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Abstract

We define generalized Hamming weights for almost affine codes. We show how various aspects

and applications of generalized Hamming weights for linear codes, such as Wei duality, gener-

alized Kung’s bound, profiles, connection to wire-tap channels of type II, apply to the larger

class of almost affine codes in general. In addition we discuss duality of almost affine codes,and

of the smaller class of multilinear codes. We also give results about weight distributions of

infinite series of almost affine codes, each series obtained from a fixed code by extending the

code alphabet. Keywords: Block codes, Hamming weight, Kung’s bound, profiles, wire-tap

channel of type II.

1 Introduction

Let C be an almost affine code as defined in [22], that is: C ⊂ Fn for some finite alphabet F , and
the projection CX has cardinality |F |s for a non-negative integer s for each X ⊂ {1, · · · , n}.

It is well known ([22]) that C defines a matroid MC through the rank function

r(X) = log|F | |CX |.

Such codes were studied in connection with access structures over E = {1, 2, · · · , n} and are strongly
related to ideal perfect secret sharing schemes for such access structures. See e.g. [22], [7], [1], [17].

An important subclass of almost affine codes are linear codes over finite fields Fq. A bigger class
consists of affine codes, which are translates of linear codes within their ambient space. Another
class of codes strictly bigger than that of linear codes, and strictly smaller than that of all almost
affine codes, consists of multilinear codes. These are usual linear codes over a finite field Fq, with
an additional structure as (almost affine) codes over a finite dimensional vector space F over Fq.
An natural case is to consider F = F

m
q for some integer m ≥ 2.

In this paper we will study some well-known properties of linear codes over finite fields, and
investigate to what extent they carry over to this bigger class of almost affine codes C. In some
cases we will limit ourselves to results about the intermediate class of multilinear codes.

The properties we will study are Hamming weights, (virtual) Wei duality, and the interplay
with properties of the associated matroids MC and its dual. Furthermore we will study series of
extension codes over a given almost affine code, and how to count code words of specified weights.

We will also investigate the possibility of defining in a natural way a dual code C⊥ of an almost
affine code C. This turns out to be problematic in general, although the dual matroid of MC exists,
so that we know what matroid structure C⊥ should have induced, if it had existed. For multilinear
codes, however, there is a nice duality of codes, which matches that of the dual matroids.
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We proceed to prove a version of Kung’s theorem for almost affine codes, that is a formula for
how many code words it takes for their unions of supports to cover all of E = {1, 2, · · · , n}. For
linear codes this formula in formulated in terms of the minimum distance of the dual code. In our
case there is not necessarily a dual code, but we succeed in formulating the result, by using the
associated matroid of the code. We also extend a recent generalization of Kung’s theorem, given in
[11], from linear codes to almost affine codes. Here we give formulas for how many code words it
takes for their unions of supports to cover subsets of E = {1, 2, · · · , n} of specified cardinalities. To
formulate this result we use the full set of Hamming weights for the matroid MC .

At the end of the paper we will discuss some concepts intimately connected to linear codes.
These are dimension/length and length/dimension profiles, and the wire-tap channel of Type II.
We show how all these concepts give meaning for almost affine codes in general, and a lot of results
can easily be generalized to this larger class of codes.

1.1 Notation and known results

1.1.1 Matroids

A matroid is a combinatorial structure that extend the notion of dependency. There are many
equivalent definitions for matroids, but we give just one here. We refer to [19] for a complete
overview of the theory of matroids, and we use its notation.

Definition 1 A matroid M on the finite ground set E is a collection B of subsets of E satisfying

(B1) B 6= ∅,

(B2) For every distinct B1, B2 ∈ B, for every x ∈ B1 − B2, there exists y ∈ B2 − B1 such that
B1 − {x} ∪ {y} ∈ B.

The set B is known as the set of bases of the matroid M . All the bases of a matroid have the
same cardinality.

We can associate a matroid to any linear code in the following way. Let H be a parity check
matrix of the code. Let Hi, 1 6 i 6 n be the columns of this matrix. Then

B = {X ⊂ E, (Hi)i∈X is a maximal independent set}

is the set of bases of a matroid. It can be proved that this matroid doesn’t depend on the parity
check matrix of the code. We denote this matroid by M(C).

Every matroid M admits a dual matroid M∗ on the same ground set defined as follows: the set
of bases of M∗ is

B∗ = {E −B, B ∈ B}.

Of course, (M∗)∗ = M .
The set I of subsets of bases is known as the set of independent sets of M , and then B is the set

of maximal independent sets. The set C of minimal dependent sets (that is, not independent sets),
is known as the set of circuits of M . Finally, there are two important functions on the power set of
E, namely the rank and nullity functions : for X ⊂ E,

r(X) = Max{|X ∩B|, B ∈ B}

and
n(X) = |X | − r(X).

The rank functions of the matroid M and its dual M∗ are related by the equation

r∗(X) = |X |+ r(E −X)− r(E).
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The rank of a matroid is equal to the cardinality of any basis, or equivalently is r(E).
A notion that will be used later is the fundamental circuit of an element with respect to a

basis [19, Corollary 1.2.6]:

Definition 2 If B is a basis and e ∈ E − B, then there exists a unique circuit X such that
X ⊂ B ∪ {e}. This circuit will be denoted σ(B, e) in the sequel.

In [23, Theorem 2], the author generalizes the notion of minimum distance of codes (the gener-
alized Hamming weights), and this can be further extended to matroids in general ([12]):

Definition 3 Let M be a matroid of rank k on the ground set E, and let n be its nullity function.
Then the generalized Hamming weights are

di(M) = Min{|X |, n(X) = i} for 1 6 i 6 |E| − k.

Notice that the generalized Hamming weights for a matroid are a strictly increasing function of
i.

In the same way, we can define the generalized Hamming weights for the dual matroid M∗. These
are related by Wei duality, first proved in [23, Theorem 3] for linear codes, and then generalized
in [15] (in Norwegian, unpublished) and also in [2, Theorem 5], where one may disregard the partial
ordering P appearing in that theorem since we now are considering the case where P is trivial
(antichain):

Proposition 1 The di(M) and the di(M
∗) satisfy Wei duality:

{d1, (M) · · · , dn−k(M)} ∪

{n+ 1− dk(M
∗), · · · , n+ 1− d1(M

∗)} = {1, 2, · · · , n}

where n = |E|.

1.1.2 Almost affine codes

We refer to [22] for an introduction to almost affine codes, and will mainly use their notation. We
give here the main definitions, and the result that will be used in the sequel.

An almost affine code on a finite alphabet F , of length n and dimension k is a subset C ⊂ Fn

such that |C| = |F |k and such that for every subset X ⊂ {1, · · · , n},

log|F ||CX | ∈ N.

To any almost affine code C of length n and dimension k on the alphabet F , we can associate
a matroid MC defined by its rank function, namely, for every X ⊂ {1, · · · , n},

r(X) = log|F ||CX |.

Remark 1 Obviously, any linear code C over the field Fq is an almost affine code on the alphabet
Fq. We have two matroids associated to this code, namely M(C) and MC. Unfortunately, they are
different, but they remain related, since they are dual of each other. We have namely

MC = M(C)∗ = M(C⊥)

where C⊥ is the dual linear code of C, that is the orthogonal complement of C.
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Remark 2 The class of almost affine codes is strictly bigger than the class of linear codes. It can
namely be shown that the non-Pappus matroid is the matroid associated to an almost affine code
([22, Example 2]), but is not the matroid associated to any linear code ([19, Proposition 6.1.10]).

Example 1 We will use a running example throughout this paper. It is the almost affine code C′

in [22, Example 5]. It is a code of length 3 and dimension 2 on the alphabet {0, 1, 2, 3}. Its set of
codewords is

000 011 022 033

101 112 123 130

202 213 220 231

303 310 321 332

Its matroid is the uniform matroid U2,3 of rank 2 on 3 elements. This is an example of an almost
affine code which is not equivalent to a linear code, and not even to a multilinear code (see Section 3.2
for the definition of multilinear codes)

When talking about the support of a codeword in a linear code, one implicitly makes reference
to the zero-codeword. Such a "canonical" codeword doesn’t generally exist in almost affine codes,
so we are bound to specify the codeword we compare to in almost all our definitions.

Definition 4 Let C be an almost affine code of length n, and let c̃ ∈ C be fixed. The c̃-support of
any codeword c is

Supp(c, c̃) = {i, ci 6= c̃i}.

Even if this is defined using a fixed codeword c̃, it is shown in [22], that many quantities don’t
depend on the codeword c̃ used, but just on the matroid associated to the code. We mention, among
other definitions and results taken from [22]:

Definition 5 Let C be an almost affine code of length n, and let c̃ ∈ Fn be fixed. Then

C(X, c̃) = {c ∈ C, cX = c̃X},

where cX is the projection of c to X.

Proposition 2 Let C be an almost affine code of length n and dimension k on the alphabet F . Let
c̃ ∈ C. Let X ⊂ {1, · · · , n}. Then C(X, c̃) is an almost affine subcode of C, and moreover,

|C(X, c̃)| = |F |k−r(X)

where r is the rank function of the matroid MC.

In the sequel, some proofs can be made clearer if one uses a equivalent code instead. An
equivalent code is a code obtained from the original one by a succession of the three following
operations:

• replace the alphabet F by an alphabet F ′ of same cardinality,

• permute the positions of the code,

• permute the symbols appearing at a fixed position.

It is obvious that a code equivalent to an almost affine code is almost affine too. It will be obvious
in the sequel that it will be enough to prove the properties we want to prove for an equivalent almost
affine code. Then we can assume that the alphabet is F = {0, · · · , q − 1} (change of alphabet),
that {1, · · · , k} is a basis of the matroid associated to the code (permutation of the positions of the
code), and that the word (0, · · · , 0) ∈ C (multiple permutations of the symbols appearing at a fixed
position).
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2 Generalized Hamming weights

2.1 Definition via the associated matroid

For a block code C, the minimal distance d is defined as

d = Min{d(x,y), x,y ∈ C, x 6= y}

where d(x,y) is the Hamming distance between the codewords x and y, that is, the number of
indices where the two codewords differ. Then we have that

d(x,y) = |Supp(x,y)|.

Then from [22, Prop. 5], the minimal distance of C is equal to the minimum cardinality of the
circuits of the dual of the matroid associated to C, in other words,

d = d1(M
∗
C).

This suggests the following definition of generalized Hamming weights for an almost affine code:

Definition 6 The generalized Hamming weights for an almost affine code C of dimension k are

di(C) = di(M
∗
C) = Min{|X |, |X | − r∗(X) = i}

for 1 6 i 6 k, where r∗ is the rank function of M∗
C .

Example 2 Let C′ be the almost affine code of Example 1. Its generalized Hamming weights are

d1(C
′) = 2

d2(C
′) = 3.

Remark 3 For a linear code C, the generalized Hamming weights correspond to the generalized
Hamming weights for the matroid associated to (any) parity check matrix of the code ([23, Theorem
2]). In [12], the matroid associated to parity check matrices is called the matroid associated to the
code itself. All linear codes are of course almost affine too. In [22], the associated matroid MC

would correspond to the matroid associated to generator matrices of the linear code, that is the
dual of the matroid associated to the linear code. While this can be confusing, by Wei duality for
generalized Hamming weights for linear codes and for matroids, this is unproblematic, we just have
to be cautious. We can of course use the matroid MC instead of its dual in the definition.

Proposition 3 Let C be an almost affine code of length n and dimension k on the alphabet F . Let
c̃ ∈ C be any codeword. Then for every 1 6 i 6 k,

di(C) = Min{|X |, r(E −X) = k − i}

= n−Max{|X |, r(X) = k − i}

= n−Max{|X |, |C(X, c̃)| = |F |i}.

The third equality is independent of the choice of c̃.

Proof The first two equality follows simply from the fact that

r∗(X) = |X |+ r(E −X) + k

while the third equality is derived from Proposition 2.
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2.2 Generalized Hamming weights and subcodes

For linear codes, the generalized Hamming weights are originally defined as minimal supports of
subcodes of a given dimension. While for linear codes of dimension k over the finite field Fq, the

number of subcodes of dimension 1 6 i 6 k is known, namely
[

k
i

]

q
, this is not the case for almost

affine codes. Even two affine codes having the same associated matroid don’t necessarily have the
same number of almost affine subcodes. Nevertheless, we can express the generalized Hamming
weights for an almost affine code in terms of supports of almost affine subcodes.

Lemma 1 Let D be an almost affine code, and c,d ∈ D. Then we have

⋃

w∈D

Supp(w, c) =
⋃

w∈D

Supp(w,d).

Proof Namely, let i ∈
⋃

w∈D Supp(w, c). Then there exists w ∈ D such that wi 6= ci. If wi 6= di,
then of course i ∈

⋃

w∈D Supp(w,d). Otherwise ci 6= wi = di and again, i ∈
⋃

w∈D Supp(w,d).
By symmetry, we get equality.

The support of any almost affine subcode is thus well defined, as long as we take the c̃-support
of any codeword c̃ in the subcode, and we may omit the reference to this codeword. For linear
codes, we have an obvious candidate that is in any subcode, namely the 0-codeword. For almost
affine codes, we may have to use different codewords for different subcodes. Indeed, in the almost
affine code C′ of Example 1, the following subcodes of dimension 1 are disjoint:

{0, 0, 0}, {1, 0, 1}, {2, 0, 2}, {3, 0, 3}

and
{1, 1, 2}, {2, 1, 3}, {0, 1, 1}, {3, 1, 0}.

In that case, their supports are (1, 3) for both.

Theorem 1 Let C be an almost affine code of length n and dimension k on an alphabet F of
cardinality q. Then the generalized Hamming weights for C are

di(C) = Min{|Supp(D)|, D is a subcode of dim. i of C}

for 1 6 i 6 k.

Remark 4 Almost affine subcodes of dimension i always exist by Proposition 2, since we can always
find in the matroid MC a set X with r(X) = k − i.

Proof For 1 6 i 6 k, let
di = di(C)

and
ei = Min{|Supp(D)|, D is a subcode of dim. i of C}.

We show first that di 6 ei. Let D be an almost affine subcode of C of dimension i such that
|Supp(D)| = ei. By definition of the dimension, |D| = qi. Let d ∈ D ⊂ C, and let X = Supp(D,d).
We look at D′ = C(E − X,d). By Proposition 2, we know that this is a subcode of dimension
l = k − r(E −X). It is obvious that D ⊂ D′, and in particular

i 6 l = k − r(E −X).

6



By the monotone property of generalized Hamming weights for matroids, we have that

di 6 dl = Min{|Y |, k − r(E − Y ) = l} 6 |X | = ei.

We show now that ei 6 di. Let X ⊂ E be such that |X | = di and r(E −X) = k − i. Consider
D′′ = C(E −X, c) where c is any codeword of C. By Proposition 2, the dimension of D′′ is i. Of
course c ∈ D′′, and by construction Supp(D′′, c) ⊂ X . Then

di = |X | > |Supp(D′′, c)| > Min{|Supp(D), dim D = i} = ei.

Example 3 Let C′ be the code of Example 1. This code has 12 subcodes of dimension 1, and it can
be shown that all of them have support of cardinality 2. One of these subcodes is {022, 332, 202, 112}
which has support {1, 2}.

2.3 Generalized Hamming weights and codewords

In [12], it is shown that the nullity function (and a posteriori the generalized Hamming weights)
can be expressed as the support of non-redundant circuits.

Definition 7 Let {X1, · · · , Xs} be a set of distinct subsets of a given set. We say that this is a
non-redundant set of subsets if the union of the s subsets is not equal to any union of s− 1 of the
subsets.

By abuse of notation we then also just say that X1, · · · , Xs are non-redundant subsets.
From [12] we have:

Proposition 4 Let M be a matroid and X a subset of the ground set. Then the nullity of X is
equal to the number of elements in a maximal non-redundant subset of circuits included in X.

For linear codes, circuits of the matroid associated to (any) parity check matrix are in one to
one correspondence with supports of minimal codewords. In [22, Proposition 5], it is proved that an
analogous result holds for almost affine codes, namely that if C is an almost affine code and c̃ ∈ C,
then the c̃-supports of the c̃-minimal codewords are the circuits of the dual matroid associated to
the code. They are of course independent of the codeword c̃. This gives rise to the following:

Definition 8 Let c̃ be a codeword in an almost affine code C. A set {c1, · · · , ci} ⊂ C is called a c̃

non-redundant set of codewords if {Supp(c1, c̃), · · · , Supp(ci, c̃)} is a non-redundant set of subsets.
It is called a c̃ minimal non-redundant set of codewords if in addition the cj are c̃-minimal for all
j.

By abuse of notation we also just say that c1, · · · , ci are c̃ non-redundant codewords (respectively
c̃-minimal non-redundant codewords), and we may omit the reference to c̃ when there is no risk of
confusion.

Proposition 4 gives rise to the following characterization of the generalized Hamming weights
for a matroid.

Proposition 5 Let M be a matroid of rank k on the ground set E. Then the i-th generalized
Hamming weight, for 1 6 i 6 |E| − k is given by

di(M) = Min{|
i
⋃

j=1

Xj |, X1, · · · , Xi are non-redundant circuits}.

7



Proof Let
di = Min{|X |, n(X) = i}

and

ei = Min{|
i
⋃

j=1

Xj |, X1, · · · , Xi are non-redundant circuits}

Let X1 · · · , Xi non-redundant circuits such that |
⋃

Xj | = ei, and let Y =
⋃

Xj. Then by Proposi-
tion 4, j = n(Y ) > i. By the monotony of the generalized Hamming weights for a matroid,

di 6 dj 6 |Y | = ei

and one inequality is proved. For the second inequality, let Y ⊂ E such that |Y | = di and n(Y ) = i.
Then by Proposition 4 again, there exists i non-redundant circuits Y1, · · · , Yi such that

⋃

Yj ⊂ Y.

Then
ei 6 |

⋃

Yj | 6 |Y | = di

and this proves the proposition.

Then we have the following characterization of the generalized Hamming weights for an almost
affine code (and thus linear code):

Proposition 6 Let C be an almost affine code of dimension k. Then the generalized Hamming
weights for C are given by

di(C) = Min{|
i
⋃

j=1

Supp(cj, c̃)|, (c1, · · · , ci) are c̃− minimal non-redundant codewords}

For a linear code, we have that a subcode of dimension i and minimal support gives i codewords
with non-redundant supports that define di, and the converse. And actually, that any i non-
redundant codewords defines a subcode of dimension i. This is not the case for almost affine codes.
There is for example no subcodes of dimension 1 in the code C′ of Example 1 containing the origin
(in this case 000) and the word 112.

Lemma 2 Let D ⊂ C be a subcode of dimension i and such that |Supp(D)| = di. Let c̃ ∈ D. Then
we can find c1, · · · , ci ∈ D, c̃ non-redundant and such that

|
⋃

Supp(ci, c̃)| = |Supp(D)| = di.

Proof Without loss of generality, we may assume that F = {0, · · · , |F | − 1} and that c̃ is the 0
word. Let X be a basis of MD. Then D ≈ DX = FX . In particular there exists for each x ∈ X a
(unique) word cx ∈ D such that (cx)X−{x} = (0, · · · , 0) and (cx)x = 1. Let dx be a word such that
Supp(dx, c̃) is minimal and contained in Supp(cx, c̃). We claim that x ∈ Supp(dx, c̃). Namely, if
not, then the word dx would be such that (dx)X = (0, · · · , 0), that is, dx = c̃, which is absurd.
Thus, these codewords dx are c̃-minimal non-redundant. Then by the word description of di, we
have that

|
⋃

Supp(cx, c̃)| > |
⋃

Supp(dx, c̃)| > di.

By construction, since all the cx ∈ D,
⋃

Supp(cx, c̃) ⊂ Supp(D)

so that
di 6 |

⋃

Supp(cx, c̃)| 6 |Supp(D)| = di

and there must be equality everywhere.
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And the converse:

Lemma 3 Let C be an almost affine code and c̃ ∈ C. Assume that c1, · · · , ci are c̃ non-redundant
and such that |

⋃

Supp(cj, c̃)| = di. Then there exists a subcode D of C containing c̃, c1, · · · , ci, of
dimension i, and |Supp(D)| = di.

Proof Let X =
⋃

Supp(ci, c̃). From matroid theory, we know that n∗(X) = i, i.e i = k−r(E−X).
This also means that the subcode D = C(E−X, c̃) is a subcode of dimension i by Proposition 2. By
construction, ci ∈ D for all i, and of course c̃ ∈ D. Moreover, generally, Supp(C(E −X, c̃)) ⊂ X ,
so that |Supp(D)| 6 |X | = di. By the subcode characterization of di, there has to be equality.

3 Duality and Wei duality

For linear codes, we can easily define a dual code, namely the orthogonal complement of the code.
The generalized Hamming weights for the code and its dual are related by Wei duality ([23, Theorem
3]). This was generalized to matroids (coming from linear codes or not), as presented in Proposi-
tion 1. So, if C is an almost affine code, we could define the dual generalized Hamming weights as
the generalized Hamming weights for the dual of the associated matroid, and we would get a Wei
duality by Proposition 1, coming essentially from matroid theory. It would be nice if these weights
would come from a dual almost affine code. Unfortunately, we will see that such duals don’t exist
in general. But for a large class of almost affine codes, we can nevertheless define a dual code.

3.1 The dual of an almost affine code doesn’t exist in general

It is natural to ask the following about dual codes:

• The matroid associated to the dual code should be the dual of the matroid associated to the
code.

• Two equivalent codes should have equivalent duals

• The dual of the dual should be the code we started with

Remark 5 In the case of linear codes, we replace the condition on equivalent codes by a stronger
condition, namely linear equivalence. It is unknown to the authors if two linear codes can be equiv-
alent in the wider sense without being linearly equivalent.

Lemma 4 Let C1, C2 be two equivalent almost affine codes on the alphabet F . Then for every
1 6 r 6 dim(C1) = dim(C2), the number of r-dimensional subcodes of C1 and C2 are the same.

Proof This is obvious since two codes are equivalent if they can be obtained from one another by
a series of operations of the following type:

• permutation of the positions of the code

• permutation of the symbols of the alphabet appearing at a fixed position.

Lemma 5 Let C1, C2 be two almost affine codes of dimension 1 on the alphabet F with the same
matroid. Then they are equivalent.

Proof Let B = {b} be a basis of the matroid. Let x ∈ E −B. We have two possibilities:

9



• b 6∈ σ(B, x), i.e. x is a loop. Let wi ∈ Ci for i ∈ {1, 2}. By Proposition 2,

|Ci({x}, wi)| = |F |1−r({x}) = |F | = |Ci|

so that all words of Ci have the same digit, namely (wi)x at position x. Let τx be any
permutation of F that sends (w1)x to (w2)x.

• b ∈ σ(B, x). In that case, σ(B, x) = {b, x}. We then have, for i ∈ {1, 2},

|Ci| = |F | = |(Ci)B| ,

then for every f ∈ F , there exists a unique word wi,f ∈ Ci such that

(wi,f )b = f.

Note that by cardinality
Ci = {wi,f , f ∈ F} .

Since {b, x} is a circuit, {x} is independent, and therefore

∣

∣

∣(Ci){x}

∣

∣

∣ = |F |,

and there exists for every g ∈ F , a word vi ∈ Ci such that (vi)x = g. This has to be one of
the wi,f . Thus,

∀i ∈ {1, 2}, ∀g ∈ F, ∃f ∈ F, (wi,f )x = g.

By a cardinality argument, we also have that

∀i ∈ {1, 2}, ∀f, f ′ ∈ F, f 6= f ′, (wi,f )x 6=
(

wi,f ′

)

x
.

This shows that
τx : F −→ F

(w1,f)x 7−→ (w2,f)x

is well defined and is a permutation.

The series of permutations τx of the symbols of the alphabet at position x makes C1 equivalent to
C2.

We can now show that the concept of dual of an almost affine code doesn’t exist. Namely, the
codes C and C′ from [22, Example 5], have the same associated matroid. The dual matroid is the
uniform matroid U1,3. Therefore, the possible duals C⊥ and C′⊥ would be equivalent by Lemma 5.

Thus C = C⊥⊥
and C′ = C′⊥⊥

would also be equivalent. But this isn’t possible by Lemma 4 since
it is known that C has 20 1-dimensional subcodes, while C′ has just 12 of them.

Remark 6 Summing up: For Fq-linear codes we then have that the di of a code are equal to the
di of the matroid M∗

C , and that the dj of the dual (orthogonal complement) code C∗ are equal to
the dj of MC . But for almost affine code we don’t always have a dual almost affine code in the the
(strong) sense above.

On the other hand an almost affine code C can be associated to some socalled (connected) access
structure, say AC . See e.g. [22], or [7]. To each such access structure A there is an associated matroid
MA. Moreover MAC

= MC . See [22, Remark 1], where one cites [23, Theorem 5.4.1]. Furthermore
such access structures have dual access structures A∗, described in [7, p. 84]. Moreover MA∗ = M∗

A

by [7, Theorem 10]. Hence the di of C are directly related to this object A∗, and the di of MC ,
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which are not in general equal to the di of any code in a natural way associated with MC , at least
are related to A in the same way as the di of C are related to A∗.

Even if the access structure as such has a dual, it does not automatically tell us that another
object, the associated ideal secret sharing scheme, has a dual such scheme, and it is this secret sharing
scheme that corresponds directly to the almost affine code associated to the access structure. In
the next subsection we will study almost affine codes C, which are not necessarily linear over the
(main) alphabet we are considering, but where one nevertheless can define dual codes C∗ because
of an extra structure over another alphabet.

3.2 Duality of multilinear codes

An important case of almost affine codes are multilinear codes. For simplicity we will here use the
following:

Definition 9 A multilinear code is a Fq-linear subspace of Fn, where F = Fq
m, for some natural

number m, such that rkFq
(CX) is divisible by m, for each X ⊂ E = {1, 2, · · · , n}.

Remark 7 Such a code is an almost affine code over the alphabet F . We will call it a multilinear
code over F , which implicitly implies that it is also a usual linear code over the alphabet Fq .

There are several definitions of multilinear codes, this one is essentially taken from [22, Example 2]
(where one is not so concrete that one says F = Fq

m, instead one says that F is a vector space over
Fq of dimension m, but we claim that there is no loss in generality by setting F = Fq

m).
The goal with this section is to show that a multilinear code C in a natural way has a dual

multilinear code C⊥ over F . Interpreted over the alphabet Fq this code C⊥ is just the usual
orthogonal complement of C in F

mn
q .

Let C be such a multilinear code for a given m and n, and let G be a generator matrix for C

over Fq, like in [22, Example 2]. Hence C is the row space of G over Fq, which makes C an Fq-linear
subspace of Fq

mn, and a subset of Fn.
We assume that the rows of G are independent over Fq and the number of such rows is therefore

dimFq
C = dimFq

CE , which is divisible by m, by assumption, we call this number of rows k1 = mk.

Hence G is a [mk ×mn]-matrix over Fq.
The set of column positions of G are 1m ∪ 2m · · ·nm, where

am = {(a− 1)m+ 1, (a− 1)m+ 2, · · · , (a− 1)m+m},

for any natural number a. For any X ⊂ E, let Xm be the union of the xm, for the x ∈ X. For
comparison, see [21, proof of Theorem 4.3]. Let r1 be the rank function associated to the (matroid
M |G of the) generator matrix G, interpreted over Fq. Let r2 be the rank function associated to the
almost affine code C over F .

By the assumptions above we have r1(Xm) = dimFq
CX = mdimFCX = mr2(X), for any X ∈ E.

Now let H be a parity check matrix of C over Fq. The column rank function of H is r∗1 , which
is the rank of the matroid dual of M |G. For any X ∈ E we have:

r∗1(Xm) = |Xm|+ r1(Em)− r1(Em −Xm)

= |Xm|+ r1(Em)− r1((E −X)m)

= m|X |+mr2(E)−mr2(E −X)

= mr∗2(X).

(1)

We then the make three observations:

11



• We may interpret H as a generator matrix of a dual code over Fq, which is also a subcode
over Fn, by interpreting each group of succesive symbols in each row of H as an element of
F = F

m
q .

• dimFq
(C⊥)X = r∗1(Xm) is divisible by m for any X ⊂ E, by Equation (1). Hence C⊥ is an

almost affine code.

• dimF (C
⊥)X = 1

m
dimFq

(C⊥)X = r∗2(X), so also as an almost affine code over F , the rank
function of the dual code C⊥ of C is the dual matroid rank function of that of C.

Theorem 2 Wei duality holds for the codes C and C⊥, viewed as almost affine codes over F .

Proof We know that Wei duality holds between the matroid, say N , associated to the rank function
r2 on P(E), and its dual matroid M , by general facts about Wei duality for matroids. Moreover
the Hamming weights for C⊥, are those of the matroid dual to its rank function r∗2 , that is: the
matroid with rank function r2, that is : N . Since Wei-duality holds between M and N , it holds
between C and C⊥ also.

We started this subsection by hinting at two different definitions of (a matroid being repre-
sentable over) a multilinear code:

(a) A matroid M is derived from an Fq-linear subspace of Fn, where F = Fq
m. We also assume

that C is an almost affine code over F , that is rkFq
(CX) is divisible by m for each X ⊂ E =

{1, 2, · · · , n} (our working definition so far, and also the definition given in the paper that was
the starting point of this investigation, [24, p. 10]).

(b) As (a), but we allow for an Fq-linear subspace of Fn, where F could be any m−dimensional
vector space over Fq (not necessarily F = Fq

m). This is the the definition in [22].

Although (a) seems to be a special case of (b), these definitions are equivalent for all practical
purposes.

Let us also introduce two other definitions, taken from [21].

(c) Let M = (E, ρ) be a rank r matroid, m a positive integer, and F a skew field (i.e. Fq

if finite, by Wedderburn). An m-multilinear representation of M (for this F) is a function
V : E → Gr(m,Fmr) that assigns to each element e ∈ E, an m-dimensional subspace V (e) of
the right vector space F

mr, such that for all X ⊂ E we have:

dim(Σe∈XV (e)) = m.rkM (X).

(d) The matroid M is representable over the skew partial field (for definitions of skew partial
fields, and what it means to be representable over them, see [21, Definition 3.1] and [21,
Definition 3.8], respectively):

P(mF) = (M(m,F), GL(m,Fm).

Here M(m,F) is the ring of all (m × m)-matrices over F, while GL(m,Fm) as usual is the
multiplicative subgroup of invertible matrices.

In the proof of [21, Theorem 4.3], one shows (c) and (d) to be equivalent.

Remark 8 Hence (c) and (d) are equivalent, and so are (a) and (b), interpreted in a reasonable
way. There remains a challenge, with us, in revealing the relationship between (a) and (b) on
one hand, and (c) and (d) on the other. The definitions (c) and (d) seem to allow for a non-
commutative setting, since e.g. the matrices in (d) do not commute. In (c), however, there is no
non-commutativity unless F itself is not a usual field, but a non-commutative division ring. By
Wedderburn again, this leads to a situation where F is infinite, which is probably outside the scope
of this article.

12



4 Extended weight polynomials of almost affine codes

In [9], and in [8, p. 323], one points out that for linear block codes of length n over a finite field Fq,
one can produce an infinite series of codes by extending the alphabet to Fqs , for s = 1, 2, · · · , and
nevertheless find polynomials A0, · · · , An, such that Aj(q

s) computes the number of codewords of
weight j, for all s simultaneously, for each of j = 0, · · · , n. Hence knowledge of a finite number of
coefficients of the Aj compute an infinite number of weights. (A crude upper bound for this finite
number is (k + 1)(n+ 1), for the length n and the dimension k of the code. Set d0 = 0. A better
bound for the finite number of coefficients of all the Aj taken together is 1+Σk

j=1(j+1)(dj−dj−1).)
In this subsection we will show that a corresponding result holds for almost affine codes, and we will
mimick the arguments in [10, Section 3] to find weight polynomials for an infinite series of almost
affine codes CQ, which we will now define.

Let q = |F |, where F is the alphabet over which an almost affine code C of block length n is
defined. Let Q = qs, and FQ = F s and CQ = Cs. Then CQ is a code of block length n over the
alphabet FQ, if an element ((c1,1, · · · , c1,n), · · · , (cs,1, · · · , cs,n)) instead is interpreted as:

((c1,1, · · · , cs,1), · · · , (c1,n, · · · , cs,n)). (2)

It is then automatic that |(CQ)X | = Qr if |CX | = qr, for some X ⊂ E = {1, 2, · · · , n}, and natural
number r. Hence CQ is an almost affine code over FQ, since C is an almost affine code over F .
Moreover the matroid MCQ

= MC since the rank functions are the same. Call the rank function r.
Put k = r(E).

Let U ⊂ E, and let cQ be a fixed codeword in CQ. Similarly as in [10] we define: SU (Q) is
the subset of CQ, viewed over FQ, with the same coordinates as cQ in the positions corresponding
to U , in other words SU (Q) = CQ(U, cQ) . But, since CQ is an almost affine code we see that
|SU (Q)| = Qk−r(U). In the next definition, there is no explicit reference to the codeword cQ, since
this is independent of the word chosen.

Definition 10 For each j = 1, · · · , n let AC,j(Q) be the set of codewords of weight j in CQ.

Example 4 Let C′ be the code of Example 1. Then we have

AC′,3(Q) = Q2 − 3Q+ 2

AC′,2(Q) = 3Q− 3

AC′,1(Q) = 0

and
AC′,0(Q) = 1.

Using the exclusion/inclusion principle and same formulas as in [10, Formula (9) p. 638], we
obtain :

AC,n(Q) = (−1)n
∑

X⊂E

(−1)|X|Qn∗(X).

To obtain a similar formula for any j ∈ {1, 2, · · · , n}, we proceed exactly as in [10, p. 638], and
obtain:

Proposition 7 For each j = 0, 1, · · · , n there are polynomials

AC,j(Q) = (−1)j
∑

|X|=j

∑

Y⊂X

(−1)|Y |Qn∗(Y ).

counting the number over codewords of weight j in CQ.
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In [10, Sections 4 and 5], one shows how this matroid expression can be expressed by N0-graded Betti
numbers of the Stanley-Reisner rings of the matroid M∗

C and its elongations, viewed as simplicial
complexes via their independence sets ([10, Theorem 5.1]). From the arguments above we now see
that its concequence, [10, Corollary 5.1], formulated for linear codes in that corollary, carries over
to almost affine codes, except that the matroid M(H) appearing in [10, Corollary 5.1], must be
replaced by the matroid dual M∗

C . See also [10, Proposition 4.1], which can be applied to determine
the generalized Hamming weights for almost affine codes from the degrees of the polynomials Aj(Q).

Example 5 Let C be a multilinear code, like above, in particular a linear code over Fq, and an
almost affine code over F = F

m
q . Let Q = qs, for a natural number s.

Let CQ = C ⊗Fq
FQ. By this we mean the row space over FQ of G for any generator matrix G

of C over Fq.

For a moment, let us forget that C is multilinear, and remember only its linear structure over
A = Fq. We see that the alphabet AQ = FQ is an A = Fq-vector space of dimension s, and can
be identified with As, via a fixed basis. Furthermore CQ can be identified with Cs and indeed is a
code over the alphabet AQ = FQ as in formulated in (2). Let us now combine the fixed m with a
varying s. For any s the code CQ can also be viewed as a code over F

m
Q , by "merging" groups of

m successive symbols in each word, just as one did in the case s = 1. One might choose to look at
this alphabet as

((Fq)
s)m = (Fq)

ms = ((Fq)
m)s = F s.

if one prefers. This can again be achieved by choosing a fixed base of the Galois field extension from
Fq, to FQ.

Since C is a linear code it has a dual code C⊥, and two matroidal structures, r1 acorresponding
to the linear structure, and r2, when remembering m, each with a dual matroidal structure. The
important thing to note here is all these 4 matroid structures survive when s varies, and are simul-
tanous for each s. The basic point is that a generator matrix for C is a generator matrix for all CQ,
and a parity check matrix for C is a parity check matrix for each CQ. In particular we observe that
the dimension of any projection (CQ)X , over FQ, for any X ⊂ E, is the same as the dimension of
the projection (C)X , over Fq. Hence it is a multiple of m, and its cardinality a power of Qm with
integral exponent. Hence it is an almost affine code over F

m
Q .

We also obtain:

Example 6 The weight distributions of all the codes in the hierarchy over the one given in [22,
Example 2], viewed over the alphabet F

2
q, are given by the polynomials, appearing as coefficients of

XtY 9−t in the polynomial WM∗(X,Y, T ) in [6, p. 102].

Let C be a multilinear code, and let Br
j be the number of r−dimensional (over Fq) subspaces

of C, with support weight j interpreted as subsets of Fn, where F = F
m
q , for some natural number

m ≥ 2.
We then have:

Proposition 8 AC,j(q
s) =

∑s

r=0 B
r
j

∏r−1
i=0 (q

s − qi).

Proof The support, now in {1, · · · , n} of a word in CQ, corresponding to s words in C ⊂ Fn, is the
same as the support of the Fq-subspace of C generated by these s words. Using this observation,
the logic is the same as in the proof of [8, Proposition 6] (which is the case m = 1).
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5 Generalized Kung’s bound

In [13, Lemma 4.24], the author gives a bound for the minimum number of codewords of a linear
code that are sufficient to cover the whole space. This bound is related to the Singleton bound of
the dual linear code. In [11], this was generalized to find a bound for the number of codewords that
are necessary to cover a subspace of the whole space. Both results rely heavily on linear algebra.
In this section, we prove a similar result for almost affine codes.

We begin by defining the generalized critical exponents.

Definition 11 Let C be a non-degenerate almost affine code of length n. Let c̃ ∈ C and 1 6 i 6 n.
Then the i-th critical exponent with respect to c̃ is

γi(c̃) = Min{j, ∃c1, · · · , cj ∈ C, |
⋃

Supp(ck, c̃)| > i}.

Remark 9 If the dimension of C is k, then it is obvious that

γi(c̃) = 1 ∀1 6 i 6 k

since there exists at least a word of support k. Take namely a basis B of MC, then CB = F |B| and
we can find a word whose c̃ support contains B.

We can express these generalized critical exponents using the extended weight polynomials of
the previous section.

Proposition 9 Let C be an almost affine code of length n on the alphabet F . Let c̃ ∈ C. Let
q = |F |. Then, for 1 6 i 6 n,

γi(c̃) = Min{j,
n
∑

l=i

AC,l(q
j) 6= 0}.

Proof This is obvious from Definitions 11 and 10.

Corollary 1 The generalized critical exponents are independent of the chosen word c̃.

Proof It follows from the fact that the extended weight polynomials are independent of this word.
They just depend on the underlying matroid.

In the sequel, we will therefore omit the reference to a particular word in the critical exponents.
Before stating and proving the main result of this section, we need a lemma on matroid theory.

Recall Definition 2.

Lemma 6 Let M be a matroid on the ground set E. Let B a basis and x ∈ E−B. Then for every
y ∈ B, we have: B′ = B − {y} ∪ {x} is a basis of M if and only if y ∈ σ(B, x) − {x}

Proof Remember that σ(B, x) is the only circuit of M included in B ∪ {x}. Of course it contains
x.
Assume that B′ is not a basis. Then by cardinality, it is dependent, and contains therefore a circuit
X . Obviously, X ⊂ B′ ⊂ B ∪ {x} and thus X = σ(B, x). Since y 6∈ X , one way is shown.
Assume now that y 6∈ σ(B, x). Then σ(B, x) ⊂ B′ = B − {y} ∪ {x} and B′ is dependent, and a
fortiori not a basis.
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Theorem 3 Let C be a non-degenerate almost affine code of dimension k and length n on the
alphabet F . Let k + 1 6 i 6 n. Then we have

γi 6 s∗n+1−i + 2

where s∗j denotes the j-th generalized Singleton bound of MC,

s∗j = k + j − d∗j .

Remark 10 We recall that the generalized Hamming weights di of the code C are defined as the
generalized Hamming weights for the dual M∗

C of MC. From Wei duality, we get the dual generalized
Hamming weights d∗i of the code C - and these do not in general correspond to the Hamming weights
for an almost affine code, since we have not been able to define dual codes of almost affine codes
in general. If we think of matroids, these latter weights correspond to generalized Hamming weights
for the matroid MC, that is

d∗j = Min{|X |, n(X) = j}.

In the special case that C is a linear code over F
q, then these d∗i are the usual Hamming weights for

the orthogonal complement C⊥, and we obtain (a new proof of) [11, Theorem 9].

Proof Let q = |F |. Without loss of generality, we may assume that the alphabet is F = {0, · · · , q−
1}, that c̃ = (0, · · · , 0), and that B = {1, · · · , k} is a basis of MC . Since C ≈ CB = F k, there

exists for each 1 6 j 6 k a unique word w(j) ∈ C such that w
(j)
l = 0 for l ∈ {1, · · · , k} − {j} and

w
(j)
j = 1. Now, let S ⊂ {k + 1, · · · , n} be of cardinality n+ 1− i, and set

TS = {l ∈ {1, · · · , k}, ∃j ∈ S, w
(l)
j 6= 0}.

We claim that
|TS | > dn+1−i − (n+ 1− i).

Indeed, let j ∈ S and l ∈ σ(B, y)− {y}. This latter is non-empty since the code is non-degenerate
and thus the matroid MC has no loops. By Lemma 6, Bl = B−{j}∪ {l} is still a basis of MC . By
Proposition 2, the subcode C(Bl, c̃) is such that

|C(Bl, c̃)| = qk−r(Bl) = 1

Since c̃ ∈ C(Bl, c̃), this means that w(l) 6∈ C(Bl, c̃), and in particular w
(l)
j 6= 0. This shows that

⋃

j∈S

(σ(B, j) − {j}) ⊂ TS

and therefore

|TS| >

∣

∣

∣

∣

∣

∣

⋃

j∈S

(C(B, j) − {j})

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

j∈S

σ(B, j)

∣

∣

∣

∣

∣

∣

− |S|.

Now, the circuits σ(B, j) are non-redundant, so from Proposition 4, we know that

n





⋃

j∈S

σ(B, j)



 > |S| = n+ 1− i.
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This in turn implies that
∣

∣

∣

∣

∣

∣

⋃

j∈S

σ(B, j)

∣

∣

∣

∣

∣

∣

> d∗n(
⋃

j∈S σ(B,j)) > d∗n+1−i,

the first inequality coming from the definition

d∗l = Min{|X |, n∗(X) = l}

and the second inequality from the monotony property of generalized Hamming weights.
Now, if we take t = k+n+2−i−d∗n+1−i distinct words among (w(1), · · · ,w(k)), say w(l1), · · · ,w(lt),
then we claim that

∣

∣

∣

∣

∣

∣

⋃

16s6t

Supp(w(ls), c̃) ∩ {k + 1, · · · , n}

∣

∣

∣

∣

∣

∣

> i− k.

If not, then there would exist at least n+ 1− i distinct indices j in {k + 1, · · · , n} such that

∀1 6 s 6 t, w
(ls)
j = 0.

Take S to be n+ 1− i such indices. Then for this particular S, we would have

|TS | 6 k − t < d∗n+1−i − (n+ 1− i)

which is absurd.
These t words, together with the word w0 ∈ C such that (w0)B = (1, · · · , 1) gives a t + 1-tuple
whose support has cardinality at least i, and this concludes the proof.

Remark 11 These bounds are the best that can be found. Linear codes are namely almost affine
codes, and in [11], it is mentioned that for simplex codes, the bounds are reached.

Example 7 Let C′ be the code of Example 1. Let c̃ = 321. Then γ3(c̃) = 1 since Supp(213, c̃) =
{1, 2, 3} (or we see from Example 4 that AC′,3(4

1) = 6 6= 0). We have seen that d1(C
′) = 2 and

d3(C) = 3, so that by Wei duality, d∗1(C) = 3. The bound of theorem 3 says that

1 = γ3(c̃) 6 s∗1(C) + 2 = 2.

6 Profiles of almost affine codes

In [4] one defines various distance/length and length/distance profiles for linear codes. Everything
that does not involve dual codes, can be done also for almost affine codes. In [4] one defines

mj(C) = min{|X |, dimCX = j},

where CX , in contrast to how we defined it in at the start of our introduction, is defined as the set
of code words with support on X (In the present paper we have chosen to use the notation from [22]
at this point). By looking at E−X in place of X we get, using our own notation from Definition 5:

mj(C) = n−max{|X |, |C(X, c̃)| = qj}.

We see that this is in perfect harmony with our Proposition 3, valid for almost affine codes in
general, saying:

dj(C) = n−max{|X |, |C(X, c̃)| = qj},
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so we can conclude mj(C) = dj(C) for almost affine codes in general. Forney also defines:

kj(C) = max{dimCX , |X | = i}

for linear codes, again using his definition of CX . For almost affine codes the obvious generalization
is:

ki(C) = max{logq|C(X, c̃)|, |X | = n− i},

using the notation from Definition 5. So, this will be our definition. In [4] one comments that for
linear codes:

mj(C)(= dj(C)) = min{i, ki(C) ≥ j}.

It is clear, by essentially the same argument as for linear codes, that this is true also for almost
affine codes

min{i, ki(C) > j}

= min{i, max{logq|C(X, c̃)|, |X | = n− i} > j}

= n−max{i, max{logq|C(X, c̃), |X | = i} > j}

= n−max{|X |, logqC(X, c̃) > i}

= n−max{|X |, logqC(X, c̃) = i}

= dj(C),

the penultimate equality coming from the fact that logq|C(X c̃)| decreases by at most 1 if X is
augmented with 1 element.

Moreover one comments in [4] that for linear codes

ki(C) = max{j, mj(C)(= dj(C)) 6 i}.

But this latter statement also follows as naturally for almost affine codes, as for linear codes, since
the last expression is equal to:

max{j, (n−max{|X |, logq|C(X, c̃)} = j) 6 i}

= max{j, (max{|X |, logq|C(X, c̃)|} = j) > n− i}

= max{logq|C(X, c̃)|, |X | > n− i}

= max{logq|C(X, c̃)|, |X | = n− i}.

But this is ki(C).
Moreover, in [4], one defines

k̃i(C) = min{dimPX(C)||X | = i}.

By PX(C), Forney here means the same object as we denote by CX , the set of projections down
on X , of all the code words in C. From Proposition 2 which is the almost affine version of the
“linear” [4, Lemma 1] (first duality lemma), it is clear that this means:

k̃i(C) = min{k − logq|C(X, c̃)|, |X | = i},

where k = logq|C| is the rank of the associated matroid. From this way of defining the k̃i(C) the
almost affine version of [4, Theorem 2] comes out automatically:

ki(C) + k̃n−i(C) = k.
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In [4] one also defines corresponding invariants for the dual code of a linear code C. For almost
affine codes we do not have any dual almost affine code available in general, but we do have the
dual matroid M∗

C of the matroid MC , with rank function of MC equal to r(X) = k− logq(C(X, c)).

Hence it is possible to use the formalism in e.g. [3] to define profiles dj , ki, k̃j · · · also for the dual
matroid M∗

C (the profiles for the matroid MC will be the same as for the almost affine code C. And
the formulas for the interactions between the profiles for C and the dual matroid M∗

C will be the
same as the ones for the interaction between the profiles for C and its dual code, when C is linear
over a field Fq. This matroid formalism gives alternative proofs of (the admittedly very simple
observations)

mj(= dj) = min{i|ki(C) > j}

and
ki(C) = max{j|mj(C)(= dj(C)) > i}

above.

Remark 12 In e.g. [14] (in Norwegian), and [18] more classically and authoritatively, one de-
scribes trellis decoding. It is clear that the way this is described, it goes just as well for almost affine
codes (in general) as for linear codes (in particular). Knowledge of the profiles gives lower bounds
for the complexity of the socalled state diagrams involved. Everything on [14, p. 46–59] seems to go
through just as well for almost affine codes as for linear codes.

7 Wire-tap channel of type II

In [20], the authors introduce the wire-tap channel of type II. A sender wants to send k elements of
information. In order to do so, the information is encoded into n elements, and sent to the receiver.
An intruder is allowed to listen to any s elements of the sent message. The channel is noiseless,
so the receiver can decode the message correctly. The authors look at how much information the
intruder is able to get. In their paper, they present an encoder/decoder system using linear codes.
In [23], the author relates the equivocation (that is, a measure on the maximum of information an
intruder might get access to) of the system to the generalized Hamming weights for the code (and
its dual code).

In this section, we extend their results to almost affine codes. We show that we can use almost
affine codes to design an encoder/decoder system, and we relate the equivocation of the system to
the generalized Hamming weights for the dual of the matroid associated to the almost affine code.

So let C be an almost affine code on the alphabet F with |F | = q, of dimension k and length
n. Without loss of generality, we may assume that the set {1, · · · , k} is a basis of the associated
matroid MC . Let ϕ : F × F → F be a mapping such that for all f ∈ F , ϕ(., f) and ϕ(f, .) are
bijections. For every m = (mk+1, · · · ,mn) ∈ Fn−k, define

Cm = {(w1, · · · , wk, ϕ(wk+1,mk+1), · · · , ϕ(wn,mn)), for (w1, · · · , wn) ∈ C}.

Lemma 7 The sets {Cm, m ∈ Fn−k} form a partition of Fn.

Proof It is obvious that there is a bijection between Cm and C, since ϕ(.,mt) is a bijection for
every k + 1 6 t 6 n. Now, suppose that c = (c1, · · · , cn) ∈ Cm ∩ Cm′ . In particular, we have that

(c1, · · · , ck, ck+1, · · · , cn) = (w1, · · · , wk, ϕ(wk+1,mk+1) · · · , ϕ(wn,mn))

and
(c1, · · · , ck, ck+1, · · · , cn) = (w′

1, · · · , w
′
k, ϕ(w

′
k+1,m

′
k+1) · · · , ϕ(w

′
n,m

′
n))
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for some words w,w′ ∈ C. Then wi = w′
i for all 1 6 i 6 k, and by Proposition 2 applied to

X = {1 · · · , k} and x = w, wi = w′
i for every k + 1 6 i 6 n also. Then ϕ(wi,mi) = ϕ(wi,m

′
i), and

thus mi = m′
i for all k + 1 6 i 6 n, that is m = m′. We conclude by a cardinality argument.

Corollary 2 The sets Cm ⊂ Fn are almost affine codes with associated matroid MC.

Proof We have namely, for X ⊂ {1, · · · , n},

(Cm)X = (CX)m

where m is the restriction of m to X ∩ {n− k, · · · , n}. Then

|(Cm)X | = |(CX)m| = |CX | .

Our scheme is then the following: the encoder wants to send the message m ∈ Fn−k, and chooses
randomly and uniformly any element c ∈ Cm, and sends it. The decoder gets c = (c1, · · · , cn),
finds the unique codeword w = (w1, · · · , wn) ∈ C such that wi = ci for all 1 6 i 6 k. Then
m = (mk+1, · · · ,mn) is the unique element of Fn−k such that ϕ(wi,mi) = ci for all k + 1 6 i 6 n.

If the message t ∈ Fn is sent over the channel, and an intruder is able to listen to a subset
X ⊂ {1, · · · , n} of the digits of t, we will now see how much the intruder knows about m, namely
which m the sender could possibly have tried to send, and with which probability.

Example 8 Let C′ be the code of Example 1. Here the alphabet is {0, 1, 2, 3}, and we take ϕ(a, b) =
a+ b (mod 4). We want to send the message m = 2. We construct therefore C′

2:

002 013 020 031

103 110 121 132

200 211 222 233

301 312 323 330

We choose at random any element there, say 121 and send it to the receiver. The receiver sees
that the only word in C′ starting with 12 is 123, so that the message that was sent is m such that
m+ 3 = 1, that is m = 2.
An intruder able to listen to 1 digit, say the second, knows nothing about m. Namely, there are
exactly 4 elements in C′

2 such that the second digit is 2, but the same is true also for C′ = C′
0,

C′
1 and C′

3. The same is true if the intruder is able to listen to 2 digits, say the first and second.
There is exactly 1 word in C′

0, C′
1, C′

2 and C′
3 looking like (1 · 1), namely 101, 131, 121 and 111

respectively.

Lemma 8 Let t ∈ Fn be any word, and X ⊂ {1, · · · , n}. Then we have the following

• Let m ∈ Fn−k. Then the set

Λt,X(m) = {w ∈ Cm, wX = tX}

is either empty, or has cardinality |F |k−r(X)
.

•
∣

∣{m ∈ Fn−k, Λt,X(m) 6= ∅}
∣

∣ = |F |n−k−n(X)
.
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Proof Let’s assume that Λt,X(m) 6= ∅, and let s ∈ Λt,X(m). In particular, s ∈ Cm, and we have

|Λt,X(m)| = |{w ∈ Cm, wX = tX}|

= |{w ∈ Cm, wX = sX}|

= |Cm(X, s)|

= |F |rk(Cm)−rCm (X)

= |F |k−r(X)
.

For the second point of the proof, we have

|{w ∈ Fn, wX = tX}| =
∑

m∈Fn−k

|{w ∈ Cm, wX = tX}|

=
∑

m∈Fn−k

|Λt,X(m)|

=
∑

m∈Fn−k, Λt,X (m) 6=∅

|Λt,X(m)|

=
∑

m∈Fn−k, Λt,X (m) 6=∅

|F |k−r(X)

=
∣

∣{m ∈ Fn−k, Λt,X(m) 6= ∅}
∣

∣ |F |k−r(X)

On the other hand, it is obvious that

|{w ∈ Fn, wX = tX}| = |F |n−|X|

and the result follows easily since n(X) = |X | − r(X).

In particular, if |X | < d∗1 = Min{|X |, n(X) = 1}, then an intruder that is able to listen to
the subset X of digits of t gets no information whatsoever on the message m. Namely, for every

m′ ∈ Fn−k, there are exactly |F |k−|X|
words in Cm′ whose restriction to X is tX .

A way of measuring how much an intruder gains information is the conditional entropy of the
system, namely

H(Fn−k|TX) = −
∑

tX∈TX

p(tX)
∑

m∈Fn−k

p(m|tX)log|F |p(m|tX).

Now, we assume that all messages m have the same probability to be chosen, and then that the
sent message w ∈ Cm the same probability to be chosen, so that p(tX) = 1

|F |X
. From the previous

lemma, we have that

p(m|tX) =

{

0 if Λt,X(m) = ∅
1

|F |n−k−n(X) otherwise
.

This gives that
H(Fn−k|TX) = n− k − n(X).

The system designer is interested in maximizing the equivocation

Eµ = Min|X|=µH(Fn−k|TX)
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for all possible µ ∈ {0, · · · , n}. This way, the designer is assured that no matter which µ digits an
intruder is able to listen to, the uncertainty about the message m is at least Eµ. The maximum of
information gained by an intruder with µ taps is therefore

∆µ = n− k − Eµ = Max|X|=µ{n(X)}.

By the definition of the generalized Hamming weights for the dual of the matroid MC associated
to the code C,

d∗i = Min{|X |, n(X) = i},

we get that
Max|X|=µn(X) = j ⇔ d∗j 6 µ < d∗j+1,

with the convention that d∗0 = 0 and d∗n−k+1 = n+1. We get then the following characterization of
the equirevocation of the system:

Theorem 4 The equivocation ∆µ of the system described above is entirely determined by the dual
generalized Hamming weights for the code C, namely

d∗∆µ
6 µ < d∗∆µ+1

with the same convention as above.

Example 9 We continue with Example 8. Since the matroid associated to C′ is U3,2, the nullity
function is 0 everywhere, except that it is 1 at {1, 2, 3}. We therefore find that

E0 = E1 = E2 = 1 ⇔ ∆0 = ∆1 = ∆2 = 0

and
E3 = 0 ⇒ ∆3 = 1.

We have seen that d∗1(C
′) = 3, so that for µ < 3, the Theorem gives ∆µ = 0, while it gives ∆3 = 1.

Remark 13 In [16, Corollary 1], the equivocation of the two-party wiretap channel of type II is
related to a profile of the pair of codes. If the second code is the 0 code, then this is the dual case
of the scheme presented in [20] (namely, while they use a parity check matrix in [20], they use a
generator matrix in [16]). In our case, we don’t have a dual code, but we can use [4, Theorem 3] to
define some dual DLP, namely

l̃µ(C) = µ− kµ(C).

Then it is easy to see that
Eµ = l̃n−µ(C),

or written in other ways
Eµ = n− µ− k̃n−µ(C)

or again
∆µ = µ− k̃µ(C)
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