] on numerical quadrature. This method is the so-called Multilevel
Monte Carlo (MLMC).

The main idea of MLMC methods is to apply the MC method for a nested sequence of stepsizes
while balancing the number of samples according to the stepsize. MLMC allows to significantly speed
up to classical MC methods thanks to this hierarchical sampling; however this method still can have
limitations for SPDE’s.

Other approach is use spectral methods, in particular use the Karhunen-Loeve expansion (KLE) and
the Wiener Chaos expansions for solving SPDE’s. For the former one can study the theory developed
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1 INTRODUCTION

in [22]; in this work they proposed several methods to solve SPDE’s and this methods are latter applied
to solve the stochastic Navier-Stokes equations. Nevertheless, this method can have limitations since
in this approach the source of randomness is usually represented by a fixed number of random variables
and if we consider, for instance, stochastic equations arising in fluid dynamics with a random forcing
white in time which has a divergent Karhunen-Loeve expansion, then it is not possible to apply the
KLE to this kind of equations.

Hou et al [17] propose a numerical method based on Wiener Chaos expansion and apply it to solve the
stochastic Burgers and Navier-Stokes equations driven by Brownian motion. They consider an SPDE
with Brownian motion forcing and since a Brownian motion can be expand as a linear combination of in-
dependent Gaussian random variables, then they expand the solution of theSPDE’s as a Fourier-Hermite
series of those Gaussian random variables, this is a version of the Cameron-Martin decomposition.

There is another approach that involves stochastic Taylor approximations for stochastic partial differ-
ential equations (see [20]). This Taylor expansions are based on an iterated application of the Itô
formula. However, For the solutions of stochastic partial differential equations in Hilbert (or Banach
spaces) there is no way to define directly the Itô formula. Nevertheless, it can be constructed by taking
advantage of the mild form representation of the solutions.

The Fokker-Planck-Kolmogorov (FPK) equation is a partial differential equation that describes the
time evolution of the probability density function of the velocity of a particle under the influence of
drag forces and random forces, it is a kind of continuity equation for densities. Citing [9] “parabolic
equations on Hilbert spaces appear in mathematical physics to model systems with infinitely many de-
grees of freedom. Typical examples are provided by spin configurations in statistical mechanics and by
crystals in solid state theory. Infinite-dimensional parabolic equations provide an analytic description of
infinite dimensional diffusion processes in such branches of applied mathematics as population biology,
fluid dynamics, and mathematical finance.”. This kind of equations have been deeply studied in the
last years, see for instance [2], [11], [7] and the references therein.

Numerical methods for FPK equations associated with SPDEs have been studied, up to our knowledge,
just in a few articles, here we will mention just one. Schwab and Suli [29] have formulated a space-time
variational method to approximate solution of Kolmogorov-type equations in infinite dimensions. They
consider an infinite-dimensional Hilbert space H, a Gaussian measure µ with trace class covariance
operator Q on H and the space L2(H,µ) of functions on H which are square-integrable with respect
to the measure µ. They showed the well-posedness of Fokker-Plank equations and Ornstein-Uhlenbeck
equations on L2(H,µ). Moreover, they constructed sequences of finite-dimensional approximations that
attain the best possible convergence rates afforded by best N -terms approximations of the solution.
They used an spectral method based on Wiener-Hermite polynomial chaos expansions in terms of a
sequence of independent Gaussian random variables on H and a Wavelet type Riesz basis with respect
to the time variable. The use of the spectral basis of Wiener-Hermite polynomial chaos allow them
to avoid meshing the infinite-dimensional “domain” H of solutions of the Kolmogorov-type equations.
However they do not present numerical examples and the questions about the feasibility of their method
are open.

In this paper, we introduce a novel numerical method that can have some similitude with the one
proposed by Schwab and Suli but also have substantial differences. Indeed, our method is also based
on spectral methods for the variable on H, but we use a deterministic version of the Wiener-Chaos
Expansion on the infinite-dimensional “domain” H instead the classical Wiener-Chaos Expansion with
the use of a sequence of Gaussian random variables, this allow allow us to avoid meshing the space
H but we also avoid the so-called curse of dimensionality: the associated computational cost grows
exponentially as a function of the number of random variables defining the underlying probability space
of the problem (see [12] for instance).

The second difference is with respect to the time variable, where, instead using Wavelet type Riesz basis
we set up a finite system of coupled ordinary differential equations and by solving it we fix the coefficients
as a time functions. we have applied the method to three SPDE’s: a stochastic diffusion, a stochastic
FisherKPP equation and a stochastic burgers equation and the results show that the behaviour of the

2



3 ON THE ORNSTEIN-UHLENBECK SEMIGROUP

method is good. However, since the method is analogue to the classical deterministic spectral method
thus it can be extended to improve its performance. This is the subject of a future research.

This paper is organized as follows. In section 2 we review the Fokker-Plank-Kolmogorov equation
associated with SPDE’s in a separable Hilbert space. In section 3 we study the spectral decomposition
of the Ornstein-Uhlenbeck semigroup associated to the Kolmogorov equation which will be used to do
the numerical approximation to the solution of the FPK equation, this is done in section 4. In section 5
we prove a theorem on the well posedness and convergence of the numerical aproximation. Results on
the application of the proposed method are presented in section 6, where we have applied the method
to a linear stochastic diffusion equation, a Fisher-KPP stochastic equation and a stochastic Burgers
Eq. in dimension 1.

2 Fokker-Plank-Kolmogorov equation

In a separable infinite-dimensional Hilbert space H with inner product 〈, 〉H we define a Gaussian
measure µ with mean zero and nuclear covariance operator Λ with Tr(Λ) < +∞.
We focus on the stochastic differential equation in H

dXt = AXtdt+B(Xt)dt+
√
QdWt, (2.1)

where the operator A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup
etA in H, Q is a bounded operator from another Hilbert space U to H and B : D(B) ⊂ H → H is a
nonlinear mapping.
The equation (2.1) can be associated to a Kolmogorov equation in the next way, we define

u(t, x) = E
[
u0(Xx

t )
]
, (2.2)

where u0 : H → R and Xx
t is the solution to (2.1) with initial conditions X0 = x where x ∈ H. Then

u satisfies the Kolmogorov equation

∂u

∂t
=

1

2
Tr(QD2u) + 〈Ax,Du〉H + 〈B(x), Du〉H, x ∈ D(A). (2.3)

Several authors have proved results on existence and uniqueness of the solution of the Kolmogorov
equations, see for instance Da Prato [7] for a survey, Da Prato-Debussche [8] for the Burgers equation,
Barbu-Da Prato [1] for the 2D Navier-Stokes stochastic flow in a channel.

3 On the Ornstein-Uhlenbeck semigroup

Following [6], in H we define a Gaussian measure µ with mean zero and nuclear covariance operator Λ
with Tr(Λ) < +∞ and since Λ : H 7→ H is a positive definite, self-adjoint operator then its square-root
operator Λ1/2 is a positive definite, self-adjoint Hilbert-Schmidt operator on H.
Define the inner product

〈g, h〉0 := 〈Λ−1/2g,Λ−1/2h〉H, for g, h ∈ Λ1/2H.

Let H0 denote the Hilbert subspace of H, which is the completion of Λ1/2H with respect to the norm

‖g‖0 := 〈g, g〉1/20 . Then H0 is dense in H and the inclusion map i : H0 ↪→ H is compact. The triple
(i,H0,H) forms an abstract Wiener space.
Let H = L2(H, µ) denote the Hilbert space of Borel measurable functionals on the probability space
with inner product

〈Φ,Ψ〉H :=

∫
H

Φ(v)Ψ(v)µ(dv), for Φ,Ψ ∈ H,

and norm ‖Φ‖H := 〈Φ,Φ〉1/2H . In H we choose a basis system {ϕk} such that ϕk ∈ H.

3
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A functional Φ : H 7→ R, is said to be a smooth simple functional (or a cylinder functional) if there
exists a C∞-function φ on Rn and n-continuous linear functional l1, . . . , ln on H such that for h ∈ H

Φ(h) = φ(h1, . . . , hn) where hi = li(h), i = 1, . . . , n.

The set of all such functionals will be denoted by S(H).

Denote by Pk(x) the Hermite polynomial of degree k taking values in R. Then, Pk(x) is given by the
following formula

Pk(x) =
(−1)k

(k!)1/2
e
x2

2
dk

dxk
e−

x2

2

with P0 = 1. It is well-known that {Pk(·)}k∈N is a complete orthonormal system for L2(R, µ1(dx))

with µ1(dx) = 1√
2π
e−

x2

2 dx.

Define the set of infinite multi-index as

J =
{
α = (αi, i ≥ 1)

∣∣ αi ∈ N ∪ {0}, |α| :=
∞∑
i=1

αi < +∞
}

For n ∈ J define the Hermite polynomial functionals on H by

Hn(h) =

∞∏
i=1

Pni(li(h)), h ∈ H0, n ∈ J , (3.1)

and where
li(h) = 〈h,Λ−1/2ϕi〉H, i = 1, 2, . . .

where Pn(ξ) is the usual Hermite polynomial for ξ ∈ R and n ∈ N.

Remark 3.1. Notice that li(h) is defined only for h ∈ H0. However, regarding h as a µ-random
variable in H, we have E

(
li(h)

)
= ‖ϕi‖2 = 1 and then lk(h) can be defined µ-a.e. h ∈ H, similar to

defining a stochastic integral.
It is possible to identify the Hermite polynomial functionals defined in (3.1), for h ∈ H0, as a deter-
ministic version of the Wick polynomials defined on the canonical Wiener space.(for further details see
[19] for instance).

We have the following result (See Theorems 9.1.5 and 9.1.7 in Da Prato-Zabczyk [9] or Lemma 3.1 in
chapter 9 from Chow [6]).

Lemma 3.2. For h ∈ H let li(h) = 〈h,Λ−1/2ϕi〉H, i = 1, 2, . . .. Then the set {Hn} of all Hermite
polynomials on H forms a complete orthonormal system for H. Hence the set of all functionals are
dense in H. Moreover, we have the direct sum decomposition:

H =

∞⊕
j=0

Kj ,

where Kj is the subspace of H spanned by {Hn : |n| = j}. 2

Spectral decomposition of the Ornstein-Uhlenbeck semigroup

Consider the linear stochastic equation

dut = Autdt+ dWt, (3.2)

u0 = h ∈ H.

Here, as before A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup
etA in H. Wt is a Q-Wiener process in H.
Chow in [6, Lemma 9.4.1] has shown the following result.

4
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Lemma 3.3. Suppose that A and Q satisfy the following:

1. A : D(A) ⊂ H → H is self-adjoint and there is β > 0 such that

〈Av, v〉H ≤ −β‖v‖H ∀v ∈ H.

2. A commutes with Q in D(A) ⊂ H.

Then (3.2) has a unique invariant measure µ which is a Gaussian measure on H with zero mean and
covariance operator Λ = 1

2Q(−A)−1 = 1
2 (−A)−1Q. 2

We define the operator

A0u =
1

2
Tr(QD2u) + 〈Ax,Du〉H, x ∈ H (3.3)

and suppose that −A and Q have the same eigenfunctions ek with eigenvalues λk y ρk respectively.
Then the operator A0 satisfies the following result.

Lemma 3.4. Let Hn(h) be a Hermite polynomial functional given by (3.1). Then the following holds

A0Hn(h) = −λnHn(h), (3.4)

for any n ∈ J and h ∈ H and where

λn :=

∞∑
k=1

nkλk.

2

The proof can be found in [6, Lemma 9.4.3] or [4].
Using lemmas 3.4 and 3.2, ({Hn} forms a complete orthonormal system for L2(H, µ)) we can write

u(t, x) =
∑
n∈J

un(t)Hn(x), x ∈ H, t ∈ [0, T ], (3.5)

where un : [0, T ] 7→ R and Hn(x) are the Hermite functionals.

Remark 3.5. The decomposition given in (3.5) is a deterministic version to the Wiener Chaos expansion
(WCe), also known as a Fourier-Hermite series. The WCe has been used to prove several results
in stochastic analysis and also it has been applied to solve numerically stochastic partial differential
equations (see for instance Lototsky and Rozovskii [25], Lototsky [24], Hou et. al. [17]).

Notice that the Kolmogorov equation can be writen as

∂u

∂t
=

1

2
Tr(QD2u) + 〈Ax,Du〉H + 〈B(x), Du〉H

= A0u+ 〈B(x), Du〉H. (3.6)

Using (3.5), we calculate

∂u

∂t
=
∑
n∈J

u̇n(t)Hn(x)

A0u = A0

∑
n∈J

un(t)Hn(x) =
∑
n∈J

un(t)A0Hn(x)

= −
∑
n∈J

un(t)λnHn(x)

Where in the last equality we have used the Lemma 3.4.
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For the last term in (3.6) we have

〈B(x), Du〉H =
〈
B(x), Dx

∑
n∈J

un(t)Hn(x)
〉
H

=
∑
n∈J

un(t)
〈
B(x), DxHn(x)

〉
H,

where Dx is the Fréchet derivative.
Therefore the Kolmogorov equation becomes∑

n∈J
u̇n(t)Hn(x) = −

∑
n∈J

un(t)λnHn(x) +
∑
n∈J

un(t)
〈
B(x), DxHn(x)

〉
H

Multiplying by Hm(x), m ∈ J and integrating in H w.r.t µ(dx) we have∑
n∈J

u̇n(t)

∫
H
Hm(x)Hn(x)µ(dx) = −

∑
n∈J

un(t)λn

∫
H
Hm(x)Hn(x)µ(dx)

+
∑
n∈J

un(t)

∫
H
Hm(x)

〈
B(x), DxHn(x)

〉
Hµ(dx)

From this, and using the orthogonality of the system {Hm(x)} we get the infinite system of coupled
ordinary differential equations

u̇m(t) = −um(t)λm +
∑
n∈J

un(t)Cn,m, n,m ∈ J (3.7)

where Cn,m is given by

Cn,m :=

∫
H

〈
B(x), DxHn(x)

〉
HHm(x)µ(dx). (3.8)

We focus on Cn,m. Since Hn(x) =
∏∞
i=1 Pni

(
〈x,Λ−

1
2 ei〉H

)
we get

DxHn(x) =

∞∑
k=1

∞∏
i=1

i 6=k

Pni
(
〈x,Λ−

1
2 ei〉H

)
P
′

nk

(
〈x,Λ−

1
2 ek〉H

)
Λ−

1
2 ek,

then 〈
B(x), DxHn(x)

〉
H =

∞∑
k=1

〈
B(x),Λ−

1
2 ek

〉
H

∞∏
i=1

i 6=k

Pni
(
〈x,Λ−

1
2 ei〉H

)
P
′

nk

(
〈x,Λ−

1
2 ek〉H

)
Thus,

Cn,m =

∫
H

∞∑
k=1

〈
B(x),Λ−

1
2 ek

〉
H

∞∏
i=1

i6=k

Pni
(
〈x,Λ−

1
2 ei〉H

)
P
′

nk

(
〈x,Λ−

1
2 ek〉H

)
Hm(x)µ(dx).

A technical result

The following result is important for the numerical simulation since it will allow us to use the evaluation
functional on the Hilbert space H.

Lemma 3.6. i) The Gaussian measure µ on H = L2 (0, 1) with covariance Λ = 1
2 (−A)

−1 is supported
on C ([0, 1]).
ii) Let ξ0 ∈ [0, 1] be given. Let u0 : C ([0, 1])→ R be defined as u0 (x) = x (ξ0). Then∫

H
u20 (x)µ (dx) <∞

(and therefore
∑
m

(
u0m
)2
<∞).

6
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Proof. Recall that Af = f ′′, D (A) = H2 (0, 1) ∩H1
0 (0, 1). By solving the two-point boundary value

problem f ′′ = g, f (0) = f (1) = 0, after several manipulations one can show that

(Λh) (ξ) =

∫ 1

0

λ (ξ, ξ′)h (ξ′) dξ′, h ∈ H

where

λ (ξ, ξ′) =
1

2
[(ξ (1− ξ′))− (ξ − ξ′) 1ξ′≤ξ] .

The reader may more easily get convinced that this is correct a posteriori, by showing that d2

dξ2

∫ 1

0
λ (ξ, ξ′) f (ξ′) dξ′ =

− 1
2f (ξ) and that (Λh) (0) = (Λh) (1) = 0.

Consider the canonical process (Xξ)ξ∈[0,1]:(H,B (H) , µ) → (R,B (R)) defined for a.e. ξ ∈ [0, 1] as

Xξ (x) = x (ξ) and denote by E the mathematical expectation on (H,B (H) , µ). The process X has
zero mean. One can prove that

Cov (Xξ, Xξ′) = q (ξ, ξ′) , a.e. ξ, ξ′ ∈ [0, 1] .

Indeed, since 〈Λh, k〉H =
∫
H 〈x, h〉H 〈x, k〉H µ (dx), we have∫ 1

0

∫ 1

0

q (ξ, ξ′)h (ξ′) k (ξ) dξdξ′ =

∫
H

∫ 1

0

x (ξ′)h (ξ′) dξ′
∫ 1

0

x (ξ) k (ξ) dξµ (dx)

=

∫ 1

0

∫ 1

0

(∫
H
x (ξ′)x (ξ)µ (dx)

)
h (ξ′) k (ξ) dξdξ′

=

∫ 1

0

∫ 1

0

E [Xξ′Xξ]h (ξ′) k (ξ) dξdξ′

and the formula for Cov (Xξ, Xξ′) follows from the arbitrarity of h and k.
The paths of the process X are obviously of class L2 (0, 1); there is a continuous modification of X if
and only if µ is supported on C ([0, 1]). If we check the condition

E
[
|Xξ −Xξ′ |2

]
≤ C |ξ − ξ′|α (3.9)

for some α,C > 0, then, by gaussianity,

E [|Xξ −Xξ′ |p] ≤ Cp |ξ − ξ′|
αp/2

for every p ≥ 1 and for a suitable constant Cp > 0, hence there is a continuous modification by
Kolmogorov criterion. But

E
[
|Xξ −Xξ′ |2

]
= E

[
X2
ξ

]
+ E

[
X2
ξ′
]
− 2E [XξXξ′ ]

= q (ξ, ξ) + q (ξ′, ξ′)− 2q (ξ, ξ′)

= q (ξ, ξ)− q (ξ, ξ′)

+ q (ξ′, ξ′)− q (ξ, ξ′) .

We have

q (ξ, ξ)− q (ξ, ξ′)

=
1

2
ξ (1− ξ)− 1

2
[(ξ (1− ξ′))− (ξ − ξ′) 1ξ′≤ξ]

≤ C |ξ − ξ′|

and similarly q (ξ′, ξ′)− q (ξ, ξ′) ≤ C |ξ − ξ′|. Hence condition (3.9) is satisfied with α = 1. We have
proved that µ is supported on C ([0, 1]).
We also have ∫

H
u20 (x)µ (dx) =

∫
H
x2 (ξ0)µ (dx) = E

[
X2
ξ0

]
= q (ξ0, ξ0) <∞.

The proof is complete.

7
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Remark 3.7. To convince ourselves, a more concise but a little formal proof of the claim
∫
H u

2
0 (x)µ (dx) <

∞ is ∫
H
u20 (x)µ (dx) =

∫
H
〈x, δξ0〉

2
H µ (dx) = 〈Λδξ0 , δξ0〉H =

1

2

∥∥∥(−A)
−1/2

δξ0

∥∥∥2
H
<∞

because (−A)
−1/2

δξ0 ∈ L2 (0, 1), since by duality〈
(−A)

−1/2
δξ0 , f

〉
H

=
〈
δξ0 , (−A)

−1/2
f
〉
H

=
(

(−A)
−1/2

f
)

(ξ0)

≤
∥∥∥(−A)

−1/2
f
∥∥∥
L∞
≤ C

∥∥∥(−A)
−1/2

f
∥∥∥
H1
≤ C ‖f‖L2

where we have used Sobolev embedding H1 ⊂ L∞ and the fact that (−A)
−1/2 maps L2 into H1.

4 Numerical approximation

Define the set of finite multi-index JM,N as

JM,N =
{
α = (αi, 1 ≤ i ≤M)

∣∣ αi ∈ {0, 1, 2, . . . , N}
}

this is the set of M -tuple wich can take values in the set {0, 1, 2, . . . , N}.
We approximate the solutions of the Kolmogorov equation by the following expression

ûN (t, x) =
∑

n∈JM,N
un(t)Hn(x), x ∈ H, t ∈ [0, T ], (4.1)

Notice the use of the finite M -tuple in oposition to the infinite multi-index J as in (3.5).
We truncate the infinite system (3.7) in the following sense. Consider the same value M as in JM,N

and m1, . . . ,mM ∈ JM,N and define the finite system of equations

u̇mi(t) = −umi(t)λmi +

M∑
j=1

unj (t)Cnj ,mi . 1 ≤ i ≤M. (4.2)

Set the vectors

UM (t) =
(
um1(t), um2(t), . . . , umM

(t)
)T

U̇M (t) =
(
u̇m1

(t), u̇m2
(t), . . . , u̇mM

(t)
)T

and the matrix

A =


−λ1 + C1,1 C2,1 · · · CM−1,1 CM,1

C1,2 −λ2 + C2,2 · · · CM−1,2 CM,2

...
...

. . .
...

...
C1,M−1 C2,M−1 · · · −λM−1 + CM−1,M−1 CM,M−1
C1,M C2,M · · · CM−1,M −λM + CM,M


where λi = λmi

and Ci,j = Cni,mj
for 1 ≤ i, j ≤ M . Notice that, given the expression (3.8), in

general the matrix A is not symmetric. We now can write the system (4.2) as a matrix differential
equation:

U̇M (t) = AUM (t). (4.3)

Then, if A has M real and distint eigenvalues ηi and M eigenvectors ~Vi then the solution to the (4.3)
is given by

UM (t) =

M∑
i=1

ci~Vie
ηit. (4.4)

8
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In the case when some of the eigenvalues and eigenvectors, or at least one of them, take values in the
complex field we still can have real solutions. Indeed, Suppose that we have the case with one complex
eigenvalue and eigenvector then it is know that we will have M − 2 real eigenvalues but we can obtain
two real solutions from the complex eigenvalue(see [15] for instance).
Let us write one of the complex eigenvalue and eigenvector as

~V = ~a+ i~b,

η = γ + iµ,

then we can write two real solutions as follows:

eγt
(
~acos(µt)−~bsin(µt)

)
, eγt

(
~asin(µt) +~bcos(µt)

)
.

4.1 Initial Conditions

In contrast to several types of differential equations, whether ordinary or partial, deterministic or stochas-
tic, for FPK equations there is no standard way to determine the initial conditions. This is because in
this type of equations we must choose a functional that acts on the initial condition, this implies that
depending on the functional chosen we must adapt the method. Here we present the method for two
examples of functionals.
We will consider two cases :

uz00 (g) := g(z0). for fixed z0 ∈ [0, 1]

and

u0(g) :=

∫ 1

0

g(z)dz.

For the first functional, define the set points in the set [a, b] as {zi}, i = 0, . . . , P , such that z0 = a
and zP = b. Then for each point zi we have that X0(zi) = X(0, zi), and for each zi set u0(x) as the
evaluation functional zi 7→ Xx

t (zi) then from u(t, x) = E(u0(Xx
t )) we obtain

u(0, x) = E
(
uzi0 (Xx

0 )
)

= Xx(0, zi) = x(zi),

and at other hand
u(0, x) =

∑
n∈JM,N

un(0)Hn(x),

then for each zi
x(zi) = u(0, x) =

∑
n∈JM,N

un(0)Hn(x)

Then, multiplying by Hm(x) and integrating in the Hilbert space L2(H, µ) we have

um(0) =

∫
H
x(zi)Hm(x)µ(dx).

Here the value of the initial condition um(0) depends on zi, i.e. um(0) = uzim(0).
Notice that in the direction of the eigenfunction ek the expression x can be writen as 〈x, ek〉Hek and
then we can write Hm(x)x(zi) in the direction ek as Pmk

(
ξk
)
〈x, ek〉Hek(zi) with ξk = 〈x,Λ−1/2ek〉H.

Furthermore, ξk = 〈x,Λ−1/2ek〉H = |λk|〈x, ek〉H then we have

uzim(0) =

∫
H
x(zi)Hm(x)µ(dx)

=

∫
RN

∞∑
k=1

ek(zi)〈x, ek〉HPmk
(
ξk
)
µ(dξ1, dξ2, · · · )ek

9
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=

∫
RN

∞∑
k=1

ek(zi)
ξk
λk
Pmk

(
ξk
)
µ(dξ1, dξ2, · · · )ek

=

∞∑
k=1

ek(zi)

λk

∫
R
Pmk

(
ξk
)
ξkµ(dξk)

≈
M∑
k=1

ek(zi)

λk

∫
R
Pmk

(
ξk
)
ξkµ(dξk) (4.5)

Notice that the general solution to each uzim(0) is given by the expression
u1(t)
u2(t)

...
uM−1(t)
uM (t)

 = (V1 V2 · · · VM−1 VM )


c1e

λ1t

c2e
λ2t

...
cM−1e

λM−1t

cMe
λM t


where Vj and λj are the eigenvector and eigenvalue of the matrix A and we are denoting uj(t) =
uzimj

(t), 1 ≤ j ≤M . Evaluating in t = 0 we have
u1(0)
u2(0)

...
uM−1(0)
uM (0)

 =
(
V1 V2 · · · VM−1 VM

)


c1
c2
...

cM−1
cM

 ,

and therefore 
c1
c2
...

cM−1
cM

 =
(
V1 V2 · · · VM−1 VM

)−1


u1(0)
u2(0)

...
uM−1(0)
uM (0)

 ,

with uj(t) = uzimj
(t) given by the expression (4.5). Now we are able to fix the value of the initial

conditions for the first case. Notice that also the contants cj depend on the value zi, i.e. cj = czij .

For the second functional, from u(t, x) = E(u0(Xx
t )) we obtain

u(0, x) = E(u0(Xx
0 )) =

∫ 1

0

x(z)dz,

and at other hand
u(0, x) =

∑
n∈JM,N

un(0)Hn(x),

then ∫ 1

0

x(z)dz =
∑

n∈JM,N
un(0)Hn(x).

Multiplying by Hm(x) and integrating in the Hilbert space L2(H, µ) and by using Fubini we have

um(0) =

∫
H

∫ 1

0

x(z)dzHm(x)µ(dx) =

∫ 1

0

(∫
H
x(z)Hm(x)µ(dx)

)
dz

We focus on the integral on H. By following the steps given for the first functional (just replacing zi
by z) we can arrive to the following expression∫

H
x(z)Hm(x)µ(dx) ≈

M∏
k=1

ek(z)

λk

∫
R
Pmk

(
ξk
)
ξkµ(dξk),

10
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thus

um(0) ≈
∫ 1

0

M∏
k=1

ek(z)

λk

(∫
R
Pmk

(
ξk
)
ξkµ(dξk)

)
dz

=

M∏
k=1

∫
R
Pmk

(
ξk
)
ξkµ(dξk)

∫ 1

0

ek(z)

λk
dz (4.6)

From here and by following the procedure for the first functional we are able to fix the initial conditions.

5 Well posedness and convergence

Let J be a countable set, {λm;m ∈ J } a sequence of positive real numbers diverging to infinity and
{Cnm;n,m ∈ J } a sequence of real numbers. Consider the infinite system of equations

u′m (t) = −λmum (t) +
∑
n∈J

Cnmun (t) , t ≥ 0

um (0) = u0m, m ∈ J

with given initial condition
{
u0m;m ∈ J

}
. We always assume∑
m∈J

(
u0m
)2
<∞.

Definition 5.1. A solution is a sequence {um (·) ;m ∈ J } of continuous functions on [0, T ] such that:
i)

sup
t∈[0,T ]

∑
m∈J

u2m (t) +

∫ T

0

∑
m∈J

λmu
2
m (s) ds <∞

ii) the series
∑
n∈J Cnmun (t) converges, for a.e. t, to an integrable functions on [0, T ] and

iii)

um (t) = u0m −
∫ t

0

λmum (s) ds+

∫ t

0

∑
n∈J

Cnmun (s) ds

for all m ∈ J and t ∈ [0, T ].

Consider also, for any finite subset J̃ ⊂ J , the finite system

ũ′m (t) = −λmũm (t) +
∑
n∈J̃

Cnmũn (t) , t ≥ 0

ũm (0) = u0m, m ∈ J̃

The definition of solution for this finite system is obvious and existence and uniqueness is well known.

Theorem 5.2. Assume that the family {Cnm;n,m ∈ J } satisfies, for some constant C > 0,

∑
n,m∈J

Cnmαnβm ≤ C

(∑
n∈J

λnα
2
n

)1/2(∑
m∈J

β2
m

)1/2

for all sequences {αn, βn;n ∈ J } .

(5.1)
Then there exists a unique solution. Moreover,

sup
t∈[0,T ]

∑
m∈J̃

(um (t)− ũm (t))
2

+

∫ T

0

∑
m∈J̃

λm (um (s)− ũm (s))
2
ds ≤ C1

∫ T

0

∑
m∈J̃ c

λmu
2
m (s) ds

for some C1 > 0 independent of J̃ ; where the term
∫ T
0

∑
m∈J̃ c λmu

2
m (s) ds converges to zero as J̃

converges to J .

11
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Remark 5.3. Under assumption (5.1), given m0 ∈ J and s ∈ [0, T ], choose αn = un (s) and βn equal
to zero except for βm0

= 1; then∣∣∣∣∣∑
n∈J

Cnm0
un (s)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

n,m∈J
Cnmun (s)βm

∣∣∣∣∣∣ ≤ C
(∑
n∈J

λnu
2
n (s)

)1/2

≤ C

(
1 +

∑
n∈J

λnu
2
n (s)

)

hence, in Definition 5.1, condition (i) implies (ii).

Proof. Step 1 (existence and uniqueness). Let H,V be the real separable Hilbert spaces of sequences

α = {αn;n ∈ J } such that, respectively ‖α‖2H :=
∑
n∈J α

2
n <∞, ‖α‖2V :=

∑
n∈J λnα

2
n <∞, with

norms ‖α‖2H and ‖α‖2V respectively; let 〈·, ·〉H denote the inner product in H. Since we have assumed
at the beginning that {λm;m ∈ J } diverges to infinity, we have V ⊂ H and there exists a constant

CH,V such that ‖α‖2H ≤ CH,V ‖α‖2V for all α ∈ V . Let V ′ be the dual space of V , with norm ‖·‖2V ′ .
We identify H with its dual H ′ so that V ⊂ H ⊂ V ′ and denote by 〈·, ·〉 the dual pairing between V
and V ′, which extends 〈·, ·〉H .
Let a (·, ·) : V × V → R be the bilinear map defined as

a (α, β) =
∑
n∈J

λnαnβn −
∑

n,m∈J
Cnmαnβm.

It holds

|a (α, β)| ≤
∑
n∈J

λnα
2
n +

∑
n∈J

λnβ
2
n + C

(∑
n∈J

λnα
2
n

)1/2(∑
n∈J

β2
n

)1/2

= (1 + C) ‖α‖2V + ‖β‖2V + C ‖β‖2H

hence a (·, ·) is well defined and continuous on V × V . Moreover, since

C

(∑
n∈J

λnα
2
n

)1/2(∑
n∈J

β2
n

)1/2

≤ 1

2

∑
n∈J

λnα
2
n + 2C2

∑
n∈J

β2
n

we get

a (α, α) =
∑
n∈J

λnα
2
n −

∑
n,m∈J

Cnmαnαm ≥
1

2

∑
n∈J

λnα
2
n − 2C2 ‖α‖2H

hence a (·, ·) is coercive on V × V . Consider the equation

〈u (t) , φ〉H +

∫ t

0

a (u (s) , φ) ds =
〈
u0, φ

〉
H

+

∫ t

0

〈f (s) , φ〉 ds

with φ ∈ V , u0 ∈ H, f ∈ L2 (0, T ;H) (one can treat also f ∈ L2 (0, T ;V ′) but this is not important
here). By solution we mean a function u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) which satisfies this equation
for all φ ∈ V and all t ∈ [0, T ]. By a well known theorem (see [23]), there exists a unique solution of
this equation, with

sup
t∈[0,T ]

‖u (t)‖2H +

∫ T

0

‖u (s)‖2V ds <∞.

This proves existence and uniqueness of a solution of the infinite system above, in the sense of Definition
5.1.
Step 2 (convergence) Let us prove the estimate between the finite and infinite system. We have

um (t) = u0m −
∫ t

0

λmum (s) ds+

∫ t

0

∑
n∈J̃

Cnmun (s) ds+

∫ t

0

RJ̃m (s) ds

12
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where RJ̃m (s) =
∑
n∈J̃ c Cnmun (s); we know that RJ̃m is an integrable function, by definition of

solution. Then, for the new variable vm (t) := um (t)− ũm (t) we have

vm (t) = −
∫ t

0

λmvm (s) ds+

∫ t

0

∑
n∈J̃

Cnmvn (s) ds+

∫ t

0

RJ̃m (s) ds.

It follows that the family
{
vm;m ∈ J̃

}
satisfies the finite system

v′m (t) = −λmvm (t) +
∑
n∈J̃

Cnmvn (t) +RJ̃m (t) , t ≥ 0

vm (0) = 0, m ∈ J̃ .

We have

∑
m∈J̃

vmR
J̃
m =

∑
m∈J̃

∑
n∈J̃ c

Cnmunvm ≤ C

∑
n∈J̃ c

λnu
2
n

1/2∑
n∈J̃

v2n

1/2

≤ C2
∑
n∈J̃

v2n +
∑
n∈J̃ c

λnu
2
n

and thus

1

2

d

dt

∑
m∈J̃

v2m +
∑
m∈J̃

λmv
2
m =

∑
n,m∈J̃

Cnmvnvm +
∑
m∈J̃

vmR
J̃
m

≤ C

(∑
n∈J

λnv
2
n

)1/2(∑
n∈J

v2n

)1/2

+ C2
∑
n∈J̃

v2n +
∑
n∈J̃ c

λnu
2
n

≤ 1

2

∑
m∈J̃

λmv
2
m + 3C2

∑
m∈J̃

v2m +
∑
n∈J̃ c

λnu
2
n

hence (renaming the constant C)

1

2

d

dt

∑
m∈J̃

v2m +
1

2

∑
m∈J̃

λmv
2
m ≤ 3C2

∑
m∈J̃

v2m +
∑
n∈J̃ c

λnu
2
n

which, by Gronwall lemma, easily implies that there exists a constant C1 > 0, independent of the finite
subset J̃ , such that

sup
t∈[0,T ]

∑
m∈J̃

v2m (t) +

∫ T

0

∑
m∈J̃

λmv
2
m (s) ds ≤ C1

∫ T

0

∑
n∈J̃ c

λnu
2
n (s) ds.

The proof is complete.

Proposition 5.4. Let B : H → H be bounded measurable and let Cnm be given by

Cnm =

∫
H
〈B (x) , DxHn (x)〉HHm (x)µ (dx) .

If ∫
H
|Dxϕ (x)|2H µ (dx) ≤ 2

∑
n∈J

λnϕ
2
n (5.2)

for every function ϕ (x) of the form ϕ (x) =
∑
n∈J ϕnHn (x), then condition (5.1) holds true.

13
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Proof. Given two sequences {αn, βn;n ∈ J }, setting

ϕ (x) =
∑
n∈J

αnHn (x) , ψ (x) =
∑
m∈J

βmHm (x)

one simply has∑
n,m∈J

Cnmαnβm =

∫
H
〈B (x) , Dxϕ (x)〉H ψ (x)µ (dx)

≤ ‖B‖∞
∫
H
|Dxϕ (x)|H |ψ (x)|µ (dx)

≤ ‖B‖∞

(∫
H
|Dxϕ (x)|2H µ (dx)

)1/2(∫
H
|ψ (x)|2 µ (dx)

)1/2

≤ ‖B‖∞

(
2
∑
n∈J

λnα
2
n

)1/2(∑
m∈J

β2
m

)1/2

.

Now, we will prove that (5.2) is satisfied in our case. Assume the conditions in Lemma 3.4 holds.
Then, for any Φ,Ψ ∈ S(H)1, the following Green’s formula holds (for a proof see Lemma 4.4 in [6] for
instance)

−1

2

∫
H
〈QDxΦ, DxΨ〉Hµ(dx) =

∫
H

(A0Φ)Ψµ(dx) =

∫
H

Φ(A0Ψ)µ(dx).

By taking Ψ = Φ = ϕ and Q = Id we have∫
H
|Dxϕ|2Hµ(dx) =

∫
H
〈Dxϕ,Dxϕ〉Hµ(dx) = −2

∫
H

(A0ϕ)ϕµ(dx)

If ϕ (x) =
∑
n∈J ϕnHn (x), then

−
∫
H

(A0ϕ)ϕµ(dx) =

∫
H

(
−A0

∑
n∈J

ϕnHn (x)

) ∑
m∈J

ϕmHm (x)µ(dx)

=
∑
m∈J

∫
H

(∑
n∈J

ϕn
[
−A0Hn (x)

])
ϕmHm (x)µ(dx)

=
∑
m∈J

∫
H

∑
n∈J

ϕnλnHn (x)ϕmHm (x)µ(dx)

=
∑
m∈J

∑
n∈J

ϕnϕmλn

∫
H
Hn (x)Hm (x)µ(dx)

=
∑
n∈J

λnϕ
2
n.

Where in the last step we will use that Hn (x) is an orthonormal basis for H. Then, we have∫
H
|Dxϕ|2Hµ(dx) = −2

∫
H

(A0ϕ)ϕµ(dx) = 2
∑
n∈J

λnϕ
2
n.

1Recall that S(H) is the set of all cylinder functionals on H
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6 Numerical Results

6.1 Algorithm description

In this subsection we describe the algorithm we follow to get the simulations for the Kolmogorov
equations associated with three stochastic partial differential equations whose results we show in next
subsections.

1. Choose the algorithm’s parameters:

a) The space H where the SPDE will be defined.

b) The operator A and its eigenfunctions λk and eigenvalues ek(·).

c) The functional u0 : H → R.

d) N,M and then fix the set JN,M .

e) The time step ∆t and ∆x in the physical space.

2. Compute the quantities C̄n,m, for each n,m ∈ JN,M , to approximate (3.8).

3. Set the finite system of coupled ordinary differential equation (4.2)

4. Rewriting the system (4.2) as a matrix differential equations and by solving it numerically
we obtain, up to a set of constants, the time-functions un(t), for each n ∈ JN,M .

5. By using the functional u0 the constants in the last step are fixed.

6. We then define the space-time approximation for the Kolmogorov equation as

uN (t, x) =

N∑
j=1

uj(t)Hj(x) ≈
∑
j≥1

uj(t)Hj(x) = u(t, x)

Remark 6.1. • Given the operator A, we choose its eigenvalues as the basis for the Hilbert space
H and we have to find its eigenvalues λk.

• The choice of the functional u0 will change the way we determine the initial condition of the
Kolmogorov equation, then it will necessary to adapt the method for each u0.

• the quantities C̄n,m are those that require more computing resources because we have to compute
and approximate several integrals for each n,m ∈ JN,M . In our examples these quantities are
given by the expressions (6.5), (6.14) and (6.21).

6.2 Stochastic Heat equation in an interval

As a first application consider the stochastic diffusion in dimension 1.
Let H = L2([0, 1]), Q = Id, and A be given by Ax = ν 4ξ x, x ∈ D(A) with D(A) = H2(0, 1) ∩
H1

0 (0, 1) (where H2(0, 1) is the Sobolev spaces and H1
0 (0, 1) is the subspace of H1(0, 1) of all functions

vanishing at 0, 1).
Consider the heat equation in [0, 1]

∂X(t, ξ)

∂t
= ν

∂2X(t, ξ)

∂ξ2
+ f(ξ) +

∂2W

∂t∂ξ
, ξ ∈ [0, 1] (6.1)

X(t, ξ) |t=0 = X0(ξ), X0 ∈ H,
X(t, ξ) = 0, t ≥ 0, ξ = 0, 1,

15
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where t ∈ [0, T ], f(ξ) = ξ3, X0(ξ) = sin(πx). W is a cylindrical Wiener process on H, associated to
a stochastic basis (Ω,F ,P, (Ft)t≥0). ν denotes the thermal diffusivity.
The complete orthonormal system of eigenfunctions ek is defined as

ek(ξ) =
√

2 sin(kπξ), ξ ∈ [0, 1], k ∈ N.

A is self-adjoint negative operator and Aek = −νk2π2ek, k ∈ N.
We rewrite the equation (6.1) as an abstract differential equation on H. Set B = f , then

dX = [AX +B(X)]dt+ dWt,

X(0) = x, x ∈ H

Define u(t, x) = E
[
u0(Xx

t )
]

and then u(t, x) satisfies the Kolmogorov equation

∂u

∂t
=

1

2
Tr(QD2u) + 〈Ax,Du〉H + 〈B(x), Du〉H, x ∈ D(A).

We will consider two cases :

uξ00 (g) := g(ξ0). for fixed ξ0 ∈ (0, 1)

and

u0(g) :=

∫ 1

0

g(ξ)dξ.

As before we write the solution as

u(t, x) =
∑
n∈J

un(t)Hn(x), x ∈ H, t ∈ [0, T ], (6.2)

where un : [0, T ] 7→ R and Hn(x) are the Hermite functionals. Following the last procedure we set the
infinite system of coupled ordinary differential equations.

u̇m(t) = −um(t)λm +
∑
n∈J

un(t)Cn,m, n,m ∈ J (6.3)

where Cn,m is given by

Cn,m :=

∫
H

〈
B(x), DxHn(x)

〉
HHm(x)µ(dx). (6.4)

The numerical method for this case is applied now. We have that Λ = 1
2 (−A)−1 have eigenvalues

1/(2νπ2|k|2), then the operator Λ−1 is well-defined and have eigenvalues 2νπ2|k|2, and Λ−
1
2 can also

be befined having eigenvalues
√

2νπ|k|, then〈
B(x),Λ−

1
2 ek

〉
L2([0,1])

=
√

2νπ|k|
〈
f, ek

〉
L2([0,1])

.

Notice that Hn =
∏
α Pnα(ξα), Hm =

∏
α Pmα(ξα) and P

′

mk

(
ξk
)

= m
1/2
k Pmk−1

(
ξk
)
. Then, we

rewrite Cn,m as follows.

Cn,m =

∞∑
k=1

∫
H

〈
B(x),Λ−

1
2 ek

〉
H

∞∏
i=1

i 6=k

Pni
(
〈x,Λ−

1
2 ei〉H

)
P
′

nk

(
〈x,Λ−

1
2 ek〉H

)
Hm(x)µ(dx)

=

∞∑
k=1

∫
H
λk
〈
f, ek

〉
HPmk

(
〈x,Λ−

1
2 ek〉H

)
P
′

nk

(
〈x,Λ−

1
2 ek〉H

)
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×
∞∏
i=1

i 6=k

Pni
(
〈x,Λ−

1
2 ei〉H

)
Pmi

(
〈x,Λ−

1
2 ei〉H

)
µ(dx).

Writing the measure µ(dx) in the direction ek as µ(dx)ek = 1
λk
µ
(
d
(
〈x,Λ−

1
2 ek〉H

))
= 1

λk
µ(dξk) with

ξk = 〈x,Λ−
1
2 ek〉H, then we approximate Cn,m as

Cn,m =

∞∑
k=1

λk

∫ 1

0

f(ξ)ek(ξ)dξ

∫
R
n
1/2
k Pmk

(
ξk
)
Pnk−1

(
ξk
) 1

λk
µ(dξk)

×
∫
RN

∞∏
i=1

i 6=k

Pni(ξi)Pmi(ξi)
1

λi
µ(dξi)

≈
M∑
k=1

∫ 1

0

f(ξ)ek(ξ)dξ

∫
R
n
1/2
k Pmk

(
ξk
)
Pnk−1

(
ξk
)
µ(dξk)

×
∫
RM−1

M∏
i=1

i 6=k

Pni(ξi)Pmi(ξi)
1

λi
µ(dξi)

=

M∑
k=1

n
1/2
k

∫ 1

0

f(ξ)ek(ξ)dξ

∫
R
Pmk

(
ξk
)
Pnk−1

(
ξk
)
µ(dξk)

×
M∏
i=1

i 6=k

1

λi

∫
R
Pni(ξi)Pmi(ξi)µ(dξi)

For N1 ∈ N define the set SN1 = {n1,n2, . . . ,nN1 : ni ∈ JM,N , i = 1, . . . , N1}. Moreover, for
n,m ∈ SM define

C̄n,m :=

M∑
k=1

√
2νπ|k|n1/2k

∫ 1

0

f(ξ)ek(ξ)dξ

∫
R
Pmk

(
ξk
)
Pnk−1

(
ξk
)
µ(dξk)

×
M∏
i=1

i 6=k

∫
R
Pni(ξi)Pmi(ξi)µ(dξi), (6.5)

and the finite system of ordinary differential equations:

u̇m(t) = −um(t)λm +
∑

n∈SM

un(t)C̄n,m, for each m ∈ SM and n ∈ SM . (6.6)

Then (6.6) approximates to the infinite system of ordinary differential equations (6.3) when N,M →∞.
We use the system (6.6) to approximate the solution of the FPK equation associated with the Diffusion
equation.
We need to evaluate the integrals and do the finite sum on k, to do this we use a Gauss-Hermite
quadrature to approximate the value of the integrals∫ 1

0

f(ξ)ek(ξ)dξ,

∫
R
Pmk

(
ξk
)
Pnk−1

(
ξk
)
µ(dξk),

∫
R
Pni(ξi)Pmi(ξi)µ(dξi).

When the constans Cn,m are fixed we solve the Matrix Differential equation (4.3):

U̇M (t) = AUM (t). (6.7)
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with

A =


−λ1 + C1,1 C2,1 · · · CM−1,1 CM,1

C1,2 −λ2 + C2,2 · · · CM−1,2 CM,2

...
...

. . .
...

...
C1,M−1 C2,M−1 · · · −λM−1 + CM−1,M−1 CM,M−1
C1,M C2,M · · · CM−1,M −λM + CM,M

 ,

λi = λmi
and Ci,j = Cni,mj

for 1 ≤ i, j ≤M , and

UM (t) =
(
um1

(t), um2
(t), . . . , umM

(t)
)T

U̇M (t) =
(
u̇m1

(t), u̇m2
(t), . . . , u̇mM

(t)
)T

From this we get the general solution of (6.7) is given by
u1(t)
u2(t)

...
uM−1(t)
uM (t)

 = (V1 V2 · · · VM−1 VM )


c1e

λ1t

c2e
λ2t

...
cM−1e

λM−1t

cMe
λM t

 (6.8)

where Vi and λi are the eigenvector and eigenvalue of the matrix A. It remains to fix the set of
constants {ci, 1 ≤ i ≤M} which are determined by using the initial conditions given in subsection 4.1.

Initial Conditions

We define the set points in the set [0, 1] as {ξi}, i = 0, . . . , P , such that ξ0 = 0 and ξP = 1. Then by
using (4.5) we fix the values of the constants ci


c1
c2
...
cM

 =




H1(x0) H2(x0) · · · Hm(x0)
H1(x1) H2(x1) · · · Hm(x1)

...
...

. . .
...

H1(xP−1) H2(xP−1) · · · Hm(xP−1)
H1(xP ) H2(xP ) · · · Hm(xP )




V1

V2

...
VM


T

−1

X0(ξ0)
X0(ξ1)

...
X0(ξP )

 ,

(6.9)
With this, we have now completed the process to build the approximation for the solution.

6.2.1 Deterministic equation associated with the stochastic diffusion (6.1)

Set

y(t, ξ) = E
[
Xt(ξ)

]
then, y(t, ξ) solves the differential equation

∂y

∂t
= ν

∂2y

∂ξ2
+ f (6.10)

y
∣∣
t=0

= E(X0).

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.
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Results on the simulation

We have the following graphs of simulations using this method with differents values of JN,M , N = 7, 8.
We make a comparison with the solution of the deterministic equation, as was described in subsection
6.2.1, by using the matlab library pdepe.
First we show the result on the simulation for the evaluation functional. The second group of graphs
shows the simulation for the second functional. The results were obtained with the coefficient ν = 0.1.

Figure 1: Simulations for the Diffusion equation with the spectral method, for N = 7, 8 and ν = 0.1
with uξ00 (g) = g(ξ0).

Figure 2: Simulations for the Diffusion equation with the spectral method, for N = 7, 8, ν = 0.1 and

u0(g) =
∫ 1

0
g(ξ)dξ)..

6.3 Stochastic Fisher-KPP Equation in an interval

Set H = L2(0, 1). We consider the stochastic Fisher-KPP equation in the interval [0, 1]:

dX(t, ξ) =
[
ν∂2ξX(t, ξ) +X(t, ξ)(1−X(t, ξ))

]
dt+ dWt(t, ξ), t > 0, ξ ∈ (0, 1) (6.11)

X(t, 0) = X(t, 1) = 0, t > 0,

X(0, ξ) = x(ξ), x ∈ H

W is a cylindrical Wiener process on H, associated to a stochastic basis (Ω,F ,P, (Ft)t≥0). ν is the
viscosity coefficient. We will consider the initial condition X(0, ξ) = sech2(5(ξ − 0.5)).
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We rewrite the Fisher-KPP equation as an abstract differential equation in H. Set A = ν∂2ξ and

B(x) = x(1−x), x ∈ H, with domains D(A) = H2(0, 1)∩H1
0 (0, 1) and D(B) = H1

0 (0, 1), respectively.
Then, (6.11) can be rewriten as

dX = [AX +B(X)]dt+ dWt (6.12)

X(0) = x x ∈ H.

The operator A is selfadjoint with a complete orthonormal system of eigenfunctions in H given by

ek(ξ) =
√

2 sin(kπξ), ξ ∈ [0, 1], k ∈ N.

Moreover A satisfies Aek = −νπ2k2ek, for k ∈ N.
As before we define u(t, x) = E

[
u0(Xx

t )
]

and then u(t, x) satisfies the Kolmogorov equation

∂u

∂t
=

1

2
Tr(QD2u) + 〈Ax,Du〉H + 〈B(x), Du〉H, x ∈ D(A).

Results on existence and uniqueness of the solution to the Kolmogorov equation can be found, for
instance, in [7, Chapter 4].
About the functional u0 : H → R we will consider two cases :

uξ00 (g) := g(ξ0). for fixed ξ0 ∈ (0, 1)

and

u0(g) :=

∫ 1

0

g(ξ)dξ.

We now apply the numerical method. We write the solution u as

u(t, x) =
∑
n

un(t)Hn(x).

and by following the procedure done before we arrive to an infinite system of ordinary differential
equations:

u̇m(t) = −um(t)λm +
∑
n∈J

un(t)Cn,m, n,m ∈ J (6.13)

where Cn,m is given by

Cn,m =

∫
H

〈
B(x), DxHn(x)

〉
HHm(x)µ(dx)

we need to calculate the value of the constants Cn,m, then we need to calculate expressions such as
B(x), DxHn(x).
Focus on the term B(x) = x(1− x). By writing x =

∑
k βkek, with βk := 〈x, ek〉H we have

B(x) =
(∑

k

βkek

)(
1−

∑
k

βkek

)
=
∑
k

βkek −
∑
k

∑
l

βlβkelek

For the expression DxHn(x) we have

DxHn(x) =

∞∑
j=1

∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)
Λ−1/2ej

Setting Λ = (−A)−1 and by recalling that Aej = −νπ2j2ej we have Λ−1/2ej =
√

2νπ|j|ej , and by
using the last expression we have,

Cn,m =

∫
H
Hm(x)µ(dx)

∞∑
j=1

∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)√
2νπ|j|
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×
[∑

k

βk
〈
ek, ej

〉
H −

∑
l

∑
k

βlβk
〈
elek, ej

〉
H

]
=

∫
H
µ(dx)

∞∑
j=1

√
2νπ|j|Pmj

(
〈x,Λ−1/2ej〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)
×
∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
Pmi

(
〈x,Λ−1/2ei〉H

)[
βj −

∑
l

∑
k

βlβk
〈
elek, ej

〉
H

]
.

For N1 ∈ N define as before the set SN1
= {n1,n2, . . . ,nN1

: ni ∈ JM,N , i = 1, . . . , N1}. Moreover,
for n,m ∈ SM define

C̄n,m :=

M∑
j=1

∫
RM

Pmj (ξj)P
′
nj (ξj)µ(dξj)

×
M∏
i=1

i6=j

Pmi(ξi)Pni(ξi)
µ(dξi)

λi

[
βj −

M∑
l=1

M∑
k=1

βlβk
〈
elek, ej

〉
H

]
. (6.14)

and the finite system of ordinary differential equations:

u̇m(t) = −um(t)λm +
∑

n∈SM

un(t)C̄n,m, for each m ∈ SM and n ∈ SM . (6.15)

Then (6.15) approximates to the infinite system of ordinary differential equations (6.13) when N,M →
∞. We use the system (6.15) to approximate the solution of the FPK equation associated to the
Fisher-KPP equation.

6.3.1 Deterministic equation associated with the stochastic Fisher-KPP Equation.

Set

y(t, ξ) = E
[
Xt(ξ)

]
then, y(t, ξ) solves the differential equation

∂y

∂t
= ν

∂2y

∂ξ2
+ +y(t, ξ)

[
1− y(t, ξ)

]
(6.16)

y
∣∣
t=0

= E(X0).

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.

Results on the simulation

We have the following graphs of simulations using the proposed method with differents values of JN,M ,
N = 4, 5. We make a comparison with the solution of the deterministic equation, as was described in
subsection 6.3.1, by using the matlab library pdepe.
We show the results on the simulation for the evaluation functional. The second graph shows the
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simulation for the second functional. The results were obtained with the coefficient ν = 0.1.

Figure 3: Simulations for the Fisher-KPP equation with the Matlab library pdepe and with the spectral
method for N = 7, 8, uξ00 (g) = g(ξ0).

Figure 4: Simulations for the Fisher-KPP equation with the Matlab library pdepe and with the spectral

method for N = 7, 8, u0(g) =
∫ 1

0
g(ξ)dξ.

6.4 Stochastic Burgers Equation in an interval

Set H = L2(0, 1). We consider the stochastic Burgers equation in the interval [0, 1]:

dX(t, ξ) =
[
ν∂2ξX(t, ξ) +

1

2
∂ξ(X

2(t, ξ))
]
dt+ dWt(t, ξ), t > 0, ξ ∈ (0, 1) (6.17)

X(t, 0) = X(t, 1) = 0, t > 0,

X(0, ξ) = x(ξ), x ∈ H (6.18)

W is a cylindrical Wiener process on H, associated to a stochastic basis (Ω,F ,P, (Ft)t≥0). ν is the
viscosity coefficient.
We rewrite the Burgers equation as an abstract differential equation in H. Set A = ν∂2ξ and B(x) =
1
2∂ξ(x

2), x ∈ H, with domains D(A) = H2(0, 1)∩H1
0 (0, 1) and D(B) = H1

0 (0, 1), respectively. Then,
(6.17) can be rewriten as

dX = [AX +B(X)]dt+ dWt (6.19)

X(0) = x x ∈ H.

The operator A is selfadjoint with a complete orthonormal system of eigenfunctions in H given by

ek(ξ) =
√

2 sin(kπξ), ξ ∈ [0, 1], k ∈ N.
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Moreover A satisfies Aek = −νπ2k2ek, for k ∈ N.
As before we define u(t, x) = E

[
u0(Xx

t )
]

and then u(t, x) satisfies the Kolmogorov equation

∂u

∂t
=

1

2
Tr(QD2u) + 〈Ax,Du〉H + 〈B(x), Du〉H, x ∈ D(A).

Results on existence and uniqueness of the solution to the Kolmogorov equation can be found, for
instance, in [7, Chapter 5].
We will consider again two types of functionals :

uξ00 (g) := g(ξ0). for fixed ξ0 ∈ (0, 1)

and

u0(g) :=

∫ 1

0

g(ξ)dξ.

We now apply the numerical method. We write the solution u as

u(t, x) =
∑
n

un(t)Hn(x).

and by following the procedure done before we arrive to an infinite system of ordinary differential
equations:

u̇m(t) = −um(t)λm +
∑
n∈J

un(t)Cn,m, n,m ∈ J (6.20)

where Cn,m is given by

Cn,m =

∫
H

〈
B(x), DxHn(x)

〉
HHm(x)µ(dx)

we need to calculate the value of the constants Cn,m, then we need to calculate expressions such as
B(x), DxHn(x).
Focus on the term B(x) = 1

2∂ξ(x
2). By writing x =

∑
k βkek, with βk := 〈x, ek〉H we have

B(x) =
1

2
∂ξ

(∑
k

βkek

)2
=

1

2
∂ξ

[∑
l

∑
k

βlβkelek

]
=

1

2

∑
l

∑
k

βlβk
(
ele
′
k + e′lek

)
.

For the expression DxHn(x) we have

DxHn(x) =

∞∑
j=1

∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)
Λ−1/2ej

Setting Λ = (−A)−1 and by recalling that Aej = −νπ2j2ej we have Λ−1/2ej =
√

2νπ|j|ej , and by
using the last expression we have,

Cn,m =
1

2

∫
H
Hm(x)µ(dx)

∞∑
j=1

∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)√
2νπ|j|

×
∑
l

∑
k

βlβk
〈
ele
′
k + e′lek, ej

〉
H

=
1

2

∫
H
µ(dx)

∞∑
j=1

√
2νπ|j|Pmj

(
〈x,Λ−1/2ej〉H

)
P ′nj
(
〈x,Λ−1/2ej〉H

)
×
∞∏
i=1

i 6=j

Pni
(
〈x,Λ−1/2ei〉H

)
Pmi

(
〈x,Λ−1/2ei〉H

)∑
l

∑
k

βlβk
〈
ele
′
k + e′lek, ej

〉
H.
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For N1 ∈ N define as before the set SN1
= {n1,n2, . . . ,nN1

: ni ∈ JM,N , i = 1, . . . , N1}. Moreover,
for n,m ∈ SM define

C̄n,m :=
1

2

M∑
j=1

√
2νπ|j|

∫
RM

Pmj (ξj)P
′
nj (ξj)µ(dξj)

×
M∏
i=1

i 6=j

Pmi(ξi)Pni(ξi)µ(dξi)

M∑
l=1

M∑
k=1

βlβk
〈
ele
′
k + e′lek, ej

〉
H. (6.21)

and the finite system of ordinary differential equations:

u̇m(t) = −um(t)λm +
∑

n∈SM

un(t)C̄n,m, for each m ∈ SM and n ∈ SM . (6.22)

Then (6.22) approximates to the infinite system of ordinary differential equations (6.20) when N,M →
∞. We use the system (6.22) to approximate the solution of the FPK equation associated with the
Burgers equation.

6.4.1 Deterministic equation associated with the stochastic Burgers Equation.

Set

y(t, ξ) = E
[
Xt(ξ)

]
then, y(t, ξ) solves the differential equation

∂y

∂t
= ν

∂2y

∂ξ2
+ +

1

2
∂ξ(y

2(t, ξ)) (6.23)

y
∣∣
t=0

= E(X0).

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.

Results on the simulation

The following graphs show simulations by using the proposed method with differents values of JN,M ,
N = 4, 5. We make a comparison with the solution of the deterministic equation, as was described in
subsection 6.4.1, by using the matlab library pdepe.
Tthe results on the simulation for the evaluation functional are in the first group of graphs. The second
graph shows the simulation for the second functional. The results were obtained with the coefficient
ν = 0.2, 0.1, 0.01.

Figure 5: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4, 5, uξ00 (g) = g(ξ0).
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Figure 6: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4, 5, uξ00 (g) = g(ξ0).

Figure 7: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4, 5, uξ00 (g) = g(ξ0).

Figure 8: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral

method for N = 4, 5, u0(g) =
∫ 1

0
g(ξ)dξ.
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Figure 9: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral

method for N = 4, 5, u0(g) =
∫ 1

0
g(ξ)dξ.

Figure 10: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral

method for N = 4, 5, u0(g) =
∫ 1

0
g(ξ)dξ.

7 Conclusions.

In this paper we introduced a numerical method to solve Fokker-Plank-Kolmogorov equations and we
tested this method by applying it to the Kolmogorov equations associated to three stochastic partial
differential equations: a stochastic diffusion, a Fisher-KPP stochastic equation and a stochastic Burgers
equation in 1D, in a simple domain in the three cases. The results obtained are really promising.
However, there are a few limitations. The first is that the noise in the SPDE is restricted to the additive
case and to cover the multiplicative case seems unfeasible at this moment. Indeed, even if one is able
to prove existence and uniqueness of an invariant measure ν for the Ornstein-Uhlenbeck semigroup
associated with the SPDE, there would remain the fully characterize of the measure and to find a
basis for the Hilbert Space L2(H, ν). Another issue is that we have applied the method to very simple
domains, However, to cover the cases with complex domains one can use ideas of domain decomposition
techniques similar to those used in spectral element methods. This is part of a forthcoming paper.
The method can be adapted to cover the Fokker-Plank equations associated with SPDE’s, this will be
studied in a subsequent work.

Acknowledgement. The research leading to these results has received funding from the People Pro-
gramme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
2013) under the project NEMOH, REA grant agreement n. 289976.
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