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Abstract
We propose a numerical solution for the solution of the Fokker-Planck-Kolmogorov (FPK)
equations associated with stochastic partial differential equations in Hilbert spaces. The method
is based on the spectral decomposition of the Ornstein-Uhlenbeck semigroup associated to the
Kolmogorov equation. This allows us to write the solution of the Kolmogorov equation as a
deterministic version of the Wiener-Chaos Expansion. By using this expansion we reformulate the
Kolmogorov equation as a infinite system of ordinary differential equations, and by truncation it we
set a linear finite system of differential equations. The solution of such system allow us to build an
approximation to the solution of the Kolmogorov equations. We test the numerical method with
the Kolmogorov equations associated with a stochastic diffusion equation, a Fisher-KPP stochastic

equation and a stochastic Burgers Eq. in dimension 1.

1 Introduction

Stochastic Partial Differential Equations (SPDE’s) are important tools in modeling complex phenomena,
they arise in many fields of knowledge like Physics, Biology, Economy, Finance, etc.. Develop efficient
numerical methods for simulating SPDE’s is very importan but also very difficult and challenging.

There exists in literature several approachs in order to solve numerically a SPDE. Among them there
exists Monte Carlo simulations, Karhunen-Loeve Expansion, Wiener Chaos expansion, stochastic Taylor
approximations for SPDE's, etc. In order to solve numerically an SPDE one can apply one of this
methods. Here we will mention some of them but our list reference is far away to be exhaustive.

The Monte Carlo (MC) simulations for SPDE'’s have been explored intensively in the last 20 years (]28],
[21] ). The basis idea of MC is to sample the randomness in the SPDE’s and solve the stochastic equa-
tions realization by realization, this is because for each given realization of the randomness, the SPDE'’s
becomes deterministic and can be solved by usual deterministic numerical methods. the disadvatage is
that many of that “samples” are required for suffcient accuracy, causing suboptimal efficiency even if
optimal algebraic solvers are used; to overcome this issue Giles ([13], [14]) has introduce a modificacion
of MC for the numerical solution of 1td stochastic ordinary differential equations, following basic ideas
in earlier work by S. Heinrich [16] on numerical quadrature. This method is the so-called Multilevel
Monte Carlo (MLMC).

The main idea of MLMC methods is to apply the MC method for a nested sequence of stepsizes
while balancing the number of samples according to the stepsize. MLMC allows to significantly speed
up to classical MC methods thanks to this hierarchical sampling; however this method still can have
limitations for SPDE's.

Other approach is use spectral methods, in particular use the Karhunen-Loeve expansion (KLE) and
the Wiener Chaos expansions for solving SPDE’s. For the former one can study the theory developed
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in [22]; in this work they proposed several methods to solve SPDE's and this methods are latter applied
to solve the stochastic Navier-Stokes equations. Nevertheless, this method can have limitations since
in this approach the source of randomness is usually represented by a fixed number of random variables
and if we consider, for instance, stochastic equations arising in fluid dynamics with a random forcing
white in time which has a divergent Karhunen-Loeve expansion, then it is not possible to apply the
KLE to this kind of equations.

Hou et al [17] propose a numerical method based on Wiener Chaos expansion and apply it to solve the
stochastic Burgers and Navier-Stokes equations driven by Brownian motion. They consider an SPDE
with Brownian motion forcing and since a Brownian motion can be expand as a linear combination of in-
dependent Gaussian random variables, then they expand the solution of theSPDE's as a Fourier-Hermite
series of those Gaussian random variables, this is a version of the Cameron-Martin decomposition.

There is another approach that involves stochastic Taylor approximations for stochastic partial differ-
ential equations (see [20]). This Taylor expansions are based on an iterated application of the Ité
formula. However, For the solutions of stochastic partial differential equations in Hilbert (or Banach
spaces) there is no way to define directly the Itd formula. Nevertheless, it can be constructed by taking
advantage of the mild form representation of the solutions.

The Fokker-Planck-Kolmogorov (FPK) equation is a partial differential equation that describes the
time evolution of the probability density function of the velocity of a particle under the influence of
drag forces and random forces, it is a kind of continuity equation for densities. Citing [9] “parabolic
equations on Hilbert spaces appear in mathematical physics to model systems with infinitely many de-
grees of freedom. Typical examples are provided by spin configurations in statistical mechanics and by
crystals in solid state theory. Infinite-dimensional parabolic equations provide an analytic description of
infinite dimensional diffusion processes in such branches of applied mathematics as population biology,
fluid dynamics, and mathematical finance.”. This kind of equations have been deeply studied in the
last years, see for instance [2], [II], |[7] and the references therein.

Numerical methods for FPK equations associated with SPDEs have been studied, up to our knowledge,
just in a few articles, here we will mention just one. Schwab and Suli [29] have formulated a space-time
variational method to approximate solution of Kolmogorov-type equations in infinite dimensions. They
consider an infinite-dimensional Hilbert space H, a Gaussian measure p with trace class covariance
operator Q on H and the space L?(H, ) of functions on H which are square-integrable with respect
to the measure p. They showed the well-posedness of Fokker-Plank equations and Ornstein-Uhlenbeck
equations on L?(H, 11). Moreover, they constructed sequences of finite-dimensional approximations that
attain the best possible convergence rates afforded by best N-terms approximations of the solution.
They used an spectral method based on Wiener-Hermite polynomial chaos expansions in terms of a
sequence of independent Gaussian random variables on / and a Wavelet type Riesz basis with respect
to the time variable. The use of the spectral basis of Wiener-Hermite polynomial chaos allow them
to avoid meshing the infinite-dimensional “"domain” H of solutions of the Kolmogorov-type equations.
However they do not present numerical examples and the questions about the feasibility of their method
are open.

In this paper, we introduce a novel numerical method that can have some similitude with the one
proposed by Schwab and Suli but also have substantial differences. Indeed, our method is also based
on spectral methods for the variable on H, but we use a deterministic version of the Wiener-Chaos
Expansion on the infinite-dimensional “domain” # instead the classical Wiener-Chaos Expansion with
the use of a sequence of Gaussian random variables, this allow allow us to avoid meshing the space
H but we also avoid the so-called curse of dimensionality: the associated computational cost grows
exponentially as a function of the number of random variables defining the underlying probability space
of the problem (see [12] for instance).

The second difference is with respect to the time variable, where, instead using Wavelet type Riesz basis
we set up a finite system of coupled ordinary differential equations and by solving it we fix the coefficients
as a time functions. we have applied the method to three SPDE's: a stochastic diffusion, a stochastic
FisherKPP equation and a stochastic burgers equation and the results show that the behaviour of the
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method is good. However, since the method is analogue to the classical deterministic spectral method
thus it can be extended to improve its performance. This is the subject of a future research.

This paper is organized as follows. In section [2] we review the Fokker-Plank-Kolmogorov equation
associated with SPDE'’s in a separable Hilbert space. In section [3] we study the spectral decomposition
of the Ornstein-Uhlenbeck semigroup associated to the Kolmogorov equation which will be used to do
the numerical approximation to the solution of the FPK equation, this is done in section [4, In section
we prove a theorem on the well posedness and convergence of the numerical aproximation. Results on
the application of the proposed method are presented in section [6] where we have applied the method
to a linear stochastic diffusion equation, a Fisher-KPP stochastic equation and a stochastic Burgers
Eq. in dimension 1.

2 Fokker-Plank-Kolmogorov equation

In a separable infinite-dimensional Hilbert space H with inner product (,)s we define a Gaussian
measure p with mean zero and nuclear covariance operator A with Tr(A) < +o0.
We focus on the stochastic differential equation in H

dX; = AX.dt + B(X,)dt + /QdW;, (2.1)

where the operator A : D(A) C H — H is the infinitesimal generator of a strongly continuous semigroup
e!4in H, Q is a bounded operator from another Hilbert space U/ to H and B : D(B) C H — H is a
nonlinear mapping.

The equation (2.1)) can be associated to a Kolmogorov equation in the next way, we define

u(t,z) = E[uo(X7)], (2.2)

where ug : H — R and X[ is the solution to (2.1)) with initial conditions X¢ = = where z € H. Then
u satisfies the Kolmogorov equation

ou 1 9

i §T7‘(QD u) + (Az, Du)y + (B(z), Du)x, x € D(A). (2.3)
Several authors have proved results on existence and uniqueness of the solution of the Kolmogorov
equations, see for instance Da Prato [7] for a survey, Da Prato-Debussche [8] for the Burgers equation,
Barbu-Da Prato [1] for the 2D Navier-Stokes stochastic flow in a channel.

3 On the Ornstein-Uhlenbeck semigroup

Following [6], in H we define a Gaussian measure p with mean zero and nuclear covariance operator A
with Tr(A) < +oo and since A : H — H is a positive definite, self-adjoint operator then its square-root
operator A'/? is a positive definite, self-adjoint Hilbert-Schmidt operator on .

Define the inner product

(9,h)o = (A2g, A" Ry, for g,h e APH.

Let #, denote the Hilbert subspace of H, which is the completion of A'/2# with respect to the norm
llgllo := (g,g)é/z. Then Hg is dense in H and the inclusion map i : Ho < H is compact. The triple
(i, Ho, H) forms an abstract Wiener space.

Let H = L2(H, 1) denote the Hilbert space of Borel measurable functionals on the probability space
with inner product

(B, W)y ::/?_L(I)(v)\ll(v)u(dv), for ®,T e H,

and norm ||®||g := <‘I’»‘I)>]11{/2- In H we choose a basis system {p} such that ¢ € H.
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A functional ® : H — R, is said to be a smooth simple functional (or a cylinder functional) if there
exists a C'°-function ¢ on R™ and n-continuous linear functional I1,...,l, on H such that for h € H

(I)(h) :(b(hlvvhn) Where hz :ll(h), ’L: 1,,TL
The set of all such functionals will be denoted by S(H).

Denote by Py (x) the Hermite polynomial of degree k taking values in R. Then, Py(z) is given by the

following formula

G O L

Pk(m)—i( !)1/282 WB 2

with Py = 1. It is well-known that {Ps(-)}ren is a complete orthonormal system for L?(R, uy(dz))
2

with 4 (dx) = \/%ef%dx.
Define the set of infinite multi-index as

J = {a =(aiz1) | aeNU{0}, la]:=> a < -I—oo}
i=1
For n € J define the Hermite polynomial functionals on H by
Hy(h) =[] Po,(i(h)), heHy, mneJ, (3.1)
i=1

and where

Li(h) = (h, A" Ppi)y, i=12,..
where P, () is the usual Hermite polynomial for ¢ € R and n € N.
Remark 3.1. Notice that l;(h) is defined only for h € Hy. However, regarding h as a p-random
variable in H, we have E(l;(h)) = ||¢:||* = 1 and then l;,(h) can be defined p-a.e. h € H, similar to
defining a stochastic integral.
It is possible to identify the Hermite polynomial functionals defined in (3.1)), for h € Hoy, as a deter-

ministic version of the Wick polynomials defined on the canonical Wiener space.(for further details see
[19] for instance).

We have the following result (See Theorems 9.1.5 and 9.1.7 in Da Prato-Zabczyk [9] or Lemma 3.1 in
chapter 9 from Chow [6]).

Lemma 3.2. For h € H let 1;(h) = (h,A="%@;)%, i = 1,2,.... Then the set {H,} of all Hermite
polynomials on H forms a complete orthonormal system for H. Hence the set of all functionals are
dense in H. Moreover, we have the direct sum decomposition:

oo
=K,
j=0

where K is the subspace of H spanned by {H,, : |n| = j}. O

Spectral decomposition of the Ornstein-Uhlenbeck semigroup

Consider the linear stochastic equation

dut = Autdt + th, (32)
ug = h e H.
Here, as before A : D(A) C H — H is the infinitesimal generator of a strongly continuous semigroup

et in H. W, is a Q-Wiener process in .
Chow in [6l Lemma 9.4.1] has shown the following result.
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Lemma 3.3. Suppose that A and @) satisfy the following:
1. A:D(A) C H — H is self-adjoint and there is § > 0 such that

(Av,v)p < =B|vll Vv e H.

2. A commutes with Q) in D(A) C H.

Then (3.2) has a unique invariant measure j which is a Gaussian measure on H with zero mean and
: _1 -1 _1 -1
covariance operator A = 5Q(—A)7" = 5(—-A)7'Q. O

We define the operator
1
Aou = 5TT(QD%) + (Az, Du)y, reH (3.3)

and suppose that —A and @ have the same eigenfunctions e, with eigenvalues \; y py respectively.
Then the operator Ay satisfies the following result.

Lemma 3.4. Let H,(h) be a Hermite polynomial functional given by ({3.1)). Then the following holds
AoHp(h) = = AnHp(h), (3.4)

for anyn € J and h € H and where

)\n = i nk)\k.
k=1

The proof can be found in [6, Lemma 9.4.3] or [4].
Using lemmas [3.4] and ({H,} forms a complete orthonormal system for L?(H, ;1)) we can write

u(t,z) = Y un(t)Hu(z), weH, te[0,T], (3.5)
neJ

where u,, : [0,7] — R and Hy(x) are the Hermite functionals.

Remark 3.5. The decomposition given in is a deterministic version to the Wiener Chaos expansion
(WCe), also known as a Fourier-Hermite series. The WCe has been used to prove several results
in stochastic analysis and also it has been applied to solve numerically stochastic partial differential
equations (see for instance Lototsky and Rozovskii [25]], Lototsky [24], Hou et. al. [17]).

Notice that the Kolmogorov equation can be writen as

QU STr(QD0) + (Av, D)y + (B(x), Du
= Aou + (B(z), Du)y. (3.6)
Using (B.5), we calculate
)
ai: =3 in(t)Ha(z)
neJ
Ao = Ay Y tn () Hn(z) = > tn(t) Ao Hn ()
neJ neJ
= — Z Un, () A Hp ()
neJg

Where in the last equality we have used the Lemma [3.4
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For the last term in (3.6) we have
(B(x), Dun = (B(x). Do Y un(t)Hn(a))

neJ
=Y un(t)(B(x), Dy Hn())
neJ
where D, is the Fréchet derivative.
Therefore the Kolmogorov equation becomes
Z Un(t)Hp(z) = — Z Un (E)A )+ Z Up (t DmHn(x)>H
neJ neJ neJ
Multiplying by Hy,(x), m € J and integrating in H w.r.t u(dz) we have
un / Hy, Yp(dz) = un t)An / H,, Yp(dx)
neJ neJ
430 un(®) [ Hon()(B(w). DoHoa(e) )

neJg

From this, and using the orthogonality of the system {H,,(x)} we get the infinite system of coupled
ordinary differential equations

i (t) = ~tum(EAm + Y un()Cnm, m,mEJ (3.7)
where C, 1, is given by
Crvm = /H (B(2), Dy H (), Hon () (k). (3.8)

1
We focus on Chy . Since Hy(z) = [[;2; P, ((z, A" 2¢;)3) we get

1

ZHPW ((@,A™ 261> )P, ((xA ;ek> YA 2ey,

k=1 i=
L;ék
then
S N 1 ’ 1
(B(x), DyHp(x)),, = Z <B(x)7 A2 ek>% H P, ({2, A" 2e) %) P, (2, A" 2ep)3)
= i
Thus,
ks > 1 , 1
Cnm = /7-1 T2 6k>?—£ H P,, (<x7 A2 ei>H)Pnk ((a:, AT2 €k>H)Hm(x)u(dx).
k=1 i1

A technical result

The following result is important for the numerical simulation since it will allow us to use the evaluation
functional on the Hilbert space H.

Lemma 3.6. i) The Gaussian measure ju on 1 = L* (0, 1) with covariance A = % (—A)"" is supported
on C (]0,1]).
ii) Let & € [0, 1] be given. Let ug : C ([0,1]) — R be defined as ug (x) = x (§o). Then

A%umw@<w

(and therefore }-, (u m)2 < o0).
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Proof. Recall that Af = f, D (A) = H?(0,1) N H} (0,1). By solving the two-point boundary value
problem f” =g, f(0) = f (1) = 0, after several manipulations one can show that

/Aﬁf ¢ de, heH

where

A(EE) = [(5(1*6))*(575') ler<e].

The reader may more easily get convinced that this is correct a posteriori, by showing that -2 d£2 fo f(&)d¢ =
—3f(£) and that (Ah) (0) = (AR) (1) = 0.

Consider the canonical process (Xg)ge[01 (H,B(H),p) — (R,B(R)) defined for a.e. £ € [0,1] as

X¢ (x) = 2 (§) and denote by E the mathematical expectation on (#,B (H),u). The process X has

zero mean. One can prove that

Cov (X$>X€’) =4q (gafl) 5 a.e. gag/ S [07 1] .
Indeed, since (Ah, k), = [5, (x,h)4 (x, k)q, 1 (dx), we have

//(/ z (&) p (dw))h(ﬁ’)k(g)dgdg’

:/0 /o E[XeXelh(€) k(€) déde’

and the formula for Cov (X¢, X¢/) follows from the arbitrarity of 4 and k.
The paths of the process X are obviously of class L? (0,1); there is a continuous modification of X if
and only if p is supported on C ([0, 1]). If we check the condition

E[|Xe— Xl <Cle-¢" (3.9)
for some a, C' > 0, then, by gaussianity,
B[ Xe - Xel') < Gyle — 1"

for every p > 1 and for a suitable constant C,, > 0, hence there is a continuous modification by
Kolmogorov criterion. But

B ||Xe - X’ = B [X2] + E [X2] - 2F [XeXe ]

=q (&8 +q(€,&)—2q(&¢)
=q(&8) —q(&¢)
+q(¢,8) —q(£¢).

We have

q (57 g) —q (57 fl)
= 60— -3 [E0-€) - (€~ ) Toxd
<ClE=¢

and similarly ¢ (¢/,¢") — q (&,&') < C|€ — €'|. Hence condition ({3.9) is satisfied with & = 1. We have
proved that p is supported on C ([0, 1]).
We also have
[ @ utan) = [ o @)nin) = B[XE] = (6.0 <
The proof is complete. O
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Remark 3.7. To convince ourselves, a more concise but a little formal proof of the claim [, ug (x) i (dx) <
00 is
2

[ @ mtn) = [ @6 de) = ot = 5 =)0
because (—A) /% 5¢, € L2 (0,1), since by duality
()P0, 8) = (Jen A2 F) = (7))
<2y, <o a2, < il

< o0

—1/2

where we have used Sobolev embedding H* C L™ and the fact that (—A) maps L? into H!.

4 Numerical approximation

Define the set of finite multi-index JM:N as

TN da=(a1<i<M) | ae{01,2... N}

this is the set of M-tuple wich can take values in the set {0,1,2,..., N}.
We approximate the solutions of the Kolmogorov equation by the following expression

an(t,x) = Z Un (t) Hp (), x €M, te]0,T), (4.1)
neJMN

Notice the use of the finite M-tuple in oposition to the infinite multi-index 7 as in ({3.5)).
We truncate the infinite system (3.7) in the following sense. Consider the same value M as in JM:N

and my,...,my € J™N and define the finite system of equations
M
tiam, () = =, ()Am, + Y tin, ()Cnym,. 1 <i <M. (4.2)
j=1

Set the vectors

UM (1) = (ttrmy (1), g (£) -+ s (1))

and the matrix

-1 +Cia Ca1 e Crvm-11 Cuma
Ci2 A2 +Chq - Cr-1,2 Chr2
A= : : - : :
Ci,m—1 Copm—1 + —2Am—1+Cym—1,m—1 Crr,p—1
Cim Co.m Cyv-1,m A+ Curm

where \; = A, and C;j = Cp, m; for 1 < i,5 < M. Notice that, given the expression (3.8)), in
general the matrix A is not symmetric. We now can write the system (4.2)) as a matrix differential
equation:

UM(t) = AUM(t). (4.3)

Then, if A has M real and distint eigenvalues 7; and M eigenvectors V; then the solution to the (4.3
is given by

M
UM(t) = Z ;i Vet (4.4)
i=1
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In the case when some of the eigenvalues and eigenvectors, or at least one of them, take values in the
complex field we still can have real solutions. Indeed, Suppose that we have the case with one complex
eigenvalue and eigenvector then it is know that we will have M — 2 real eigenvalues but we can obtain
two real solutions from the complex eigenvalue(see [I5] for instance).

Let us write one of the complex eigenvalue and eigenvector as

V =a+ib,
n="+iu,
then we can write two real solutions as follows:

e (dcos(ut) — l;sin(yt)), e (asin(ut) + gcos(ut)).

4.1 Initial Conditions

In contrast to several types of differential equations, whether ordinary or partial, deterministic or stochas-
tic, for FPK equations there is no standard way to determine the initial conditions. This is because in
this type of equations we must choose a functional that acts on the initial condition, this implies that
depending on the functional chosen we must adapt the method. Here we present the method for two
examples of functionals.

We will consider two cases :

ug®(g) == g(zo0)- for fixed 2z € [0,1]
and

uo(g) ::/0 g(2)dz.

For the first functional, define the set points in the set [a,b] as {z;}, i = 0,..., P, such that zp = a
and zp = b. Then for each point z; we have that Xy(z;) = X (0, z;), and for each z; set up(x) as the
evaluation functional z; — X7F(2;) then from u(t, z) = E(uo(X}F)) we obtain

u(0, ) = E(ug (X)) = X7(0,2) = (),

and at other hand

w(0,2) = D un(0)Hn(x),

neJM,N

then for each z;

2(z) =u(0,2) = Y un(0)Hn ()

neJM,N

Then, multiplying by H,,(x) and integrating in the Hilbert space L?(#, i) we have

um(O)Lz(zi)Hm(x)u(dx).

Here the value of the initial condition ., (0) depends on z;, i.e. um (0) = uZ,(0).

Notice that in the direction of the eigenfunction ey the expression x can be writen as (x, ex)er and
then we can write Hy, (2)z(2;) in the direction ey, as P, (&) (@, ex)ner(z:) with & = (2, A7 2ex) 5.
Furthermore, &, = (x, A=Y2ey)3 = |\e|(x, ex )% then we have

u (0) = /H 2(2) Hom () d)

- /R Z er(2)(, er) 2 Py, (E) p(dér, dEa, - - Jen

M =1
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/RNZE’k 2i)~— P, fk) (déy, déa, - en,
—Z
k=1
~Z

Notice that the general solution to each uZ,(0) is given by the expression

/Pmk gk fk,u(dfk)

/ P, (60)Erldti) (45)

Ul(t) cle)‘lt
uz (1) copetet
: = (Vl Vo -0 Vi VM)
upr—1(t) CM— 16’\M 1t
Uy (t) C]w@AMt

where V; and )\; are the eigenvector and eigenvalue of the matrix A and we are denoting u;(t) =
ufjlj (t), 1 < j < M. Evaluating in t = 0 we have

ul(O) C1
UQ(O) Co
o= v Ve V) ||
upr—1(0) cM-1
unr(0) M
and therefore
C1 ul(O)
Co 1 uQ(O)
: = (V1 V2 VM71 VM) ’
cM—1 uar—1(0)
CMp UA{<0)

with u;(t) = u; (t) given by the expression (4.5). Now we are able to fix the value of the initial

conditions for the first case. Notice that also the contants c; depend on the value z;, i.e. ¢; = cji.

For the second functional, from wu(t, ) = E(ug(X})) we obtain

u(0, 2) = E(ug(XZ)) = / 2(2)dz,

and at other hand

then

neJM,N

Multiplying by H,,(x) and integrating in the Hilbert space L?(#, 1) and by using Fubini we have

/ / 2)dzHom (2)p(dz) = /0 1 ( /H x(z)Hm(x)u(dx)) dz

We focus on the integral on H. By following the steps given for the first functional (just replacing z;
by z) we can arrive to the following expression

mk Skﬂ(dgk)

[ 2 (@t ~
H

k 1

10
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thus

1 M
Um (0) z/ H e;;(:)

0 k=1
M o)
-11 [ Pa(eguntas) [ s 4.6)

From here and by following the procedure for the first functional we are able to fix the initial conditions.

(/R B (@f)fku(dfk)) iz

5 Well posedness and convergence

Let J be a countable set, {\,,;m € J} a sequence of positive real numbers diverging to infinity and
{Crm;n,m € J} a sequence of real numbers. Consider the infinite system of equations

U, () = =Amtim () + Y Comtin (t), £ >0
neJ

U, (0) = u?,, meJ
with given initial condition {uY ;m € J}. We always assume
2
> (up,)” < oo
meJ

Definition 5.1. A solution is a sequence {u, () ;m € J} of continuous functions on [0, T such that:

i) .,
sup Z u?, (1) +/0 Z A2, (5)ds < oo

t€[0,T] meJ meJ

i) the series ), . ; Crmun, (t) converges, for a.e. t, to an integrable functions on [0, T] and
iii)
t t
U (1) = ugn — / Ampm, (8) ds Jr/ Z Crmtn (8) ds
0 0

neJ
for allm € J and t € [0,T)].

Consider also, for any finite subset J C J, the finite system
Uy () = =Amlim () + Y Comlin (t), £ >0
'n/ej
Uy (0) = 12, meJ
The definition of solution for this finite system is obvious and existence and uniqueness is well known.

Theorem 5.2. Assume that the family {Cym;n,m € J} satisfies, for some constant C' > 0,

1/2 1/2
Z Crm0inBm < C (Z )\nai> <Z ﬁfn> for all sequences {c,, Bn;n € T}.

n,meJg neJg meJ
(5.1)

Then there exists a unique solution. Moreover,

~ 2 T ~ 2 g 2
sup Z (U () — U, (1)) —|—/0 ngj)\m (U (8) — U ()" ds < Cl/o Z Amus, (8)ds

teo, 7] <= “
€l ]meJ meJe

for some C7 > 0 independent of J: where the term fOT > AmuZ, (s)ds converges to zero as J

converges to J .

meJe

11



5 WELL POSEDNESS AND CONVERGENCE

Remark 5.3. Under assumption , given mg € J and s € [0,T), choose «,, = u,, (s) and 3,, equal
to zero except for 3, = 1, then

1/2

n,meJ neJ neJ

Z CrimoUn ()

neJ

hence, in Definition[5.1} condition (i) implies (ii).

Proof. Step 1 (existence and uniqueness). Let H,V be the real separable Hilbert spaces of sequences
a = {an;n € J} such that, respectively [|a|/7, := > e On < 00, = > nes Ana < 00, with
norms ||04H§I and ||a|\%/ respectively; let (-,-), denote the inner product in H. Since we have assumed
at the beginning that {\,,;m € J} diverges to infinity, we have V' C H and there exists a constant
Ch,y such that ||oz||§{ < Cpuy ||04H%/ for all @« € V. Let V' be the dual space of V, with norm H||$/,
We identify H with its dual H' so that V' C H C V' and denote by (-,-) the dual pairing between V'

and V', which extends (-, -) ;.
Let a(-,-) : V x V — R be the bilinear map defined as

a (a7 B) = Z )\nanﬁn - Z Cnmanﬁm-

neJg n,meJ

It holds

1/2 1/2
la (e, B) <> Aol + > Al +C (Z Anai> (Z 63)

neJ neJ neJ neJ
2 2 2
=@+ C)ally +18lv + ClIAlE

hence a (-, ) is well defined and continuous on V' x V. Moreover, since

1/2 1/2
C (Z Awi) (Z 62) < % D Anal +207) B

neJ neJ neJ neJ

we get
1 2
a(a,a) = Z /\nai - Z Cnmanam Z 5 Z /\nai - 202 Ha”H

neJ n,meJ neJ

hence a (-, ) is coercive on V' x V. Consider the equation

<M0@M+Aaww%@®:@ﬁ@H+A<ﬂ®¢ﬂs

with g € V, u® € H, f € L?(0,T; H) (one can treat also f € L? (0,7; V") but this is not important
here). By solution we mean a function v € L> (0,7; H) N L? (0,T;V) which satisfies this equation
for all ¢ € V and all ¢ € [0,T]. By a well known theorem (see [23]), there exists a unique solution of
this equation, with

T
S@HMM@+/HMM@®<M
te[0,T] 0

This proves existence and uniqueness of a solution of the infinite system above, in the sense of Definition

Gl

Step 2 (convergence) Let us prove the estimate between the finite and infinite system. We have

t t t
Uy (t) = 10, — / AmtUm (s)ds + / E Crmtn (s)ds +/ R7 (s)ds
0 (R 0
neJ

12



5 WELL POSEDNESS AND CONVERGENCE

where R;i (8) = > pc7e Cnmun (s); we know that RZ is an integrable function, by definition of
solution. Then, for the new variable vy, (t) := wy, (t) — U, (t) we have

t -
U (1) = )\mvm )ds + / Z Crmvn (8)ds + R;,Z (s)ds.
0

0
It follows that the family {vm; m € j} satisfies the finite system

V(1) = =Mt () + Y Coumvn () + BRI (£), 20
nEj

We have
1/2 1/2
Z van‘Z = Z Z CrmUntm < C Z )\nui Z va
meJ meJ neJe neje ned
<C? Z vi + Z )\nui
neJ neJe
and thus
th Z vy, + Z A2, Z CrnmVnm + Z Uman;
medJ meJ n,meJ meJ
1/2 1/2
_C(Z )\nv,zl> (Z vi) +022U72‘+ Z Apu
neJ neJ neJ neJe
< % Z )\,n'U72n+302 Z v%l + Z )\nui
meJ meJ neJge

hence (renaming the constant C')

S DL EED IPUELISD DR SR

meJ meJ meJ neJe

which, by Gronwall lemma, easily implies that there exists a constant C; > 0, independent of the finite
subset 7, such that

sup Z /Z)\mv d3<C’1/ Zx\u

tel0,T] % e e
The proof is complete. O

Proposition 5.4. Let B : H — H be bounded measurable and let C,,,,, be given by

Crom = / (B (2), DyHy () Hon () i (d).
H

If

/ Do (0)]2, 1 (dz) <2 3 A (5.2)

neJg

for every function ¢ (z) of the form ¢ (x) =), ; onH, (), then condition holds true.

13



5 WELL POSEDNESS AND CONVERGENCE

Proof. Given two sequences {«,, Bn;n € J}, setting

¥ (CL‘) = Z anHy (CE) ) ( (l‘) = Z BmHm (‘T)

neJ meJ

one simply has

> Comttnfin = [ (B(2).Dus (@)} (o) (o)

n,meJ H

<|IBl /H D (2) 5, |4 ()] 1 (d)

<5l ([ mmsc)liu(dx))l/z ([ 1@l utan)
< 1Bl (2 > A) " (z @;> "

neJg meJ

1/2

O

Now, we will prove that (5.2) is satisfied in our case. Assume the conditions in Lemma holds.
Then, for any ®, ¥ € S(H)} the following Green's formula holds (for a proof see Lemma 4.4 in [6] for
instance)

%/JQD@,D&MM@:):/H(Ao(b)\pu(dm):/?{(I,(Aoq,)u(dm)_

By taking ¥ = ® = ¢ and Q = Id we have
A Dyl u(dr) = /H (Duip, Dy pupi(der) = —2 /H (Ao)op(dz)

If o (z) = Znej onHy, (x), then

- /H(AOSD)CPN(dI) = /H ( Ao Z ontn (@) Z emHm (x) p(dz)

neJ meJ
= Z / (Z ‘p”[_“AOHn (x)]>90mHm (w) N(dx)
meg " \neg
= PrnAntly (x) mHm () p(dz)
= OnPmAn H, (z) Hp, (z) p(dz)
neJ

Where in the last step we will use that H,, (z) is an orthonormal basis for 7. Then, we have

/H Dy o2 u(de) = —2 /H (Ao)pn(dz) =2 3" Al

neJ

1Recall that S(H) is the set of all cylinder functionals on H

14



6 NUMERICAL RESULTS

6 Numerical Results

6.1 Algorithm description

In this subsection we describe the algorithm we follow to get the simulations for the Kolmogorov
equations associated with three stochastic partial differential equations whose results we show in next
subsections.

1. Choose the algorithm’s parameters:

a) The space ‘H where the SPDE will be defined.

b) The operator A and its eigenfunctions A and eigenvalues e(-).

d) N, M and then fix the set JN-M.

)
)
c) The functional ug : H — R.
)
) The time step At and Az in the physical space.

e
2. Compute the quantities Cy, y,, for each n,m € JN¥M | to approximate (3.8)).
3. Set the finite system of coupled ordinary differential equation ((4.2))

4. Rewriting the system (|4.2)) as a matrix differential equations and by solving it numerically
we obtain, up to a set of constants, the time-functions uy,(t), for each n € JV-M.

5. By using the functional ug the constants in the last step are fixed.
6. We then define the space-time approximation for the Kolmogorov equation as

N
n(t z) = Zuj(t)Hj (@) ~ Y u;(t)Hj(x) = u(t,z)

j>1

Remark 6.1. e Given the operator A, we choose its eigenvalues as the basis for the Hilbert space
‘H and we have to find its eigenvalues \j.

e The choice of the functional uy will change the way we determine the initial condition of the
Kolmogorov equation, then it will necessary to adapt the method for each uy.

e the quantities C’n,m are those that require more computing resources because we have to compute
and approximate several integrals for each n,m € J™M  In our examples these quantities are

given by the expressions (6.5]), (6.14)) and (/6.21]).

6.2 Stochastic Heat equation in an interval

As a first application consider the stochastic diffusion in dimension 1.

Let H = L?([0,1]), @ = Id, and A be given by Az = v A¢ z, x € D(A) with D(A) = H?(0,1) N
HL(0,1) (where H?(0,1) is the Sobolev spaces and H{ (0, 1) is the subspace of H!(0,1) of all functions
vanishing at 0, 1).

Consider the heat equation in [0, 1]

OX(1,6)  PX(t.€) oW
o Vo PO e
X(t,f) |t:0 = XO(&)’ XO € Ha

X(t7£):O7 t207£:0’1)

£€(0,1] (6.1)

15



6 NUMERICAL RESULTS

where t € [0,T], f(&) = €, Xo(€) = sin(rx). W is a cylindrical Wiener process on H, associated to
a stochastic basis (€2, F,P, (F;)¢>0). v denotes the thermal diffusivity.
The complete orthonormal system of eigenfunctions ey, is defined as

ex(§) = V2sin(kn),  £€0,1], keN.

A is self-adjoint negative operator and Aej, = —vk?n2e;, k € N.
We rewrite the equation (6.1]) as an abstract differential equation on H. Set B = f, then

dX =[AX + B(X)|dt + dW,,
X(0)=z, ze€H

Define u(t, z) = E[ug(X{)] and then u(t, z) satisfies the Kolmogorov equation

du
ot

We will consider two cases :

= %TT(QDQU) + (Az, Du)y + (B(z), Du), xz € D(A).

ug’(g) = g(&).  for fixed & € (0,1)
and

1
u(9) = [ o).
0
As before we write the solution as

u(t,z) = Z Un (£) Hp (), zeH, tel0,T], (6.2)
neJ

where uy, : [0, 7] — R and H,,(z) are the Hermite functionals. Following the last procedure we set the
infinite system of coupled ordinary differential equations.

i (t) = ~Um(EAm + Y un()Cnm, mmEJ (6.3)
neJg

where C, 1, is given by

Cn.m f:/H<B(33)7Dan(I)>HHm(JU)#(d$)- (6.4)

The numerical method for this case is applied now. We have that A = %(—A)_1 have eigenvalues

1
1/(2vn?|k|?), then the operator A~ is well-defined and have eigenvalues 2v72|k|?, and A™2 can also
be befined having eigenvalues v/2v|k|, then

1
<B(9U)»A72€k> N @W\k|<faek>w([o,1})'

L2([0,1

Notice that Hy, = [], Pn.(éa), Hm = [, Pm.(&s) and P;nk (ﬁk) = m,lg/QPmk_l(fk). Then, we
rewrite Cy, 1, as follows.

Croom = Z/H (B, A" 2e) TP (2. A" 2e)30) Pl ({2, A~ 2 e py) Hom () ()
k=1 i=1
itk
= / A €k, Py ((3371\7%61@)7{)]37;,6(<$,A7%€k>ﬂ)
k=1
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XHP"7 x, A” 2el> )P, mi((l’,A—%eQH)u(dI).

z;ék

1
Writing the measure u(dz) in the direction ey as pu(dx)ey = /\%u(d((x,/\_§ek)%)) = - 1u(dgx) with

1 .
&k = (x, A” 2eg), then we approximate Cp, p, as

Z)\k/ JF(&)ex( df/ 1/2 p Py, (&) Py — 1(fk))\k u(déy)
- /]RN 11 P (§) P, (fi)x_u(d&)
ik

Nz/ FQew§)de | P (60 Payoa (6 nd0)

[ TPt P o) )

i=1

i£k

M
1/2
k€ | P (66) P (66) ()
=3t [ €060 [ Poa) ot
xHA [ PP (et
1;ﬁk

For Ny € N define the set Sy, = {ni,n2,...,ny, : n; € J™N i =1,... N;}. Moreover, for

n,m € Sy, define

Crpm = Z Varalkln/® [ FOOE [ o (6)Pur(6)ntdce)

x H / Po (€ P, (€ lds), (6.5)
775k
and the finite system of ordinary differential equations:
Um (1) = —Um () Am, + Z Uun (t)Crm, for each m € Sy and n € Syy. (6.6)
neSy

Then approximates to the infinite system of ordinary differential equations when N, M — oo.
We use the system to approximate the solution of the FPK equation associated with the Diffusion
equation.

We need to evaluate the integrals and do the finite sum on k, to do this we use a Gauss-Hermite
quadrature to approximate the value of the integrals

1
/ f(&)er(&)d, /RPmk (&k) Pry—1 (&x) pe(déi), /R i (§6) P, (&) 11(dSs).-
0
When the constans C,, ,,, are fixed we solve the Matrix Differential equation (|4.3)):

UM(t) = AUM (¢). (6.7)

17



6 NUMERICAL RESULTS

with
M +Cia Ca Cr-1,1 Cumn
Ci2 A2+ Cho - Cr-1,2 Cump2
Cim—1 Cop—1 oo =Am—1 FCOp—1 -1 Cu,pv—1
Ci,m Com Cr—1,m —An + Curm

Ai = Am,; and C j = Chp; m, for 1 < i, j < M, and

UM (t) = (U, (£), tmy (), -+ -ty (8)

UM () = (it (£), sy (), - - - s (1))

From this we get the general solution of ([6.7)) is given by

up(t) creMt
us(t) coet2?t
: =(Vi V2 -+ Vyo1 Vi) : (6.8)
upr—1(t) cpp—gerv-it
up (%) cpetmt

where V; and \; are the eigenvector and eigenvalue of the matrix A. It remains to fix the set of
constants {c;,1 <4 < M} which are determined by using the initial conditions given in subsection
Initial Conditions

We define the set points in the set [0,1] as {&;}, i =0,..., P, such that §, =0 and {p = 1. Then by
using ([4.5)) we fix the values of the constants ¢;

Hl(xo) HQ(:CO) co HTYL(IO) T
c1 \%! Xo(6o)
H Holx .- H,,
: o)t ) ()
Hy(wp1) Ha(wpo1) -+ Hpl(wpo1) | :
A% X
cm Hi(xp)  Ho(xp) - Hplzp) M oler)
(6.9)
With this, we have now completed the process to build the approximation for the solution.
6.2.1 Deterministic equation associated with the stochastic diffusion (6.1))
Set
y(t,§) = E[Xt(f)]
then, y(t, &) solves the differential equation
dy 0%y
— =V— 6.10
ot Vot (6.10)
y‘t:() = E(Xo).

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.

18
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Results on the simulation

We have the following graphs of simulations using this method with differents values of J¥-™ N =7,8.
We make a comparison with the solution of the deterministic equation, as was described in subsection
[6:2.1] by using the matlab library pdepe.

First we show the result on the simulation for the evaluation functional. The second group of graphs
shows the simulation for the second functional. The results were obtained with the coefficient v = 0.1.

Diffusion with order N= 7 and nu= 0.1 Diffusion with order N=8 and nu=0.1

Figure 1: Simulations for the Diffusion equation with the spectral method, for N = 7,8 and v = 0.1
with ug’ () = g(&o)-

Diffusion with order N= 7 and nu=0.1 Diffusion with order N=8 and nu=0.1

INVaN e
™~ N\

0.4

(t)
03
Il
(t)
0.3
L

Figure 2: Simulations for the Diffusion equation with the spectral method, for N = 7,8, v = 0.1 and

uo(g) = [y g(€)d)..

6.3 Stochastic Fisher-KPP Equation in an interval
Set H = L?(0,1). We consider the stochastic Fisher-KPP equation in the interval [0, 1]:

dX(t,€) = [uag)((t,g) +X (1 - X(t,f))}dt T+ AW, (t,€), t>0, £€(0,1) (6.11)

X(t,0) = X(t,1) =0, t>0,
X(0,8)=x(¢), ze€H

W is a cylindrical Wiener process on #, associated to a stochastic basis (Q, F,P, (F;)i>0). v is the
viscosity coefficient. We will consider the initial condition X (0, &) = sech?(5(¢ — 0.5)).
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We rewrite the Fisher-KPP equation as an abstract differential equation in H. Set A = 1/82 and
B(x) = z(1—x), x € H, with domains D(A) = H?(0,1)NHZ(0,1) and D(B) = H(0, 1), respectively.
Then, (6.11) can be rewriten as

dX = [AX + B(X)]dt + dW; (6.12)
X0)=2 zeH.
The operator A is selfadjoint with a complete orthonormal system of eigenfunctions in H given by
€) = V2sin(kng),  £€0,1,keN.

Moreover A satisfies Aej, = —vm2k2ey, for k € N,
As before we define u(t,z) = E[uo(X{)] and then u(t,z) satisfies the Kolmogorov equation

% = %TT(QDQU) + (Az, Du)y + (B(x), Du)yy, x € D(A).

Results on existence and uniqueness of the solution to the Kolmogorov equation can be found, for

instance, in [7, Chapter 4].
About the functional ug : H — R we will consider two cases :

u$ (g) := g(&).  for fixed & € (0,1)
and

uo(g) == / 9(€)de.

We now apply the numerical method. We write the solution u as
= Z un (t)H,
n

and by following the procedure done before we arrive to an infinite system of ordinary differential
equations:

i (t) = =tum(OAm + Y un()Cnm, n,meJ (6.13)
neJ
where Cy, 1, is given by

:/ (B(x), Dy Hp (), Hom (2)1(d)
H
we need to calculate the value of the constants C,, ,,, then we need to calculate expressions such as

B(z), D, Hy, ().
Focus on the term B(z) = x(1 — x). By writing = )", freg, with S := (x, ex)y we have

— (;Bkek) (1 - ;&-61@) = ;Bkek - ;;5151@6161@

For the expression D, H,,(x) we have

0-3

P, ((z, A~ 1/261>H)P,’1j((m,Afl/zej)H)Afl/zej

_,:18

@
Il
e

i#]

Setting A = (—A)~! and by recalling that Ae; = —vn?j2e; we have A=/2¢; = \/2vn|jle;, and by
using the last expression we have,

C’n,mz/HHm(m),u(dx)ZH o (2, A7 2e;) )P, ((x A™12e), )@WM
=
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<[ tulens e - EE Auleers b

-/ ) S VB, (A s P (4721

x HP 1/2€i>H)P ({2, A 12, { Zzﬂlﬁk elek’eﬁ%}

Z#J

For Ny € N define as before the set Sy, = {n,na,...,ny, :n; € JMN i=1... N;}. Moreover,
for n,m € Sj; define

M
m EJ (5]) (d'fj)
"X L

M M
X Pm, fz m |: Z Z Blﬁk €€k, e] :| (614)
1=1 k=1
z;é]
and the finite system of ordinary differential equations:
Um (1) = —Um () Am + Z Uun (t)Crm, for each m € S); and n € Sy,. (6.15)

neSy

Then (6.15]) approximates to the infinite system of ordinary differential equations (6.13]) when N, M —
0o. We use the system (6.15)) to approximate the solution of the FPK equation associated to the
Fisher-KPP equation.

6.3.1 Deterministic equation associated with the stochastic Fisher-KPP Equation.

Set

y(t.€) = E[X:(¢)]

then, y(t, £) solves the differential equation

2
o = v AUt L (6 €] (6.16)
y|t:O = E(XO)

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.

Results on the simulation

We have the following graphs of simulations using the proposed method with differents values of JN:M
N =4,5. We make a comparison with the solution of the deterministic equation, as was described in
subsection [6.3.1] by using the matlab library pdepe.

We show the results on the simulation for the evaluation functional. The second graph shows the
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simulation for the second functional. The results were obtained with the coefficient v = 0.1.

Fisher-KPP Eq. with order N=7 and nu=0.1 Fisher-KPP Eg. with order N=8 and nu=0.1

0.15 \ 0.3
;§\@ 0.10 Q(\@ 0.2
D <
N Pacy
0.05 0.1

Figure 3: Simulations for the Fisher-KPP equation with the Matlab library pdepe and with the spectral
method for N = 7,8, ugo(g) =g(&).

Fisher-KPP Eq. with order N=7 and nu= 0.1 Fisher-KPP Eq. with order N=8 and nu=0.1

015
/
04

uft)
u(t)

0.10
I
0.2
L
/,

0.05
I

time time

Figure 4: Simulations for the Fisher-KPP equation with the Matlab library pdepe and with the spectral
method for N = 7,8, ug(g) = fol g(&)d¢.

6.4 Stochastic Burgers Equation in an interval

Set H = L?(0,1). We consider the stochastic Burgers equation in the interval [0, 1]:

dX(t,€) = [vOEX (t,€) + %8§(X2(t, g))] dt + dWy(t,€), t>0, €e(0,1) (6.17)
X(t,0) = X(t,1) =0, ¢>0,
X(0,8)==(), zeH (6.18)

W is a cylindrical Wiener process on H, associated to a stochastic basis (Q, F,P, (F;)i>0). V is the
viscosity coefficient.
We rewrite the Burgers equation as an abstract differential equation in 7. Set A = 1/8? and B(z) =
20¢(2?), x € H, with domains D(A) = H?(0,1)N H{(0,1) and D(B) = H{(0,1), respectively. Then,
(6.17)) can be rewriten as
dX = [AX + B(X)]dt + dW; (6.19)
X0)=2 zeH.

The operator A is selfadjoint with a complete orthonormal system of eigenfunctions in H given by

ex(§) = V2sin(kn), €01,k €N,
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Moreover A satisfies Aey, = —vm2k2ey, for k € N.
As before we define u(t,z) = E[uo(X{)] and then u(t,z) satisfies the Kolmogorov equation

du

Results on existence and uniqueness of the solution to the Kolmogorov equation can be found, for

instance, in [7, Chapter 5].
We will consider again two types of functionals :

us(g) := g(&).  for fixed & € (0,1)
and

1
u(g)i= | g€y
0
We now apply the numerical method. We write the solution u as

u(tv 'r) = Z un(t)Hn(x)'

and by following the procedure done before we arrive to an infinite system of ordinary differential
equations:

U (t) = —tim (DAm + Y un(t)Crim, n,mEJ (6.20)
neJg

where Cy, 1, is given by

Crvm = / (B(x), Dy Hy(2)) 5, Hom (2)1(d)
"
we need to calculate the value of the constants C,, ,,, then we need to calculate expressions such as

B(x), Dy Hyp(z).
Focus on the term B(z) = 19¢(22). By writing z = >, Brex, with By, := (z,e)% we have

B(z) = ;aﬁ<§k:5kek>2 = %35 [z[:zk:ﬂlﬁkelek} = ;El:%:ﬂlﬂk (er€f, + erer).

For the expression D, H,(x) we have

D.Hy,(z) = Z H Py, ((z, A*1/26i>H)P,’Lj (=, A71/26j>H)A71/26j

Setting A = (—A)~! and by recalling that Ae; = —vn?j2e; we have A=/%¢; = \/2un|jle;, and by
using the last expression we have,

Crm = % /H Hon (2)p(d) ) T ] P (2, A7 2ei)20) By (G, A7 2e5)30) V2w ]
j=1 i=
iF#]

X DY Bibilees +eers )y,
l k

-

<

1 oo
) /H pld) Y N 2wm|j| P, (o, A 2eg)a0) P (G, A 2e)30)

J=1

X H P, ({2, A7Y2€;)30) Py, ({2, A1 23) ) Z Z BiBr(erer, + ejer, ), -
i=1 l k
i#]
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For Ny € N define as before the set Sy, = {n1,n9,...,ny, : N; € JMN G =1, .. ., N1}. Moreover,
for n,m € Sy, define

Z 2vrlj / P, (&) Py, (&) 11(dE;)

M M
X HPmi (&) P, (E)pe(d&) D BiBr{ere + ejens ej),,- (6.21)
;;‘17 =1 k=1
and the finite system of ordinary differential equations:
Um (t) = —Um () Am + Z U (t)Crm, for each m € S); and n € Sy,. (6.22)

neSn

Then (6.22) approximates to the infinite system of ordinary differential equations ([6.20)) when N, M —
00. We use the system ((6.22) to approximate the solution of the FPK equation associated with the
Burgers equation.

6.4.1 Deterministic equation associated with the stochastic Burgers Equation.

Set

y(t,€) = E[X:(8)]

then, y(t, &) solves the differential equation

0 0?
o = v+ +50:00.0) (6.23)
y|t:0 = E(XO)

We solve numerically this equation by using the Matlab library pdepe and we compare our results by
using the spectral method with the one obtained with the pdepe Matlab library.

Results on the simulation

The following graphs show simulations by using the proposed method with differents values of J™M
N =4,5. We make a comparison with the solution of the deterministic equation, as was described in
subsection by using the matlab library pdepe.

Tthe results on the simulation for the evaluation functional are in the first group of graphs. The second
graph shows the simulation for the second functional. The results were obtained with the coefficient
v =0.2,0.1,0.01.

Burgers Eq. with order N=4 and nu= 0.2 Burgers Eq. with order N=5 and nu=0.2

Figure 5: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, u3’(g) = g(&o)-
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Burgers Eg. with order N= 4 and nu= 0.1 Burgers Eq. with order N=5 and nu= 0.1

08 \ 08
06 06
\ 04 \ 04

Figure 6: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, ugo(g) = g(&o).

Burgers Eq. with order N=4 and nu=0.01 Burgers Eq. with order N=5 and nu= 0.01
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0.6 0.6
04 04
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Figure 7: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, u3’(g) = g(&o)-

Burgers with order N=4 and nu= 0.2 Burgers with order N=5 and nu= 0.2
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Figure 8: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, ug(g) = fol g(&)d¢.
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Burgers with order N=4 and nu=0.1 Burgers with order N=5 and nu= 0.1
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Figure 9: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, ug(g) = fol g(&)d¢.

Burgers with order N=4 and nu= 0.01 Burgers with order N= 5 and nu= 0.01
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Figure 10: Simulations for the Burgers equation with the Matlab library pdepe and with the spectral
method for N = 4,5, ug(g) = fol g(&)dE.

7 Conclusions.

In this paper we introduced a numerical method to solve Fokker-Plank-Kolmogorov equations and we
tested this method by applying it to the Kolmogorov equations associated to three stochastic partial
differential equations: a stochastic diffusion, a Fisher-KPP stochastic equation and a stochastic Burgers
equation in 1D, in a simple domain in the three cases. The results obtained are really promising.
However, there are a few limitations. The first is that the noise in the SPDE is restricted to the additive
case and to cover the multiplicative case seems unfeasible at this moment. Indeed, even if one is able
to prove existence and uniqueness of an invariant measure v for the Ornstein-Uhlenbeck semigroup
associated with the SPDE, there would remain the fully characterize of the measure and to find a
basis for the Hilbert Space L?(#,v). Another issue is that we have applied the method to very simple
domains, However, to cover the cases with complex domains one can use ideas of domain decomposition
techniques similar to those used in spectral element methods. This is part of a forthcoming paper.
The method can be adapted to cover the Fokker-Plank equations associated with SPDE's, this will be
studied in a subsequent work.
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